
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REGULARISED JUMP MODELS
FOR REGIME IDENTIFICATION
AND FEATURE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

A regime modelling framework can be employed to address the complexities of
financial markets. Under the framework, market periods are grouped into dis-
tinct regimes, each distinguished by similar statistical characteristics. Regimes in
financial markets are not directly observable but are often manifested in market
and macroeconomic variables. The objective of regime modelling is to accurately
identify the active regime from these variables at a point in time, a process known
as regime identification. One way to enhance the accuracy of regime identification
is to select features that are most responsible for statistical differences between
regimes, a process known as feature selection. Models based on the Jump Model
framework have recently been developed to address the joint problem of regime
identification and feature selection. In the following work, we propose a new set
of models called Regularised Jump Models that are founded upon the Jump Model
framework. These models perform feature selection that is more interpretable than
that from the Sparse Jump Model, a model proposed in the literature pertaining to
the Jump Model framework. Through a simulation experiment, we find evidence
that these new models outperform the Standard and Sparse Jump Models, both in
terms of regime identification and feature selection.

1 INTRODUCTION

The section outlines and examines the constituent models of the Jump Model framework introduced
in (2). A new set of models called Regularised Jump Models are then introduced and compared to
the existing models.

1.1 STANDARD JUMP MODEL

Denote the state or mode sequence associated with the sequence of observations Y by
(s1, s2, . . . , sT) where each st ∈ {1, 2, . . . ,K} for t = 1, 2, . . . , T . K is the number of states
and is assumed to be known. The K model parameters are given by µ1,µ2, . . . ,µK where each
µk ∈ Rp for k = 1, 2, . . . ,K. The model parameters are the conditional means of the features
assigned to each of the K states, hence the notational choice µk, k = 1, 2, . . . ,K.
Definition 1.1 (Standard Jump Model). The Standard Jump Model with K states is defined by the
minimisation of the objective function

T−1∑
t=1

[
∥yt − µst∥

2 + λ11{st ̸=st+1}

]
+ ∥yT − µsT ∥

2 (1.1)

over the model parameters µ1,µ2, . . . ,µK and state sequence (s1, s2, . . . , sT). The term ∥yt −
µst∥

2 represents the squared L2-distance between the vectors yt and µst and λ ≥ 0 is a hyperpa-
rameter.

The objective function in (1.1) can be interpreted as a tradeoff between model fitting and prior
assumptions about the tendency of the sequence S to ”jump”, or change states. This tendency is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

controlled by the hyperparameter λ. When λ = 0, the model reduces to splitting the dataset in at
mostK states and fitting one model per state, thereby generalising the K-means algorithm ((9)). For
λ → ∞, the Standard Jump Model results in a single-state model since the cost of changing states
becomes prohibitive.

1.2 SPARSE JUMP MODEL

The Sparse Jump Model is an extension of the Standard Jump Model in its incorporation of feature
selection. Let w := (w1, w2, . . . , wp) ∈ Rp denote a vector of feature weights that are assumed to
be the same across all states.

Feature selection is incorporated in the Sparse Jump Model by employing the criterion in (13). The
criterion is given by

max w
′

(
K∑

k=1

|Ck| (µk − µ̄)
2

)
,

such that ∥w∥2 ≤ 1, ∥w∥1 ≤ κ,
wp ≥ 0 ∀p,

(1.2)

with respect to the parameters µ1,µ2, . . . ,µK , state sequence (s1, s2, . . . , sT) and feature weights
w1, w2, . . . , wp. The term |Ck| (µk − µ̄)

2 in (1.2) is a vector of size p whose entries are the contri-
butions of each feature to the between-cluster sum of squares (BCSS) in the kth cluster.

If we consider the clusters C1, C2, . . . , CK fixed, then the feature weights will be assigned to fea-
tures based on their individual BCSS contributions: features with larger BCSS contributions will be
given larger weights which, in turn, optimises the overall spread between the clusters.

κ ∈ [1,
√
p] in (1.2) is a hyperparameter that controls the degree of sparsity in the feature weights.

The squared L2 penalty in (1.2) serves an important role since without it, at most one element
of w would be non-zero in general when features are correlated (see (14) for more details). If
w1 = w2 = · · · = wp, then 1.2 reduces to the maximisation of the BCSS (equivalent to the
minimisation of the within-cluster sum of squares (WCSS)) which is the objective of the K-means
clustering algorithm.

Combining 1.2 with a jump penalty, we give the below definition for the Sparse Jump Model:
Definition 1.2 (Sparse Jump Model). The Sparse Jump Model with K states is defined by the opti-
misation programme

max w
′

(
K∑

k=1

|Ck| (µk − µ̄)
2

)
− λ

T∑
t=1

11{st ̸=st+1}

such that ∥w∥2 ≤ 1, ∥w∥1 ≤ κ,
wp ≥ 0 ∀p,

(1.3)

,

with respect to the parameters µ1,µ2, . . . ,µK , state sequence (s1, s2, . . . , sT) and feature weights
w1, w2, . . . , wp. κ ∈ [1,

√
p] in (1.2) is a hyperparameter that controls the degree of sparsity in the

feature weights.

If w1 = w2 = . . . , wp, then Definition 1.2 reduces to the Standard Jump Model in Definition 1.1.

1.3 REGULARISED JUMP MODELS

In this section, a new approach to feature selection in the Jump Model framework is introduced. The
approach is an adaptation of the Regularised K-means algorithm proposed in (11) to the Jump Model
framework. Therefore, we call the models constituting this approach Regularised Jump Models.

1.4 REGULARISED K-MEANS

Definition 1.3. The Regularised K-means algorithm is defined by the minimisation of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

K∑
k=1

{∑
t∈Ck

∥yt − µk∥2
}

+ γP
(
¯
µ
)
, (1.4)

with respect to the clusters C1, C2, . . . , CK and matrix of cluster centres
¯
µ ∈ RK×p. γ ≥ 0 is

a tuning parameter that controls the amount of regularisation applied to the cluster centres. P :
RK×p → R is a penalty function that depends on

¯
µ. The first term is the objective function of

standard K-means clustering introduced in (8).

From (11), below are several penalty function options which are named after their counterparts from
regularised regression:

L0 : P0

(
¯
µ
)
=

p∑
j=1

11{∥µ.,j∥>0} (1.5a)

Lasso : P1

(
¯
µ
)
=

p∑
j=1

∥µ.,j∥1 (1.5b)

Ridge : P2

(
¯
µ
)
=

p∑
j=1

∥µ.,j∥2 (1.5c)

Group-Lasso : P3

(
¯
µ
)
=

p∑
j=1

∥µ.,j∥, (1.5d)

where µ.,j is the jth column of
¯
µ. The penalty on

¯
µ balances the size of the cluster centres and their

contribution to the objective function in (1.4).

The intuition for penalising the size of the cluster centres lies in the fact that when a variable does
not contribute to the partitioning of the data, its estimated cluster centres will be close to the overall
mean of the data (see Proposition 1 in (11) for more details).

1.5 REGULARISED JUMP MODEL EQUATION

Combining (1.4) with a jump penalty, we propose the following definition for the Regularised Jump
Model.
Definition 1.4 (Regularised Jump Model). The Regularised Jump Model with K states is defined
by the minimisation of the objective function

T−1∑
t=1

{
∥yt − µst∥

2 + λ11{st ̸=st+1}
}
+ ∥yT − µsT ∥

2 + γP
(
¯
µ
)
, (1.6)

with respect to
¯
µ and the state sequence (s1, s2, . . . , sT). λ, γ ≥ 0 are hyperparameters and the

penalty function P : RK×p → R can be chosen from those listed in (1.5).

γ = 0 reduces Definition 1.4 to the Standard Jump Model in Definition 1.1. λ = 0 reduces Definition
1.4 to the Regularised K-Means model in Definition 1.3.

2 CALIBRATION OF JUMP MODELS

The section details the algorithms that perform calibration of the Jump Models outlined in the pre-
vious section. The models are then tested in a simulation experiment.

2.1 STANDARD JUMP MODEL CALIBRATION

Denote
¯
µ := (µ1,µ2, . . . ,µK)

′
∈ RK×p the matrix of model parametersand the state sequence

S := (s1, s2, . . . , sT). The calibration algorithm for the Standard Jump Model was proposed in (10)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and is shown in Algorithm 1. The model is calibrated using a coordinate descent algorithm that al-
ternates between finding the model parameters µ1,µ2, . . . ,µK that minimise the objective function
(1.1) with a fixed state sequence and finding the state sequence (s1, s2, . . . , sT) that minimise the
objective function (1.1) with fixed µ1,µ2, . . . ,µK .

Following the algorithm proposed in (10), the process is repeated ten times at the most or until the
state sequence does not change after one iteration. However, there is no guarantee that the solution
reached is the global solution since the solution depends on the initial state sequence.

Therefore, we adopt the initialisation method in (10): the coordinate descent algorithm is run from
ten different state sequences in parallel and the model that achieves the lowest objective function
value is chosen. These initial state sequences are generated by the K-means++ seeding technique
introduced in (1) which has been shown to improve both the speed and accuracy of standard K-means
clustering.

We note that the objective function in Step 5.1 of Algorithm 1 is convex in
¯
µ and can be solved in

closed-form. µk ∈ Rp has the below optimal solution at the jth iteration:

µ
(j)
k =

∑T
t=1 yt11{s(j−1)

t =k}∑T
t=1 11{s(j−1)

t =k}

, k = 1, 2, . . . ,K.

S(j) in Step 5.2 is obtained using the following dynamic programming equations. Define

V (T, s) = ∥yT − µs∥2, (2.1a)

V (t, s) = ∥yt − µs∥2 +min
j

{
V (t+ 1, j) + λ11{s̸=j}

}
, (2.1b)

for t = T − 1, . . . , 2, 1. The most likely state sequence is then given by

s1 = argmin
j

V (1, j) , (2.2a)

st = argmin
j

{
V (t, j) + λ11{st−1 ̸=j}

}
, t = 2, . . . , T. (2.2b)

2.2 SPARSE JUMP MODEL CALIBRATION

The calibration of the Sparse Jump Model can be performed using an extension of the coordinate
descent algorithm in Algorithm 1. Holding the feature weight vector w fixed, (1.3) is optimised in
terms of

¯
µ and S. Secondly, holding

¯
µ and S fixed, (1.3) is optimised in terms of w.

As noted in (9), this iterative approach is not guaranteed to generate a global optimum because the
problem is non-convex. Additionally, the first optimisation involves applying the fitting algorithm
of the Standard Jump Model to a weighted version of the data, which by itself is not guaranteed to
find a global optimum.

In Step 2(d), solving (1.3) with respect to w, while keeping
¯
µ and S fixed, can be done using soft-

thresholding. The soft-threholding operator S is given by S (x, c) = sgn (x) ⊙ (|x| − c)+, where
x+ denotes the positive part of the elements in x and ⊙ denotes element-wise multiplication.

The solution to the convex problem (1.3), which follows from the Karush-Kuhn-Tucker conditions
(more details can be found in (4)), is w = S(x,∆)

∥S(x,∆)∥ where x =
∑K

k=1 |Ck| (µk − µ̄)
2 is a vector

comprising the between-cluster sum of squares (BCSS) contributions of each feature.

Here, ∆ = 0 if that results in ∥w∥1 ≤ κ; otherwise, we choose ∆ > 0 to yield ∥w∥1 = κ. This
assumes that there is a unique maximal element of x and that 1 ≤ κ ≤ √p (13).

2.3 REGULARISED JUMP MODEL CALIBRATION

We propose calibrating the Regularised Jump Models using a coordinate descent algorithm similar
to Algorithm 1 for Standard Jump Models. The coordinate descent algorithm alternates between

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Calibration of Standard Jump Model in (10)

Input: Training dataset Y = (y1,y2, . . . ,yT), assumed number of states K, and jump penalty λ.

Step 1: Initialise state sequence S(0) :=
(
s
(0)
1 , s

(0)
2 , . . . , s

(0)
T

)
.

Step 2: Iterate for j = 1, 2, . . . , 10:

Fit model parameters µ(j):

¯
µ(j) ← argmin

¯
µ

T∑
t=1

∥yt − µ
s
(j−1)
t
∥2. (5.1)

Fit state sequence S(j):

S(j) ← argmin
S

{
T−1∑
t=1

{
∥yt − µ(j)

st ∥
2 + λ11{st ̸=st+1}

}
+ ∥yT − µ(j)

sT ∥
2

}
. (5.2)

Break if S(j−1) = S(j).

Output: Estimated model parameters
¯
µ∗ and state sequence S∗.

minimising (1.6) with respect to the state sequence
¯
µ while keeping S fixed, and minimising (1.6)

with respect to S while keeping
¯
µ fixed. These two steps are repeated for ten iterations at the most

or until S does not change after two consecutive iterations.

Firstly, seven initial state sequences are generated using the strategy proposed in (11) which the
authors show to be the most optimal for the Regularised K-Means model after benchmarking it
against popular initialisation strategies. Given the feature selection aspect of the Regularised Jump
Model, the initialisation strategy incorporates potential sparsity in the initial cluster centres. The
initialisation strategy is given in Algorithm 3.

Each initial state sequence outputted from Algorithm 3 is used as an input in Algorithm 4. The
algorithm is run in parallel using these seven initial cluster assignments and the run which ultimately
yield the lowest objective function value, is chosen as the final result.

Once an initial state sequence has been generated, the model parameters
¯
µ are updated (Step 8.1). In

particular, assuming a fixed state sequence S = (s1, s2, . . . , sT), the following problem is solved:

argmin

¯
µ

T∑
t=1

||yt − µst ||
2 + γP

(
¯
µ
)
. (2.3)

The solution to (2.3) for each penalty function introduced in (1.5), is given in B.1. Once
¯
µ is

updated, the state sequence S is updated.

Since Steps 8.2 and 5.2 are identical, the state sequence is updated using the same dynamic pro-
gramming equations in (2.1) and (2.2).

3 HYPERPARAMETER TUNING

Table 1 shows the hyperparameters of each Jump Model.

The literature on the hyperparameter tuning of Jump Models is limited. (5) suggests tuning based on
a grid search of potential hyperparmeter values and picking which combination produces the lowest
Fang-Tang Information Criterion (FTIC) value, a criterion introduced in (6).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Calibration of Sparse Jump Model in (9)

Input: Training dataset Y = (y1,y2, . . . ,yT), assumed number of states K and hyperparameters
λ and κ.

Step 1: Initialise feature weights w as w(0) =
(

1√
p ,

1√
p , . . . ,

1√
p

)
.

Step 2: Iterate for i = 1, 2, . . . , until ∥w(i) −w(i−1)∥1/∥w(i−1)∥1 < 10−4:

(a) Compute sequence of weighted features

zt = yt ⊙
√

w(i−1), t = 1, 2, . . . , T,

where
√
w(i) is the element-wise square root of w(i).

(b) Initialise state sequence S(0) :=
(
s
(0)
1 , s

(0)
2 , . . . , s

(0)
T

)
.

(c) Iterate for j = 1, 2, . . . , 10:

i. Fit model parameters:

¯
µ(j) ← argmin

¯
µ

T∑
t=1

∥zt − µ
s
(j−1)
t
∥2.

ii. Fit state sequence:

S(j) ← argmin
S

{
T∑

t=1

{
∥zt − µ(j)

st ∥
2 + λ11{st ̸=st+1}

}
+ ∥zT − µ(j)

sT ∥
2

}
.

Break if S(j−1) = S(j).

(d) Update weights w(i), while holding the model parameters
¯
µ(j) and S(j) fixed, by

solving (1.3) using soft thresholding.

Output: Estimated model parameters
¯
µ∗, state sequence S∗ and feature weights w∗.

Algorithm 3 Initialisation of state sequences for calibration of Regularised Jump Model in (11)

Step 1 Cluster Y = (y1,y2, . . . ,yT) using standard K-means, obtaining a matrix of initial cluster
centres

¯
µ = (µ1,µ2, . . . ,µK)

′
.

Step 2 Compute the Euclidean norm for each cluster centre dj = ∥µ.,j∥ for j = 1, 2, . . . , p and
order them in descending order.

Step 3 Execute K-means on the subset of variables corresponding to the 1, 2, 5, 10, 25, 50 and
100% largest dj .

Output: Seven initial state sequences
(
s11, s

1
2, . . . , s

1
T

)
,
(
s21, s

2
2, . . . , s

2
T

)
, . . . ,

(
s71, s

7
2, . . . , s

7
T

)
.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 4 Coordinate descent algorithm for calibration of Regularised Jump Model

Input: Training dataset Y = (y1,y2, . . . ,yT), assumed number of states K, penalty function P ,
hyperparameters λ and γ, and initial state sequence S(0) :=

(
s
(0)
1 , s

(0)
2 , . . . , s

(0)
T

)
generated using

Algorithm 3.

Step 1: Iterate for k = 1, 2, . . . , 10:

¯
µ(k) ← argmin

¯
µ

T∑
t=1

||yt − µ
s
(k−1)
t
||2 + γP

(
¯
µ
)
, (8.1)

S(k) ← argmin
S

{
T−1∑
t=1

{
∥yt − µ(k)

st ∥
2 + λ11{st ̸=st+1}

}
+ ∥yT − µ(k)

sT ∥
2

}
. (8.2)

Break if S(k) = S(k−1).

Output: Estimated matrix of cluster centres (or model parameters)
¯
µ∗ and state sequence S∗.

Model λ κ γ

Standard Jump ✓

Sparse Jump ✓ ✓

Regularised Jump ✓ ✓

Table 1: Jump Model hyperparameters

In (5), the FTIC equation is an approximation and applies only to the Standard and Sparse Jump
Models. Approximating information criteria such as the FTIC would require knowledge of the like-
lihood function of the various Jump Models which, for the Regularised Jump Models, is unavailable.

Instead, we opt for a non-parametric criterion that is applicable to all Jump Models. We propose
hyperparameter tuning based on a criterion pertaining to clustering stability. The key idea of clus-
tering stability is that if we repeatedly draw samples from the same distribution as that of the original
dataset, and apply the Jump Model calibration algorithms, a good algorithm should produce state
sequences that are similar from one sample to another.

Following the notation in (12) to some extent, denote Z = {X1, X2, . . . , XT } a random sample of
size T from some unknown distribution function F : Rp → R. Let θ denotes the vector of active
hyperparameters for a given Jump Model which can be referenced in Table 1. A clustering assign-
ment ψ (x) is defined as a mapping ψ : Rp → {1, 2, . . . ,K} and a given Jump Model generates a
clustering assignment Ψ(.,θ) when applied to a sample Z.
Definition 3.1 (Clustering Distance). The clustering distance between any two clustering assign-
ments ψ1 (x) and ψ2 (x) is defined as

d (ψ1, ψ2) = P ({ψ1 (X) = ψ1 (Y)} ∩ {ψ2 (X) = ψ2 (Y)}) ,

where X,Y ∈ Rp are realisations sampled from F .

The distance between ψ1 and ψ2 measures the probability of their disagreement. The clustering
instability of a given Jump Model is given in the following definition:
Definition 3.2 (Clustering Instability). The clustering instability of a clustering algorithm Ψ is given
by

S (Ψ;θ, T) = E[d (Ψ (Z1;θ) ,Ψ(Z2;θ))], (3.1)

where Ψ(Z1;θ) and Ψ(Z2;θ) are two clustering assignments obtained by applying Ψ(.;θ) to Z1

and Z2 which are two independent samples from F of size T .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Hyperparameter tuning is thus performed by finding a set of hyperparameter values that minimise
(3.1). Various methods of estimating (3.1) for hyperparameter tuning in clustering problems have
been proposed ((12), (7) and (3)).

We opt for a simple method of estimating (3.1) that is similar to the one proposed in (7); ten boot-
strapped samples of the dataset Y are generated, each of which are size T . For a fixed combination
of hyperparameter values and a given Jump Model, ten clustering assignments (or state sequences)
are estimated once the model is fitted onto each bootstrapped sample. The number of times any two
state sequences are not equal, are then counted and averaged across all

(
10
2

)
= 45 comparisons. This

estimate can be expressed mathematically as

Ŝ (Ψ;θ, T) =

(
10

2

)−1 10∑
i=1

10∑
j=i+1

(T∑
t=1

11{ŝit ̸=ŝjt}

)
, (3.2)

where ŝit is the estimated state at time t for the ith boostrapped sample.

4 SIMULATION STUDY

We conduct a simulation study to compare the accuracy of the Standard, Sparse and Regularised
Jump Models, with respect to both state estimation and feature selection. In the simulation study,
the true state sequence and array of relevant features are both known, which makes it possible to
evaluate the ability of each model to correctly identify the state sequence and set of relevant features.

We adopt the same data generating process as in (9). In their simulation study, the authors test
the Standard and Sparse Jump Models against several popular regime-switching models such as
the Hidden Markov Model (HMM) and its various extensions, and determine that these two Jump
Models deliver superior performance.

Instead of duplicating the simulation study by testing the same regime-switching models, we test the
proposed Regularised Jump Models and compare their performances with the Standard and Sparse
Jump Models.

4.1 RESULTS

Tables 2 and 3 compare the respective state estimation and feature selection performances of the
Standard Jump Model (Standard), Sparse Jump Model (Sparse) and Regularised Jump Model with
Pk Penalty Function (Regularised Pk) for k ∈ {0, 1, 2, 3}, for different values of µ and for different
numbers of features P . The reported values of Tables 2 and 3 are the mean (and standard deviation)
of the BAC of the estimated state sequence and of (3.2) respectively; the means and standard devi-
ations are calculated over 100 simulations of T = 500 observations for each combination of µ and
P .

Similar to (9), we use the Wilcoxon signed-rank test to determine whether the differences between
the BACs in the Regularised Jump Models and those in the Sparse Jump Model are statistically
significant. Bold entries in Tables 2 and 3 denote BACs of a Regularised Jump Model that are
higher than that of the Sparse Jump Model with statistical significance α = 0.05.

Comparing Standard and the remaining models in Table 2, it is evident that feature selection im-
proves accuracy of state estimation when the number of features P is increased. In Table 2, the BAC
of the Standard Jump Model, a model that does not perform feature selection, generally decreases
when P is increased. On the other hand, the BAC of the Sparse and Regularised Jump Models stay
approximately level compared to the case of there being no irrelevant features (when P = 15).

The feature selection is more efficient for higher values of µ since for higher values of µ, the rele-
vance of the first fifteen features becomes more apparent and hence easier for the model to identify.
This logic is reinforced by the results in Table 3; the feature selection performance of the models
improves for higher values of µ.

When comparing the relative performances of the Sparse, Regularised P0,P1 and P3 Jump Models
in Tables 2 and 3, we can see a correspondence between classification accuracy in terms of state

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

estimation, and classification accuracy in terms of feature selection: models that are more accurate in
terms of feature selection, are also more accurate in terms of state estimation. This further highlights
the importance of feature selection in accurately estimating the true state sequence.

If we unbundle the BACs in Tables 2 and 3 in terms of µ, model and number of features P , and
calculate the Spearman rank correlation coefficient between these two unbundled series of BAC
values, we compute an estimate of 91% with a p-value ofO

(
10−24

)
. This leads us to reject the null

hypothesis of there being no monotonic relationship between state estimation accuracy and feature
selection accuracy.

Tables 2 and 3 demonstrate outperformance of the Regularised P1,P2 and P3 Models compared to
both the Standard and Sparse Jump Models. The Regularised P0 model performs roughly in line
with, or slight worse than, the Sparse Jump Model in terms of state estimation and feature selection.

In Table 2, the outperformance of the Regularised P1,P2 and P3 is most evident for the cases
µ ≥ 0.5 and P < 300. For µ = 0.25 and P = 300, all models produce roughly the same BACs that
range between 0.334 and 0.344.

Similar results can be observed in Table 3. All models perform at approximately the same level for
µ = 0.25 and for µ ≥ 0.5, the Regularised P1 and P3 outperform both the Sparse and Regularised
P0 models. The outperformance of the Regularised P1,P2 and P3 over the Sparse Jump Model is
statistically significant for some cases, as shown by the bold entries in Tables 2 and 3.

5 CONCLUSION

In the new class of models called Regularised Jump Models, the regularised K-means model pro-
posed in (11) has been adapted to the Jump Model Framework. These models perform joint state
and parameter estimation, and feature selection. The feature selection process performed by the
Regularised Jump Models is more direct and interpretable than that from the Sparse Jump Model,
which performs feature selection by proxy. These models were tested in a simulation experiment
and demonstrate evidence of outperformance over existing Jump Models.

One avenue of future research is adapting the asymptotic properties of the Regularised K-Means
model proven in (11) to the Regularised Jump Models. Some of these properties include consistency
and strong consistency in terms of the Hausdorff distance (see (11) Theorem 6 and the proof in
Appendix A. A.3).

We’ve proposed a new hyperparameter tuning method for Jump Models, based on the idea of cluster-
ing stability. There is scope for future research on developing and testing alternative hyperparameter
tuning methods for Jump Models.

REFERENCES

[1] D. ARTHUR AND S. VASSILVITSKII, k-means++: the advantages of careful seeding, in Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’07, USA, 2007, Society for Industrial and Applied Mathematics, p. 1027–1035.

[2] A. BEMPORAD, V. BRESCHI, D. PIGA, AND S. P. BOYD, Fitting jump models, Automatica,
96 (2018), pp. 11–21.

[3] A. BEN-HUR, A. ELISSEEFF, AND I. GUYON, A stability based method for discovering struc-
ture in clustered data, Pacific Symposium on Biocomputing. Pacific Symposium on Biocom-
puting, 2002 (2002), pp. 6–17.

[4] S. BOYD AND L. VANDENBERGHE, Convex Optimization, Cambridge University Press, 2004.

[5] F. CORTESE, P. KOLM, AND E. LINDSTROM, Generalized information criteria for high-
dimensional sparse statistical jump models, SSRN Electronic Journal, (2024).

[6] Y. FAN AND C. Y. TANG, Tuning parameter selection in high dimensional penalized likeli-
hood, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75 (2013),
pp. 531–552.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

[7] J. HASLBECK AND D. WULFF, Estimating the number of clusters via a corrected clustering
instability, Computational Statistics, 35 (2020).

[8] S. P. LLOYD, Least squares quantization in pcm, IEEE Trans. Inf. Theory, 28 (1982), pp. 129–
136.

[9] P. NYSTRUP, P. KOLM, AND E. LINDSTRÖM, Feature selection in jump models, Expert Sys-
tems with Applications, 184 (2021), p. 115558.

[10] P. NYSTRUP, E. LINDSTRÖM, AND H. MADSEN, Learning hidden markov models with per-
sistent states by penalizing jumps, Expert Systems with Applications, 150 (2020), p. 113307.

[11] J. RAYMAEKERS AND R. H. ZAMAR, Regularized k-means through hard-thresholding, J.
Mach. Learn. Res., 23 (2022).

[12] W. SUN, J. WANG, AND Y. FANG, Regularized k-means clustering of high-dimensional data
and its asymptotic consistency, Electronic Journal of Statistics, 6 (2012), pp. 148 – 167.

[13] D. M. WITTEN AND R. TIBSHIRANI, A framework for feature selection in clustering, Journal
of the American Statistical Association, 105 (2010), pp. 713–726. PMID: 20811510.

[14] H. ZOU AND T. HASTIE, Regularization and Variable Selection Via the Elastic Net, Journal
of the Royal Statistical Society Series B: Statistical Methodology, 67 (2005), pp. 301–320.

A SUPPLEMENTARY MATERIAL

B PARAMETER UPDATE EQUATIONS FOR REGULARISED JUMP MODEL
CALIBRATION

Proposition B.1. Suppose that we have an assignment of the elements of Y into K clusters
C1, C2, . . . , CK . Let |Ck| denote the number of elements in cluster k. Furthermore, let M be a
T ×K cluster assignment matrix with elements mt,k = 11{yt∈Ck}.

Let
¯
µ∗ be the corresponding K × p matrix of cluster centres and

¯
µ∗
k,j be the (k, j) element of

¯
µ∗

(kth cluster centre along the jth dimension). Keeping the cluster assignment matrix M fixed, solving
(2.3) gives the following expressions for each penalty function P

(
¯
µ
)
:

P0

(
¯
µ
)
:
¯
µk,j =

{
¯
µ∗
k,j if ∥y.,j∥2 > ∥y.,j −M

¯
µ∗

.,j
∥+ Tγ

0 otherwise
(B.1a)

P1

(
¯
µ
)
:
¯
µk,j = max

(
0, 1− Tγ

2|Ck||
¯
µ∗
k,j |

)
¯
µ∗
k,j (B.1b)

P2

(
¯
µ
)
:
¯
µk,j =

1

1 + Tγ
|Ck| ¯

µ∗
k,j (B.1c)

P3

(
¯
µ
)
:
¯
µk,j =

1

1 + Tγ
2|Ck|∥

¯
µ

.,j
∥ ¯
µ∗
k,j if

¯
µ

.,j
̸= 0, (B.1d)

where y.,j is the jth column of Y .

Proof. Proof can be found in A.2. of the Appendix in (11).

Remark B.2. The update equations in (B.1) lend insight into the effects of each penalty function.

P0 leads to hard-thresholding, the process of setting to zero the elements of an input vector whose
absolute values are lower than an input threshold value; elements whose absolute values exceed

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

the threhold are left unchanged. The threshold value in (B.1a) is the sum of Tγ and the WCSS
contribution from each feature. The interpretation of (B.1a) is that variables are included in the
clustering if it sufficiently contributes to a decrease of the WCSS. P1 leads to soft-thresholding,
whereby some elements are set to zero and the rest are shrunk towards zero. This resembles the
solution of L1-regularised (or Lasso) regression with orthonormal covariates. P2 is a ridge-type
penalty that scales down each element of the array uniformly. P2 is the only penalty function that
does not directly induce sparsity.

P3 does not have an updating equation since the right-hand side of (B.1d) includes the L2 norm of
∥µ.,j∥. The solution is thus found through an iterative algorithm.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

P 15 30 60 150 300

µ Model

0.25 Standard 0.351
(0.06)

0.338
(0.05)

0.332
(0.05)

0.343
(0.04)

0.334
(0.03)

Sparse 0.349
(0.06)

0.343
(0.05)

0.343
(0.05)

0.337
(0.04)

0.336
(0.03)

Regularised P0 0.354
(0.06)

0.345
(0.05)

0.336
(0.05)

0.341
(0.05)

0.334
(0.05)

Regularised P1 0.359
(0.08)

0.345
(0.06)

0.341
(0.06)

0.335
(0.04)

0.344
(0.04)

Regularised P2 0.343
(0.07)

0.342
(0.06)

0.340
(0.05)

0.335
(0.05)

0.344
(0.04)

Regularised P3 0.348
(0.07)

0.343
(0.06)

0.339
(0.05)

0.342
(0.05)

0.334
(0.04)

0.50 Standard 0.362
(0.10)

0.368
(0.08)

0.341
(0.07)

0.341
(0.05)

0.336
(0.04)

Sparse 0.376
(0.08)

0.356
(0.08)

0.345
(0.06)

0.345
(0.05)

0.344
(0.04)

Regularised P0 0.358
(0.09)

0.374
(0.09)

0.365
(0.09)

0.349
(0.07)

0.339
(0.06)

Regularised P1 0.362
(0.11)

0.393
(0.13)

0.387
(0.12)

0.350
(0.09)

0.349
(0.05)

Regularised P2 0.380
(0.14)

0.382
(0.14)

0.389
(0.13)

0.344
(0.07)

0.360
(0.07)

Regularised P3 0.383
(0.14)

0.382
(0.14)

0.374
(0.13)

0.358
(0.08)

0.354
(0.06)

0.75 Standard 0.385
(0.15)

0.401
(0.13)

0.366
(0.10)

0.353
(0.06)

0.355
(0.06)

Sparse 0.380
(0.12)

0.363
(0.11)

0.364
(0.09)

0.347
(0.07)

0.335
(0.06)

Regularised P0 0.418
(0.14)

0.386
(0.14)

0.389
(0.14)

0.387
(0.13)

0.408
(0.14)

Regularised P1 0.418
(0.18)

0.406
(0.18)

0.432
(0.18)

0.394
(0.17)

0.458
(0.18)

Regularised P2 0.400
(0.18)

0.420
(0.16)

0.447
(0.18)

0.399
(0.18)

0.447
(0.18)

Regularised P3 0.407
(0.18)

0.435
(0.19)

0.391
(0.17)

0.403
(0.15)

0.468
(0.17)

1.00 Standard 0.448
(0.20)

0.423
(0.15)

0.391
(0.13)

0.357
(0.09)

0.347
(0.08)

Sparse 0.408
(0.15)

0.393
(0.14)

0.363
(0.12)

0.374
(0.11)

0.347
(0.08)

Regularised P0 0.423
(0.19)

0.409
(0.18)

0.464
(0.19)

0.411
(0.16)

0.494
(0.20)

Regularised P1 0.483
(0.22)

0.446
(0.24)

0.524
(0.25)

0.499
(0.24)

0.564
(0.22)

Regularised P2 0.495
(0.23)

0.465
(0.24)

0.523
(0.23)

0.462
(0.23)

0.498
(0.23)

Regularised P3 0.444
(0.22)

0.447
(0.24)

0.507
(0.24)

0.492
(0.22)

0.597
(0.23)

Table 2: Average BAC of state sequence (3 d.p.) for each Jump Model, across different values of µ
and number of features P . Values in brackets are standard deviations (2 d.p.).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

P 30 60 150 300

µ Model

0.25 Sparse 0.499
(0.08)

0.502
(0.05)

0.502
(0.03)

0.506
(0.03)

Regularised P0 0.507
(0.04)

0.498
(0.02)

0.502
(0.01)

0.501
(0.02)

Regularised P1 0.511
(0.05)

0.505
(0.03)

0.496
(0.02)

0.504
(0.03)

Regularised P3 0.503
(0.05)

0.506
(0.03)

0.499
(0.03)

0.498
(0.04)

0.5 Sparse 0.509
(0.07)

0.507
(0.05)

0.509
(0.04)

0.505
(0.04)

Regularised P0 0.530
(0.05)

0.529
(0.04)

0.513
(0.03)

0.511
(0.03)

Regularised P1 0.560
(0.10)

0.573
(0.10)

0.535
(0.08)

0.509
(0.04)

Regularised P3 0.582
(0.10)

0.588
(0.11)

0.528
(0.06)

0.513
(0.05)

0.75 Sparse 0.538
(0.07)

0.539
(0.08)

0.531
(0.07)

0.522
(0.06)

Regularised P0 0.540
(0.07)

0.538
(0.05)

0.544
(0.07)

0.568
(0.05)

Regularised P1 0.594
(0.13)

0.608
(0.14)

0.621
(0.15)

0.650
(0.13)

Regularised P3 0.621
(0.15)

0.603
(0.13)

0.631
(0.16)

0.665
(0.14)

1.00 Sparse 0.574
(0.11)

0.602
(0.12)

0.587
(0.12)

0.563
(0.10)

Regularised P0 0.557
(0.10)

0.549
(0.09)

0.548
(0.08)

0.624
(0.10)

Regularised P1 0.622
(0.16)

0.660
(0.18)

0.695
(0.18)

0.743
(0.17)

Regularised P3 0.603
(0.14)

0.629
(0.15)

0.637
(0.16)

0.782
(0.17)

Table 3: Average BAC of relevant features (3 d.p.) for each Jump Model, across different values of
µ and number of features P . Values in brackets are standard deviations (2 d.p.).

13

	Introduction
	Standard Jump Model
	Sparse Jump Model
	Regularised Jump Models
	Regularised K-Means
	Regularised Jump Model Equation

	Calibration of Jump Models
	Standard Jump Model Calibration
	Sparse Jump Model Calibration
	Regularised Jump Model Calibration

	Hyperparameter Tuning
	Simulation Study
	Results

	Conclusion
	Supplementary Material
	Parameter Update Equations for Regularised Jump Model Calibration

