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Abstract

Understanding cell phenotypes and their spatial organization is crucial in multiplex imaging
for spatial biology. Conventional analysis pipelines rely on extensive preprocessing, includ-
ing background correction and segmentation, introducing biases and information loss. We
present NeXtMarker, an interpretable deep learning framework for end-to-end single-cell
analysis of multiplex images, eliminating the need for manual preprocessing or segmenta-
tion. NeXtMarker employs learned marker-specific normalization and interpretable feature
extraction to generate biologically meaningful embeddings in a fully self-supervised manner.
It directly processes raw images of cells while preserving spatial and morphological informa-
tion. We demonstrate NeXtMarker’s ability to (i) resolve intercellular expression patterns
and cell morphology, (ii) enable accurate cell phenotyping in a large neuroblastoma tumor
dataset, and (iii) generalize to independent osteosarcoma images. NeXtMarker maintains
high agreement with conventional pipelines while eliminating the need for preprocessing
and segmentation and enhancing interpretability. By enabling unbiased, scalable single-
cell analysis, NeXtMarker establishes a foundation for improved phenotyping in multiplex
imaging. Code and pretrained models available at: [code_released_upon_acceptance].

Keywords: Multiplex Imaging , Spatial Biology, Single-Cell Analysis, Deep Learning,
Interpretability

1 Introduction

Multiplex imaging (MI) technologies on the protein level, such as Imaging Mass Cytom-
etry (IMC) (Giesen et al., 2014), Multiplexed Ion Beam Imaging (Angelo et al., 2014),
and CO-Detection by Indexing (Black et al., 2021), enable the simultaneous detection of
multiple biological markers while preserving spatial information. However, analyzing these
high-dimensional images remains challenging (Bussi and Keren, 2024). Identifying and lo-
calizing cell phenotypes is essential for studying cell-type interactions in spatial biology and
requires integrating both morphology and marker co-expression patterns. Conventional

©2022 Gutwein et al..

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0000.html.

[code_released_upon_acceptance]
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0000.html


Gutwein et al.

phenotyping pipelines extract single-cell information through background correction, seg-
mentation, and integrated expression (IE) quantification within cell segmentation masks
(Fig. 1, A).
Despite widespread use in tools like Steinbock (Windhager et al., 2023), these pipelines have
limitations: (i) Background correction relies on subjective user-defined annotations, intro-
ducing bias (Berg et al., 2019). (ii) Segmentation remains error-prone (Stringer et al., 2021;
Greenwald et al., 2022), as low resolution and densely packed cells obscure cell borders (Bai
et al., 2021), even after fine-tuning. (iii) IE assumes perfect segmentation and collapses
complex image information into single-marker intensity values, disregarding intercellular
expression patterns and morphology crucial for subtype differentiation. Additionally, man-
ually defined features, such as IE, are not necessarily optimal for capturing the biologically
most relevant information, potentially limiting the accuracy of phenotyping.
To address these limitations, we introduce NeXtMarker—a deep learning framework de-
signed for unbiased exploration of cell types and states directly from raw multiplex imag-
ing data, without requiring prior knowledge, annotations, or predefined cell categories.
NeXtMarker eliminates biased, labor-intensive preprocessing, bypasses segmentation, and
trains in a fully self-supervised manner. Operating directly on raw images, it enables large-
scale analysis while preserving the spatial and morphological context. Its interpretable
architecture reveals individual marker contributions, enhancing biological insight. Our key
contributions with NeXtMarker are as follows:

(1) No Preprocessing: NeXtMarker analyzes raw multiplex images without background
correction, segmentation, or manual preprocessing.

(2) Interpretable Cell Embeddings: The proposed architecture enables experts to
assess marker contributions, revealing biologically relevant co-expression patterns.

(3) Spatial and Morphological Preservation: Unlike segmentation-based methods,
NeXtMarker retains spatial marker variations and cell morphology for precise cell type
characterization.

(4) Normalization Learning: The model learns marker-specific normalization, facili-
tating data integration and reducing batch effects.

2 Methods

NeXtMarker comprises three key components: (i) marker specific normalization learning,
(ii) interpretable feature extraction, and (iii) feature embedding, capturing marker inter-
actions, as shown in Fig. 1B. NeXtMarker processes image patches centered on individual
cells and generates two outputs: an interpretable marker attribution vector, referred to as
Interpretability stage (I), indicating marker importance, and a final embedding vector (F)
used for downstream tasks, such as clustering. These outputs enable accurate, biologically
interpretable cell phenotyping.

(i) Normalization Learning: Unlike integrative imaging methods that normalize inten-
sities to [0,1], IMC operates on an unbounded intensity scale, with pixel intensities ranging
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from 0 to over 103, varying significantly between individual biological markers.. To stan-
dardize these variations from [0,∞) to [0, 1], we apply parameterized sigmoid functions
fM (x) per marker M ∈ [M1, ...,MX] (Fig. 1B, i). Each sigmoid function has two trainable
parameters per marker: xc,M , the center, and x′c,M , the slope at xc,M , learned and opti-
mized during NeXtMarker’s training. The transformation fM for marker M and input pixel
intensity x is defined as:

fM (x) =
1

1 + exp
(
−4x′c,M · (x− xc,M )

) (1)

(ii) Interpretable Feature Extraction: Deep learning models inherently lack inter-
pretability unless explicitly designed for it, a critical factor for phenotyping in MI. Thus,
we designed a feature extractor that disentangles features by input channel, corresponding
to biological markers (Interpretability I in Fig. 1B, ii).
This is achieved via grouped convolutions (Xie et al., 2016), where the number of groups
matches the number of markers (G = X), ensuring each convolutional group learns features
specific to a single marker. Stacking multiple such blocks forms a deep feature extractor
that preserves marker-specific representations, enabling direct interpretation of biological
marker contributions within the learned feature space.

(iii) Channel Crosstalk: Cell phenotyping relies on the simultaneous expression of spe-
cific marker combinations, hereafter referred to as co-expression. The final stage integrates

Figure 1: Overview of conventional analysis pipelines (A) compared to NeXtMarker’s work-
flow (B). (A) Traditional pipelines involve preprocessing steps such as background
correction, segmentation, and IE calculation. (B) NeXtMarker processes raw mul-
tiplex images without manual preprocessing, utilizing (i) a novel marker-specific
normalization learning strategy, (ii) interpretable feature extraction, and (iii)
crosstalk integration to generate feature embeddings.

3



Gutwein et al.

marker interactions via a linear layer processing the Interpretability Vector I, producing
the entangled final embedding F (Fig. 1B, iii). This embedding refines feature organization
and supports downstream tasks.

Training of NeXtMarker: NeXtMarker is trained in an self-supervised fashion using
contrastive learning with a modified SimCLR (Chen et al., 2020) framework. Augmen-
tations include random intensity scaling per marker, affine transformations, and flipping.
Unlike standard SimCLR, which uses two positive pairs, we allow a flexible number of aug-
mentations per sample. The model is optimized with NT-Xent (Chen et al., 2020) loss
(temperature = 0.5). To stabilize learned normalization functions, we constrain parame-
ter values, preventing negative xc or excessively steep x′c, ensuring biologically plausible
transformations using the following penalty term:

LM = max(0,−xc,M )︸ ︷︷ ︸
Ensuresxc,M≥0

+max(0, x′c,M − 1)︸ ︷︷ ︸
Constrainsx′

c,M≤1

+max(0, 2/x′c,M − xc,M )︸ ︷︷ ︸
Controlsscalingrelation

(2)

3 Experiments and Results

NeXtMarker is evaluated through two experiments: (1) a synthetic dataset is used to test
NeXtMarker’s ability to distinguish intercellular expression patterns and morphology, and
(2) two independent datasets are used with the same IMC marker panel, to test a real-
world application and demonstrate NeXtMarker’s effectiveness in cell phenotyping and
cross-dataset generalization.

Experiment 1 - Intercellular Expression Patterns and Morphology: This experi-
ment assesses NeXtMarker’s ability to resolve intercellular expression patterns, which con-
ventional IE methods fail to capture. We synthetically generated a five-marker [M1, ...,M5]
single-cell dataset with seven subpopulations, each defined by distinct marker expression
profiles, cell size (Fig. 2A,I), morphology (circular vs. neutrophil, Fig. 2A,II), expression
localization (center vs. border, Fig. 2A,III), and relative abundance.
NeXtMarker was trained with four augmented views per single cell patch, applying random
marker intensity scaling (0.9 - 1.1), size scaling (0.9 - 1.1) rotation (0° - 359°), and random
flipping (p=0.5). Training used the Adam optimizer (learning rate: 0.001, batch size: 256).
For the baseline, we computed IE as the mean intensity over the nucleus mask per marker.
NeXtMarker’s performance was evaluated qualitatively via UMAP (McInnes et al., 2020)
and quantitatively using a two-layer MLP classifier (60%-20%-20% train-validation-test
split) for classification accuracy. Subpopulation separation was assessed with silhouette
score (Rousseeuw, 1987) and Davies-Bouldin index (Davies and Bouldin, 1979).

Results: Fig. 2B shows that while IE distinguishes broad expression patterns, it fails
to capture intercellular variations. In contrast, NeXtMarker effectively differentiates both
expression patterns and subtypes, as confirmed by the confusion matrix (Fig. 2B) and quan-
titative metrics (Fig. 2C). Additionally, NeXtMarker organizes its feature space to reflect
cell size variations within subtypes, evident in Fig. 2D, where a clear gradient from small to
large cells is observed. This demonstrates NeXtMarker’s ability to detect subtle morpho-
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logical and marker expression differences.

Figure 2: A: Synthetic images of subpopulations with distinct marker expression, mor-
phology, and localization. B: UMAP visualization of Integrated Expression vs.
NeXtMarker’s feature space and subpopulation classification accuracy. C: Clus-
ter separation metrics for both methods. D: UMAP of NeXtMarker’s feature
space colored by cell size.

Experiment 2 - Real-World Phenotyping: We evaluate NeXtMarker on IMC images
from two cancer and tissue types: (I) 591 images from 144 bone marrow neuroblastoma
samples (2002–2022) containing approx. 1.6 million cells and (II) a lung metastasis tissue
slice from an osteosarcoma patient using the same IMC panel. The 34-marker panel (see
Fig. 3A, y-axis) distinguishes immune and tumor cell types. Immune markers include those
for T cells (CD3, CD4, CD8, GZMB), B cells (CD20), granulocytes (CD15), monocytes
(CD14, CD10), dendritic cells (CD11), and progenitors (CD34, CD24). Tumor-associated
markers include GD2, CD56, GATA3, SOX10, and EVALV4, enabling distinction of granu-
locytes, monocytes/dendritic cells/NK cells (MO/DC/NK), T cells, B cells, progenitors, and
tumor cells. Cells without clear marker signatures are grouped as ”others”. NeXtMarker
is benchmarked against the IE approach, hereafter referred to as the IE baseline, follow-
ing the workflow in Fig. 1A. To minimize segmentation errors for the baseline, we used
matched immunofluorescence nuclear scans at five times higher resolution for segmentation.
For NeXtMarker, patch centers were estimated from the flow output of Cellpose (Stringer
et al., 2021), without requiring full segmentation masks. To enable fair evaluation, each
NeXtMarker center was mapped to its nearest segmentation-based cell. In cases where mul-
tiple cells were closest to the same center, the one with the smallest distance was assigned.
Unmatched centers were excluded. NeXtMarker is not limited to this extraction method
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and remains compatible with simple cell detection strategies, such as blob detection, local
maxima in nuclear channels, or centroid extraction after thresholding.

Cell Type Phenotyping Workflow: In the IE workflow, feature vectors derived from av-
eraged marker intensities over segmentation masks are clustered using PhenoGraph (Levine
et al., 2015), and cluster-wise average marker expression is used for expert phenotype as-
signment. NeXtMarker follows a similar workflow but operates on its learned embeddings.
After contrastive training, we extract interpretability (I) and embedding (F) vectors, cluster
embeddings with PhenoGraph, and compute an average interpretability vector per cluster
by averaging marker-associated features. This vector, capturing marker importance and
co-expression, informs expert annotation. NeXtMarker’s phenotype assignments are then
compared to the IE pipeline for performance evaluation.

Training Details: NeXtMarker was trained using SimCLR using the following augmenta-
tions: intensity scaling (0.5 - 2), size scaling (0.66 - 1.5), rotations (0° - 359°), and random
flipping (p=0.5). The learning rate was ramped up to 0.001 over 100 steps, followed by 1000
steps of cosine annealing and 100 steps at a constant rate at 0.0001. Training used a batch
size of 1024 with two views (patch sizes 10, 8, and 6), exposing the model to 7×106 patches
during training. The interpretability stage produced eight features per marker, with a final
embedding dimension of 256. Normalization parameters were initialized with xc set to half
the 90th percentile of nonzero pixels per marker, and x′c =

2
xc
.

Results: Fig. 3A presents the average marker activation per cluster from NeXtMarker’s
interpretability stage (I), with color indicating activation levels and size representing the
proportion of cells exceeding a predefined threshold. Fig. 3B shows the UMAP visualiza-
tion of feature space and cluster assignments. We highlight selected columns in blue in
Fig. 3A. With these examples we illustrate how key immune cell types are identified based
on marker expression patterns: Cytotoxic T cells (clusters 27, 18, 34, 52) express CD3 and
CD8, with or without GZMB, while T-helper cells (clusters 60, 3) show CD3 and CD4. NK
cells, defined by GZMB without CD3/CD8, correspond to clusters 62, 42, and 25. These
highlights provide a clear reference for understanding how NeXtMarker enables phenotyp-
ing in high-dimensional MI data without segmentation or manual feature engineering by
leveraging learned interpretable features.

Benchmarking Against Integrated Expression: To compare NeXtMarker with the IE
baseline, we project cell-type assignments from both methods onto NeXtMarker’s UMAP
feature space (Fig. 3C, left for IE baseline, center for NeXtMarker). Agreement is shown
in Fig. 3C, right, where correctly matched annotations appear in green and mismatches
in red. NeXtMarker achieves 82.07% overall agreement, with a detailed breakdown per
cell type using a confusion matrix. Agreement is highest for B cells, MO/DC/NK cells,
T cells, granulocytes, and tumor cells, while progenitors and the ‘others’ category remain
challenging. Progenitors are often misclassified as granulocytes (24.3%) explainable due to
overlapping morphology and marker expression. Similarly, ‘others’ are frequently assigned
to granulocytes (24.9%) or progenitors (35.9%). While cells assigned as ‘others’ cluster
closely together in feature space (Fig. 3G), they lack clear separation from other cell types,
causing misclustering. To contextualize these results, we reran the IE pipeline with re-
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trained background correction and clustering to assess its self-consistency. This yielded a
similar overall agreement of 81.06% (Fig. 3D, right). The confusion matrix in Fig. 3D con-
firms similar misclassification trends, with progenitors frequently labeled as MO/DC/NK
cells (14.2%) or granulocytes (9%), while ‘others’ were primarily assigned to progenitors
(44.4%), MO/DC/NK cells (15.9%), or granulocytes (22.9%). These findings highlight the
inherent ambiguity in phenotyping cells near class boundaries. One notable discrepancy in
the baseline comparison is cluster 30, classified as B cells by NeXtMarker along with cluster
11, which has a similar expression profile. However, the IE baseline primarily assigned non-
B cell labels to cluster 30. Single-cell patches (Fig. 3E) show that raw IMC images contain
CD20 signal (B cell marker) (Fig. 3E, left), but the IE baseline’s background correction
removed most of this signal (Fig. 3E, right), leading to misclassification. In contrast, cells
from cluster 11 (Fig. 3F) retained well-defined signals and were classified as B cells by both
methods, suggesting that background correction may introduce phenotyping errors.
These findings demonstrate that NeXtMarker accurately identifies cell phenotypes without
preprocessing or segmentation. By avoiding biases from background correction, it not only
matches but, surpasses traditional methods, underscoring its potential for robust pheno-
typing.

Cross-Dataset Generalization: To assess NeXtMarker’s ability to extract biologically
meaningful features across datasets, we applied the on neuroblastoma trained model to
an unseen IMC image of an osteosarcoma lung metastasis using the same IMC panel. A
classifier was trained on the neuroblastoma dataset, using only cells whose phenotype labels
matched their 10 nearest neighbors in feature space, then applied to the osteosarcoma
image. As a case study, we focused on T cells due to their distinct marker profile and
presence across tissues and diseases. Fig. 3H shows a strong correlation between CD3 or
CD3+CD8 expression and T cell classification, consistent with known marker biology. This
demonstrates that NeXtMarker captures biologically relevant relationships beyond dataset-
specific conditions, enabling robust generalization across datasets and tissue types.

4 Conclusion

We introduced NeXtMarker, an interpretable deep learning framework for single-cell anal-
ysis of multiplex imaging data, eliminating the need for manual preprocessing and seg-
mentation. By learning marker-specific normalization, disentangled feature extraction, and
marker interaction patterns, NeXtMarker captures biologically meaningful signal in a fully
self-supervised manner. Our experiments demonstrated that NeXtMarker resolves inter-
cellular expression patterns, enables expert-driven phenotyping in real-world datasets, and
generalizes across tissues and diseases without requiring retraining. The framework achieves
high agreement with conventional integrated expression methods, while avoiding the infor-
mation loss and biases introduced by background correction. Importantly, NeXtMarker
does not assign cell type labels. Instead, it provides interpretable marker co-expression pat-
terns and embedding spaces that experts can use to explore, annotate, or discover cellular
phenotypes. By enabling unbiased exploration of multiplex imaging data, NeXtMarker of-
fers a robust and scalable foundation for spatial biology analysis in both well-characterized
and novel tissue settings. A current limitation is the reliance on approximate cell centers for
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Figure 3: A: Cluster-wise average marker activation from NeXtMarker’s interpretable fea-
tures with corresponding cluster sizes. B: UMAP visualization of cluster assign-
ments. C: Cell-type mapping from IE baseline and NeXtMarker projected onto
the same UMAP. D:Cell-type mapping from IE baseline and IE rerun projected
onto the same UMAP. E: Cells identified as B cells by NeXtMarker but not by the
baseline analysis (cluster 30). F: Cells identified as B cells by both NeXtMarker
and the baseline analysis (cluster 11). G: cells annotated as ’other’ from the IE
baseline in the NeXtMarker feature space. H: Osteosarcoma IMC image with
CD3, CD8 and DNA marker with boxes indicating identified T cells.

patch extraction. Future work could integrate detection directly into the model or extend
NeXtMarker to process unstructured image regions without localization.
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