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ABSTRACT

In this study, we address the challenge of computationally expensive simulations
of complex geometries, which are crucial for modern engineering design pro-
cesses. While neural network-based flow field predictions have been suggested,
prior studies generally exclude complex geometries. Our objective is to enhance
flow predictions around complex geometries, which may often be deconstructed
into multiple single, simple bodies, by leveraging existing data on these simple ge-
ometry flow fields. Using a case study of tandem-airfoils, we introduce a method
employing the directional integrated distance representation for multiple objects, a
residual pre-training scheme based on the freestream condition as a physical prior,
and a residual training scheme utilising smooth combinations of single airfoil flow
fields, also capitalising on the freestream condition. To optimise memory usage
during training in large domains and improve prediction performance, we decom-
pose simulation domains into smaller sub-domains, each processed by a different
network. Extensive experiments on four new tandem-airfoil datasets, comprising
over 2000 fluid simulations, demonstrate that our proposed method and techniques
effectively enhance tandem-airfoil prediction accuracy by up to 96%.

1 INTRODUCTION

In engineering design processes, simulating flow around geometries via computational fluid dynam-
ics (CFD) is a crucial step in modelling components. The study of partial differential equations
(PDE) involving intricate and multiple geometries holds significant importance in various scientific
and engineering applications, such as high-lift aircraft wings and wind farm wake interactions (Rum-
sey & Ying, 2002; Deskos et al., 2020). Analytical solutions are elusive due to the complexity of
these problems. Constructing complex geometries by combining simpler shapes, though feasible,
escalates simulation domains and resolution (Spalart & Venkatakrishnan, 2016), posing a challenge
in terms of time and computational costs.

Previous efforts to replace costly simulations with neural networks have often treated each com-
ponent independently and focused on simpler geometries scenarios with more abundant data (Pfaff
et al., 2021; Lino et al., 2021; Fortunato et al., 2022; Cao et al., 2023). However, industries like
aerospace and marine already simulate simple geometries like airfoils and hydrofoils extensively,
offering an opportunity to exploit this data to efficiently predict flow fields for complex geometries.
This paper introduces a novel method of leveraging extensive datasets from simple-geometry cases
for more time-efficient predictions of flow fields in complex-geometry scenarios. The study focuses
on tandem-airfoil, or a sequential arrangement of airfoils, chosen for its widespread application in
various engineering domains including compressor blades in turbomachinery (McGlumphy et al.,
2007), unmanned aerial vehicles (Yin et al., 2021; Okulski & Ławryńczuk, 2022), hydrofoil systems
for maritime vessels (Maram et al., 2021), and race car engineering (Azmi et al., 2017).

The proposed method leverages the freestream condition as a physics prior (Ferm, 1990) to facilitate
residual pre-training and smooth-combining of single airfoil predictions. Residual training, based
on smoothly combined single airfoil flow fields, is then employed to improve tandem-airfoil predic-
tions. To enhance performance and reduce GPU memory requirements, the simulation domain was
decomposed, and different networks are trained for each sub-domain, allowing focus on specific flow
regions. The directional integrated distance (DID), initially designed for single objects, is adapted to
handle multiple objects effectively, addressing the numerical complexity that arises with increasing
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object count. This work explores a novel problem setting—the use of simple geometry flow fields to
improve predictions for complex geometries—through four new tandem-airfoil datasets with over
2000 CFD simulations1. Our contributions include:

• First study to use flow fields of simple geometries to improve predictions of complex ge-
ometries through a curriculum learning framework, demonstrated in the context of tandem-
airfoil configurations.

• Novel use of freestream conditions as a physics prior for residual pre-training and smooth-
combining of predicted flow fields from simpler geometries, significantly easing the train-
ing process.

• Adaptation of DID for multiple object representation and its integration into residual train-
ing using combined flow fields, differentiating from previous works using low-resolution
flow field simulations.

• Establishment of four tandem-airfoil flow field datasets under different conditions for fur-
ther exploration in future work (to be shared once this work is published).

2 PRELIMINARIES AND RELATED WORK

2.1 PRELIMINARIES

Graph Construction The CFD simulation mesh M is represented as a graph G = (V,E), where
V and E are the sets of nodes and edges, respectively. The mesh nodes are directly represented as
graph nodes i ∈ V , and the faces between them as bi-directional edges (i, j), (j, i) ∈ E.

Geometry Representations This work utilises the shortest vector (SV) and DID methods first
proposed by Loh et al. (2024) to encode geometries as input node features. The SV is the shortest
vector between the node and the geometry, while each DID value represents the average distance be-
tween the node and the geometry in a particular angle segment, with a predefined maximum distance
dmax. However, these approaches were exclusively demonstrated on simple, single-geometries.

The DID was numerically estimated through the process summarised in Alg. 1. While extending the
theoretical DID definition to accommodate multiple geometries is conceptually straightforward, the
numerical calculations become progressively complex with each additional object.

Algorithm 1 DID calculation. Steps that gain complexity with additional objects are shown in red.
Input: nodes V ; positions [(xi, yi) : i ∈ V ]; boundary indices bd = [k ∈ V : k is on the boundary of a geometry]; angle segments[(

θj , θ
′
j

)
: 0 ≤ j < J

]
; maximum dmax

DID← [ ]
for j ∈ [0, . . . , J − 1] do

DIDj ← [ ]
for i ∈ V do

d← [ distance between i and k, ∀k ∈ [k ∈ bd : (θj < θi,k < θ′
j) and (k is unobstructed from i)] ]

d← minimum(d, dmax)
DIDθ ← average values of d

wθ ← proportion of
(
θj , θ

′
j

)
where (k is unobstructed from i), ∀k ∈ [k ∈ bd : (θj < θi,k < θ′

j)]

DIDi ← wθ∗DIDθ + (1− wθ) ∗ dmax

end for
append DIDi to DIDj

end for
append DIDj to DID
Return: DID

Solid Bodies within a Flow Flow around solid bodies is an important problem of fluid mechanics,
which, in scenarios like aircraft design, is often modelled by an infinite flow region (Wu, 1976).
Hence, the effect of the solid bodies on the flow can be thought of as a localised force field that can
accelerate/decelerate the flow, diverting the latter to move around the bodies. Further away from
the bodies, the flow will converge towards the so-called farfield boundary condition, essentially an

1Datasets will be made available to the public once this work is published.
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undisturbed freestream flow at infinity (Fan & Li, 2019). So, flow velocity can be decomposed into:

U = U∞ +U ′ ,

where the overall flow velocity, U , is the vector sum of the freestream conditions, U∞, and the de-
viation from freestream, U ′, induced by the presence of a body and unique to its specific shape
and orientation. Note that this decomposition is akin to the conversion from inertial frame to
body frame (Speziale, 1998) and is also applicable to potential flows (superpositioning of invis-
cid freestream and singularity elements) (Collicott et al., 2017) and turbulent flows (steady mean
and transient fluctuations) (Speziale, 1998). With that in mind, predicting flow fields with prior
knowledge of freestream flow conditions and geometry motivates the smooth-combining and resid-
ual pre-training methods in Secs 3.1 and 3.3, respectively.

2.2 RELATED WORK

Previous neural network (NN)-based CFD strategies in fluid simulation have adapted in various
ways. Graph neural networks (GNNs) have emerged as a primary method, demonstrating superior
performance to MLPs and CNNs (Ogoke et al., 2020; Bonnet et al., 2022; Pfaff et al., 2021). Chen
et al. (2021) introduced utilising both node and edge features, which are more suitable for CFD sim-
ulations and exhibited improved performance over basic GU-Net with vanilla graph convolutions,
such as that used by Bonnet et al. (2022). Architectures employing encoder-processor-decoder, with
similar graph convolutions, were adopted by Sanchez-Gonzalez et al. (2020) and Pfaff et al. (2021).
Further enhancements through multi-scalability were introduced by Fortunato et al. (2022), Lino
et al. (2021), Cao et al. (2023), and Gladstone et al. (2024), with the latter three achieving faster
information propagation with a GU-Net style processor. These have set the trend for NN architec-
ture and convolution design in CFD prediction, but they placed little focus on developing training
techniques that leverage existing data or physical priors.

On the other hand, physical priors have been utilised through varying means, but still typically
focused on flows with simpler geometries. Raissi et al. (2019) integrated physical equations into
the training loss of NNs, later applied to Graph convolutional networks (GCNs) by Würth et al.
(2024). This method reduces reliance on training data, but were shown on scenarios that involved no
internal geometries. Some incorporate the use of physics-based solvers directly into the model, such
as Obiols-Sales et al. (2020) to bring the network output to convergence, or de Avila Belbute-Peres
et al. (2020) to physically simulate flow on a coarser mesh. Additionally, the work of Pfaff et al.
(2021) was coupled with physics-inspired features and loss terms by Libao et al. (2023). However,
none of these have considered cases involving the interaction of flows from two objects in tandem.
Finally, Kochkov et al. (2021) further enhanced the concept of using the coarse solution in a method
they referred to as “learned-correction”, which capitalises on cost-effective data as the basis for
estimation. They used a CNN to correct the errors in very low-resolution simulation results. More
recently, Loh et al. (2024) exploited residual learning, an approach which had been extensively
applied to image super-resolution (Zhang et al., 2018; Yang et al., 2019), in GCNs to enhance the
training process and guide the model to concentrate on more intricate aspects of the prediction.
However, it still required coarse physical simulations. A more recent work by Mao et al. (2024)
has addressed domain decomposition for grid-based simulations using fixed-size subdomains and
CNN-based architectures, but these approaches do not directly address mesh-based CFD scenarios
involving complex geometries.

Hence, previous methods focused on balancing cost-accuracy trade-offs, but with a dearth of meth-
ods for complex geometries. Available public datasets, such as those provided by Bartoldson et al.
(2023), are relatively few and are not appropriate for studying flows around multiple shapes in tan-
dem by leveraging simpler geometry data. Reducing data dependence for complex geometries by
such a method remains an area unexplored.

3 PROPOSED METHOD

In this section, we explain the schemes introduced in this paper, aiming to optimise the use of
readily available simple geometry data for predicting complex geometry data, which is traditionally
resource-intensive. The overall framework is illustrated in Fig. 1. It can be summarised as:
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1. A simple-geometry neural network is pre-trained to predict single-airfoil flow fields given
the geometry representations and boundary conditions. Importantly, freestream conditions
serve as estimate fields for residual training.

2. The trained simple-geometry neural network predicts the single-airfoil fields, and the pre-
dictions are smoothly combined to generate combined fields with double-airfoils.

3. The neural networks in the complex geometry model are initialised with the weights of the
pre-trained simple-geometry neural network.

4. These complex-geometry networks are then residually trained to predict double-airfoil flow
fields, utilising the previously combined fields as estimate fields.

Note that the complex geometry model may encompass more than one neural network. Further
details regarding this and each procedure within the overarching framework will be provided in
subsequent sections, offering a detailed explanation of the entire methodology.

Figure 1: Overview of the proposed method, using (a) freestream-based residual pre-training, (b) smooth-
combining, and (c) combined field-based residual training. Here, the tandem-airfoil model is portrayed as a
single network for simplicity. A multi-NN as shown in Fig. 3 may be used instead.

3.1 SMOOTH-COMBINING

This section introduces the procedure for seamlessly combining multiple fields, with the objective
to amalgamate the cost-effective fields of simple geometries to estimate the fields of more complex
geometries (see Fig. 1(b)). Let y1, . . . ,yL denote the L fields to be combined. The combined field
ỹ at node i is then computed as:

ỹ(i) = γ1(i) · y1(i) + · · ·+ γL(i) · yL(i) . (1)

Here, γ1, . . . ,γL represent the weight of the respective original fields in the combined field. These
will be assigned based on their absolute deviation from a reference field y0:

γl(i) =
|y0(i)− yl(i)|

|y0(i)− y1(i)|+ · · ·+ |y0(i)− yL(i)|
. (2)

At nodes i where all fields do not deviate from the reference field, or y1(i) = · · · = yL(i) = y0(i),
the weights can be set to γ1(i), . . . ,γL(i) = 1/L. This results in the final combined field exactly
matching the reference field at these nodes, i.e., ỹ(i) = y0(i).
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Deviation from Freestream When combining flow fields, we can assign weights to each field
based on their deviation from the freestream. We will demonstrate using two single-airfoil fields to
estimate a tandem-airfoil field (see Fig. 1(b)). Let y1,y2 = U1,U2 be two flow fields such as the
x-velocity fields. Let y0 = U∞ be the freestream flow field with no internal geometry. Then:

Ũ(i) = γ1(i) ·U1(i) + γ2(i) ·U2(i) ,

γl(i) =
|U∞(i)−Ul(i)|

|U∞(i)−U1(i)|+ |U∞(i)−U2(i)|
=

|U ′l (i)|
|U ′1(i)|+ |U ′2(i)|

.

The approach is guided by the physical principles outlined in Sec. 2.1, which suggest that the in-
fluence of a solid body within a flow field can be conceptualised as deviation from the freestream,
U ′. Hence, employing weights based on these deviations creates a combined field that effectively
preserves the influences of both airfoils, resulting in a close estimate. The process is illustrated in
Fig. 1(b). This novel concept not only ensures accuracy, but also offers computational efficiency due
to its simplicity and the extra-low computational cost of the freestream conditions.

Figure 2: Weight values γ1 for the front airfoil.

Figure 2 provides an example of the resulting
weights, where the flow goes from left to right.
Note that, where the flow fields are very simi-
lar but not equal to the freestream, the weights
may still significantly favour the field that is
most different from the freestream, such as in
the blue area close to the front (left) airfoil. Re-
fer to Appendix H for a further discussion.

3.2 DID CALCULATION FOR MULTIPLE OBJECTS

As mentioned, the SV and DID are incorporated into the neural network inputs as geometry rep-
resentations. While both were utilised in previous applications, this marks the inaugural use of
DID in a multiple-object scenario. Numerically calculating DID values using the original algorithm
becomes progressively more complex and time-consuming with the addition of each object.

Deviation from Maximum To address this challenge, we propose an alternative procedure that
capitalises on the previously outlined smooth-combining scheme, using the deviation from the max-
imum value dmax to weigh each field. This alternative method2 is detailed in Alg. 2, providing
an estimated DID representation of multiple geometries in a significantly reduced time-frame, en-
suring computational efficiency of DID in a multi-object setting. Note that here, y0 = dmax, and
y1, . . . ,yL are the individual DID fields to be combined.

Algorithm 2 DID estimation for L number of objects.
Input: nodes V ; positions [(xi, yi) : i ∈ V ]; boundary indices bdl = [k ∈ V : k is on the boundary of geometry l] ∀ geometries

l ∈ {1, . . . , L}; angles segments
[(

θj , θ
′
j

)
: 0 ≤ j < J

]
; maximum value dmax

y0 ← dmax

for l = 1 to L do
yl ← DIDl value calculated using Alg. 1 and boundary indices bdl.

end for
DIDest ← combined field ỹ calculated using Eqn. 1 and Eqn. 2, with (y0, . . . ,yL)
Return: DIDest

3.3 RESIDUAL TRAINING

In this section, we will introduce two residual training schemes, one supporting the utilisation of
pre-training, and the other capitalising on the smooth-combining techniques outlined in the previous
section. Residual training, which is extensively used in image super-resolution, involves utilising
an estimate to ease the learning. Let the network output be Û . Instead of directly predicting the
flow field Ugt, the model is trained to predict the residual field Ugt − Ũest and minimise the loss

function L
(
Ugt, Û + Ũest

)
, where Ũest represents an estimated flow field. In CFD cases, this

2This method avoids performing Alg. 1 with multiple objects.
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estimate often takes the form of a lower-resolution simulation result, which is more cost-effective to
obtain than the corresponding ground-truth (Loh et al., 2024).

Freestream Conditions Rather than relying on a lower-resolution result, this paper suggests an
innovative approach: using freestream conditions as an estimate for simple geometries, or setting
Ũest = U∞. This concept, like the smooth-combining procedure, aligns with the physical principles
discussed in Sec. 2.1 that assert that freestream conditions should serve as a reliable estimate for the
majority of the field. In contrast to lower-resolution fields, freestream conditions do not need to be
derived from any physics-based simulator, so its computational cost is minimal. The residually pre-
trained network is used not only to predict the flow fields of single airfoils for smooth-combining,
but also to initialise the weights of the network for predicting tandem-airfoil. This initialisation
can improve the final prediction performance. Figure 1(a) illustrates the freestream-based residual
pre-training.

Combined Flow Fields To estimate the flow field of tandem-airfoil, we propose employing com-
bined flow fields, obtained through the smooth-combining procedure discussed in the previous sec-
tion and illustrated in Fig. 1(b), or setting Ũest = Ũ . The combined flow field may still differ
from the target tandem-airfoil flow field, but it provides a cost-effective estimate for improving the
learning through residual training.

The combined field-based residual training process is visually presented in Fig. 1(c), where it can
be seen as part of the consolidated pre-training, smooth-combining and residual training method.
Both residual training procedures in the proposed method use different estimates, one based on the
freestream conditions and the other on the combined flow fields, which are unlike previous methods
based on low-resolution simulation results.

3.4 MULTI-NN INFERENCE PROCEDURE

Multi-NN inference involves training multiple NNs to predict extensive CFD domains with multiple
geometries, like tandem-airfoil. While it is conceivable for the complex geometry model shown in
Fig. 1(c) to be handled by a single neural network, training the network to predict a multi-geometry
case after being pre-trained on solely single-geometry instances would be particularly demanding.
The primary purpose of the multi-NN is hence to ensure that each neural network exclusively pre-
dicts a field with at most one geometry, mitigating these challenges.

Figure 3: Above: Inference using a single NN.
Below: Inference using a multi-NN

A comparison between a single NN and the multi-
NN inference procedure is depicted in Fig. 3. The
multi-NN process can be summarised:

1. The CFD domain is subdivided into front,
back, upper, and lower flow fields as in
Fig. 4. Inputs like the SV, DID or estimated
fields are segmented accordingly.

2. The front flow field is predicted, with inlet
values serving as an input feature for nodes
along the inlet. The remaining nodes in the
rest of the field will receive a zero-value
here.

3. The predicted values within the overlap
regions between the front and back sub-
graphs are then utilised as the correspond-
ing input features for predicting the back
flow field.

4. The previous step is repeated, employing
both the inlet values and appropriate over-
lap data from the front and back fields, to
compute the upper and lower fields.
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5. All sub-fields are combined to generate the final prediction for the complete flow field, with
the latest and most updated prediction used for the overlap regions.

Figure 4: Domain decomposition into front, back, up-
per and lower fields, with overlapping regions.

The dependency structure of our multi-NN ap-
proach is specifically tied to geometric settings
where the division of flow fields aligns with
predefined boundaries and inlets. This depen-
dency ensures the sequential propagation of
information through sub-domains, maintaining
coherence across the overall flow field. For
more complex geometries or scenarios with
dynamic boundary conditions, this method is
adaptable to specific requirements. However,
since this technique resonates with with domain
decomposition in CFD where a large and com-
plex flow field is broken down into coupled segments (Chan & Mathew, 1994), practitioners in this
domain typically can encapsulate the necessary knowledge of inlet positions, overlap regions, and
flow directions, thus ensuring that this is rarely a significant limitation in practice.

Segmentation allows each part to focus on less complex geometries, enhancing prediction accuracy
and computational efficiency. Sections like upper and lower fields may be predicted using diverse
strategies, such as freestream conditions or interpolation, reducing the total neural networks needed.
In some cases, these sections might even be omitted if maintaining the original field size is unneces-
sary. This adaptability ensures the versatility of the multi-NN inference procedure for diverse CFD
applications and specific modelling needs, similar to customisation in domain decomposition based
on unique simulation characteristics, such as geometry and boundary conditions (Lim et al., 2023).

4 EXPERIMENTS

In this section, we rigorously evaluate the effectiveness of our proposed schemes through three ex-
periments. The primary goal is to assess the performance of the multiple-object DID representation
method, evaluate the impact of the pre-training and residual training schemes with an ablation study,
determine the effectiveness of multi-NN inference, and finally test the effectiveness of the training
schemes in a varying flow condition scenario. We employ four diverse datasets: (i) Cruise AOA=0◦,
(ii) Cruise AOA=5◦, (iii) Takeoff AOA=5◦, and (iv) Cruise Random. Our method is applied to two
state-of-the-art (SOTA) convolutional neural network architectures: MeshGraphNet (MGN) (Pfaff
et al., 2021) and invariant edge-GCNN (IVE) (Chen et al., 2021), demonstrating effectiveness across
various flow conditions and convolutional types.3

4.1 DATASETS

Our investigation employs the four-digit series airfoil shapes developed by the National Advisory
Committee for Aeronautics (NACA) for aircraft wing applications. The four-digit series NACA
airfoils are parameterised using numerical codes (MPXX). To comprehensively explore airfoil
shapes, parameters M and P are uniformly selected from the range [0, 6], while XX is uniformly
chosen from [5, 25] for both single- and tandem-airfoil datasets.

Operating at either a fixed low Reynolds number (Re = 500) or a random high Reynolds number,
our study considers the interaction between two airfoils interacting, resulting in unsteadiness in the
flow fields. For the low Reynolds number condition, two angles of attack (AOA) are considered,
specifically 0◦ and 5◦. In contrast, for the random high Reynolds number condition, a range of
angles of attack between −5◦ and 7◦ is considered.

The datasets comprise 1014 single airfoil configurations for Single AOA=0◦ and Single AOA=5◦,
and 784 tandem-airfoil configurations for Cruise AOA=0◦ and Cruise AOA=5◦. For 5◦ AOA, an
additional Takeoff AOA=5◦ dataset with ground effect is utilised. For the Cruise Random dataset,

3We aim to investigate the effectiveness of our proposed method, which can be used alongside a variety of
deep graph architectures architectures. We do not intend to replace any of the original methods.
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both Re and AOA are randomly selected within the ranges
[
105, 5×106

]
and [−5◦, 7◦], respectively,

totaling 1025 Single- and 900 Cruise-Random cases.

Figure 5: Schematic of tandem-airfoil case.

As shown in Fig. 5, the tandem-airfoil datasets
are configured using three parameters: gap
(G), stagger (S), and height (H) for the Take-
off AOA=5 dataset. These parameters are ran-
domly varied within the ranges specified in
Tab. 1. For all cases, the training, validation,
and test sets were distinct, uniformly sampled
sets of 80%, 10% and 10% of the whole.

Table 1: Total number of cases, average grid cells and the range of Reynolds number, Re, angle of attack,
AOA, stagger, gap and height (see Fig. 5), normalised by the chord length, for the tandem-airfoil datasets

DATASET CASES AVERAGE CELLS RE AOA [◦] STAGGER GAP HEIGHT

CRUISE AOA=0,5 784 351, 315 500 0 , 5 [0.5, 2] [−0.4, 0.4] N.A.
TAKEOFF AOA=5 784 271, 316 500 5 [0.5, 2] [−0.2, 0.6] [0.4, 1]
CRUISE RANDOM 900 210, 181

[
105, 5× 106

]
[−5, 7] [0.5, 2] [−0.8, 0.8] N.A.

4.1.1 EXPERIMENT 1: MULTI-OBJECT DID EFFECTIVENESS

In the first experiment, we assess the effectiveness of the multiple-object DID representation by
comparing MGN performance with and without DID on the Cruise AOA=0◦ and Takeoff AOA=5◦
datasets, where the two airfoils define the boundaries for DID calculation. No additional methods
are applied. As shown in Tab. 2, using the DID significantly improves performance for both datasets,
with over an 80% reduction in MSE test loss for the Cruise AOA=0◦ case. These results suggest that
the DID representation remains effective even when estimated using the smooth-combining method.

TABLE 2: MSE (×10−2) PERFORMANCE EVALUATION OF DID

MODEL / DATASET CRUISE AOA=0◦ TAKEOFF AOA=5◦

MGN + SV 11.51 ± 5.48 8.17 ± 3.37
MGN + SV + DID 2.03 ± 1.15 4.23 ± 2.01

4.1.2 EXPERIMENT 2: ABLATION STUDY

The second set of experiments assess the effectiveness of pre-training and residual training on both
MGN and IVE, across three datasets. We compare the baseline against the following four combina-
tions of the suggested schemes:

• PRE: A single-airfoil model is pre-trained, and its weights are used to initialise the networks
of the main tandem-airfoil model before training.

• PRE-FREE + COMB: Additionally, the freestream conditions is used as an input feature to
the pre-trained single-airfoil model, and the combined flow fields from the single-airfoil
network is used as input features to the main tandem-airfoil model.

• RES-FREE + RES-COMB: The single-airfoil model is residually trained using the freestream
conditions as the estimate fields. Likewise, the main tandem-airfoil model is residually
trained using the combined flow fields as estimate fields. However, its weights are not
initialised with that of the single-airfoil model.

• PRE-RES-FREE + RES-COMB: The pre-trained single-airfoil model is freestream-based
residually trained. Its weights are used to initialise the main tandem-airfoil model, which
is combined field-based residually trained.

The single-airfoil dataset with the same AOA value (0◦, 5◦ or random) as the tandem-airfoil dataset
is used. All models including the baselines incorporate both SV and DID. Likewise, multi-NN
inference was used in all models. The outcome of this ablation study is shown in Tab. 3.

The comprehensive method with both pre-training and residual training exhibited superiority for
both Cruise AOA=5◦ and Takeoff AOA=5◦ datasets, with up to 86% and 75% reduction in loss over
the MGN and IVE baseline models respectively. Although it was outperformed by other models

8
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in the Cruise AOA=0 dataset, the difference in performance was an order below the improvements
over the first two models. Overall, these results strongly suggest that pre-training and combined-
field based residual training both individually enhance the performance of models across various
scenarios, but most consistently perform best when used in conjunction with one another.

TABLE 3: MSE (×10−2) PERFORMANCE EVALUATION OF ABLATION STUDY

MODEL / DATASET CRUISE AOA=0◦ CRUISE AOA=5◦ TAKEOFF AOA=5◦

MGN (BASELINE) 2.03 ± 1.15 2.08 ± 9.34 4.23 ± 2.01
MGN + PRE 0.61 ± 0.40 0.72 ± 0.41 2.00 ± 1.02
MGN + PRE-FREE + COMB 0.39 ± 0.33 0.70 ± 0.37 0.82 ± 0.38
MGN + RES-FREE + RES-COMB 0.39 ± 0.28 0.83 ± 0.53 1.77 ± 0.70
MGN + PRE-RES-FREE + RES-COMB 0.41 ± 0.29 0.67 ± 0.39 0.59 ± 0.33

IVE (BASELINE) 0.90 ± 0.74 1.20 ± 0.46 2.88 ± 1.34
IVE + PRE 1.12 ± 0.78 0.99 ± 0.40 2.45 ± 1.12
IVE + PRE-FREE + COMB 0.86 ± 0.98 0.88 ± 0.36 0.88 ± 0.39
IVE + RES-FREE + RES-COMB 0.44 ± 0.31 0.66 ± 0.24 0.73 ± 0.37
IVE + PRE-RES-FREE + RES-COMB 0.47 ± 0.31 0.60 ± 0.21 0.71 ± 0.32

4.1.3 EXPERIMENT 3: MULTI-NN EFFECTIVENESS

In the third experiment, we assess the effectiveness of the multi-NN inference by comparing MGN
performance in a single-NN versus a multi-NN setup, where the field is split into front and back sub-
fields. The upper and lower fields were excluded due to memory limitations. The experiment uses
the Cruise AOA=0◦ dataset. As detailed in Tab. 4, multi-NN inference outperforms the single-NN in
both models. This suggests that using separate and specialised NN predictions enhances accuracy.

TABLE 4: MSE (×10−2) PERFORMANCE EVALUATION OF MULTI-NN SCHEME

MODEL / INFERENCE SCHEME SINGLE-NN MULTI-NN

MGN + RES-FREE + RES-COMB 1.66 ± 1.71 1.34 ± 1.52
MGN + PRE-RES-FREE + RES-COMB 1.51 ± 1.61 0.60 ± 0.80

4.1.4 EXPERIMENT 4: EFFECTIVENESS IN VARYING FLOW CONDITIONS

In the final experiment, we assess the method’s ability to predict flow fields under varying conditions
using the Cruise Random dataset. We test two data sampling styles: Uniform sampling, and Extrap-
olation. In Extrapolation, the data reflecting the top and bottom 5% of either the AOA or Re value
range is used as the test set, while the training and validation sets are uniformly sampled from the
middle 90% range. Table 5 shows that the MSE test losses are higher than in other datasets, which
is expected due to the varied Reynolds numbers and AOA values without an increase in dataset
or model size. Despite this, the proposed method achieves up to 96% reduction in MSE test loss
compared to the baseline, demonstrating its effectiveness.

TABLE 5: MSE PERFORMANCE EVALUATION USING CRUISE RANDOM DATASET

MODEL / DATA SCHEME UNIFORM AOA EXTRAP Re EXTRAP

MGN (BASELINE) 1.75 ± 1.35 2.41 ± 2.26 4.70 ± 1.60
MGN + PRE-RES-FREE + RES-COMB 0.07 ± 0.07 0.25 ± 0.32 0.26 ± 0.40

5 CONCLUSION

This paper introduces a novel smooth-combining technique for DID representation in multi-object
fields, a pre-training and residual training procedure based on freestream and combined fields, and
a multi-NN inference scheme. We also provide four tandem-airfoil datasets for future research on
complex geometries. Our methods were rigorously evaluated on two SOTA benchmarks, demon-
strating their effectiveness. Overall, our research offers a pioneering methodology that enhances pre-
dictive modelling in complex flow fields, providing a more robust and efficient approach with broad
implications for CFD and engineering design. This study centres on tandem-airfoil as a complex
geometry. Future work should further explore the method’s generalisation capabilities in scenarios
like multi-airfoil cases in turbomachinery stages, bluff body configurations, or 3D cases.
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A DATABASE GENERATION

Mesh Generation Various meshing methods were employed to cater to different simulation re-
quirements. For simulations involving single airfoil geometries, the blockMesh utility tool provided
by OpenFOAM-v2112 (Jasak et al., 2007) was utilised to create a C-grid type of hexahedral mesh,
encompassing a domain size of 20 chord lengths. In contrast, overset meshing (Benek et al., 1986)
was adopted for the simulations involving double airfoil configurations, offering flexibility in ma-
nipulating the orientation of the airfoils. The overset mesh consists of a background mesh and one or
more component meshes. In our work, the background mesh, which consists of the structure grids,
was generated using blockMesh with a domain size of 20×24 chord-length units. On the other hand,
the component meshes, which represent the near-field airfoil meshes, were created using Pointwise
software (Karman & Wyman, 2019). To ensure accurate resolution of the boundary layer without
relying on wall functions, the thickness of the first cell adjacent to the airfoil wall was set to 1 mm,
ensuring y+ << 1. Consequently, the single airfoil meshes consist of approximately 1.2 × 105

cells, while the double airfoil overset meshes comprise a total of approximately 2.7×105 cells, with
2.4 × 105 cells in the background mesh and roughly 1.5 × 104 cells in each of the airfoil meshes.
These refined meshes enable comprehensive and accurate simulations of the flow behaviour around
single and double airfoil configurations, facilitating detailed analysis of their interactions.

Dataset Generation This study considers an extra low Reynolds number (Re) scenario, wherein
the interaction between two airfoils results in unsteadiness in the flow fields. The ability to predict
such unsteadiness in the flow holds significant potential for reducing computational requirements
while achieving reliable field initialisation. To this end, two angles of attack (AOA), namely 0◦ and
5◦, are considered. For each AOA, the datasets consist of 1014 single airfoil configurations and
corresponding 784 tandem airfoil configurations each with and without ground effect, comprising a
diverse combination of different airfoil shapes, ranging from symmetric to asymmetric and thin to
thick airfoils. While the inflow conditions remain fixed, variations in geometry shapes are introduced
to examine flow interactions between different geometries.

The simulations are conducted at a Reynolds number of Re = 500 using steady-state RANS
solvers. For single airfoil simulations, the simpleFoam solver is employed, while the overSim-
pleFoam solver is utilised for tandem airfoil configurations. Both solvers employ a semi-implicit
method for pressure-linked equations (SIMPLE) algorithm (Caretto et al., 1973), coupled with two
transport equations from the k-ω SST turbulence model (Menter et al., 2003). Convergence is at-
tained by iteratively solving for U , p, k and ω fields until the prescribed convergence criteria are
met. The computational resources for this investigation involve the utilisation of 64 CPU cores of
the AMD EPYCTM7713 system, accessible through the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

The dataset generation was inspired by other cases with tandem airfoils from Fanjoy et al. (1997);
Yin et al. (2021); Hosseini et al. (2022), and cases with ground effect from Mokhtar (2005); Qu et al.
(2015); Grabis & Agarwal (2019). With a total of 4380 cases, including 2352 tandem airfoil cases,
this is, to the best knowledge of the authors, the largest public dataset containing the full flow fields
around tandem shapes for machine learning purposes. For experiments, the training set, validation
set, and test set were distinct, uniformly sampled sets of 80%, 10% and 10% of the whole. However,
for extrapolation experiments, the data reflecting the top and bottom 5% of either the AOA or Re
range was used as the test set. The training and validation sets were uniformly sampled sets of a 8:1
ratio of the remaining middle 90% range of data.

B INPUT AND NEURAL NETWORK PARAMETERS

In all experiments, the angle segments
(
θj , θ

′
j

)
∈

[(
−π

8 ,
π
8

)
,
(
π
8 ,

3π
8

)
, . . . ,

(
13π
8 , 15π

8

)]
were used

to calculate the DID estimates. These were chosen to give 8 arcs each spanning π
4 degrees, centred

at π
4 intervals. Also, the maximum distance value used was dmax = 5.

Table 6 shows the neural network model parameters and training parameters used in the experiments.
The input features (and their sizes) to all models consist of the node positions (2), SV (2), DID (8),
inlet/overlap values (3) and freestream/combined field (3) when residual training was done, making
the input layer size 15 without residual training and 18 with. Likewise, the number of output features
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Table 6: Neural network parameters

MGN IVE

NUMBER OF HIDDEN LAYERS 15 8
HIDDEN LAYER SIZE (NODE) [128, 128, . . . , 128] [128, 256, . . . , 256, 128]
HIDDEN LAYER SIZE (EDGE) [128, 128, . . . , 128] [64, 128, 256, . . . , 256]

LOSS FUNCTION MSE MSE
OPTIMIZER ADAM ADAM
LEARNING RATE SCHEDULER LAMBDA DECAY LAMBDA DECAY
LAMBDA FUNCTION (1 + k · λ0)

−1 (1 + k · λ0)
−1

INITIAL LEARNING RATE (λ0) 5.0E-05 2.0E-04

of all models was 3, for the x-velocity, y-velocity and pressure fields. We use the standard mean
squared error (MSE) loss function and Adam optimizer to train the neural networks. A custom
decay function is used for the learning rate, as defined in Tab. 6. All models were trained using
half-precision and distributed data parallel with the number of GPUs as specified in Tab. 7.

Table 7: Number of GPUs used in parallel

DATASET \MODEL MGN IVE

CRUISE AOA=0◦ 8 4
CRUISE AOA=5◦ 8 4
TAKEOFF AOA=5◦ 7 4
CRUISE RANDOM 4 -

C SIMULATION AND PREDICTION TIMINGS

This section compares the average wall time required to simulate a flow scenario compared to pre-
dicting the flow fields using a neural network. Table 8 shows the average wall time per simulation
for each dataset used in training and testing. Note that, each simulation runs in parallel with 64
CPUs. Likewise, Tab. 9 shows the average time per double-airfoil case for each step involved in the
neural network prediction using the MGN + pre-free-res + res-combine model.

Table 8: Average simulation timings

NUMBER OF AIRFOILS DATASET SIMULATION TIME (S)

SINGLE
AIRFOIL

CRUISE AOA=0◦ 304.42 ± 32.59
CRUISE AOA=5◦ 152.64 ± 14.99
AVERAGE 228.53

DOUBLE
AIRFOIL

CRUISE AOA=0◦ 252.02 ± 56.63
CRUISE AOA=5◦ 284.93 ± 127.49
TAKEOFF AOA=5◦ 292.96 ± 246.70
AVERAGE 276.64

Note that the single-airfoil cases are meshed using the standard C-grid mesh, while an overset or
“chimera” mesh is used in the double-airfoil cases. The background mesh uses a rectangular mesh
and the overset mesh uses a handcrafted mesh. The background mesh cells are then connected to
their nearest neighbour cells in the overset mesh to avoid importing two disjointed graphs. Hence,
importing a double-airfoil mesh takes longer than a single-airfoil mesh.

From Tabs. 8 and 9, we can see that the average total prediction time comes up to only 65.57
seconds. This is a 76% reduction from the average wall time of 276.64 seconds it takes to simulate
a double-airfoil case using OpenFOAM in parallel.
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Table 9: Average neural network prediction timings

STAGE OPERATION SIMULATION TIME (S)

SINGLE AIRFOIL
PREDICTIONS

READ CFD FILE 12.00 ± 0.72
CALCULATE GEOMETRIC FEATURES (×2) 3.34 ± 0.27
INFERENCE (×2) 0.30 ± 0.00

DOUBLE AIRFOIL
PREDICTION

READ CFD FILE + PROCESS OVERSET MESH 18.97 ± 0.72
CALCULATE GEOMETRIC FEATURES 17.03 ± 1.02
COMBINE FIELDS 8.60 ± 0.68
INFERENCE 1.10 ± 0.00

EXPORT CFD FILE 4.22 ± 0.39
TOTAL 65.57 ± 3.80

D TRAINING SCHEMES AND TIMINGS

This section presents the average time required by the various NNs in the multi-NN model to train.
Note that while the NNs had a maximum epoch of 300, an early-stopping mechanism was utilised,
such that training would cease if the validation loss did not improve after 20 epochs, indicating
convergence. Additionally, the MGN front models would have a minimum epoch of 150 to ensure
sufficient training, due to having more turbulent validation losses.

The training and validation loss curves as shown in Fig. 6 for each sub-domain: (a) front, (b) back,
(c) upper, and (d) lower, exhibit consistent convergence. For the front and back sub-domains, the
validation losses closely follow training losses across 200 epochs, indicating good generalization
to unseen data. Similarly, for the upper and lower sub-domains, both losses converge rapidly and
remain stable, suggesting no signs of overfitting. It is worth noting that the size of the computational
domain (graph) is large. Prior to domain decomposition, the model may have been underfitting, and
this structural decomposition allows the networks to effectively capture sub-domain-specific flow
features without increasing the risk of overfitting. These results collectively demonstrate that our
approach maintains a balance between model complexity and generalization.

Figure 6: Training and validation loss curves of the various sub-domains.

The average training times of the MGN models using the Takeoff AOA=5◦ dataset are shown in
Tab. 10. The single-airfoil models had larger training set sizes, leading to longer training times.
Likewise, due to the simplicity of the upper and lower fields, the upper and lower NNs take the least
training time to converge. Hence, these categories are separated.
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Table 10: Average neural network training timings

NN FEATURES AVERAGE TRAINING TIME (S)

SINGLE-AIRFOIL
MGN (BASELINE) 27,067

21,883MGN + FREE 28,020
MGN + RES- FREE 10,562

FRONT AND BACK

MGN (BASELINE) 10,452

14,517
MGN + PRE-FREE 15,739
MGN + PRE-FREE + COMB 14,056
MGN + RES-FREE + RES-COMB 11,878
MGN + PRE-RES-FREE + RES-COMB 20,459

UPPER AND LOWER

MGN (BASELINE) 2,853

2,191
MGN + PRE-FREE 2,644
MGN + PRE-FREE + COMB 1,905
MGN + RES-FREE + RES-COMB 1,770
MGN + PRE-RES-FREE + RES-COMB 1,782

E A DISCUSSION ON THE DID

In this section, we will discuss the challenges of calculating the DID as done in the original work and
present the justification for using the smooth-combine method to estimate it instead. As mentioned
previously, calculating the DID in a multiple-object scenario using Alg. 1 posed certain challenges
that were highlighted in red. These challenges are illustrated in Figs. 7 and 8.

The first challenge is in determining whether the point on the object boundary k is obstructed from
the point of reference i. As shown in Fig. 7(a), in a single object scenario, it suffices to ascertain
that either boundary face adjacent to k is on the side of the object that faces i. However, as seen in
Fig. 7(b), there is the possibility that k is obstructed from i by the boundary faces of another object.
Determining obstruction is a process that increases in complexity with the addition of every object.

Figure 7: Determining obstruction of a boundary point from the reference point in a (a) single-object case and
(b) double-object case. Note how a boundary point that is unobstructed in the first case may be obstructed by
another object in the second case.

Figure 8: Determining the angular range that faces an object boundary (shown in green) in a (a) single-object
case, (b) overlapping double-object case, and (c) non-overlapping double-object case. Note that the angle
segment (θj , θ′j) used was (0, π/2) in (a) and (b) and (π/4, 3π/4) in (c).

Likewise, the second challenge is in determining the proportion of the angular range (θj , θ
′
j) where

i is obstructed by an object. As shown in Fig. 8(a), in a singular object scenario, this proportion
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can be represented as one continuous segment using the minimum and maximum value of θi,k, the
angle at which k is with respect to i. However, in a double object scenario, this proportion may
be represented as one continuous segment as seen in Fig. 8(b), or two separate segments as seen
in Fig. 8(c). Multiple objects involve pair-wise comparisons of each object in determining whether
they overlap (as in the former case) or not (as in the latter case), greatly increasing complexity.

Figure 9: Comparison of the DID field calculated directly with that from smooth-combined estimate. Above:
Angular range is [0, π]. Below: Angular range is [π/2, 3π/2].

To circumvent these challenges, a smooth-combining method using the deviation from the maximum
value dmax was utilised to estimate the DID fields for multiple objects in this paper. While there
is a difference between the resulting smooth-combined fields from the direct DID calculation, it is
important to highlight that these differences are minimal. To illustrate this, the DID fields for two
angle segments from a direct calculation and smooth-combining, as well as their difference, are
shown in Fig. 9.

As can be seen from the figures, the most significant difference occurs in points i when both objects
are within its angular range. In these areas, the smooth-combination will overestimate the DID
when the objects do not overlap (blue regions), and underestimate the DID when the objects overlap
(red regions). On the other hand, when only one object is in the angular range of i, both the direct
numerical calculation and the smooth-combined calculation calculates its average distance to every
unobstructed boundary point j on the objects using a relatively uniform weight. Hence, there is
little difference between the two. Importantly, the smooth-combined calculation produces a close
estimate without harsh lines.

The timings and maximum memory usage of the DID calculation done directly was estimated using
a small sample of the datasets. It is compared against the estimation using the smooth-combine
scheme in Tab. 11. Note that the direct calculation was not optimised, and some steps that could be
done in parallel were instead done in succession. Doing them in parallel would decrease the timing
but increase the memory overhead.

Table 11: Comparison of DID calculation times and memory overhead

CALCULATION TYPE AVG. TIME PER FIELD (S) MAX. MEMORY USAGE (GB)

DIRECT 5221.641 25.5
WITH SMOOTH-COMBINE 3.492 23.3

As can be seen, using the smooth-combined estimate saves a significant amount of calculation time
for a similar amount of memory required, making it the ideal choice. For a dataset of size 784, the
direct DID calculations would take an estimated 47 days. The accuracy performance of the direct
DID is hence irrelevant when the goal is to produce faster results than numerical simulations.
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F SENSITIVITY STUDIES ON THE DID

To ensure a fair comparison with the baseline methods, hyperparameters such as learning rate, net-
work depth, and layer sizes were kept consistent with the baseline settings. This minimizes vari-
ability and ensures that the observed improvements are due to our proposed approach rather than
hyperparameter tuning. However, sensitivity to certain domain-specific parameters, such as the
maximum DID distance, dmax and the number of angle segments used in DID computation, could
impact performance. These parameters influence the granularity of the directional distance repre-
sentation and its ability to capture relevant physical interactions. Sensitivity studies were conducted
using the model MGN+PRE-RES-FREE+RES-COMB on the Cruise AOA= 5◦ dataset. The results,
as shown in Tab. 12, reveal the impact of varying dmax and the number of angle segments on MSE.

TABLE 12: MSE PERFORMANCE EVALUATION FOR SENSITIVITY STUDIES ON DID PARAMETERS.

dmax NO. OF ANGLE SEGMENTS MSE(×10−2)

5 8 0.67±0.39
2.5 8 0.85±0.38
5 4 0.89±0.44
5 16 0.51±0.29

Reducing dmax to 2.5 increases MSE, likely because a smaller dmax limits the model’s ability to
capture longer-range interactions. Similarly, decreasing the number of angle segments to 4 also leads
to higher errors, suggesting that fewer angle segments reduce the directional resolution of the DID
representation. In contrast, increasing the number of angle segments to 16 improves the performance
at the expense of higher computation time for the DID features. Compared with the baseline MGN,
whose MSE is 2.08× 10−2 on the same Cruise AOA= 5◦ dataset, the variations of these results are
relatively minor, indicating the proposed method’s robustness and insensitivity to these parameters.

G FEASIBILITY OF INDIVIDUAL DID OF EACH OBJECT

Computing a single DID for both objects simultaneously is primarily a practical decision aimed at
improving efficiency and scalability. While Alg. 1 can technically compute a single DID for multiple
objects simultaneously, its numerical complexity increases significantly with each additional object,
resulting in slower training and inference speeds. For instance, Alg. 1 required 5222 seconds to
compute the DID for tandem airfoils, whereas Alg. 2, which computes separate DIDs for individual
airfoils and then combines them, completed the task in only 3.5 seconds.

Additionally, calculating separate DIDs for each object would increase the input size proportionally
to the number of objects. If the dimension of a single object’s DID is N and there are M objects,
the total input size would scale as N × M , leading to higher memory requirements and computa-
tional load on GPUs. By combining the DIDs into a single representation, our approach maintains
scalability and significantly reduces computational overhead. Algorithm 2 strikes an effective bal-
ance, allowing for efficient handling of multi-object scenarios without sacrificing performance, as
discussed in Appendix E.

To further evaluate the feasibility of using individual DIDs for each object, an experiment was con-
ducted to compare the performance and resource usage of individual DIDs versus a single combined
DID using the model MGN+PRE-RES-FREE+RES-COMB on the Cruise AOA= 5◦ dataset. The
results, as tabulated in Tab. 13, reveal that the single combined DID achieves better computational
efficiency and prediction accuracy.

TABLE 13: PERFORMANCE EVALUATION OF EXPERIMENT USING SINGLE COMBINED AND INDIVIDUAL
DID ON CRUISE AOA= 5◦ DATASET.

METHODS AVERAGE GPU MEMORY USAGE (GB) MSE (×10−2)

SINGLE COMBINED DID 16.64 0.67±0.39
INDIVIDUAL DID 23.37 0.80±0.42
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H SMOOTH-COMBINING METHOD VALIDATION

To validate the effectiveness of the smooth-combining method, we compared its performance against
freestream and a simple linear interpolation weighted by the distance to each airfoil as defined,

Ũ(i) = γ(i) ·U1(i) +
(
1− γ(i)

)
·U2(i) ,

γ(i) =
d2(i)

d1(i) + d2(i)
,

(3)

where d1 and d2 are the shortest distances to front (leading) and back (trailing) airfoils, respec-
tively. Figure 10 illustrates the weighting field, γ1, generated from distance-based linear interpola-
tion, showing a smooth gradient between the two airfoils. The comparison between (a) freestream,
(b) distance-based linear interpolation, and (c) smooth-combining methods is presented in Fig. 11,
which shows the absolute error contours of the combined velocity components and pressure fields
relative to their corresponding ground truths. The smooth-combining method demonstrates the low-
est errors, particularly in the downstream and flow interaction regions, where the freestream and
linear interpolation methods show pronounced inaccuracies.

Figure 10: Distance-based linear interpolation weight values for the front airfoil, γ1.

Figure 11: Absolute error contours of combined flow field variables (top row) u, (middle row) v, and (bottom
row) p via (a) freestream, (b) distance-based linear interpolation, and (c) smooth-combining with respect to
ground truth u, v, and p.

This qualitative observation is supported by the quantitative results in Tab. 14, where the smooth-
combining method achieves the lowest mean absolute error (MAE) with respect to ground truths
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across all evaluated metrics, including velocity components and pressure. Specifically, the smooth-
combining method outperforms both freestream and linear interpolation with an overall MAE
(×10−3) of 1.46 ± 0.31, compared to 1.76 ± 0.23 and 6.45 ± 0.53 for linear interpolation and
freestream, respectively.

TABLE 14: MAE OF COMBINED FLOW FIELDS VIA VARIOUS METHODS AGAINST GROUND TRUTHS.

METHODS / MAE u (×10−2) v (×10−3) p (×10−4) OVERALL (×10−3)

FREESTREAM 1.57± 0.13 3.08± 0.28 5.45± 0.58 6.45± 0.53
LINEAR INTERPOLATION 0.39± 0.05 1.14± 0.15 1.95± 0.25 1.76± 0.23
SMOOTH-COMBINING 0.31 ± 0.07 1.07 ± 0.16 1.71 ± 0.31 1.46 ± 0.31

To further assess the utility of smooth-combining, we conducted an additional experiment using the
linear-interpolated flow fields as initial estimators for training the model (MGN + PRE-RES-FREE +
RES-COMB) on the Cruise AOA=5◦ dataset. As shown in Tab. 15, the smooth-combining approach
results in significantly lower MSE than linear interpolation. These results confirm that smooth-
combining not only provides a more accurate starting point for further training, but also captures
complex flow interactions more effectively than alternative approaches. Its superior performance in
both initial approximation and subsequent training highlights its importance for this framework.

TABLE 15: MSE (×10−2) PERFORMANCE EVALUATION OF EXPERIMENT USING LINEAR INTERPOLATED
AND SMOOTH-COMBINED FLOW FIELD VARIABLES.

METHODS / DATASETS CRUISE AOA=5◦

LINEAR INTERPOLATION 1.15 ± 0.58
SMOOTH-COMBINING 0.67 ± 0.39

I ANALYSIS OF PREDICTED FLOW FIELDS

To showcase the effects of varying distance between the two airfoils and increasing AOA on the
accuracy of our NN model, we have crafted Figs. 12 and 13. The initial qualitatively compares the
prediction of x-velocity, û, to the ground truth, uGT, for (a) two closely-separated airfoils (S = 0.5,
G = -0.05) with strong influence by the front airfoil on the aft airfoil and (b) two distant airfoils
(S = 1.8, G = 0.38) that are just mildly interacting with each other. The latter shows contours of
x-velocity for approximately (a) positive and (b) negative AOA extremes considered in this work
(i.e., [−5◦, 7◦]). All the cases illustrate that, visually, there are little differences between the ground
truths and corresponding predictions, thus verifying the robustness of our NN model for a decent
range of separation distance between the two airfoils and AOA.

Figure 12: Comparison of ground truth x−velocity, uGT and predicted û flow fields by model MGN + pre-
res-free + res-comb at (a) closely-separated and (b) distant airfoils for cruise AOA= 5◦ dataset.

To quantify the accuracy of our NN model across different scenarios, we have tabulated the MSE
values of our predictions relative to their ground truths under varying Reynolds number, Re, AOA,
S, and G in Tab. 16. Like the qualitative assessment in Figs. 12 and 13, Tab. 16 confirms once again
the consistent robustness of our NN model, with the MSE remaining within a remarkable range of
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Figure 13: Comparison of ground truth x−velocity, uGT and predicted û flow fields by model MGN + pre-
res-free + res-comb at (a) positive and (b) negative AOA for cruise random datasets.

0.10 (an order smaller than the baseline MSE of 1.75 for the uniform training condition in Tab. 5)
regardless of Re, AOA, S, and G.

Additionally, we evaluated the normalized residual values of the discrete incompressible
Navier–Stokes equations of the SIMPLE algorithm with the predicted x- and y-velocity, û and v̂,
respectively, in Tab. 17. Both variables were predicted with residual that is at least two orders
smaller than the maximum value of 1, thus reinforcing the accuracy of our NN as the residual for
Navier–Stokes equations is a direct indicator of error relative the exact solution to the simulation
(Versteeg & Malalasekera, 2007).

TABLE 16: NORMALIZED MSE OF NN PREDICTIONS UNDER VARYING Re, AOA, S, AND G.
VARIABLE MSE

Re
< 106 106 ≤ Re < 3× 106 ≥ 3× 106

0.01± 0.02 0.03± 0.02 0.12± 0.07

AOA < −2◦ −2◦ ≤ AOA < 2◦ ≥ 2◦

0.06± 0.07 0.06± 0.06 0.08± 0.07

S < 1.0 1.0 ≤ S < 1.5 ≥ 1.5
0.07± 0.07 0.06± 0.08 0.06± 0.05

G < −0.4 −0.4 ≤ S < 0.4 ≥ 0.4
0.06± 0.06 0.06± 0.07 0.07± 0.06

TABLE 17: MEAN AND STANDARD DEVIATION OF NORMALISED RESIDUALS OF DISCRETE INCOMPRESS-
IBLE NAVIER–STOKES EQUATIONS OF SIMPLE ALGORITHM OVER 10% OF THE RANDOM CRUISE TAN-
DEM AIRFOILS DATASETS.

VARIABLE NORMALISED RESIDUAL (MAXIMUM OF 1)

u 0.00203± 0.00017
v 0.0168± 0.00074
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