Under review as a conference paper at ICLR 2025

REGULARISED JUMP MODELS
FOR REGIME IDENTIFICATION
AND FEATURE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

A regime modelling framework can be employed to address the complexities of
financial markets. Under the framework, market periods are grouped into dis-
tinct regimes, each distinguished by similar statistical characteristics. Regimes in
financial markets are not directly observable but are often manifested in market
and macroeconomic variables. The objective of regime modelling is to accurately
identify the active regime from these variables at a point in time, a process known
as regime identification. One way to enhance the accuracy of regime identification
is to select features that are most responsible for statistical differences between
regimes, a process known as feature selection. Models based on the Jump Model
framework have recently been developed to address the joint problem of regime
identification and feature selection. In the following work, we propose a new set
of models called Regularised Jump Models that are founded upon the Jump Model
framework. These models perform feature selection that is more interpretable than
that from the Sparse Jump Model, a model proposed in the literature pertaining to
the Jump Model framework. Through a simulation experiment, we find evidence
that these new models outperform the Standard and Sparse Jump Models, both in
terms of regime identification and feature selection.

1 INTRODUCTION

The section outlines and examines the constituent models of the Jump Model framework introduced
in (2). A new set of models called Regularised Jump Models are then introduced and compared to
the existing models.

1.1 STANDARD JUMP MODEL

Denote the state or mode sequence associated with the sequence of observations Y by
(s1,82,...,s7) where each s; € {1,2,...,K} fort = 1,2,...,T. K is the number of states
and is assumed to be known. The K model parameters are given by i, ito, - . ., ft Where each
p, € RP for k = 1,2,..., K. The model parameters are the conditional means of the features
assigned to each of the K states, hence the notational choice p;, k =1,2,..., K.

Definition 1.1 (Standard Jump Model). The Standard Jump Model with K states is defined by the
minimisation of the objective function

T—1

S [l = b 12+ Moy + Iy = s) (1.1)

t=1

over the model parameters fty, fto, . .., iy and state sequence (s1, Sz, ..., sr). The term ||y, —
K, || represents the squared Lo-distance between the vectors y, and wg, and A > 0 is a hyperpa-
rameter.

The objective function in (T.I)) can be interpreted as a tradeoff between model fitting and prior
assumptions about the tendency of the sequence S to “jump”, or change states. This tendency is

Under review as a conference paper at ICLR 2025

controlled by the hyperparameter A. When A = 0, the model reduces to splitting the dataset in at
most K states and fitting one model per state, thereby generalising the K-means algorithm ((9)). For
A — o0, the Standard Jump Model results in a single-state model since the cost of changing states
becomes prohibitive.

1.2 SPARSE JUMP MODEL

The Sparse Jump Model is an extension of the Standard Jump Model in its incorporation of feature
selection. Let w := (wy,ws, ..., w,) € RP denote a vector of feature weights that are assumed to
be the same across all states.

Feature selection is incorporated in the Sparse Jump Model by employing the criterion in (13). The

criterion is given by
K
s ' (3 60l 7).

k=1 (1.2)
suchthat |lw|? <1, |w|; < &,
wp > 0Vp,
with respect to the parameters ptq, fio, . . . , i, State sequence (s1, S2, . . ., s7) and feature weights
w1, ws, ..., wy. The term |Cy| (g, — 2)° in (T2) is a vector of size p whose entries are the contri-
butions of each feature to the between-cluster sum of squares (BCSS) in the k™ cluster.
If we consider the clusters C,Cs, ..., Ck fixed, then the feature weights will be assigned to fea-

tures based on their individual BCSS contributions: features with larger BCSS contributions will be
given larger weights which, in turn, optimises the overall spread between the clusters.

x € [1,,/p] in (I.2) is a hyperparameter that controls the degree of sparsity in the feature weights.
The squared Ly penalty in (T.2) serves an important role since without it, at most one element
of w would be non-zero in general when features are correlated (see (14) for more details). If
wy = wy = --+ = wp, then reduces to the maximisation of the BCSS (equivalent to the
minimisation of the within-cluster sum of squares (WCSS)) which is the objective of the K-means
clustering algorithm.

Combining[T.2] with a jump penalty, we give the below definition for the Sparse Jump Model:

Definition 1.2 (Sparse Jump Model). The Sparse Jump Model with K states is defined by the opti-
misation programme

K T
’)
max w (Z |Cl (g, — f2)) A Mggre)
k=1 t=1 (1.3)
such that |lw|? <1, |w|: <&,
wp > 0 Vp,
with respect to the parameters iy, o, - - - , b, State sequence (s1, So, . . ., s7) and feature weights

w1, Wwa, ..., wp. Kk € [1,,/p] in (I.2) is a hyperparameter that controls the degree of sparsity in the
feature weights.

If wy = wy = ..., w,, then Definition|T.2)reduces to the Standard Jump Model in Definition [I.T}

1.3 REGULARISED JUMP MODELS
In this section, a new approach to feature selection in the Jump Model framework is introduced. The

approach is an adaptation of the Regularised K-means algorithm proposed in (1 1) to the Jump Model
framework. Therefore, we call the models constituting this approach Regularised Jump Models.

1.4 REGULARISED K-MEANS

Definition 1.3. The Regularised K-means algorithm is defined by the minimisation of

Under review as a conference paper at ICLR 2025

EK:{Z |yt_/'l’k|2}+’77) (1), (1.4)

k=1 \teCy

with respect to the clusters C, Cs, ..., Cx and matrix of cluster centres € REXP. v > 0 is
a tuning parameter that controls the amount of regularisation applied to the cluster centres. P :
REXP 5 R is a penalty function that depends on p. The first term is the objective function of
standard K-means clustering introduced in (8)). -

From (11)), below are several penalty function options which are named after their counterparts from
regularised regression:

p

Loz Po(p) = Lju >0} (1.52)
=1
p

Lasso: Py (p)= Z el (1.5b)
=1
p

Ridge : Py () = > [lee I (1.5¢)
=1
P

Group-Lasso : P3 (p) = Z e 51, (1.5d)
=1

where g is the 4™ column of . The penalty on p balances the size of the cluster centres and their
contribution to the objective function in (1.4).

The intuition for penalising the size of the cluster centres lies in the fact that when a variable does
not contribute to the partitioning of the data, its estimated cluster centres will be close to the overall
mean of the data (see Proposition 1 in (L1) for more details).

1.5 REGULARISED JUMP MODEL EQUATION

Combining (T.4) with a jump penalty, we propose the following definition for the Regularised Jump
Model.

Definition 1.4 (Regularised Jump Model). The Regularised Jump Model with K states is defined
by the minimisation of the objective function

T-1
Z {Hyt - IJ’stH2 +)\l{sﬁésurl}} + ||yT - l'l‘sTH2 + ’}/P (H) ’ (16)
t=1

with respect to p and the state sequence (s1,82,...,57). A,y > 0 are hyperparameters and the

penalty function P : RE*P — IR can be chosen from those listed in (T.3).

v = 0 reduces Definition[T.4]to the Standard Jump Model in Definition[I.T} A = 0 reduces Definition
to the Regularised K-Means model in Definition

2 CALIBRATION OF JUMP MODELS

The section details the algorithms that perform calibration of the Jump Models outlined in the pre-
vious section. The models are then tested in a simulation experiment.

2.1 STANDARD JUMP MODEL CALIBRATION

Denote p := (pty, pho, -, 1o K)/ € REXP the matrix of model parametersand the state sequence
S :=(s1,82,...,s7). The calibration algorithm for the Standard Jump Model was proposed in (10)

Under review as a conference paper at ICLR 2025

and is shown in Algorithm [I] The model is calibrated using a coordinate descent algorithm that al-
ternates between finding the model parameters f¢, i, - - . , it that minimise the objective function
(T.T) with a fixed state sequence and finding the state sequence (s1, S2,. .., s7) that minimise the
objective function (I.I) with fixed pq, pg, . . ., pyc-

Following the algorithm proposed in (10), the process is repeated ten times at the most or until the
state sequence does not change after one iteration. However, there is no guarantee that the solution
reached is the global solution since the solution depends on the initial state sequence.

Therefore, we adopt the initialisation method in (10): the coordinate descent algorithm is run from
ten different state sequences in parallel and the model that achieves the lowest objective function
value is chosen. These initial state sequences are generated by the K-means++ seeding technique
introduced in (L)) which has been shown to improve both the speed and accuracy of standard K-means
clustering.

We note that the objective function in Step [5.1|of Algorithm [T]is convex in p and can be solved in

closed-form. p;, € RP has the below optimal solution at the 5™ iteration:
, ZTzl Yy, G-v_
pd) = =T =M g9 K.

S0) in Step|5.2|is obtained using the following dynamic programming equations. Define

V(T,s) = lyr — mall?, (2.1a)
V(t:8) = Iy, = pal* +min {V(+1,5) + Aoy} (2.1b)
fort =T —1,...,2,1. The most likely state sequence is then given by
s1 =argminV (1,5), (2.2a)
J
8¢ = arg min {V (t,7) +)\]I‘{Stfl7$j}} ,t=2,...,T. (2.2b)
J

2.2 SPARSE JUMP MODEL CALIBRATION

The calibration of the Sparse Jump Model can be performed using an extension of the coordinate
descent algorithm in Algorithm [I| Holding the feature weight vector w fixed, (I1.3)) is optimised in
terms of p and S. Secondly, holding p and S fixed, (L.3)) is optimised in terms of w.

As noted in (9), this iterative approach is not guaranteed to generate a global optimum because the
problem is non-convex. Additionally, the first optimisation involves applying the fitting algorithm
of the Standard Jump Model to a weighted version of the data, which by itself is not guaranteed to
find a global optimum.

In Step Z@)I, solving (1.3) with respect to w, while keeping p and S fixed, can be done using soft-
thresholding. The soft-threholding operator S is given by S (x,¢) = sgn (z) © (|x| — ¢) ., where
x4 denotes the positive part of the elements in and ® denotes element-wise multiplication.

The solution to the convex problem (1.3)), which follows from the Karush-Kuhn-Tucker conditions
(more details can be found in (4)), is w = % where £ = Zszl |Cx| (pg, — /1)2 is a vector

comprising the between-cluster sum of squares (BCSS) contributions of each feature.

Here, A = 0 if that results in ||w]||; < ; otherwise, we choose A > 0 to yield |w||; = . This
assumes that there is a unique maximal element of = and that 1 < x < ,/p (13).

2.3 REGULARISED JUMP MODEL CALIBRATION

We propose calibrating the Regularised Jump Models using a coordinate descent algorithm similar
to Algorithm [I| for Standard Jump Models. The coordinate descent algorithm alternates between

Under review as a conference paper at ICLR 2025

Algorithm 1 Calibration of Standard Jump Model in (10)

Input: Training dataset Y = (y;, Y, - . ., Y7), assumed number of states K, and jump penalty A.
Step 1: Initialise state sequence S() := <s§0), sgo), ceey 55,9)).
Step 2: Iterate for j = 1,2,...,10:
Fit model parameters f4(7):
T
;_L(J) %argminZHyt—usijfl)HQ. (5.1)
Eo=1 '
Fit state sequence S(7):
T—1
SU) arg min {Z {llyt —pu{|? + Al{s#w}} + [lyr —) ||2} N ER)
t=1

Break if SU—1) = §(),

Output: Estimated model parameters p* and state sequence S™.

minimising with respect to the state sequence p while keeping S fixed, and minimising
with respect to .S while keeping p fixed. These two steps are repeated for ten iterations at the most
or until S does not change after two consecutive iterations.

Firstly, seven initial state sequences are generated using the strategy proposed in (L1) which the
authors show to be the most optimal for the Regularised K-Means model after benchmarking it
against popular initialisation strategies. Given the feature selection aspect of the Regularised Jump
Model, the initialisation strategy incorporates potential sparsity in the initial cluster centres. The
initialisation strategy is given in Algorithm 3]

Each initial state sequence outputted from Algorithm [3]is used as an input in Algorithm] The
algorithm is run in parallel using these seven initial cluster assignments and the run which ultimately
yield the lowest objective function value, is chosen as the final result.

Once an initial state sequence has been generated, the model parameters p are updated (Step@. In

particular, assuming a fixed state sequence S = (s, $2, . . ., s7), the following problem is solved:
T
argmin Y _[ly; — | + P (1) - 2.3)
B=1

The solution to (2.3) for each penalty function introduced in (L.5), is given in [B.I} Once p is
updated, the state sequence .S is updated.

Since Steps [8.2] and [5.2] are identical, the state sequence is updated using the same dynamic pro-
gramming equations in (2.1) and 2.2).

3 HYPERPARAMETER TUNING

Table [T]shows the hyperparameters of each Jump Model.

The literature on the hyperparameter tuning of Jump Models is limited. (5)) suggests tuning based on
a grid search of potential hyperparmeter values and picking which combination produces the lowest
Fang-Tang Information Criterion (FTIC) value, a criterion introduced in (6).

Under review as a conference paper at ICLR 2025

Algorithm 2 Calibration of Sparse Jump Model in (9)

Input: Training dataset Y = (y;,Ys, ..., Yy), assumed number of states K and hyperparameters
Aand k.

11 L)
Tre g U5)

Step 2: Iterate for i = 1,2, ..., until [|w® — w@=V ||, /||lw V|, < 10~%

Step 1: Initialise feature weights w as w(®) = (

(a) Compute sequence of weighted features
zi=y, OVwli-Y t=1,2....T,
where vVw(® is the element-wise square root of w(?),
(b) Initialise state sequence S0 = <s(10), séo), ce sg))).

(c) Iterate for j = 1,2,...,10:
i. Fit model parameters:

T

H(j) — argminz [EE TREES 2.
g t=1 !

ii. Fit state sequence:
T
S ¢ argmin {Z {20 = B9 + Xy } + ll2r ugﬂT)n?} :
s t=1
Break if SO~ = §0),

(d) Update weights w(®), while holding the model parameters p(/) and S fixed, by
solving (I.3) using soft thresholding.

Output: Estimated model parameters p*, state sequence S* and feature weights w™.

Algorithm 3 Initialisation of state sequences for calibration of Regularised Jump Model in (11)

Step 1 Cluster Y = (y4,¥s,, .- -, Yy) using standard K-means, obtaining a matrix of initial cluster
centres p = (fy, o, - - -,) -
Step 2 Compute the Euclidean norm for each cluster centre d; = ||p_,|| for j = 1,2,...,p and

order them in descending order.

Step 3 Execute K-means on the subset of variables corresponding to the 1, 2, 5, 10, 25, 50 and
100% largest d;.

Output: Seven initial state sequences (s, s3,...,s1), (s3,83,...,8%), ..., (s],s5,...,s%).

Under review as a conference paper at ICLR 2025

Algorithm 4 Coordinate descent algorithm for calibration of Regularised Jump Model

Input: Training dataset Y = (y;, Y, - - -, Y7), assumed number of states K, penalty function P,
hyperparameters A and +, and initial state sequence S(©) := (s§°>, sgo), PN 559)) generated using
Algorithm [3]

Step 1: Iterate for k = 1,2,...,10:

T
p® e argminy [y, — p ool + 9P (1), (8.1)
L '
T-1
S% = arg min {Z {llge = 1O + Mo, oy} + Iy ué’?ll2} BN)
t=1

Break if S*) = §(k=1),

Output: Estimated matrix of cluster centres (or model parameters) p* and state sequence S™.

Model Al k| v
Standard Jump v
Sparse Jump v |V
Regularised Jump | v/ v

Table 1: Jump Model hyperparameters

In (5), the FTIC equation is an approximation and applies only to the Standard and Sparse Jump
Models. Approximating information criteria such as the FTIC would require knowledge of the like-
lihood function of the various Jump Models which, for the Regularised Jump Models, is unavailable.

Instead, we opt for a non-parametric criterion that is applicable to all Jump Models. We propose
hyperparameter tuning based on a criterion pertaining to clustering stability. The key idea of clus-
tering stability is that if we repeatedly draw samples from the same distribution as that of the original
dataset, and apply the Jump Model calibration algorithms, a good algorithm should produce state
sequences that are similar from one sample to another.

Following the notation in (12) to some extent, denote Z = {X;, Xs, ..., X7} a random sample of
size T' from some unknown distribution function F' : R? — R. Let 8 denotes the vector of active
hyperparameters for a given Jump Model which can be referenced in Table |1l A clustering assign-
ment 1) (x) is defined as a mapping ¢ : RP — {1,2,..., K} and a given Jump Model generates a
clustering assignment ¥ (., @) when applied to a sample Z.

Definition 3.1 (Clustering Distance). The clustering distance between any two clustering assign-
ments ¢ (z) and vy (x) is defined as

d(Y1,92) =P ({1 (X) =1 (V) N {2 (X) =42 (Y)}),

where X, Y € RP are realisations sampled from F'.

The distance between 1; and 12 measures the probability of their disagreement. The clustering
instability of a given Jump Model is given in the following definition:

Definition 3.2 (Clustering Instability). The clustering instability of a clustering algorithm W is given
by
S5(V;:0,T) =E[d (V¥ (Z1;0),V (Z2;0))], 3.D

where ¥ (Z1;0) and ¥ (Z5; 0) are two clustering assignments obtained by applying ¥ (.; 0) to Z;
and Z, which are two independent samples from F' of size T'.

Under review as a conference paper at ICLR 2025

Hyperparameter tuning is thus performed by finding a set of hyperparameter values that minimise
(3.1). Various methods of estimating (3.I)) for hyperparameter tuning in clustering problems have
been proposed ((12), (7) and (3)).

We opt for a simple method of estimating (3.1) that is similar to the one proposed in (7); ten boot-
strapped samples of the dataset Y are generated, each of which are size T'. For a fixed combination
of hyperparameter values and a given Jump Model, ten clustering assignments (or state sequences)
are estimated once the model is fitted onto each bootstrapped sample. The number of times any two
state sequences are not equal, are then counted and averaged across all (120) = 45 comparisons. This
estimate can be expressed mathematically as

R 10 —1 10 10 T
swon = () XX (X)) 62

i=1 j=i+1 t=1

where ! is the estimated state at time ¢ for the i boostrapped sample.

4 SIMULATION STUDY

We conduct a simulation study to compare the accuracy of the Standard, Sparse and Regularised
Jump Models, with respect to both state estimation and feature selection. In the simulation study,
the true state sequence and array of relevant features are both known, which makes it possible to
evaluate the ability of each model to correctly identify the state sequence and set of relevant features.

We adopt the same data generating process as in (9). In their simulation study, the authors test
the Standard and Sparse Jump Models against several popular regime-switching models such as
the Hidden Markov Model (HMM) and its various extensions, and determine that these two Jump
Models deliver superior performance.

Instead of duplicating the simulation study by testing the same regime-switching models, we test the
proposed Regularised Jump Models and compare their performances with the Standard and Sparse
Jump Models.

4.1 RESULTS

Tables 2] and [3] compare the respective state estimation and feature selection performances of the
Standard Jump Model (Standard), Sparse Jump Model (Sparse) and Regularised Jump Model with
Py Penalty Function (Regularised Py) for k € {0, 1,2, 3}, for different values of and for different
numbers of features P. The reported values of Tables[?]and 3] are the mean (and standard deviation)
of the BAC of the estimated state sequence and of respectively; the means and standard devi-
ations are calculated over 100 simulations of T' = 500 observations for each combination of ;4 and
P.

Similar to (9)), we use the Wilcoxon signed-rank test to determine whether the differences between
the BACs in the Regularised Jump Models and those in the Sparse Jump Model are statistically
significant. Bold entries in Tables [2] and [3] denote BACs of a Regularised Jump Model that are
higher than that of the Sparse Jump Model with statistical significance o = 0.05.

Comparing Standard and the remaining models in Table [2] it is evident that feature selection im-
proves accuracy of state estimation when the number of features P is increased. In Table[2] the BAC
of the Standard Jump Model, a model that does not perform feature selection, generally decreases
when P is increased. On the other hand, the BAC of the Sparse and Regularised Jump Models stay
approximately level compared to the case of there being no irrelevant features (when P = 15).

The feature selection is more efficient for higher values of since for higher values of p, the rele-
vance of the first fifteen features becomes more apparent and hence easier for the model to identify.
This logic is reinforced by the results in Table |3} the feature selection performance of the models
improves for higher values of u.

When comparing the relative performances of the Sparse, Regularised Py, P; and Ps Jump Models
in Tables [2[and [3] we can see a correspondence between classification accuracy in terms of state

Under review as a conference paper at ICLR 2025

estimation, and classification accuracy in terms of feature selection: models that are more accurate in
terms of feature selection, are also more accurate in terms of state estimation. This further highlights
the importance of feature selection in accurately estimating the true state sequence.

If we unbundle the BACs in Tables @] and E] in terms of u, model and number of features P, and
calculate the Spearman rank correlation coefficient between these two unbundled series of BAC
values, we compute an estimate of 91% with a p-value of O (10*24). This leads us to reject the null
hypothesis of there being no monotonic relationship between state estimation accuracy and feature
selection accuracy.

Tables [2] and [3] demonstrate outperformance of the Regularised P;, P> and P3 Models compared to
both the Standard and Sparse Jump Models. The Regularised Py model performs roughly in line
with, or slight worse than, the Sparse Jump Model in terms of state estimation and feature selection.

In Table [2] the outperformance of the Regularised P, P2 and Ps is most evident for the cases
p>0.5and P < 300. For ¢ = 0.25 and P = 300, all models produce roughly the same BACs that
range between 0.334 and 0.344.

Similar results can be observed in Table[3] All models perform at approximately the same level for
p = 0.25 and for p > 0.5, the Regularised P; and Ps outperform both the Sparse and Regularised
Py models. The outperformance of the Regularised P;, P2 and Ps over the Sparse Jump Model is
statistically significant for some cases, as shown by the bold entries in Tables [2]and 3]

5 CONCLUSION

In the new class of models called Regularised Jump Models, the regularised K-means model pro-
posed in (11) has been adapted to the Jump Model Framework. These models perform joint state
and parameter estimation, and feature selection. The feature selection process performed by the
Regularised Jump Models is more direct and interpretable than that from the Sparse Jump Model,
which performs feature selection by proxy. These models were tested in a simulation experiment
and demonstrate evidence of outperformance over existing Jump Models.

One avenue of future research is adapting the asymptotic properties of the Regularised K-Means
model proven in (11) to the Regularised Jump Models. Some of these properties include consistency
and strong consistency in terms of the Hausdorff distance (see (11) Theorem 6 and the proof in
Appendix A. A.3).

We’ve proposed a new hyperparameter tuning method for Jump Models, based on the idea of cluster-
ing stability. There is scope for future research on developing and testing alternative hyperparameter
tuning methods for Jump Models.

REFERENCES

[1] D. ARTHUR AND S. VASSILVITSKII, k-means++: the advantages of careful seeding, in Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’07, USA, 2007, Society for Industrial and Applied Mathematics, p. 1027-1035.

[2] A. BEMPORAD, V. BRESCHI, D. PIGA, AND S. P. BOYD, Fitting jump models, Automatica,
96 (2018), pp. 11-21.

[3] A.BEN-HUR, A. ELISSEEFF, AND I. GUYON, A stability based method for discovering struc-
ture in clustered data, Pacific Symposium on Biocomputing. Pacific Symposium on Biocom-
puting, 2002 (2002), pp. 6-17.

[4] S. BOYD AND L. VANDENBERGHE, Convex Optimization, Cambridge University Press, 2004.

[5] F. CORTESE, P. KOLM, AND E. LINDSTROM, Generalized information criteria for high-
dimensional sparse statistical jump models, SSRN Electronic Journal, (2024).

[6] Y. FAN AND C. Y. TANG, Tuning parameter selection in high dimensional penalized likeli-
hood, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75 (2013),
pp- 531-552.

Under review as a conference paper at ICLR 2025

[7] J. HASLBECK AND D. WULFF, Estimating the number of clusters via a corrected clustering
instability, Computational Statistics, 35 (2020).

[8] S.P. LLOYD, Least squares quantization in pcm, IEEE Trans. Inf. Theory, 28 (1982), pp. 129-
136.

[9] P. NYSTRUP, P. KOLM, AND E. LINDSTROM, Feature selection in jump models, Expert Sys-
tems with Applications, 184 (2021), p. 115558.

[10] P. NYSTRUP, E. LINDSTROM, AND H. MADSEN, Learning hidden markov models with per-
sistent states by penalizing jumps, Expert Systems with Applications, 150 (2020), p. 113307.

[11] J. RAYMAEKERS AND R. H. ZAMAR, Regularized k-means through hard-thresholding, J.
Mach. Learn. Res., 23 (2022).

[12] W. SUN, J. WANG, AND Y. FANG, Regularized k-means clustering of high-dimensional data
and its asymptotic consistency, Electronic Journal of Statistics, 6 (2012), pp. 148 — 167.

[13] D. M. WITTEN AND R. TIBSHIRANI, A framework for feature selection in clustering, Journal
of the American Statistical Association, 105 (2010), pp. 713-726. PMID: 20811510.

[14] H. Zou AND T. HASTIE, Regularization and Variable Selection Via the Elastic Net, Journal
of the Royal Statistical Society Series B: Statistical Methodology, 67 (2005), pp. 301-320.

A SUPPLEMENTARY MATERIAL

B PARAMETER UPDATE EQUATIONS FOR REGULARISED JUMP MODEL
CALIBRATION

Proposition B.1. Suppose that we have an assignment of the elements of Y into K clusters
C1,Cq,...,Ck. Let |Cy| denote the number of elements in cluster k. Furthermore, let M be a
T x K cluster assignment matrix with elements my , = 1y cc,}-

Let p* be the corresponding K X p matrix of cluster centres and iy, ; be the (k,j) element of pu*

(k™ cluster centre along the j™ dimension). Keeping the cluster assignment matrix M fixed, solving
([23) gives the following expressions for each penalty function P (p):

iy iy 12> lly ;- Mp® ||+ Ty
P J =4 ki J A B.la
0 <H> Ekd {O otherwise ()
Ty
Pi(p) s pgy =max [0,1 — ———— | p5. ; (B.1b)
() <o 2(Cullu, 1) 1
1 *
P (H) USRS 15 o K j (B.1c)
t G
1 N .
Py () st = Ty —wk; fp ;#0, (B.1d)
+aC T T
wherey_; is the 4™ column of Y.
Proof. Proof can be found in A.2. of the Appendix in (11)). [

Remark B.2. The update equations in (B.I)) lend insight into the effects of each penalty function.

Py leads to hard-thresholding, the process of setting to zero the elements of an input vector whose
absolute values are lower than an input threshold value; elements whose absolute values exceed

10

Under review as a conference paper at ICLR 2025

the threhold are left unchanged. The threshold value in (B.Ta) is the sum of 7y and the WCSS
contribution from each feature. The interpretation of is that variables are included in the
clustering if it sufficiently contributes to a decrease of the WCSS. P; leads to soft-thresholding,
whereby some elements are set to zero and the rest are shrunk towards zero. This resembles the
solution of £;-regularised (or Lasso) regression with orthonormal covariates. P- is a ridge-type
penalty that scales down each element of the array uniformly. P, is the only penalty function that
does not directly induce sparsity.

P3 does not have an updating equation since the right-hand side of (B.1d) includes the £2 norm of
|t ;1 The solution is thus found through an iterative algorithm.

11

Under review as a conference paper at ICLR 2025

P 15 30 60 150 300
I Model
0.25 Standard 0.351 0.338 0.332 0.343 0.334
(0.06) (0.05) (0.05) (0.04) (0.03)
Sparse 0.349 0.343 0.343 0.337 0.336
(0.06) (0.05) (0.05) (0.04) (0.03)
Regularised Po 0.354 0.345 0.336 0.341 0.334
(0.06) (0.05) (0.05) (0.05) (0.05)
Regularised P: 0.359 0.345 0.341 0.335 0.344
(0.08) (0.06) (0.06) (0.04) (0.04)
Regularised P- 0.343 0.342 0.340 0.335 0.344
0.07) (0.06) (0.05) (0.05) (0.04)
Regularised Ps 0.348 0.343 0.339 0.342 0.334
(0.07) (0.06) (0.05) (0.05) (0.04)
0.50 Standard 0.362 0.368 0.341 0.341 0.336
(0.10) (0.08) (0.07) (0.05) (0.04)
Sparse 0.376 0.356 0.345 0.345 0.344
(0.08) (0.08) (0.06) (0.05) (0.04)
Regularised Po 0.358 0.374 0.365 0.349 0.339
(0.09) (0.09) (0.09) (0.07) (0.06)
Regularised P: 0.362 0.393 0.387 0.350 0.349
(0.11) (0.13) (0.12) (0.09) (0.05)
Regularised P- 0.380 0.382 0.389 0.344 0.360
(0.14) (0.14) (0.13) (0.07) (0.07)
Regularised Ps 0.383 0.382 0.374 0.358 0.354
(0.14) (0.14) (0.13) (0.08) (0.06)
0.75 Standard 0.385 0.401 0.366 0.353 0.355
(0.15) (0.13) (0.10) (0.06) (0.06)
Sparse 0.380 0.363 0.364 0.347 0.335
0.12) (0.11) (0.09) (0.07) (0.06)
Regularised Py 0.418 0.386 0.389 0.387 0.408
(0.14) (0.14) (0.14) (0.13) (0.14)
Regularised P 0.418 0.406 0.432 0.394 0.458
(0.18) (0.18) (0.18) (0.17) (0.18)
Regularised Po 0.400 0.420 0.447 0.399 0.447
(0.18) (0.16) (0.18) (0.18) (0.18)
Regularised Ps 0.407 0.435 0.391 0.403 0.468
(0.18) (0.19) (0.17) (0.15) (0.17)
1.00 Standard 0.448 0.423 0.391 0.357 0.347
(0.20) (0.15) (0.13) (0.09) (0.08)
Sparse 0.408 0.393 0.363 0.374 0.347
(0.15) (0.14) (0.12) (0.11) (0.08)
Regularised Py 0.423 0.409 0.464 0411 0.494
(0.19) (0.18) (0.19) (0.16) (0.20)
Regularised Py 0.483 0.446 0.524 0.499 0.564
(0.22) (0.24) (0.25) (0.24) (0.22)
Regularised Po 0.495 0.465 0.523 0.462 0.498
(0.23) (0.24) (0.23) (0.23) (0.23)
Regularised Ps 0.444 0.447 0.507 0.492 0.597
(0.22) (0.24) (0.24) (0.22) (0.23)

Table 2: Average BAC of state sequence (3 d.p.) for each Jump Model, across different values of 1
and number of features P. Values in brackets are standard deviations (2 d.p.).

12

Under review as a conference paper at ICLR 2025

P 30 60 150 300
" Model
0.25 Sparse 0.499 0.502 0.502 0.506
(0.08) (0.05) (0.03) (0.03)
Regularised Py 0.507 0.498 0.502 0.501
0.04) (0.02) (0.01) (0.02)
Regularised P 0.511 0.505 0.496 0.504
(0.05) (0.03) (0.02) (0.03)
Regularised P3 0.503 0.506 0.499 0.498
(0.05) (0.03) (0.03) (0.04)
0.5 Sparse 0.509 0.507 0.509 0.505
(0.07) (0.05) (0.04) (0.04)
Regularised Py 0.530 0.529 0.513 0.511
0.05) (0.04) (0.03) (0.03)
Regularised P 0.560 0.573 0.535 0.509
(0.10) (0.10) (0.08) (0.04)
Regularised P3 0.582 0.588 0.528 0.513
(0.10) (0.11) (0.06) (0.05)
0.75 Sparse 0.538 0.539 0.531 0.522
(0.07) (0.08) (0.07) (0.06)
Regularised Py 0.540 0.538 0.544 0.568
0.07) (0.05) 0.07) (0.05)
Regularised P; 0.594 0.608 0.621 0.650
(0.13) (0.14) (0.15) (0.13)
Regularised P3 0.621 0.603 0.631 0.665
(0.15) (0.13) (0.16) (0.14)
1.00 Sparse 0.574 0.602 0.587 0.563
(0.11) (0.12) (0.12) (0.10)
Regularised Py 0.557 0.549 0.548 0.624
0.10) (0.09 (0.08) (0.10)
Regularised P; 0.622 0.660 0.695 0.743
(0.16) (0.18) (0.18) 0.17)
Regularised P3 0.603 0.629 0.637 0.782
0.14) (0.15) (0.16) (0.17)

Table 3: Average BAC of relevant features (3 d.p.) for each Jump Model, across different values of
w1 and number of features P. Values in brackets are standard deviations (2 d.p.).

13

	Introduction
	Standard Jump Model
	Sparse Jump Model
	Regularised Jump Models
	Regularised K-Means
	Regularised Jump Model Equation

	Calibration of Jump Models
	Standard Jump Model Calibration
	Sparse Jump Model Calibration
	Regularised Jump Model Calibration

	Hyperparameter Tuning
	Simulation Study
	Results

	Conclusion
	Supplementary Material
	Parameter Update Equations for Regularised Jump Model Calibration

