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ABSTRACT

The Segment Anything model (SAM) has shown a generalized ability to group
image pixels into patches, but applying it to semantic-aware segmentation still
faces major challenges. This paper presents SAM-CP, a simple approach that
establishes two types of composable prompts beyond SAM and composes them
for versatile segmentation. Specifically, given a set of classes (in texts) and a
set of SAM patches, the Type-I prompt judges whether a SAM patch aligns with
a text label, and the Type-II prompt judges whether two SAM patches with the
same text label also belong to the same instance. To decrease the complexity in
dealing with a large number of semantic classes and patches, we establish a unified
framework that calculates the affinity between (semantic and instance) queries and
SAM patches, and then merges patches with high affinity to the query. Experiments
show that SAM-CP achieves semantic, instance, and panoptic segmentation in both
open and closed domains. In particular, it achieves the state-of-the-art performance
in open-vocabulary segmentation. Our research offers a novel and generalized
methodology for equipping vision foundation models like SAM with multi-grained
semantic perception abilities. Codes will be publicly available.

1 INTRODUCTION

The past decade has witnessed a rapid development of vision-aware foundation models Radford
et al. (2021); He et al. (2022); Wang et al. (2023c; 2021); Liu et al. (2021). These models apply
to a series of visual recognition tasks and serve as a building block for multimodal (e.g., vision-
language) understanding. Recently, a powerful foundation model named the Segment Anything model
(SAM) Kirillov et al. (2023) has attracted a lot of attention. Pre-trained on a large corpus of images,
SAM shows an impressive ability to group image pixels into patches and generalizes across various
vision domains (e.g., medical images He et al. (2023); Ma et al. (2024); Hu & Li (2023); Roy et al.
(2023), camouflaged images Chen et al. (2023b); Tang et al. (2023b), thermal images Chen & Bai
(2023), etc.) as well as different downstream scenarios, (e.g., image editing Yu et al. (2023c); Xie
et al. (2023), 3D recognition Shvets et al. (2024); Wang et al. (2023b); Cen et al. (2023), object
tracking Cheng et al. (2023); Yang et al. (2023), etc.).

Despite its success, there still exist major challenges in applying SAM to semantic-aware segmentation
tasks including semantic, instance, or panoptic segmentation. We notice two lines of research in this
direction. The first line (e.g., Grounded-SAM Ren et al. (2024)) heavily relied on a standalone model
(e.g., DINO Zhang et al. (2023a) or Grounding-DINO Liu et al. (2024)) to generate proposals and
SAM was only used for refinement. This weakens the function of SAM as a foundation model. The
second line (e.g., SSAM Chen et al. (2023a), Semantic-SAM Li et al. (2023a), SAM-CLIP Wang
& Vasu (2023)) tried to assign a semantic label to each patch produced by SAM. However, in many
scenarios, SAM may over-segment an instance into sub-patches, making it difficult to determine
which patches belong to the same instance.

This paper presents a novel approach named SAM-CP where ‘CP’ stands for composable prompts.
Different from the existing methods, we establish two types of prompts beyond the patches produced
by SAM. The idea is illustrated in Figure 1. When a semantic class (in text) is given, the model
needs to determine: (i) Prompt I: whether a SAM patch aligns with the text label, and (ii) Prompt
II: whether two patches belong to the same instance of the corresponding category. Once the model
learns to process these two prompts, one can apply a simple traversal algorithm over the SAM patches
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Figure 1: An illustration of how SAM-CP works at the idea level. Given an image and the patches
produced by SAM, we first execute Prompt I to find the patches corresponding to any text label (in
either closed or open domains), and then, if necessary, execute Prompt II to group the patches within
each class into instances. In the upper part, the height of each bar corresponds to the probability that
a patch belongs to a text label; in the lower part, two patches are connected by a solid line if they
belong to the same instance. This figure is best viewed in color.

for semantic segmentation (based on the first prompt) and instance segmentation (adding the second
prompt), and further compose them for panoptic segmentation.

A naive implementation of SAM-CP suffers super-linear computational complexity in enumerating
class-patch pairs (Prompt I) and patch-patch pairs (Prompt II). To accelerate it, we establish a unified
affinity framework, as shown in Figure 2. It involves a query-based mechanism where two types
of queries (semantic and instance) are established, and the features extracted from SAM patches
are taken as keys. Both the queries and keys are fed into a vision transformer; throughout forward
propagation, each query merges the keys with high affinity with it. At the end of affinity propagation,
the keys contained in each query form the desired entity (a semantic region or an instance). This
implementation allows us to carry out the training procedure efficiently in GPUs.

We train SAM-CP on COCO Lin & Maire (2014) and ADE20K Zhou et al. (2017) and evaluate
it on these two datasets as well as Cityscapes Cordts et al. (2016) for both open-vocabulary and
closed-domain segmentation. Since SAM-CP is trained to understand text labels, it can easily adapt
to unseen classes with a CLIP Radford et al. (2021) text encoder. Extensive experiments demonstrate
SAM-CP’s ability to cover semantic, instance, and panoptic segmentation with a single model. In
particular, it reports state-of-the-art accuracy in open-vocabulary segmentation. Qualitative studies
demonstrate that SAM-CP improves the semantic discriminativity of SAM’s features. Our research
offers a new methodology to equip vision foundation models (e.g., SAM) with a solid and flexible
ability for semantic recognition. We expect the proposed approach to gain stronger and more versatile
abilities (e.g., for part segmentation) in the future, with the vision foundation models being upgraded
and becoming more robust.

2 RELATED WORK

In recent years, both the CV and NLP communities have witnessed a rapid development of foundation
models. In particular, the vision foundation models have largely evolved from being simply pre-
trained for image classification Dosovitskiy et al. (2021); Liu et al. (2021); Wang et al. (2021) to
incorporating multimodal information Radford et al. (2021); Fang et al. (2023); Li et al. (2023c);
Alayrac et al. (2022) and/or being pre-trained to deal with different tasks Huang et al. (2023); Yu et al.
(2023b); Wang et al. (2023c). They improve the accuracy of various downstream visual recognition
tasks including detection, segmentation, etc.

Recently, SAM Kirillov et al. (2023) appeared as a foundation model for versatile segmentation.
Pre-trained on a large corpus with billions of instances, SAM can segment an image into a set of
basic patches without tuning. An important advantage of SAM lies in its ability to recognize images
in different domains, yet a disadvantage lies in the lack of semantic labels on each patch. The
community has been trying to adapt SAM to various scenarios, including adapting it on other image
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data (e.g., medical images He et al. (2023); Ma et al. (2024); Hu & Li (2023); Roy et al. (2023),
camouflaged images Chen et al. (2023b); Tang et al. (2023b), remote sensing images Chen et al.
(2024a); Zhang et al. (2023c); Wang et al. (2023a), etc.), raising it to segment 3D objects Shvets
et al. (2024); Wang et al. (2023b); Cen et al. (2023), and using it as the pre-processing step of image
editing Yu et al. (2023c); Xie et al. (2023). Among these efforts, one of the most challenging topics is
to assign the SAM patches with semantic labels. Existing works involved calling other foundation
models (e.g., CLIP Radford et al. (2021)) for image tagging Chen et al. (2023a); Li et al. (2023a);
Wang & Vasu (2023); Wei et al. (2024), applying SAM as a refinement stage after other detection
and/or segmentation models Ren et al. (2024), and generating other variants. However, in many
scenarios, SAM may over-segment basic semantic units into sub-patches, which increases our burden
of segmentation for specific purposes.

This paper focuses on establishing basic prompts beyond the segmentation results of SAM for
versatile segmentation. This is related to a series of query-based algorithms for visual recognition,
such as DETR Carion et al. (2020) and the subsequent variants Zhu et al. (2021); Li et al. (2022a);
Liu et al. (2022); Zhang et al. (2023a); Liu et al. (2024). Meanwhile, we compute the affinity to
determine the relationship between semantic units (e.g., queries and objects), which is related to
a few prior work Ahn & Kwak (2018); Yu et al. (2020); Liu et al. (2017) that tried to compute
the affinity between pixels and objects to perform segmentation. The idea was also inspired by
ViRReq Tang et al. (2023a), a recent work that proposed decomposing complex visual recognition
tasks into elementary units to ease annotation and optimization. Further, motivated by the previous
open-domain panoptic segmentation methods Yu et al. (2023a); Xu et al. (2023a); Chen et al. (2023c),
we leverage a CLIP-based classifier to equip the model with an open-domain recognition ability.

3 OUR APPROACH

3.1 OVERVIEW: COMPOSITE PROMPTS FOR SEGMENTATION

The overall design of our approach is illustrated in Figure 1. The core idea is to establish two types of
prompts beyond SAM Kirillov et al. (2023), a recent vision foundation model that extracts patches
from an input image as potential instances. By composing the output of different prompts, the
SAM patches are labelled and/or combined into semantic regions and/or instances, and thus versatile
segmentation tasks can be performed. We name the approach SAM-CP, where ‘CP’ stands for
composable prompts.

Mathematically, let the input image be I. SAM extracts a number of patches, P = {P1,P2, . . . ,PN},
where N is the number of patches and Pn is the n-th patch which is represented as a binary mask
of the same shape as the input image. Although SAM is robust across various vision domains, it
does not offer a semantic label to each patch and, sometimes, an instance (e.g., a person) may be
over-segmented into multiple patches. We design the following two types of prompts.

• Prompt I – semantic labeling. Given a text label T and one patch P, judge if P can be
classified as T.

• Prompt II – instance merging. Given a text label T and two patches P1 and P2 classified
as T, judge if P1 and P2 belong to the same instance of T.

A wide range of segmentation tasks can be accomplished by composing the above two prompts.
Firstly, note that the regular semantic segmentation only involves Prompt I (assigning a label to
each patch), and instance segmentation is enabled by adding Prompt II (merging over-segmented
patches into an instance). Additionally, the two prompts can be iteratively called when segmentation
is required at a finer level, e.g., Prompt I for classifying a region into sub-classes, Prompt II for
segmenting an instance into parts, etc.

3.2 EFFICIENT TRAINING WITH A UNIFIED AFFINITY FRAMEWORK

A straightforward implementation of SAM-CP involves executing Prompt I for each patch and then
Prompt II for each pair of patches, following which the patches belonging to the same instance can
be merged. However, this naive pipeline incurs unsatisfying efficiency because the number of Prompt
II to be executed is O(N2) where N can be hundreds for a regular image. Moreover, the merging
procedure requires serial operation and can inevitably encounter conflict in the inference stage (e.g.,
P1 and P2, P1 and P3 are considered to be the same instance but P2 and P3 are not).

To accelerate the procedure, we design an equivalent but more efficient mechanism named the unified
affinity framework. We initialize a set of queries for potential units (i.e., semantic regions and
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Figure 2: The unified affinity framework as an efficient implementation of SAM-CP. The input image
with SAM patches is fed into a patch encoder. Type-I and Type-II prompts appear as two sets of
queries. Affinity values are computed and the SAM patches are merged according to the affinity
values. Semantic and instance level supervision are added to the merged patches. The purple arrows
are present only in the inference stage of open-vocabulary segmentation. Best viewed in color.

instances) and set all SAM patches as keys. We perform affinity propagation between the queries
and keys, gradually merging units with high-affinity scores into a larger unit. With this modified
mechanism, the over-segmented patches are merged on the fly and no further post-processing is
required (i.e., at the end of affinity propagation, the survived units naturally form the output). We
illustrate the procedure in Figure 2 and elaborate on the individual modules as follows.

3.2.1 PATCH ENCODER

We first extract visual features from the patches. For each patch Pn, we apply a regular backbone
(e.g., ResNet50 He et al. (2016) or Swin-L Liu et al. (2021)) equipped with an RoIAlign He et al.
(2017) operator to obtain a basic feature vector f̃n. We also design a MaskRoI operator to extract
more accurate visual features by masking out the background areas. All these features are propagated
through a multi-layer perceptron (MLP) and fed into ω multi-head self-attention layers, where ω is
set to 6 throughout this paper. The feature vector corresponding to Pn is denoted as fn.

3.2.2 UNIFIED AFFINITY DECODER

This is the core module that performs affinity propagation and merges patches into super-patches. We
will elaborate on three key elements below, namely, (1) a set of semantic and instance queries, (2) the
algorithm of affinity propagation, and (3) the label assignment mechanism (Section 3.2.3).

Queries. The queries are of a similar form as in DETR Carion et al. (2020). Differently, we establish
two types of queries for semantic and instance segmentation, respectively. (1) For each text label
Tc where c ∈ {1, 2, . . . , C} is the class index, we use the language branch of a vision-language
model (e.g., CLIP Radford et al. (2021)) to convert it into a query vector, eSc , where the superscript
‘S’ stands for ‘semantic’. (2) We also create N instance queries (i.e., assuming that each patch may
correspond to an instance, abbr. patch-as-query, PasQ) and initialize them using the visual features
and position embeddings of the patches, i.e., eIn ≡ fn, where the superscript ‘I’ stands for ‘instance’.
In what follows, we denote both types of queries as Qm, m = 1, 2, . . . ,M where M is the number
of queries.

Affinity. The affinity is mathematically defined as a matrix A sized M ×N . Each entry of A, Am,n,
denotes the probability that the patch Pn belongs to the query Qm. Initially, we set all entries of A to
1. Then, in each affinity propagation layer (please see below for details), the query vectors (denoted
as Q) and the patch features (denoted as K and V) are fed into a multi-head cross-attention module to
update the query vectors for subsequent classification. There are three key modules here. (1) The
affinity matrix A serves as a dynamic mask after binary operation in cross-attention, which we call
dynamic cross-attention (DCA), to extract the feature from high-affinity patches. (2) We insert a
module named affinity refinement (AR) to update the affinity matrix A using the cosine similarity
between Q and K. (3) To enhance the query feature, we apply a Query Enhancement (QE) mechanism
to fuse the query’s feature with the RoI features of its high-affinity regions. The details of DCA, AR,
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and QE are described in Appendix A.1. As shown in the ablation (Section 4.5), all these designs
contribute to the segmentation accuracy.

3.2.3 LABEL ASSIGNMENT AND SUPERVISION

Each query, regardless of its type (semantic or instance), is expected to occupy a set of (one or more)
patches and be assigned a class label. So, two sources of supervision are required, which come from
the semantic labels and instance IDs, respectively. Each query is supervised by both signals.

Semantic-level supervision. We first build a vision-language classifier upon the semantic queries.
Following GLIP Li et al. (2022b), the score Scls

m,c of the m-th query at the c-th class is determined by
Q̂m and êc, the quantities produced by linearly normalizing Qm and ec into [0, 1]. The classification
loss Lin et al. (2017b) Lcls is computed upon Sm,c in Equation 1.

Scls
m,c =

1

s
· Q̂⊤

m · êc + b, Lcls =
1

M

C∑
c=1

M∑
m=1

FL
(
σ(Scls

m,c), I[c⋆m=c]

)
. (1)

In Scls
m,c, s is a learnable scaling factor, and b is a bias parameter. In Lcls, FL(·, ·) is the focal loss,

σ(·) is the sigmoid activation function, c⋆m is the ground-truth class label for the m-th query (we
explain how to compute c⋆m in the Appendix A.2), and I[·] the indicator function which takes 1 if the
statement is true and 0 otherwise. Note that, if we only perform Type-I prompts, the category text is
not necessary, and we only need to perform a binary prediction for each text query to judge whether
the category exists in the image. This mechanism was designed for Type-II prompts. An important
technical contribution of our work is to unify Type-I and Type-II prompts into one framework so that
the training and inference costs are reduced.

Instance-level supervision. At the end of affinity propagation, each instance query corresponds to a
binary segmentation mask. Let the ground truth contain K instances. We first establish a matching
matrix G (sized K ×N ) by computing the box-level IoP (intersection-over-patch) and mask-level
IoP values between each pair of predicted and true instances; they are considered matched if both IoP
values are greater than a pre-defined hyper-parameter τ , i.e., Gk,n = I[min(IoPbox,IoPmask)>τ ], where
τ = 0.8 throughout this paper. If no patches are assigned to an object, the patches with an IoU value
of at least 0.5 will be chosen as candidates of low-quality matching. Based on the matching matrix
G, we compute the ground-truth affinity matrix B (sized M ×N , same as A). For each m, we first
determine if any ground-truth instance (indexed km) matches the m-th query (see the next part for
details). If yes, Bm = Gkm

(i.e., the km-th row of G is copied to the m-th row of B); otherwise,
Bm ≡ 0. Then, following Cheng et al. (2022); Li et al. (2023b), we compute the mask focal loss
Lmfl and the Dice loss Ldice:

Lmfl =
1

M∗

M∑
m=1

εm
max(|Bm|0, 1)

·
N∑

n=1

FL(Am,n, Bm,n), Ldice =
1

M∗

M∑
m=1

εm ·Dice(Am,Bm),

(2)
where FL(·, ·) and Dice(·, ·) are the focal loss and Dice loss, respectively, M∗ is the number of
positive query embeddings in the image, |Bm|0 is the number of non-zero entries in Bm (i.e., the
number of patches that are assigned to the m-th query), and εm ∈ {0, 1} is a weight indicating
whether to take the m-th query into consideration.

Determining Bm and εm for each query. This procedure is different between the types of queries.

• For a semantic (Type-I) query, Qc (c ∈ {1, 2, . . . , C}), we first check if the c-th class
appears in the image. If not, we have Bc ≡ 0 and εc = 0. Otherwise, the c-th class (as a
unique semantic region) must appear in the ground-truth ‘instance’ set; let the index be kc,
thus Bc = Gkc

. We set εm to 1 for the positive embeddings and 0 otherwise.
• For an instance (Type-II) queries, we follow the DETR series Carion et al. (2020); Zhu

et al. (2021); Zhang et al. (2023a) to apply the Hungarian algorithm to find the best matches
between the queries and the ground-truth instances. Differently, we compute the matching
cost using more metrics, including the classification loss (cls), the mask focal loss (mfl),
the Dice loss (dice), the bounding-box cost (bbox), and the gIoU cost (giou). We will show
in experiments that all these components contribute to better segmentation results. After
the matching is done, we obtain the index km for the m-th query (km can be null, in which
situation the query is ignored), and assign Bm = Gkm

. We set εm to 1 for the positive
embeddings and 0 otherwise.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Method Backbone COCO→ADE20K ADE20K→COCO COCO→Cityscapes
PQ SQ RQ AP mIoU PQ SQ RQ AP mIoU AP PQ mIoU

MaskCLIP Ding et al. (2023) VIT-L 15.1 70.5 19.2 6.0 23.7 – – – – – – – –
FreeSeg Qin et al. (2023) VIT-B 16.3 71.8 21.6 6.5 24.6 21.7 72.0 21.6 6.6 21.7 – – –
OPSNet Chen et al. (2023c) VIT-L 19.0 52.4 23.0 – – – – – – – – 41.5 –
OpenSeeD Zhang et al. (2023b) Focal-L 19.7 – – 15.0 29.0 – – – – – – 41.4 –
HIPIE Wang et al. (2023d) VIT-H 20.6 – – 15.0 29.0 – – – – – – – –
X-Decoder Zou et al. (2023) Focal-L 21.8 – – 13.1 29.6 – – – – – 24.9 38.1 52.0
MaskQCLIP Xu et al. (2023b) VIT-L 23.3 – – – 30.4 – – – – – – – –
ODISE Xu et al. (2023a) VIT-H 23.3 74.4 27.9 13.0 29.2 25.0 79.4 30.4 – – – 23.9 –
CLIPSelf Wu et al. (2024) VIT-L 23.7 – – 13.6 30.1 – – – – – – – –
FrozenSeg Chen et al. (2024b) CN-L 25.9 – – 16.4 34.4 – – – – – 28.4 45.8 56.8
FCCLIP Yu et al. (2023a) CN-L 26.8 71.5 32.3 16.8 34.1 27.0 78.0 32.9 – – 26.8 44.0 56.2
SAM-CP CN-L 27.2 77.7 32.9 17.0 31.8 28.6 78.4 34.5 21.9 34.3 29.3 41.0 47.9

Table 1: Accuracy (%) of Open-vocabulary panoptic segmentation (in PQ, SQ and RQ), instance
segmentation (in AP) and semantic segmentation (in mIoU). CN-L means ConvNext-L.

Method Backbone Seg. Style COCO ADE20K
Epoch PQ APdet AP mIoU Epoch PQ APdet AP mIoU

DETR Carion et al. (2020) R50 reg.+seg. 50+25e – – 31.1 – – – – – –
MaskFormer Cheng et al. (2021) R50 seg. 300e 46.5 – 33.9 57.8 128e 34.7 – – –
Mask2Former Cheng et al. (2022) R50 seg. 50e 51.5 – 41.7 61.7 128e 39.7 – 26.4 47.7
Mask2Former Cheng et al. (2022) Swin-L seg. 100e 57.8 – 48.6 67.4 128e 48.1 – 34.2 56.1
Mask DINO Li et al. (2023b) R50 reg.+seg. 50e 53.0 48.8 44.3 60.6 – – – – –
Mask DINO Li et al. (2023b) Swin-L reg.+seg. 50e 58.3 56.2 50.6 67.3 128e – – – 56.6
X-Decoder Zou et al. (2023) Focal-T seg. 50e 52.6 – 41.3 62.4 128e 41.6 – 27.7 51.0
X-Decoder Zou et al. (2023) Focal-L seg. 50e 56.9 – 46.7 67.5 128e 49.6 – 35.8 58.1
SAM-CP R50 SAM* 36e 48.6 46.1 41.7 55.6 128e 38.5 28.7 25.1 42.4
SAM-CP Swin-L SAM* 36e 52.7 50.4 45.2 61.8 128e 44.4 34.6 30.3 49.4

Table 2: Accuracy (%) of panoptic segmentation (in PQ), instance segmentation (in AP), and semantic
segmentation (in mIoU) on the COCO-Panoptic and ADE20K datasets. The segmentation (seg.) style
‘SAM*’ means that we use fixed segmentation results of SAM without any refinement including
regression (‘reg.’) or segmentation (‘seg.’) refinement.

The overall loss function. The overall loss is defined as Lall = λcls ·Lcls+λmfl ·Lmfl+λdice ·Ldice,
where the loss coefficients are λcls = 2, λmfl = 1, and λdice = 1. We apply the denoising strategy in
DINO Zhang et al. (2023a) to improve the training performance. The details are in Appendix A.3.

4 EXPERIMENTS
4.1 INFERENCE

The inference procedure varies slightly between closed-set and open-vocabulary segmentation. In a
closed domain, the logit Scls in Equation 1 is used for classification. The normalized and quantized
affinity matrix A is used for patch merging. For semantic segmentation, we refer to the rows
corresponding to C classes and merge all patches surpassing a pre-defined threshold. For instance
segmentation, we look up the non-empty instance rows of A, each of which corresponds to an
instance. Panoptic segmentation is achieved by combining semantic and instance segmentation
results. In an open domain, we complement the logit matrix Scls (sized M × C) with a CLIP-based
logit matrix, SCLIP. The remaining part is the same as in a closed domain. To calculate SCLIP, we
follow FC-CLIP Yu et al. (2023a) to extract CLIP features using mask pooling on the predicted masks.
Then, the feature SCLIP is obtained by calculating the similarity between the CLIP feature and êc.
The final class score is computed as Sov = (σ(Scls))(1−κ) + (softmax(SCLIP))κ, where κ = 0.4 is
a coefficient balancing the closed-domain and open-vocabulary class scores.

Datasets and evaluation metrics. We train SAM-CP on the COCO-Panoptic Lin & Maire (2014)
and ADE20K Zhou et al. (2017) datasets, and evaluate the models on either closed-domain or
open-vocabulary segmentation (with cross-dataset validation and Cityscapes used as test data).
COCO-Panoptic (the 2017 version) has 118K training and 5K validation images with 80 ‘thing’ and
53 ‘stuff’ categories. We report the instance segmentation results with the standard AP metric on the
80 ‘thing’ categories. For semantic segmentation, we report the mIoU for all (80+53) categories. For
panoptic segmentation, the PQ metric is computed for all categories and the ‘thing’ and ‘stuff’ subsets
individually. ADE20K contains 20,210 images. We use the 150 most common object categories,
including 100 ‘thing’ and 50 ‘stuff’ categories. Cityscapes is a street-view dataset with 8 ‘thing’ and
11 ‘stuff’ categories. We inherit the same metric from COCO to ADE20K and Cityscapes datasets.

4.2 SETTINGS

Implementation details. The proposal masks are generated by SAM with 48 grid points along each
axis of the input image. To verify our idea better, we use SAM with VIT-H to generate better patches.
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Figure 3: A qualitative study of how SAM-CP works. Each row displays an example. The leftmost
column shows the input image with SAM patches; the middle and right parts show the semantic and
instance segmentation results, respectively. We use the t-SNE algorithm to project the learned visual
features (by SAM-CP; please refer to Figure 4 for the difference from the features of SAM) in a 2D
coordinate system. The points with the same color belong to the same semantic class or the same
instance (according to the ground truth). This figure is best viewed in color.

Figure 4: The t-SNE visualization upon the visual features of SAM and SAM-CP. Due to the limited
space, only semantic segmentation results are displayed. The points with the same color belong to
the same semantic class (according to the ground truth). This figure is best viewed in color.

For open-vocabulary segmentation, we use a frozen CLIP image encoder (for a fair comparison, we
use the same architecture (ConvNext-L) as the previous best method, FCCLIP Yu et al. (2023a))
as the backbone and equip it with FPN Lin et al. (2017a). For closed-domain segmentation, we
establish SAM-CP on ResNet50 (R50) He et al. (2016) and Swin-L Liu et al. (2021). We use the
implementation of the MMDetection Chen et al. (2019) (v3.0) library. We use 8 Tesla-V100 GPUs
(4/2 images per GPU) for open-vocabulary/closed-domain experiments. The data augmentation
strategy follows the DETR series. An AdamW optimizer Loshchilov & Hutter (2019) with a basic
learning rate of 0.0002. See Appendix B for further details.

4.3 QUANTITATIVE RESULTS

Open-vocabulary segmentation. Results are summarized in Table 1. In both COCO→ADE20K
and ADE20K→COCO, SAM-CP surpasses FCCLIP Yu et al. (2023a), the previous state-of-the-art
method, in terms of PQ, SQ, RQ for panoptic segmentation, and AP for instance segmentation.
In particular, SAM-CP not only reports competitive SQ (for high-quality segmentation), but also
achieves a better tradeoff between PQ and RQ; in COCO→Cityscapes, SAM-CP achieves a 40.6%
PQ, a 29.3% AP and a 47.5% mIoU for versatile segmentation, which brings the best Instance
Segmentation performance. We owe the excellent results to the efficient mechanism that combines
SAM and CLIP, two open-world foundation models for open-vocabulary segmentation.

Closed-domain segmentation. Results are summarized in Table 2. In COCO-Panoptic, with the
ResNet-50 backbone, SAM-CP achieves a 48.6% PQ, 41.7% AP, and 55.6% mIoU; with a stronger
backbone, Swin-L, SAM-CP reports higher segmentation accuracy, with a 52.7% PQ, 45.2% AP,
and 61.7% mIoU. In ADE20K, SAM-CP achieves a 38.5% PQ, a 25.1% AP, and a 42.4% mIoU on
ResNet-50, and a 44.4% PQ, a 30.3% AP, and a 49.4% mIoU on Swin-L. An interesting comparison
comes from MaskFormer Cheng et al. (2021) where SAM-CP reports higher PQ and AP but a lower
mIoU, which implies its advantageous performance in instance-level recognition. These numbers
demonstrate the effectiveness of our methodology, i.e., establishing composable prompts beyond
vision foundation models. We will delve into the limitation of SAM-CP in Section 4.6 and explain
why this novel mechanism falls short in closed-domain segmentation.

Summary. As a new methodology for versatile segmentation, SAM-CP shows a unified pipeline
and promising performance over three popular benchmarks. In particular, SAM-CP demonstrates
state-of-the-art performance in the open domain. We look forward to the future when stronger
foundation models are available and further boost the accuracy of SAM-CP.
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Loss Label Assignment Closed-domain (COCO) Open-domain (COCO→ADE20K)
PQ APdet AP mIoU PQ SQ RQ AP mIoU

all all 47.0 45.8 41.4 54.2 27.2 77.7 32.9 17.0 31.8
w/o Lmfl w/o mfl 0.0 3.5 0.0 0.0 0.6 22.0 0.9 0.0 3.4
w/o Ldice w/o dice 41.3 35.1 34.3 48.3 23.8 73.4 29.1 15.8 28.6
all w/o mfl 42.8 44.0 39.8 51.4 26.5 78.2 32.3 17.2 31.6
all w/o dice 45.3 44.8 40.6 53.7 26.6 76.6 32.4 16.7 31.5
all w/o box & giou 45.5 44.0 40.7 53.9 25.9 76.1 31.6 16.4 30.5

Table 3: Accuracy (%) in open and closed domains with different loss terms and matching strategies.

DCA AR MaskRoI QE BG Closed-domain (COCO) Open-domain (COCO→ADE20K)
PQ APdet AP mIoU PQ SQ RQ AP mIoU

✓ ✓ ✓ ✓ 45.4 45.6 41.1 51.8 26.6 76.9 32.5 16.6 31.7
✓ ✓ ✓ ✓ 43.5 44.0 39.9 51.1 25.8 76.8 31.3 16.3 30.5
✓ ✓ ✓ ✓ 44.1 45.3 40.6 51.1 25.6 74.4 31.1 16.5 30.3
✓ ✓ ✓ ✓ 44.8 44.5 40.5 51.6 26.5 75.7 32.1 16.5 31.4
✓ ✓ ✓ ✓ 45.2 45.4 41.3 52.6 25.5 75.7 31.2 16.1 30.3
✓ ✓ ✓ ✓ ✓ 47.0 45.8 41.4 54.2 27.2 77.7 32.9 17.0 31.8

Table 4: Accuracy (%) in open and closed domains with different modules in the SAM-CP framework.

Strategy PQ APdet AP mIoU
patch-level 47.0 45.8 41.4 54.2
patch-level, w/o PE 45.8 45.0 40.6 51.7
image-level 46.2 45.6 40.9 52.3

Table 5: Accuracy (%) on COCO (on R50,
12 epochs) with different strategies of dynamic
cross-attention (DCA), where ‘patch-level’ is the
best option, ‘PE’ denotes the patch encoder.

Learnable CLIP PQ PQth PQst AP mIoU
✓ 17.5 15.7 21.1 11.9 19.1

✓ 16.9 14.1 22.6 6.7 22.5
✓ ✓ 27.2 27.0 27.7 17.0 31.8

Table 6: Accuracy (%) on the setting of
COCO→ADE20K (on ConvNext-L, 12 epochs)
with different classifier types for open domain.
‘Learnable’ means classifier trained on COCO.

4.4 QUALITATIVE STUDIES

We show that SAM-CP learns discriminative visual features beyond SAM. We first show how SAM-
CP accomplishes the entire segmentation procedure in Figure 3. From the t-SNE visualization
maps, one can see that the features extracted from the SAM patches form clusters that correspond to
different semantic classes. Additionally, when instance segmentation is required, the specific cluster
can be further partitioned into sub-clusters that correspond to different instances. This aligns with the
high-level idea shown in Figure 1, and SAM-CP accomplishes the goal efficiently.

We further compare the visual features learned by SAM and SAM-CP in Figure 4. Not surprisingly,
the features extracted by SAM are not semantically discriminative, with samples from different
semantic classes overlaying in feature space. Such features are clearly improper for visual recognition
purposes. SAM-CP shows much better discriminativity, aligning with the display in Figure 3.

Figure 5 shows the panoptic segmentation result of SAM-CP, more details of SAM patches, the
affinity-produced predicted masks and the final merged masks are shown in Appenix D.1.

4.5 ABLATIVE STUDIES

We study the effectiveness of the design principles and individual modules via ablative studies.
In the open vocabulary, we report the results of COCO→ADE20K with a frozen CLIP encoder
(ConvNext-L) and a 1× schedule (i.e., 12 epochs). In the closed domain, experiments are performed
on the COCO dataset using a ResNet-50 backbone with a 1× schedule.

Loss and label assignment strategy. Table 3 shows how different loss functions and label assignment
strategies impact the performance. One can see that the mask focal loss is essential, without which
the model runs into failure. The dice loss also contributes, especially for instance detection and
segmentation. Regarding label assignment, the experiments show clear benefits in introducing more
metrics into the weight term to improve the results of bipartite matching.

Module-level ablation. There are five components that are helpful to produce better segmentation
results, namely, (1) the dynamic cross-attention (DCA) mechanism used for local feature extraction
in the decoder, (2) the affinity refinement (AF) strategy by adding a prediction before the sigmoid
function in each stage, and (3) the MaskRoI operator which masks out the background region for
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τ PQ APdet AP mIoU
0.9 43.2 42.8 38.2 49.9
0.8 45.0 45.4 40.7 52.6
0.7 43.3 43.3 39.9 50.3
0.5 42.0 34.3 37.2 48.9

0.8 (w/o IoPbox) 42.1 31.7 35.4 48.4
0.8 (w/o IoPmask) 39.7 42.3 32.5 44.1

0.8 (w/low quality match) 47.0 45.8 41.4 54.2

Table 7: Accuracy (%) on COCO (with R50, 12 epochs)
with different definitions of parts in the training stage.

Proposal types PQ APdet AP mIoU
SAM* 48.6 46.1 41.7 55.6

SAM* + MD 51.4 51.6 45.8 57.3

Table 8: Accuracy (%) on COCO (with
R50, 36 epochs) by adding proposals.

κ 0.0 0.3 0.4 0.5 0.8 1.0
PQ 17.5 26.9 27.2 26.2 22.9 16.9

Table 9: COCO→ADE20K accuracy
(%) with different coefficients, κ.

mIoU ↑ mIoU>0.5 ↑ MR0.25 ↓ MR0.5 ↓ MR0.75 ↓
Mask DINO 76.3 83.0 4.2% 10.1% 32.3%
SAM 71.1 79.5 8.9% 16.7% 39.3%
SAM+Merging 73.3 81.2 9.0% 15.0% 33.3%

Table 10: A comparison between the mIoU and missing rates with respect to different IoUs for COCO
(val2017) instance segmentation. Here, mIoU is the IoU between the highest-IoU proposal and the
ground truth, and mIoU>0.5 means we only calculate the mIoU for the instances that match the best
proposal with an IoU higher than 0.5. MRx denotes the proportion of instances that have no matched
proposal with an IoU higher than x.
more accurate visual feature extraction. (4) the query enhancement (QE) which add RoI feature
to query embedding. (5) the self-affinity for negative queries to keep the ’segment anyting’ ability.
Table 4 summarizes the ablation on these five components. Each of them contributes individually and
they combined to boost the baseline by at least 1.0% in all the reported metrics.

The design of DCA. Among the above modules, DCA requires further investigation. We report the
performance of three DCA options, differing from each other in whether cross-attention is computed
at the patch level or image level, and whether the patch encoder is used. As shown in Table 5, the
patch-level cross-attention with a patch encoder works the best, implying that we can extract sufficient
visual features from the SAM’s output which often contains hundreds of patches.

Classifier for open-vocabulary segmentation. Table 6 shows the impact of classifiers for open-
vocabulary segmentation. With a single closed-set (learnable) and CLIP (frozen) classifier, SAM-CP
reports a 17.5% PQ and a 16.9% PQ, respectively. After the classifiers are fused, the closed-set
and open-vocabulary scores are balanced, resulting in a much higher 27.2% PQ. Interestingly, the
closed-set and CLIP classifiers are better at instance and semantic segmentation, respectively, and the
fused classifier excels in both scenarios, with a larger gain for instance segmentation.

The matching threshold and mechanism. We study the matching threshold and mechanism
described in Section 3.2.3, which is key to affinity propagation. We ablate the threshold τ and the
choice of whether to use both the box-level and mask-level IoP in Table 7. We find that τ = 0.8 is
a proper threshold. On the other hand, removing either the box-level or mask-level IoP results in a
clear accuracy drop in visual recognition, implying the importance of improving the recall of patch
merging. In addition, we have added low-quality matching, which will give an object a high IoU
patch when it fails to match a positive patch, this will bring performance gain. Therefore, a more
accurate mechanism may improve the overall segmentation accuracy, which we leave as future work.

Adding extra proposals. We add the proposals extracted by the pre-trained Mask DINO (MD) model
into the pool of candidate patches. Details are provided in Appendix B.1. Table 8 shows improved
segmentation results, inspiring us that SAM does not generate ideal patches, especially for closed-set
segmentation, and we look forward to stronger vision foundation models in the future.

Average coefficient for open-vocabulary segmentation. In Table 9, we ablate the average coefficient
κ defined in Section 4.1 on the setting of COCO→ADE20K. The results show that 0.4 is the best
option in the geometric average between the closed-set and CLIP classification scores.

4.6 DISCUSSION

Advantages. SAM-CP inherits a clear advantage from SAM in the generalized ability across different
visual domains. SAM-CP achieves this by decomposing low-level pixel grouping (offered by SAM)
from high-level semantic recognition (offered by the composable prompts). In the meantime, the
imperfection of SAM limits the segmentation accuracy of SAM-CP, especially in the closed-set vision

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: A showcase of our results on COCO for closed domain. In each group, from left to right:
input, SAM patches, panoptic segmentation by SAM-CP (ours). This figure is best viewed in color.

Label probs: 
[[dog:0.4844; cat:0.5156]]

Label probs: 
[[dog:0.992    cat:0.007576]]

Figure 6: Direct classification for
parts and ’parts of the whole’.

Figure 7: Dynamic prompts for small
objects to overcome limitations in future.

benchmarks. We showcase this point in Table 10 where the patches generated by SAM are compared
to those generated by Mask DINO Li et al. (2023b), a state-of-the-art segmentation model. We find
that SAM suffers a higher missing rate (e.g., one cannot find a proposal with an IoU larger than 0.5
for 16.7% instances; the rate is not significantly smaller even if we refer to the ground-truth masks to
merge some proposals) than Mask DINO (where the rate is only 10.1%).

Classification mechanism. SAM-CP does not directly classify each patch but uses a query to
conduct cross-attention to all high-affinity patches and then fuses their features as the query feature
for classification. This enables the model to use richer and more complete information for semantic
classification. Figure 6 shows an example. Three patches are present, corresponding to a dog’s torso,
tail, and leg. Both ‘cat’ and ‘dog’ labels are in the semantic space, but it is difficult for each of
the three patches alone to classify itself as ‘dog’ or ‘cat’. The model, instead of assigning a high
affinity between a class label (‘dog’ or ‘cat’) and any patch, assigns a high affinity between these
three patches (note that, no matter what the class is, ‘dog’ or ‘cat’, they belong to the same instance).
After they have been merged, the visual features are often sufficient for classification (‘dog’ vs. ‘cat’).
In the example, the ‘dog’s leg’ patch gets an ambiguous classification score (dog: 0.4844, cat: 0.5156)
initially; but when it is merged with the other patches (as a ‘dog’), the score becomes distinguishable
(dog: 0.9920, cat: 0.0076).

Limitations.In other words, SAM failed to find some objects or incorrectly merged two or more
objects into one patch, and SAM-CP cannot save such loss. This contributes to the deficit in the
segmentation accuracy (e.g., AP or mIoU) compared to Mask DINO. We display some typical
examples in Appendix A.4. For one example, when the target is small, it is possible that none of the
prompts fall on the target and thus it is missing. This issue can be alleviated by dynamically adding
denser point prompts to the regions with small objects. We show a case in Figure 7, where small
targets were found with this simple mechanism. Additionally, the inference speed of SAM-CP is
bound by that of SAM; once a more efficient vision foundation model is available, our framework
can be seamlessly transplanted and achieve faster inference.

5 CONCLUSIONS

In this paper, we propose SAM-CP, a novel approach that equips SAM with semantic and instance
segmentation abilities. At the core of SAM lies two composable prompts, which determine (1)
whether a SAM patch aligns with a text label and (2) whether two SAM patches belong to the same
instance, respectively. The idea is implemented using a unified affinity framework for efficient
training and inference. We show both quantitative and qualitative results with panoptic segmentation
on COCO, ADE20K and Cityscapes for both open-vocabulary and closed-domain segmentation. Our
study offers a new methodology to make use of the vision foundation models such as SAM.
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A DETAILS OF OUR APPROACH

A.1 AFFINITY COMPUTATION

MaskRoI. To extract patch-level features, we use the MaskRoI operator to mask out the background
areas. Specifically, we first extract the RoI features using the RoIAlign operator on the minimum
outer rectangle Prt

n of the patch Pn. Then, we transfer the binary mask by rescaling Pn into the
same size (width and height) as the RoI features (i.e., the down-sampled size of Prt

n ). Finally, the RoI
features are multiplied by the region mask to obtain the MaskRoI features.

Dynamic cross-attention. Rather than performing global computation, we use dynamic cross-
attention (DCA) to guide the cross-attention operator in focusing on the local features. This is
motivated by deformable attention Zhu et al. (2021). The cross-attention operator follows the same
structure of multi-head attention Carion et al. (2020), and the matrix A serves as the dynamic attention
mask. We binarize A by setting the value of each entry to 1 if the value is smaller than the threshold
(e.g., 0.5) which means that the area is masked and ignored in computing the cross-attention. As
described in Section 3.2.2, the query vectors (as Q) and the patch features (as both K and V) are fed
into a multi-head cross-attention with the dynamic attention mask.

Affinity refinement. Affinity refinement (AF) is used to update the affinity matrix A in a coarse-
to-fine manner. We first calculate the similarity Â between the query vectors (Q) and patch features
(K), which will be described in Algorithm 1. The affinity matrix A is obtained by conducting an
element-wise sigmoid activation σ(·) on Â. For the first stage, the Â is obtained by calculating
similarity; in the subsequent stages, the Â is obtained by stacking the similarity of the previous
stages, which is called affinity refinement.

Query enhancement. The query enhancement (QE) mechanism aims to fuse the query’s features
with the RoI features of its high-affinity regions. Each query will predict the affinity values and merge
the patches according to the values as the mask prediction. The minimum bounding rectangle of the
estimated mask will be used to extract the RoI feature. In order to save GPU memory and speed
up calculations, we directly merge the minimum bounding rectangles of the patches. Then, the RoI
features and the updated query features (mentioned in Section A.1) are averaged as the new query
features for query enhancement.

A.2 SUPERVISION

Ground-truth class labels. Let c⋆m be the ground-truth class label for the m-th query. For a Type-I
prompt, the m-th query corresponds to the c⋆m-th category label. Hence, the objective of the m-th

Algorithm 1 Affinity Similarity Calculation
Input: Query vectors Q, Patch features K, Head number η, Stage number ω.
Output: Affinity similarity Â.
Note: Q ∈ RM×D , K ∈ RN×D , where M and N is the number of Q and K. D is the feature dimension, which
is a multiple of η. s ∈ R1, b0 ∈ RD and b1 ∈ RD are the learnable scaling factor and bias parameters to
initialize the score to 0.01 for the focal loss.

1: Q← fcQ(Q);
2: K← fcK(K);
3: Reshape Q to RM×η×(D/η) and transpose Q to Rη×M×(D/η);
4: Reshape K to RN×η×(D/η) and transpose K to Rη×(D/η)×N ;
5: Â← QK⊤√

D/η
∈ Rη×M×N ;

6: Â← MLP(Â) ∈ R1×M×N

7: Reshape A to RM×N ;
8: Â← 1

s
· Â+ b, where b = b1K+ b0;

9: Âω ← Â
10: if ω > 0 then
11: Â← Â+ Âω−1

12: end if
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GT1=bird-1，GT2=bird-2，GT3=water
Category Assignment:
Hungarian Matching 

GT1 GT2 GT3

Q1 Q2 Q3 Q4 Q5

water Q3

Q1

Q5

Q2、Q4

Q2、Q4 are mismatched

Figure 8: The illustration of how to get the ground-truth affinity matrix B. The left is GTs&Q, the
middle is GTs&P and the right is Q&P. Line 2 is the t-SNE visualization of category assignment.

query is set to be c⋆m if the image has the c⋆m-th category label, and ‘negative’ otherwise. For a
Type-II prompt, c⋆m comes from the label assignment of the Hungarian matching algorithm. The
matrix comes from the classification cost, mask focal loss cost, and dice cost. Hence, the objective of
the m-th query is set to be c⋆m if it is a positive (matched) query, and ‘negative’ otherwise.

Affinity matrix labels. We use Figure 8 to illustrate how to obtain the affinity matrix label, B. The
left figure represents the label assignment between the queries and ground truth; the different colors
indicate different ground-truth units, where ‘1’ means the query and the ground truth are matched
and ‘0’ means not. In the middle figure, G means whether each patch is part of the ground-truth unit,
where ‘1’ means yes and ‘0’ means no. The colors are consistent with those in the left figure. Based
on G, we compute the ground-truth affinity matrix B (sized M ×N , same as A), shown in the right
figure. For the m-th query that matches the k-th ground truth in label assignment (left column), the
k-th row of G is copied to the m-th row of B (with the same color); otherwise, Bm ≡ 0.

The bottom half of Figure 8 shows: (1) The left part is the category assignment processing. We
use the Hungarian Matching to achieve one-to-one matching between queries and GTs. The matrix
comes from the classification cost, mask focal loss cost, and dice cost. (2) The middle part is the
t-SNE visualization between GTs (GT1, GT2, ...) and patches. After the category assign procedure,
some queries are assigned to the GTs while others are not matched. (3) the right part is the t-SNE
visualization which shows the relationship between patches and queries (Q1, Q2, ...).

A.3 THE DENOISING STRATEGY

We follow DINO Zhang et al. (2023a) to enhance the stability of optimization. We increase some
queries generated by adding some noise for the ground-truth instances and supervise them using the
corresponding ground truth in the training stage. The denoising strategy can make the training more
stable because one ground truth may be matched to one query in this epoch but be matched to another
in the next epoch, which is unfavourable for optimization.

For each instance, we shake the bounding box of the object as the position embedding and provide
incorrect category features as the query vectors in a certain proportion, which is the same as DINO.
Then, the denoising queries are concatenated to the original queries for prediction. Note that the
original queries cannot see these queries in self-attention because the denoising queries will be
removed in the inference stage. Then, in loss calculation, the denoising queries do not participate in
label assignment and are directly supervised by the corresponding class and affinity matrix labels.
We refer the readers to the original DINO paper for further details.
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Figure 9: SAM-CP can group the parts to the whole for objects which do not have complete candidate
patches. For the first line, SAM segment the pair of ski boards separately. But if our requirement is
to treat a pair of skis as one instance, only SAM-CP can put them together. For the second line, in
this complex scenario, SAM segments these fragments separately but does not provide a complete
motorcycle mask. SAM-CP can stitch these fragments together as fully as possible according to the
requirements.

A.4 EXAMPLES FOR ADVANTAGES AND LIMITATIONS

Advantages. We select the objects (labelled with yellow bounding boxes) that do not match any
patches with an IoU greater than 0.5. In Figure 9, we show examples of objects that do not
have complete patches from SAM, while SAM-CP can group the parts to the whole as the object
representation. The first line shows a case where SAM fails to predict the whole pair of skis because
they are separated. SAM-CP can group them into one instance, which aligns with the definition in
COCO. In the second line, the motorcycle is divided into many messy units in SAM, but SAM-CP
can group them into a whole instance.

Limitations. We also give some examples of objects that are missed by SAM (or have a small IoU
with SAM patches). We summarize four scenarios in Figure 10: (a) objects that are very small, (b)
objects whose colors are similar to the background, (c) objects that are partly occluded, and (d) object
which has cluttered components. Situation (a) is the most serious because the grid-based sampling of
SAM is insufficient to find all small targets, and sometimes the image resolution is not high enough for
precise prediction. Situation (b) can cause SAM to segment incorrect patches due to indistinguishable
low-level patterns (e.g., texture, color, etc.). Situation (c) shows that SAM cannot segment well if the
object is occluded by other objects, and situation (d) shows that if the object consists of too many
cluttered components, SAM cannot segment them very well. This situation limits the quality of SAM
patches and, consequently, results in a gap between the accuracy of SAM-CP and the state-of-the-art
segmentation methods.

B DETAILS OF IMPLEMENTATION.

B.1 SETTINGS FOR COCO.

Data preparation. We use the same data augmentation strategy in DETR-based detector Carion
et al. (2020); Zhu et al. (2021); Zhang et al. (2023a). We randomly flip the image, resize the image
ranging from 1333× 480 to 1333× 800, randomly crop the image, and randomly resize the image
again. In the inference stage, we resize the image to 1333 × 800 without any other augmentation.
For SAM proposal generation, we use the everything mode in SAM with 48 points per side, a 0.8
IoU threshold, a 0.9 stability score threshold, and a 0.7 NMS threshold.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Objects whose scales are small

(b) Objects whose colors are similar to the background

(c) Object which is occluded (d) Object which has cluttered components

Figure 10: The examples for the limitation of SAM patches. We have summarized the above four
situations, and SAM itself has not segmented the target. Our method’s premise assumption is to trust
SAM’s segmentation quality, so the above issues with SAM will limit our final performance. These
limitations are also worth further investigation.

Settings for the model. We use loss weights of 2.0, 1.0, and 1.0 for Lcls, Lmfl, and Ldice, and metric
weights of 2.0, 1.0, 1.0, 1.0, and 1.0 for the cls, mfl, dice, bbox, and giou terms in the Hungarian
matching algorithm. The batch size is 32, where we use 8 Tesla-V100 GPUs (4 images per GPU)
for the R50 experiments and 32 GPUs (1 image per GPU) for the Swin-L experiments. The learning
rate is set to be 10−5 at the beginning and is multiplied by 0.1 after the 8/16/40-th epoch when the
total number of epochs is 12/24/50. The threshold τ in Section 3.2.3 is set to be 0.8. The number of
patch encoders and unified affinity decoders are both set to be 6. The memory usage of each GPU is
about 20G for R50 experiments, and training time is about 22 hours for 12 epoch experiments with 8
GPUS. Similar computing resources are needed in further studies.

Add patches from Mask DINO. We add the patches from Mask DINO Li et al. (2023b) to show
that the upper bound of SAM patches limits our performance. If the quality of patches generated by
the foundation model gets better in the future, the segmentation accuracy of SAM-CP will further
increase. We saved the segmentation results of Mask DINO and deleted the label result and confidence
score. Then, the segmentation results are viewed as the extra proposal and added to the SAM patches.

B.2 SETTINGS FOR ADE20K.

Data preparation. We use the same data augmentation strategy in Mask2former Cheng et al. (2022)
in ADE20K dataset. The image is randomly flipped and resized in the range of [320, 1280]. Then, the
image is randomly cropped by 2560× 640. In the inference stage, the image is resized to 2560× 640.
The hyper-parameters for SAM patch generation are the same as those for the COCO dataset.

Setting for the model. We use loss weights of 4.0, 1.0, and 1.0 for Lcls, Lmfl, and Ldice, and metric
weights of 4.0, 1.0, 1.0, 1.0, and 1.0 for the cls, mfl, dice, bbox, and giou terms in the Hungarian
matching algorithm. The batch size is 16 with a basic learning rate of 2× 10−4. The total number
of iterations is 160K, and the learning rate will be multiplied by 0.1 after 135K iterations. Other
settings remain unchanged as in the COCO experiments. The memory usage of each GPU is about
20G for R50 experiments, and training time is about 55 hours for 160K iterations experiments (128
epochs) with 8 GPUS.
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λcls λmfl λdice PQ APdet AP mIoU
2.0 1.0 1.0 47.0 45.8 41.4 54.2
4.0 1.0 1.0 45.2 45.6 40.7 52.3
1.0 1.0 1.0 44.8 45.1 40.6 52.1
2.0 2.0 1.0 44.7 45.1 40.7 52.2
2.0 0.5 1.0 43.4 45.1 40.1 50.1
2.0 1.0 2.0 45.0 45.5 40.9 52.7
2.0 1.0 0.5 45.3 45.5 40.9 52.9

Table 11: Accuracy (%) on COCO (on R50, 12 epochs) with three loss coefficients.

num decoder PQ APdet AP mIoU
1 8.6 7.7 6.6 8.5
2 46.9 45.1 40.7 52.9
3 47.0 45.5 41.0 53.1
6 47.0 45.8 41.4 54.2
9 46.7 45.5 41.0 52.7

Table 12: Accuracy (%) on COCO (on R50, 12 epochs) with the number of decoder layers.

B.3 SETTINGS FOR OPEN-VOCABULARY SEGMENTATION.

Data preparation. The image pre-processing operations for training and inference on COCO and
ADE20K are the same as the closed-domain experiments. When inferencing on Cityscapes, the
images are resized to 2048× 1024. When generating SAM patches, because most of the images in
Cityscapes are 2048× 1024, it is not suitable to resize the image to a square, so we crop the images
on the long side and then feed them into SAM.

Setting for the model. The training hyper-parameters are the same as those in close-domain
experiments. Only the trainable backbone is replaced by a frozen CLIP image encoder. In the
inference stage, the parameter κ described in Section 4.1 is set as 0.4. In addition, we follow
FCCLIP Yu et al. (2023a) to use the prompt engineering when inference. Each label can derive
multiple entries, and we chose the highest score as the classification score for this label.

B.4 CODES AND DATASETS.

We provide our codes in code.zip file in the Supplementary Material. After the acceptance of our
paper, we will make our codes publically available.

The datasets are public datasets; their links are provided here:

• COCO: https://cocodataset.org/
• ADE20K: http://groups.csail.mit.edu/vision/datasets/ADE20K/
• Cityscapes: https://www.cityscapes-dataset.com/

C MORE EXPERIMENTS

C.1 MORE ABLATION STUDIES

Three loss coefficients. In Table 11, where the default setting is λcls = 2.0, λmfl = 1.0, and
λdice = 1.0. We tried to multiply them by a factor of 2 and 0.5 individually. The default setting
achieves the best result.

Number of decoder layers. In the Table 12, we ablate the number of decoder layers, (the default
setting is 6). The default setting achieves the best results. When we reduce the number to 1, the
performance will decrease sharply because the affinity propagation mechanism works upon a cascade
structure. When the number is set to 2 or 3, the accuracy is slightly lower, which offers options for
faster inference.
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Figure 11: The visualization of Original SAM patches, the affinity map and the final masks. This is
for Prompt type I: semantic labeling.

Figure 12: The visualization of Original SAM patches, the affinity map and the final masks. This is
for Prompt type II: instance mergeing.

D MORE VISUALIZATION RESULTS

D.1 VISUALIZATION COMPARISON OF SAM PATCHES

We visualize the SAM patches, the affinity-produced predicted masks and the final merged masks.

Figure 11 visualizes how SAM-CP applies Type-I prompts to perform semantic segmentation of
‘building’. The affinity map and high-affinity SAM patches are displayed. The patches whose with an
affinity value lower than 0.5 (to the ‘building’ class) will not be merged to the ‘building’ mask.

Figure 12 visualizes how SAM-CP applies Type-II prompts to perform instance segmentation of
‘person’. The affinity map and the high-affinity SAM patches are displayed. All these patches belong
to the ‘person’ category, and the patches of high affinity scores (>0.5) of each query will be merged
to form an instance of ‘person’.

D.2 MORE T-SNE VISUALIZATION

Figure 13 shows more t-SNE visualizations of our approach. The features of patches belong to
different semantic/instance groups to different clusters in SAM-CP. Not that, in lines 6–10, the
different instances with the same label (‘train’, ‘elephant’, ‘person’, ‘horse’, and ‘umbrella’) cluster
together to the same semantic area but separate to different instances in the t-SNE feature space.

D.3 MORE SEGMENTATION EXAMPLES

We show more segmentation results in Figure 14. Columns 1 and 2 are the original images and SAM
patches. Columns 3 and 4 are the ground truth and prediction of instance segmentation. Columns 5
and 6 are the ground truth and prediction of panoptic segmentation.
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E BROADER IMPACTS AND SAFEGUARDS

Broader Impacts. In our view, our research may not have a negative societal impact. Firstly, the
comparative methods and datasets used in our research are publicly available and do not make biased
decisions that could unfairly impact specific groups. Secondly, our method does not fall under
generative models; we aim to enhance the multi-task segmentation capabilities of models. There are
no direct pathways for our model to be applied in any negative manner. Therefore, our research does
not pose any negative societal impact.

Safeguards. We have not released any data or models with a high risk of misuse. The proposed
model is trained on benchmark datasets such as COCO, ADE20K, and Cityscapes. These datasets are
publicly available, widely used in the field of computer vision, and have undergone comprehensive
safety risk assessments. In this paper, we clearly specify the sources of the datasets and code used
and provide appropriate links in the references section. Upon completion of the review process, we
will make the code and data of this work publicly available to the community. This research does not
involve any human subjects experiments or studies, nor does it involve crowdsourced experiments or
human subjects research. All experiments were conducted using codes and GPU servers.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: More visualization of a qualitative study on how SAM-CP works.
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Figure 14: More visualizations of segmentation prediction. Columns 3 and 4 are the ground truth and
prediction of instance segmentation. Columns 5 and 6 are the ground truth and prediction of panoptic
segmentation.
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F REBUTTAL

Figure 15: The t-SNE visualization upon the visual features of SAM and SAM-CP. Due to the limited
space, only semantic segmentation results are displayed. The points with the same color belong to
the same semantic class (according to the ground truth). This figure is best viewed in color.

Figure 16: The visualization of part segmentation (instance segmentation) on Pascal Part dataset.
Left is the GTs and right is the results

Figure 17: The visualization of camouflage object segmentation on COD10K to show the out-of-
domain generalization. Left is the GTs and right is the results.
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Figure 18: Dynamic prompts for small objects to overcome limitations in the future.

Figure 19: By interactively calling two prompts and enlarging the sub-image, more details will be
segmented, and thus, the patch can be split.
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Figure 20: The visualization of part segmentation and general segmentation (instance segmentation)
on Pascal Part dataset. The result is obtained with one model and text labels of different granularities.
Left is the GTs and right is the results.
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