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Abstract

NLP models today strive for supporting mul-001
tiple languages and modalities, improving ac-002
cessibility for diverse users. In this paper, we003
evaluate their multilingual, multimodal capabil-004
ities by testing on a visual reasoning task. We005
observe that proprietary systems like GPT-4V006
obtain the best performance on this task now,007
but open models lag in comparison. Surpris-008
ingly, GPT-4V exhibits similar performance be-009
tween English and other languages, indicating010
the potential for equitable system development011
across languages. Our analysis on model fail-012
ures reveals three key aspects that make this013
task challenging: multilinguality, complex rea-014
soning, and multimodality. To address these015
challenges, we propose three targeted inter-016
ventions including a translate-test approach to017
tackle multilinguality, a visual programming018
approach to break down complex reasoning,019
and a method that leverages image captioning020
to address multimodality. Our interventions021
achieve the best open performance on this task022
in a zero-shot setting, boosting open models023
LLaVA-v1.5-13B by 13.4%, LLaVA-v1.6-34B024
by 20.3%, and Qwen-VL by 16.7%, while also025
minorly improving GPT-4V’s performance.1026

1 Introduction027

Language technology today is continually evolving028

to be more inclusive, with models becoming in-029

creasing multilingual (Lai et al., 2023; Li et al.,030

2022), multimodal (Yang et al., 2023), or both031

(Chen et al., 2020; Zeng et al., 2023; Geigle et al.,032

2023; Achiam et al., 2023). Even though this pro-033

motes broader user accessibility, past research has034

consistently highlighted differences in model per-035

formance across languages (Blasi et al., 2022) and036

cultures (Liu et al., 2021). Notably, these models037

often favor North American or Western contexts,038

1An anonymized version of the code implementations
and prompts can be found at https://anonymous.4open.
science/r/Multilingual_Visual_Reasoning-C1F7.

Figure 1: Our Contributions: First, we evaluate the
multilingual visual reasoning abilities of various mod-
els; then, we analyze key challenges where models are
falling short; lastly, we propose three interventions to
address these challenges.

potentially leaving behind users from other regions. 039

(Liu et al., 2021; Hershcovich et al., 2022). 040

The NLP community is currently witnessing a 041

trend of moving away from openly releasing mod- 042

els to limiting their access through paid web APIs 043

(Abdalla et al., 2023). Additionally, the cost to 044

use these services is often higher for low-resourced 045

languages, despite poorer performance (Ahia et al., 046

2023). While it is certainly desirable to have strong 047

and inclusive models available regardless of the 048

access method, open, well-documented, and rea- 049

sonably sized models have advantages from the 050

point of view of control, ownership, cost, and ad- 051

vancing scientific understanding. 052

In this work, we first compare and contrast 053

the multilingual, multicultural capabilities of the 054

proprietary system GPT-4V(ision) (Achiam et al., 055

2023) with a plethora of open models like LLaVA 056

(Liu et al., 2023c,a, 2024), Qwen-VL (Bai et al., 057

2023b), mBLIP (Geigle et al., 2023), CCLM (Zeng 058

et al., 2023), using two datasets on the same task of 059

reasoning over texts and pairs of images, NLVR2 060

(Suhr et al., 2019) and MaRVL (Liu et al., 2021). 061
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We discuss this setup in more details in §2 and §3.062

We find that GPT-4V significantly outperforms all063

open models. One additional unprecedented and064

surprising result is, as shown in Figure 1, GPT-4V’s065

consistency in performance across all languages,066

with performance on some even surpassing that on067

the NLVR2 dataset in English. In contrast, as we068

will discuss in §4, most open models still show069

a significant gap between English and other lan-070

guages, perhaps due to deficiencies in training data,071

or due to the well-known “curse of multilinguality”,072

where smaller models are less adept at process-073

ing low-resource languages (Conneau et al., 2020).074

This begs the question: “how can we take open075

models, and bring them closer to achieving the076

exciting language-equitable multimodal reasoning077

results demonstrated by the opaque (and presum-078

ably bigger) GPT-4V?”079

Towards this end, we conduct a careful analy-080

sis of the results from testing models on the mul-081

tilingual visual reasoning task and discover that082

failures can arise from any of the three challeng-083

ing aspects of the task: multilinguality, reasoning,084

and multimodality. For multilinguality, we find a085

significant gap in performance for other languages086

as compared to English. For reasoning, we find a087

negative correlation of performance and the compo-088

sitionality of the statement. For multimodality, we089

find that models were typically pretrained on single090

image-text pairs, but haven’t seen pairs of images091

in pretraining, which may lead to a mismatch be-092

tween pretraining and evaluation objectives. We093

will discuss this in more details in §5.094

Based on our analysis, we design three interven-095

tions that address these challenges in section 6. The096

first simply tackles multilinguality – we translate097

the MaRVL statements to English. Surprisingly,098

translation leads to a drop in performance for GPT-099

4V (which might indicate its advanced multilingual100

capabilities), but helps improve performance for all101

open models. Our next intervention tackles both102

multilinguality and reasoning, by generating pro-103

grams to reason over the set of images using the104

translated statements, inspired by Gupta and Kem-105

bhavi (2023)’s VisProg method. Our third (and106

most effective) intervention tackles all three chal-107

lenges by first captioning images conditioned on108

the statement, and then reasoning over the captions,109

rather than the images, using chain-of-thought ca-110

pabilities of text-modality LLMs (Wei et al., 2022).111

Using this intervention, we obtain state-of-the-art112

zero-shot performance on the MaRVL dataset for113

Figure 2: Example from the MaRVL Dataset: Given
two images and a statement, the task is to infer whether
the statement is true or false of the given image pair.

open models, and also slightly improve the perfor- 114

mance of GPT-4V itself, as shown in Figure 1. 115

2 Dataset Description 116

We evaluate on two visual reasoning datasets, both 117

containing a statement in natural language and a 118

pair of images. The task is to reason whether the 119

statement is true based on the images, requiring rea- 120

soning over both images and the statement together. 121

Figure 2 shows an example of this task. 122

NLVR2 NLVR2 contains 107,292 examples of 123

English sentences with web photographs. Anno- 124

tators paired visually-rich images and were en- 125

couraged to come up with compositional and lin- 126

guistically diverse statements for each pair. The 127

dataset contains a train-validation-test split. Im- 128

ages were collected using search queries generated 129

from synsets derived from the ILSVRC2014 Ima- 130

geNet challenge (Russakovsky et al., 2015), with 131

each query resulting in 4 pairs of images from 132

Google Images2. Queries for ImageNet (Deng 133

et al., 2009) are based on the English WordNet 134

(Poli et al., 2010), whose concepts are more reflec- 135

tive of the North-American or Western cultures. 136

MaRVL MaRVL explores the same task as 137

NLVR2 in multilingual multicultural contexts. 138

MaRVL is a test-only dataset collected for five di- 139

verse languages: Indonesian, Swahili, Tamil, Turk- 140

ish, and Mandarin Chinese. Native speakers first 141

select concepts that are reflective of their speak- 142

ing population. Next, they curate images from the 143

web that reflect those concepts within their specific 144

cultural context. Finally, native speakers pair and 145

write statements for each image pair, following the 146

same protocol as that laid out for NLVR2. 147

2https://images.google.com/
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Model NLVR2-en id sw ta tr zh MaRVL-Avg. MaRVL-Avg. - EN

Human 96.2 96.3 93.0 98.0 97.0 95.5 96.0 -0.2

Zero-Shot

GPT-4V 81.4 80.6 81.0 78.6 87.1 83.2 82.1 0.7

mBLIP (mT0-XL) 67.3 64.9 64.8 69.6 68.0 65.9 66.6 -0.7

LLaVA-v1.5-13B 60.1 54.8 52.6 50.2 55.3 52.9 53.2 -6.9

LLaVA-v1.6-34B 54.9 56.0 51.8 43.4 57.9 55.3 52.9 -2.0

Qwen-VL 60.3 54.5 50.7 50.3 55.4 58.4 53.9 -6.4

Finetuned

mBLIP (mT0-XL) 85.2 75.1 74.6 75.9 74.3 75.7 75.1 -10.1

CCLM-4M 80.2 67.6 64.4 60.5 69.0 69.2 66.1 -14.1

xUNITER 72.3 57.7 56.1 54.3 57.6 54.7 56.1 -16.2

mUNITER 73.2 55.0 51.5 52.2 54.7 56.8 54.0 -19.2

Table 1: NLVR2 and MaRVL performance across Human , Proprietary Models , and Open Models. On NLVR2 ,
mBLIP outperforms GPT-4V post finetuning, while GPT-4V shows the best performance across other languages.

3 Models and Evaluation Protocols148

We evaluate various open models, including149

mBLIP (mt0-xl) (Geigle et al., 2023), LLaVA150

(Liu et al., 2023a, 2024), Qwen-VL (Bai et al.,151

2023b), CCLM (Zeng et al., 2023), and UNITERs152

(Chen et al., 2020); and a proprietary model GPT-153

4V(ision).3 We describe these models in §A. We154

evaluate them in two settings:155

Zero-shot. In this setting, models are not specif-156

ically fine-tuned for the task of visual reasoning.157

This setting is academically interesting, as it more158

generally tests the ability of models to perform159

tasks, and the results are more likely to be rep-160

resentative of performance on datasets for which161

training data is not available. In addition, it is prac-162

tically useful since it can also be applied to LMs163

that cannot as easily be fine-tuned, such as GPT-4V164

(due to its closed nature), LLaVA, and Qwen-VL165

(due to their relatively large sizes). We test LLaVA,166

Qwen-VL, mBLIP, and GPT-4V in this setting.167

Finetuned. We finetune models that can more168

easily be finetuned on the English NLVR2 dataset,169

and test on NLVR2 and MaRVL. This represents170

the realistic setting, adapting multilingual models171

to particular tasks using English data, which is172

relatively available. We test mBLIP, CCLM-4M,173

xUNITER, and mUNITER in this setting.174

3gpt-4-vision-preview (https://openai.com/research/
gpt-4v-system-card), abbreviated as "GPT-4V".

4 How well do proprietary and open 175

models perform on multilingual visual 176

reasoning? 177

In this section, we perform an examination of how- 178

well these various models perform on multilingual 179

multimodal reasoning tasks. Table 1 shows perfor- 180

mance of humans, open models, and proprietary 181

models. For the models, we use the experiment 182

protocols as in §3 in the zero-shot and finetuned 183

settings. We ask the following questions: 184

Which model performs the best? Answer: 185

GPT-4V on MaRVL, and mBLIP (mT0-XL) on 186

English post-fintuning. However, in the zero-shot 187

setting, the proprietary model GPT-4V performs 188

the best across all languages,4 and open models lag 189

behind. Note that despite GPT-4V’s impressive per- 190

formance, it still lags behind human performance 191

by 10% to 20% across all languages, emphasizing 192

that this task still is not completely solved. 193

Which open model performs the best? An- 194

swer: mBLIP (mT0-XL), regardless of whether 195

it is finetuned. The other open LMMs, LLaVA 196

and Qwen-VL, are not explicitly trained on mul- 197

tilingual data, so the gap in MaRVL and NLVR2 198

performance is expected. 199

4We put GPT-4V in the zero-shot category because we
evaluate the performance of GPT-4V on NLVR2 and MaRVL
without finetuning on the NLVR2 training data. However,
we do not know if GPT-4V has seen examples of NLVR2 or
MaRVL during pretraining.
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Do models perform equitably across lan-200

guages? Under zero-shot setting, GPT-4V and201

mBLIP both show equitable performance across202

languages, which is encouraging, although the lat-203

ter significantly lags in overall performance com-204

pared to GPT-4V. Interestingly, post finetuning205

on NLVR2, mBLIP shows better performance on206

NLVR2 than GPT-4V, but still has lower perfor-207

mance on MaRVL. The gap between English and208

MaRVL languages also significantly increases for209

mBLIP from the zero-shot to finetuned setting.210

Maintaining the equity in performance across lan-211

guages during finetuning is an interesting future212

direction, which may help models surpass GPT-213

4V’s performance on multilingual visual reasoning.214

Other models lag mBLIP, both in overall perfor-215

mance and equity with English.216

5 What makes multilingual visual217

reasoning challenging?218

As noted in Table 1, the best model still lags hu-219

man performance by 10% to 20%. In this section,220

we aim to analyze what makes multilingual visual221

reasoning so challenging, and identify three key222

aspects as detailed below:223

5.1 Multilinguality and Sub-Optimal224

Cross-Lingual Transfer225

In the finetuned setting, we observe a significant226

drop in performance for MaRVL languages as com-227

pared to NLVR2 in English. This is expected since228

models are finetuned only in English but not in229

these languages due to lack of training data. We230

also note that performance on Swahili is consis-231

tently lower across models (excluding GPT-4V),232

which is the lowest-resource language amongst233

MaRVL languages, as laid out by the language re-234

source taxonomy (Joshi et al., 2020). This observa-235

tion motivates us to evaluate models with MaRVL236

data translated to English, as we discuss in §6.1.237

In the zero-shot setting, GPT-4V and mBLIP238

both exhibit equitable performance on MaRVL as239

with NLVR2. While LLaVa is not expected to240

perform as well for non-English languages and241

Qwen-VL is not expected to perform as well for242

non-English and non-Chinese languages, they have243

poorer performance than mBLIP on NLVR2. While244

mBLIP is pretrained on multilingual multimodal245

data, LLaVA is not specifically trained on multi-246

lingual data. However Qwen-VL is pretrained on247

Chinese data (Bai et al., 2023b), and it is generally248

Figure 3: Performance of GPT-4V decreases as state-
ment length increases.

believed that LLaVA has multilingual abilities as it 249

has seen multilingual data during pretraining (Liu 250

et al., 2023c,a, 2024). 251

Overall, models have better visual reasoning abil- 252

ities when given English inputs from US/European- 253

centric cultures, while still lagging behind when 254

facing multilingual and multicultural inputs. 255

5.2 Complex Reasoning 256

Data points in both NLVR2 and MaRVL require 257

complex reasoning. An example statement from 258

NLVR2 is "one image includes a silver stylus and 259

a device with a blue keyboard base and an open 260

screen propped up like an easel", which is seman- 261

tically diverse, long in length, and has a composi- 262

tional structure, requiring models to perform com- 263

positional and complex reasoning to infer the label. 264

As a proxy to the complexity of reasoning, we 265

measure the number of words of the NLVR2 and 266

MaRVL statements (translated to English), and 267

find that model performances drop as the num- 268

ber of words of the statement increases. Figure 269

3 shows a graph of the performance of GPT-4V 270

plotted against the number of words in each state- 271

ment. We can clearly see a downward trend in the 272

graph. Based on this, we are motivated to exam- 273

ine methods that break down long, compositional 274

statements, as will be discussed in §6.2. 275

5.3 Multimodality and Mismatch between 276

Pretraining & Evaluation 277

NLVR2 and MaRVL contain two images per in- 278

stance, along with a statement describing them, 279

while vision-language models are typically trained 280

on a single image-text pair (Cao et al., 2020), lead- 281

ing to a mismatch in the input between pretraining 282

and evaluation. Further, multimodal reasoning is 283

known to be harder than reasoning over text alone 284

4



Figure 4: Flow chart visualizing the end-to-end testing in §4 and all interventions performed in §6.

Model NLVR2-en id sw ta tr zh MaRVL-Avg. MaRVL-Avg. - EN

Zero-Shot

GPT-4V 81.4 78.4 75.5 70.2 78.2 78.4 76.1 -5.3

mBLIP (mT0-XL) 67.3 65.2 66.9 68.7 68.2 67.2 67.2 -0.1

LLaVA-v1.5-13B 60.1 53.1 53.9 54.1 58.3 54.0 54.7 -5.4

LLaVA-v1.6-34B 54.9 55.7 53.1 52.8 55.3 55.4 54.5 -0.4

Qwen-VL 60.3 58.2 56.0 58.8 63.0 58.4 58.9 -1.42

Finetuned

mBLIP (mT0-XL) 85.2 77.2 78.6 78.3 73.1 75.1 76.5 -8.7

CCLM-4M 80.2 72.3 69.2 69.7 77.6 71.8 72.1 -8.1

xUNITER 72.3 63.2 63.8 62.1 67.5 62.1 63.7 -8.6

mUNITER 73.2 59.8 63.4 62.3 69.2 62.7 63.5 -9.7

ViLT 73.7 61.7 62.0 65.1 69.8 60.9 63.9 9.8

Table 2: MaRVL translate-test accuracies across Open and Proprietary models.

(Mogadala et al., 2021; Park and Kim, 2023). Al-285

though Qwen-VL has seen multi-image inputs dur-286

ing training (Bai et al., 2023b), it still encounters287

difficulties in handling the complexities presented288

by multimodal reasoning during evaluation.289

These, and the inherent difficulty of aligning290

image data and text data during the reasoning pro-291

cess make this task particularly challenging. This292

motivates us to (1) move from processing a pair293

of images together to processing each image sep-294

arately; and (2) break down the two modalities of295

image and text in the reasoning process, as in §6.3. 296

6 How can we address these challenges? 297

Based on our analysis from the previous section, 298

we now move on to examining whether we can de- 299

vise methods to further improve multilingual mul- 300

timodal reasoning abilities, particularly those of 301

open models. We examine three research questions, 302

which we discuss in more details in the following 303

subsections respectively. Figure 4 shows a flow 304

chart visualizing the interventions we perform to 305

5



address the research questions5.306

RQ1) (multilinguality) Does translating the text307

to English and reducing the cross-lingual gap aid308

performance? Short Answer: it depends.309

RQ2) (multilinguality+reasoning) Can we break310

down the complex reasoning into modular pro-311

grams which can be executed on a vision-text in-312

put? Short Answer: yes, we adopt the Visual Pro-313

gramming approach (Gupta and Kembhavi, 2023).314

RQ3) (multilinguality+reasoning+multimodality)315

Can we alleviate the need for multimodal interac-316

tion during the reasoning process? Short Answer:317

yes, we propose a new approach utilizing captions.318

6.1 Addressing Multilinguality: Translate-Test319

In §5.1, we find performance on NLVR2 is much320

better than that on MaRVL. While both are visual321

reasoning datasets, MaRVL is multi-cultural and322

contains statements in 5 diverse languages. Since323

NLP systems perform significantly better with En-324

glish data (Song et al., 2023), we first simply trans-325

late the reasoning statements to English using the326

Google Translate API (Wu et al., 2016). A visual-327

ization of the process of translate test can be found328

in Figure 4.329

In addition to the models we evaluate in §3, we330

also evaluate ViLT (Kim et al., 2021) for better331

comparisons, as our next proposed intervention332

in §6.2 uses ViLT. We didn’t evaluate ViLT on333

MaRVL before translate test, since it doesn’t sup-334

port the MaRVL languages. Our evaluation proto-335

cols follows the ones introduced in §3 and results336

are shown in Table 2.337

All prior works, as per our knowledge, have ob-338

served a gain in performance post translating to339

English (Liu et al., 2021). Our observation is con-340

sistent with prior findings for all models, except341

GPT-4V(ision). All models except for GPT-4V342

sees an increase in accuracy after performing trans-343

late test; while surprisingly, GPT-4V shows a sharp344

decrease in performance across all MaRVL lan-345

guages after translate test. However, this is en-346

couraging, because it speaks for the multilingual347

capabilities of this model, and indicates that the348

gains provided by translating to English are lower349

than the errors made in translating cultural-specific350

nuances in meaning.351

For example, the MaRVL statement "右图有352

青绿色的苹果" is translated to "the picture on353

the right has turquoise apples", where "青绿色" is354

5§C discusses additional computation cost incurred by the
interventions.

translated to "turquoise". However, the color "青绿 355

色" means pure green with a little bit cyan in Man- 356

darin Chinese, which is different from "turquoise". 357

Given this, GPT-4V reasons correctly when pro- 358

vided the statement in Mandarin, but makes mis- 359

takes when given the translated statement. 360

6.2 Addressing Multilinguality + Reasoning: 361

Visual Programming 362

To improve performance of LLMs on reasoning 363

tasks, beyond naive prompting, several methods 364

have been introduced (Nye et al., 2021; Zhou et al., 365

2022; Wei et al., 2022; Gao et al., 2023). Par- 366

ticularly, PAL (Gao et al., 2023) provides signifi- 367

cant improvements by decomposing a natural lan- 368

guage instruction into multiple programmatic sub- 369

modules, executed in an inference step to obtain the 370

final answer. Most recently, efforts like VisProg 371

(Gupta and Kembhavi, 2023), ViperGPT (Surís 372

et al., 2023), Visual ChatGPT (Wu et al., 2023) 373

have followed suit to solve multimodal reasoning 374

using LLMs to generate visual programs, that lever- 375

age off-the-shelf computer vision models for image 376

processing during inference. Hence, we use Vis- 377

Prog to generate visual programs given translated 378

statements as obtained in §6.1. VisProg uses ViLT 379

(Kim et al., 2021) as its inherent vision module. 380

Figure 4 shows the flow of VisProg. For example, 381

given the statement: There is no one in the bedroom 382

on the left, and there is someone in the bedroom on 383

the right, the generated visual program is: 384

1 ANSWER0=VQA(image=LEFT ,question=’Is 385
there anyone in the bedroom?’) 386

2 ANSWER1=VQA(image=RIGHT ,question=’Is 387
there anyone in the bedroom?’) 388

3 ANSWER2=EVAL(ANSWER0 == False and 389
ANSWER1 == True) 390

4 FINAL_ANSWER=RESULT(var=ANSWER2) 391

Listing 1: Visual program example

If this program is executed on the images in 392

Figure 5, then it will have ANSWER0 = True, 393

ANSWER1 = False, so the final result is False. 394

Figure 5: VisProg example image pair.

For this intervention, we use text-davinci-0036 as 395

6text-davinci-003 is the model that the VisProg authors
utilized when running VisProg.
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a representative of proprietary LLMs and LLaMA2-396

70B (Touvron et al., 2023) to represent open LLMs.397

Table 3 shows results to this method. Although this398

method does not achieve as high accuracy as mod-399

els evaluated end-to-end in Table 1, this approach400

provides valuable insights of breaking down com-401

plex reasoning into modular modules and utilizing402

prompts to make use of LLMs’ strong in-context403

abilities. In addition, this approach, without any404

additional training, achieves on par performance405

on MaRVL, as compared to ViLT post-fintuning.406

Model NLVR MaRVL
id sw ta tr zh Avg.

GPT-3 67.0 64.5 59.8 60.3 67.3 64.3 63.2

LLaMA2-70b 67.3 58.2 57.2 58.1 65.8 61.9 60.2

Table 3: VisProg performance across models.

6.3 Addressing Multilinguality + Reasoning +407

Multimodality: Reasoning with Captions408

When analyzing errors for NLVR2, Gupta and409

Kembhavi (2023) note that 69% of them are caused410

by the vision module. This might be potentially411

worse for MaRVL, because open visual modules412

used in VisProg (Kim et al., 2021) are trained413

on Western-centric datasets like Imagenet (Rus-414

sakovsky et al., 2015). Text-based LLMs, on the415

other hand, are trained on trillions of tokens, and416

are known to exhibit cultural awareness, albeit it417

may be limited (Yao et al., 2023). Hence, here we418

target the last remaining challenge, that of multi-419

modal interaction needed for the reasoning process,420

by working with image captions instead of images.421

Concretely, we first caption both images, and use422

LLMs to reason about the statement with the two423

captions, instead of with the two images. Figure 4424

shows a flow chart of how this pipeline works.425

To make sure the captions capture necessary in-426

formation needed for reasoning about the state-427

ment, as a first step of this intervention we use428

LLMs to generate targeted instructions based on429

the statement. Consider the statement "The picture430

on the left has several pencils of different colors,431

and the picture on the right has only one pencil"432

from MaRVL-zh, the targeted instructions are:433

Left image - "Write a short caption describing the434

number and colors of pencils;"435

Right image - "Write a short caption describing436

the number of pencils".437

As a second step, we generate captions following438

Figure 6: Captioning example image pair.

the targeted instructions in step 1, using various 439

captioning models, including InstructBLIP (Liu 440

et al., 2023b), PromptCap (Hu et al., 2022), GPT- 441

4V, LLaVA-v1.5-13B (Liu et al., 2023a), LLaVA- 442

v1.6-34B (Liu et al., 2024), and Qwen-VL (Bai 443

et al., 2023b). The instructions can point them 444

to focus on targeted contents in the image. For 445

instance, for the statement in step 1 and the images 446

in Figure 6, the captions generated by GPT-4V are: 447

Left image - A pencil case containing a single 448

natural wood colored pencil.; 449

Right image - A young mind sketches ideas with a 450

classic green pencil.. 451

Lastly, we prompt LLMs to reason whether the 452

statement match caption pairs. For instance, for the 453

example above, GPT-4 reasons as follows: 454

Reasoning - The statement is False. This is be- 455

cause the left image is described to include only 456

a single pencil, which implies there are not sev- 457

eral pencils of different colors in the left image. 458

However, the statement claims that there should be 459

several pencils of different colors in the left image. 460

Meanwhile, the right image correctly shows a sin- 461

gle green pencil, but the statement is negated by 462

the inaccuracy of the part regarding the left image. 463

Using this approach, visio-linguistic models only 464

need to process one image at a time, instead of 465

processing a pair of images simultaneously. In 466

addition, reasoning is performed only over text, 467

instead of over both image and text modalities. 468

Table 4 shows the performance of this interven- 469

tion. Performance of InstructBLIP and PromptCap 470

under zero-shot setting is on par with UNITER 471

models post-finetuning. This intervention improves 472

performance of LLaVA-v1.5-13B by 10% to 16%, 473

LLaVA-v1.6-34B by 18% to 25%, and Qwen-VL7 474

by 10% to 21% depending on language, while also 475

minorly improving GPT-4V’s performance. On 476

average, our pipeline boosts LLaVA-v1.5-13B’s 477

performance on MaRVL by 13.4%, LLaVA-v1.6- 478

7§B discusses additional experiments on Qwen-VL.
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Captioning Reasoning NLVR (en) id sw ta tr zh MaRVL-Avg.

InstructBLIP LLaMA2-70B 65.1 61.3 60.8 60.2 62.6 62.8 61.5

PromptCap LLaMA2-70B 63.2 59.3 58.9 58.3 59.2 59.9 59.1

GPT-4V
No Intervention 81.4 80.6 81.0 78.6 87.1 83.2 82.1

GPT4 82.2 81.2 81.8 76.1 90.1 85.4 82.92

LLaVA-v1.5-13B
No Intervention 60.1 54.9 52.6 50.2 55.3 52.9 53.2
LLaMA2-70B 68.6 65.8 65.9 65.8 69.9 70.8 67.6

LLaVA-v1.6-34B
No Intervention 54.9 56.0 51.8 43.4 57.9 55.3 52.9
LLaMA2-70B 74.8 73.9 70.3 68.6 80.0 73.0 73.2

Qwen-VL
No Intervention 60.3 54.5 50.7 50.3 55.4 58.4 53.9
LLaMA2-70B 70.3 72.1 66.3 65.1 76.7 72.8 70.6

Table 4: Captioning Pipeline Performance across Models. For rows with "No Intervention" stated in the "Reasoning"
column, we pull over the end-to-end results of that model from Table 1, for the sake of comparison.

34B’s performance by 20.3%, and Qwen-VL’s per-479

formance by 16.7%. This intervention improves480

performance of LLaVA and Qwen-VL, achieving481

the best performance under zero-shot setting (with-482

out training on reasoning of pairs of images).483

7 Related Work484

From Pretraining to Instruction Tuning Previ-485

ous research on instruction tuning sparks multiple486

works to finetune models on instructions, and create487

general-purpose models that are good at perform-488

ing tasks under zero-shot settings (Ouyang et al.,489

2022; Liu et al., 2023b; Geigle et al., 2023). How-490

ever, instruction tuning data is mostly in English491

(Touvron et al., 2023; Liu et al., 2023b). Due to492

the absence of multilingual instruction tuning data,493

models may struggle to effectively process multi-494

lingual inputs.495

Moving Beyond English Past research efforts496

has predominantly centered around English lan-497

guage models, highlighting differences in model498

performance across languages (Blasi et al., 2022;499

Song et al., 2023). In the visio-linguistic domain,500

research in instruction tuning also center on En-501

glish, due to a lack of multilingual instruction train-502

ing data (Geigle et al., 2023). To this end, mBLIP503

(Geigle et al., 2023) translated instruction training504

data to various languages, and perform instruction505

tuning. This is the first multilingual instruction506

tuned vision LLM.507

Gap between Proprietary GPT-4V and Open508

Models Currently, there is a trend of shifting509

from openly releasing models to paid APIs (Ab- 510

dalla et al., 2023). Previous research on examin- 511

ing GPT-4V demonstrates its unprecedented multi- 512

modal capabilities, and there is still a gap between 513

this proprietary model and other open source mod- 514

els (Yang et al., 2023). However, it is still important 515

for the community to have as strong open source 516

multimodal models. 517

8 Conclusion 518

In conclusion, we explore the evolving domain of 519

multilingual visual reasoning. We observe a trend 520

towards inclusivity in models, yet recognize per- 521

sistent disparities in performance across languages 522

and cultures. While proprietary systems like GPT- 523

4V exhibit notable and equitable accuracy across 524

languages, open models still face challenges in 525

bridging the gap, especially for low-resource lan- 526

guages. Our analysis highlights the superior perfor- 527

mance of GPT-4V but also underscores the need for 528

advancements in open models. Leveraging inter- 529

ventions addressing multilinguality, multimodality, 530

and reasoning, we demonstrate significant enhance- 531

ments in open model performance, achieving state- 532

of-the-art results under zero-shot settings for open 533

models. Our findings emphasizes the potential for 534

further advancements in multilingual visual rea- 535

soning, with the aim of narrowing down the gap 536

between human and machine performance, and the 537

gap between proprietary and open models. 538
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Limitations539

With the goal of evaluating the multilingual vi-540

sual reasoning capabilities of models, we employ541

NLVR2 and MaRVL, both of which engage in the542

task of determining whether a pair of images corre-543

spond to a given statement. This choice stems from544

MaRVL being the sole visual reasoning dataset545

with multilingual support, as far as our current546

knowledge extends.547

Representing Visual Reasoning It’s important548

to acknowledge that the task of NLVR2 and549

MaRVL solely represents a specific task of visual550

reasoning. Other aspects and dimensions of this do-551

main may not be fully represented by this particular552

task.553

Representing Multilinguality In addition, note554

that the combination of NLVR2 and MaRVL covers555

6 distinct languages: English, Indonesian, Swahili,556

Tamil, Turkish, and Mandarin Chinese. This is only557

a small subset of all languages worldwide.558
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A Models and Evaluation Protocols810

In this section, we introduce all multimodal models811

that we evaluate in Section 4.812

A.1 Open Models 813

A.1.1 Zero-Shot Evaluation (no labeled data 814

for task) 815

Recently, there has been a rise in multimodal lan- 816

guage models that are instruction-finetuned to solve 817

tasks in a zero-shot manner (Chung et al., 2022). 818

These systems may or may not be trained multi- 819

lingually. We evaluate these models by providing 820

the models with instructions on solving the task, 821

utilizing the models’ zero-shot learning abilities 822

and chain-of-thought reasoning abilities (Wei et al., 823

2022). Below, we briefly describe the models that 824

we experiment with under a zero-shot setting: 825

mBLIP mBLIP (Geigle et al., 2023) extends 826

large multimodal models’ capabilities to be multi- 827

lingual. mBLIP re-align an image encoder previ- 828

ously tuned to an English LLM to a multilingual 829

LLM. Re-alignment training of mBLIP utilizes 830

multilingual data machine-translated from English 831

data. 832

LLaVA Large Language and Vision Assistant 833

(LLaVA) is a series of open large multimodal model 834

that are instruction tuned on machine-generated 835

instruction-following data (Liu et al., 2023c,a, 836

2024). LLaVA extends the capabilities of exist- 837

ing models by incorporating visual models and 838

large language models. It connects a vision en- 839

coder CLIP and an LLM decoder. LLaVA is not 840

explicitly trained to process multilingual data, but 841

the LLM decoder (Vicuna is the default LLM) is 842

known to have seen multilingual data in pretraining 843

(Chiang et al., 2023). 844

Qwen-VL Qwen-VL is an open large multilin- 845

gual multimodal model trained on English and Chi- 846

nese data. It is based on Qwen-7B (Bai et al., 847

2023a), incorporating a language-aligned visual 848

encoder and a positionaware adapter. It is trained 849

to be able to process multi-image inputs. 850

A.1.2 Evaluation Post-Finetuning on NLVR2 851

(labeled data for task in English) 852

Several end-to-end encoder-based models have 853

been proposed that are pretrained on multilingual 854

multimodal data, and typically need to be fintuned 855

prior to evaluation (Devlin et al., 2018). Pretrain- 856

ing objectives typically include masked language 857

modeling (text), image-text matching, masked re- 858

gion modeling (image), and multimodal contrastive 859

learning (Chen et al., 2020; Zeng et al., 2023). 860
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To test on MaRVL, they need to be finetuned861

on task-specific data. Since MaRVL is a test-only862

dataset, we finetune on the training data of NLVR2863

which is only in English. Note that these models864

are pretrained on a single image-text pair. To deal865

with a pair of images in finetuning, each image is866

separately paired with the statement in two forward867

passes, and a concatenation of obtained embed-868

dings is passed to a linear classifier to make the869

prediction. Here, we experiment with CCLM and870

UNITER-based models as described below. We871

also finetune mBLIP, but not LLaVa, due to com-872

putational constraints introduced by its size.873

UNITER The UNiversal Image-TExt Represen-874

tation Learning (UNITERs) framework focuses on875

achieving end-to-end reasoning across different876

modalities (Chen et al., 2020). This model aims877

to unify the processing of textual and visual in-878

formation, fostering more coherent and integrated879

reasoning capabilities. We experiment with mU-880

NITER and xUNITER, which are initialized from881

UNITER with mBERT and XLM-R respectively.882

CCLM The Crosslingual Cross-modal Language883

Model (CCLM) is an open pretrained multilingual884

multimodal that delves into conditional masked885

language modeling and contrastive learning tech-886

niques to enhance cross-modal understanding887

(Zeng et al., 2023). This model contribute valu-888

able insights into improving the alignment between889

textual and visual representations in multilingual890

scenarios.891

A.2 Proprietary Model GPT-4V892

GPT-4V(ision) Incorporating multimodality into893

GPT-4, GPT-4V is able to process image inputs894

and text inputs together, paving the way for various895

downstream tasks including visual reasoning tasks896

(Achiam et al., 2023; Yang et al., 2023). Since897

GPT-4V is also know for its zero-shot learning898

abilities (Yang et al., 2023), plus finetuning is not899

supported by GPT-4V8, we evaluate GPT-4V under900

a zero-shot setting as discussed in §A.1.1.901

B Additional Experiments on Qwen-VL902

To better understand multilingual and multicultural903

understanding abilities of our proposed pipeline,904

we performed additional experiments on Qwen-905

VL. This is because Qwen-VL is trained on Chi-906

8https://platform.openai.com/docs/guides/
fine-tuning/what-models-can-be-fine-tuned

nese data, while all other open models we eval- 907

uated are pretrained with a focus on English cul- 908

ture, without seeing much data from the local cul- 909

ture. Therefore, in addition to the experiments we 910

discussed in Section 6.3, we also performed the 911

third intervention with Qwen-VL on the MaRVL 912

Mandarin Chinese dataset where we caption im- 913

ages using the native language. This experiment 914

resulted in 73.4% accuracy, while using our inter- 915

ventions with English captions gives 72.8% accu- 916

racy, and using Qwen without interventions gives 917

58.4% accuracy. These results extended our points 918

that visio-linguistic models need better understand- 919

ing of culturally-specific elements. For example, 920

Siheyuan is a culturally specific concept from Chi- 921

nese culture, where if a model has never seen such 922

concepts previously, it might not be able to gener- 923

ate the correct response for queries containing the 924

concept Siheyuan. 925

C Additional Computation Cost 926

For the first intervention in §6.1, we use the trans- 927

lated statements provided in the MaRVL dataset, 928

so no additional training cost is incurred. 929

For the second intervention in §6.2, training cost 930

is not directly comparable, since we finetune ViLT 931

if not using the intervention, and use the pretrained 932

ViLT if using the intervention. 933

For the third intervention, with a 3% increase 934

in total evaluation time, we see a 13% average im- 935

provement in performance for LLaVA-v1.5-13B. 936

There is no additional training cost brought by the 937

intervention. Noteworthily, total inference time us- 938

ing LLaVA is halved when using this intervention. 939
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