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Abstract

Sparse Autoencoders (SAEs) have proven valuable due to their ability to provide1

interpretable and steerable representations. Current debiasing methods based on2

SAEs manipulate these sparse activations presuming that feature representations3

are housed within decoder weights. We challenge this fundamental assumption and4

introduce an encoder-focused alternative for representation debiasing, contributing5

three key findings: (i) we highlight an unconventional SAE feature selection6

strategy, (ii) we propose a novel SAE debiasing methodology that orthogonalizes7

input embeddings against encoder weights, and (iii) we establish a performance-8

preserving mechanism during debiasing through encoder weight interpolation. Our9

Selection and Projection framework, termed S&P TopK, surpasses conventional10

SAE usage in fairness metrics by a factor of up to 3.2 and advances state-of-the-11

art test-time VLM debiasing results by a factor of up to 1.8 while maintaining12

downstream performance.13

1 Introduction14

Sparse Autoencoders (SAEs) have become pivotal in mechanistic interpretability through their ability15

to factorize neural network representations into interpretable components [10, 14, 17]. These sparse16

decompositions are commonly employed for model steering [1, 6], especially in debiasing contexts17

where researchers conventionally zero out specific activations associated with unwanted features.18

Given that this masking operation yields a weighted combination of decoder weights, the prevailing19

assumption posits that SAE’s semantic features are stored within the decoder.20

Departing from existing literature, we introduce a SAE-based, encoder-centric debiasing framework.21

Our methodology, illustrated in Figure 1 and elaborated in Section 3, follows a three-stage process:22

after computing SAE preactivations, we (i) employ a selection mechanism to identify relevant features,23

(ii) calculate a weighted sum of the encoder weights corresponding to the selected features to derive24

a unified bias axis, and (iii) compute a projection that orthogonalizes input vectors relative to this25

identified axis. We term this feature Selection and Projection methodology S&P TopK, reflecting26

its use of the top-k features that encode a desired protected attribute. The resulting projection can27

be applied to debias any input with respect to the specified attribute for any given downstream28

application. The main contributions embedded within our approach can be summarized as follows:29

1. Challenging the conventional use of SAEs. In lieu of masking protected SAE attributes, under30

the assumption that feature representations are stored in decoder weights, we propose orthogonalizing31

input embeddings with respect to encoder weights.32

2. Highlighting an atypical approach to feature selection. Our investigation showed that natural33

approaches to identifying relevant SAE features, such as relying on CLIP scores or training linear34

probes, are not always optimal, and we highlight Stylist [26] as a robust alternative.35
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Figure 1: Illustration of the proposed S&P TopK protocol. The main steps of our approach are
highlighted in green. We first employ a selection mechanism to identify relevant SAE features. We
further propose a debiasing procedure based on orthogonalizing input embeddings with respect to
encoder weights. To this end, we compute in the second step a weighted sum of the encoder weights
corresponding to the selected features to derive a unified bias axis. Finally, we compute a projection
that orthogonalizes input vectors relative to this identified axis.

3. Proposing a mechanism designed to maintain downstream performance during debiasing.36

While latent feature masking and orthogonal projections based on SAE features affect the downstream37

performance, we show that linearly interpolating encoder weights before computing the orthogonal38

projection fully preserves downstream performance.39

4. Empirical validation showcasing state-of-the-art test-time debiasing performance. We conduct40

a test-time VLM debiasing study on the CelebA and FairFace datasets, showcasing that our approach41

surpasses conventional SAE usage in terms of inducing fairness, as measured by conventional KL42

Divergence metrics, improving results by a factor of 3.2 and advances state-of-the-art results by a43

factor of 1.8 while maintaining downstream performance.44

2 Problem Setting45

We consider the problem of debiasing embeddings obtained with a large pretrained model (e.g. VLM)46

at test-time in retrieval and classification setups. Test-time VLM debiasing constitutes a research47

domain focused on eliminating a protected attribute a (e.g. , gender) from VLM (e.g. , CLIP[22])48

representations, while preserving other attribute information. Under this paradigm, the VLM operates49

as a black-box system with modifications applied exclusively to final output representations. This50

setup features a reference dataset R containing images labeled with a desired protected attribute a51

(e.g. , male and female annotations) in order to pinpoint it for removal. We designate Rai as the52

reference subset where attribute a assumes value ai.53

Debiasing performance is assesed on retrieval and classification benchmarks and quantified via54

KL divergence and MaxSkew metrics [11] that compare the distribution of a in the dataset against55

its distribution within retrieved results. Furthermore, downstream performance is measured for56

classification tasks by means of the worst group ROC-AUC (wgROC-AUC) metric [11], where57

groups are formed by means of combining attributes and labels, e.g. (female, blonde hair) for CelebA.58

3 Method59

Our approach utilizes a JumpReLU SAE [23] trained on VLM image embeddings x ∈ Rn. The60

SAE framework incorporates linear encoder and decoder layers with projection matrices E ∈61

Rn,m, D ∈ Rm,n and biases bE ∈ Rm, bD ∈ Rn. Preactivations within the SAE are expressed as62

z = (x − bD)E + bE , leading to activations ẑ = JumpReLU(z) and subsequent reconstructions63
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Table 1: We present results on CelebA evaluating various combinations of feature selection and
removal protocols, while simultaneously demonstrating the effectiveness of our proposed axis
interpolation technique. Our findings reveal that interpolation preserves downstream accuracy,
Stylist outperforms linear probing as a selection mechanism, and projection against encoder weights
substantially exceeds masked reconstruction in terms of debiasing performance.

Selection Removal Interpolation KL ↓ MaxSkew ↓ wgROC-AUC ↑
None None - 0.113880 0.293723 0.754743

CLIP Score ⊥ TopK Encoder Weights - 0.164876 0.308559 0.744376
LP ⊥ TopK Encoder Weights - 0.055613 0.250359 0.631793
Stylist ⊥ TopK Encoder Weights - 0.035051 0.235039 0.629358
Stylist Masked Reconstruction N/A 0.061290 0.263063 0.527940
Stylist ⊥ TopK Decoder Weights - 0.067286 0.299477 0.651578
Stylist ⊥ TopK Encoder Weights ✓ 0.079235 0.260566 0.752426

x̂ = ẑD+bD. For selective weight operations, we establish the notation W:,i = [W1,iW2,i . . .Wn,i]
⊤64

to represent individual weight columns, and W:,I = [Wi1Wi2 . . .Wiq ] for index collections I =65

(i1, i2, . . . iq), thereby enabling precise weight subset selection. Similarly, we use WI,: to denote row66

selection operations.67

Feature selection. We forward three approaches aimed at identifying the SAE features that corre-68

spond to the protected attribute a: (i) using a linear probe to weight SAE features (ii) using CLIP69

score to identify which features are correlated with the protected concept and (iii) using Stylist to see70

which SAE features vary the most across the different reference subsets Rai
.71

For the initial methodology, we train a Linear Probe (LP) on the reference dataset R to predict72

attribute a using SAE preactivations as input features. Subsequently, we rank SAE features according73

to the absolute magnitude of their corresponding classifier weights.74

For the second methodology, we generate text prompts following the template "a photo of a ai" for75

each instantiation ai (e.g. , male, female) of the protected attribute a. We subsequently compute CLIP76

scores between these prompts and image embeddings x ∈ R from the reference dataset. SAE features77

are then ranked according to the correlation between their preactivation values across samples in R78

and the corresponding CLIP scores for each sample.79

Finally, we highlight the applicability of Stylist [26] within the current context, a technique originally80

proposed for novelty detection. Stylist ranks features by computing the average Wasserstein distance81

between the distributions of preactivation values zt of each feature t across different reference82

subsets Rai and Raj where i ̸= j. Since attribute a represents the primary source of variation83

among reference subsets, features exhibiting the largest distributional distances should correspond to84

encodings of a.85

After applying the chosen selection method, we proceed with the top-k SAE features, and denote the86

selected subset as S.87

Synthesizing the protected attribute axis. We train a Logistic Regression classifier with weights88

w ∈ Rk to predict attribute a using preactivations from the chosen feature subset S. The variation89

axis v ∈ Rn for attribute a is subsequently constructed through a weighted aggregation of encoder90

weights, where the weights correspond to the learned classifier parameters: v = E:,Sw
⊤.91

Orthogonal projection. We orthogonalize the image embeddings x with respect to the identified92

axis v through projection using the orthogonal projection matrix V = In − v(v⊤v)−1v⊤ [5], where93

In denotes the n-dimensional identity matrix.94

4 Experimental setup95

Datasets. We use CelebA [20], which contains over 200,000 images annotated with facial attributes,96

to analyze gender bias in hair color classification. We evaluate both accuracy and fairness. We use97

FairFace [16], with over 100,000 demographically balanced images, for fairness evaluation of the98

stereotype-based retrieval tasks (e.g. violent person, burglar), that reflect gender bias.99
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Table 2: CelebA evaluation encompassing multiple state-of-the-art methods, where asterisk-marked
(*) results are sourced from [11]. Findings reveal that our approach significantly surpasses the
standard SAE debiasing procedure utilizing linear probe-based selection and masked reconstruction
removal. Notably, our method helps establish new state-of-the-art results for KL Divergence and
MaxSkew when combined with BendVLM.

Debiases Debiases Downstream
Method Input Prompt Knowledge KL ↓ MaxSkew ↓
Vanilla - - - .1138± .0059 .2937± .0077
Regular SAE (LP & MR) ✓ - - .2604± .1540 .5735± .1790
BendVLM P0 [11] - ✓ - .1485± .0052 .2915± .0178
S&P TopK ✓ - - .0792± .0067 .2605± .0148
OrthoProj* [5] - ✓ - .0710± .0030 .2520± .0060
OrthoCali* [5] - ✓ ✓ .0590± .0010 .2600± .0040
BendVLM [11] - ✓ ✓ .0186± .0062 .1803± .0316
S&P TopK + BendVLM ✓ ✓ ✓ .0101 ± .0044 .1153 ± .0266

Models. We employ CLIP ViT-B/16 as the target VLM for debiasing. We train the JumpReLU100

SAE [23] with 16,384 features, following the methodology outlined in [2] on approximately 37M101

images from CC12M [4], ImageNet-21k [24], ImageNet-1k [7], ImageNet-A [13], ImageNet-R [12],102

ImageNet-Sketch [28] and a small subset of LAION-2B-en [25].103

5 Results104

We provide extended details about the experimental setup in Appx. E and additional results in Appx.105

F. We summarize the main takeaways from our experiments as follows:106

Maintaining downstream performance. As shown in Table 1 and Table 4 from Appx. F, Regular107

SAE usage via Masked Reconstruction leads to a noticeable drop in wgROC-AUC. In contrast, our108

projection-based debiasing consistently preserves more performance than masked reconstruction.109

Finally, and most importantly, we highlight that our proposed interpolation strategy fully preserves110

downstream task accuracy across all combinations of selection and removal methods.111

Unconventional feature selection. As shown in Tables 1, 5 and 4 the selection based on CLIP score112

does not manage to pinpoint relevant features. Furthermore, the selection based on linear probing113

is not always optimal: on CelebA, when projecting with respect to encoder weights, the selection114

provided by Stylist yields KL Divergence results which are better by a factor of 1.5.115

Encoder-based debiasing.. As shown in Tables 1, 5 and 4 computing the projection matrix based116

on encoder weights rather than decoder weights yields a 1.9x increase in performance, measured117

in terms of KL Divergence, on CelebA and a 2.5x improvement on FairFace. We further highlight118

that our proposed debiasing mechanism based on orthogonalizing with respect to encoder weights,119

outperforms the standard procedure of masked reconstruction, yielding a 1.3x increase in perfromance120

on FairFace and a 1.7x increase in performance on CelebA.121

State-of-the-art test-time debiasing results. As shown in Table 2, our method significantly outper-122

forms Regular SAE debiasing with selection based on Linear Probing (LP) and removal via Masked123

Reconstruction (MR), yielding a 3.2x improvement in KL Divergence. Furthermore, when combined124

with prompt debiasing techniques, it manages to improve upon the state-of-the-art results, yielding125

a 1.8x improvement. We observe a similar outcome on the FairFace dataset, as shown in Table 6.126

Furthermore, unlike BendVLM and OrthoProj, our method does not make use of CLIP’s contrastive127

properties, making it applicable to unimodal and generative models as well.128

6 Conclusion129

We reexamined conventional SAE-based representation debiasing. By exploiting encoder weights130

through our selection and projection architecture, complemented by interpolation, our S&P TopK131

approach realizes substantial fairness enhancements without compromising task utility. Results on132

CelebA and FairFace establish new state-of-the-art performance in test-time VLM debiasing.133
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Appendix219

A Limitations220

Our methodology requires a SAE trained on image embeddings of the VLM to be debiased. This221

implies that a new SAE must be trained for each new VLM that one wants to debias, leading to222

increased costs. The current formulation of the interpolation step only targets binary attributes, but223

other protected attributes (e.g. , race or religion) do not fall in this category. Lastly, the current work224

also does not address the whac-a-mole dilemma [19], a known phenomena whereby mitigating one225

bias leads to an amplification of a different bias226

B Software227

The code that reproduces the main experiment can be accessed at the following link.228

C Related work229

C.1 Sparse Autoencoders230

While Sparse Autoencoders present themselves are a remarkable and useful approach to model231

steering and interpretability, there has been a recent wave of pessimism in the literature. A recent232

systematic evaluation [27] shows that SAEs perform worse than linear probes on an out-of-distribution233

harmful-intent detection task. Similar negative results have appeared for interpretability, unlearning,234

steering, robustness [9, 15, 21]. Kantamneni et al. [15] found that SAE probes fail to offer a consistent235

overall advantage when added to a simulated practitioner’s toolkit. Mayne et al. [21] analyzed the236

use of SAEs for interpreting steering vectors finding that (i) steering vectors fall outside the input237

distribution for which SAEs are designed, and (ii) steering vectors can have meaningful negative238

projections in SAE feature directions, which SAEs are not designed to accommodate. Farell et al.[9]239

found that "zero ablating features is ineffective" and that simultaneous interventions across multiple240

SAE features, while capable of unlearning various topics, produce comparable or greater unwanted241

side effects than existing techniques. These findings suggest that substantial improvements in either242

SAE quality or intervention methodologies are necessary. Through our work we aim to forward a243

new perspective upon SAE usage which may alleviate some of the existing pessimism.244

C.2 Test-time Debiasing245

Berg et al. [3] propose a VLM debiasing method that adds a trainable soft prefix to textual prompts246

in order to suppress the protected attribute. The soft prefix is trained such that it only suppresses the247

attribute in prompts that do not explicitly feature said attribute, maintaining the image-text alignment248

in such situations. This is achieved through a mixture of the original CLIP [22] loss and an adversarial249

loss that prevents an MLP from predicting the protected attribute of an image based on its CLIP250

scores with respect to prompts that do not feature the attribute.251

Chuang et al. [5] introduce two debiasing methods, dubbed OrthProj and OrthCali. In OrthProj252

they make the query embeddings orthogonal to text embeddings of prompts featuring only instances253

of the protected attribute. OrthCali starts from the projection matrix of OrthProj and calibrates it such254

that it also minimizes the post-projection distance between embeddings of prompt-pairs that feature255

the attribute of interest but differ only in the value of a, the protected one (e.g. , ’a photo of a male256

doctor’ and ’a photo of a female doctor’).257

BendVLM [11] is a state-of-the-art two-stage debiasing method that uses additional information from258

the downstream task. For a given retrieval prompt (e.g. , "a photo of a doctor") it estimates a local259

protected attribute axis from embeddings of prompts featuring both the protected (gender) and target260

(doctor) attributes. It then optimizes the text embedding to be equidistant from a set of reference261

image embeddings that feature the target attribute but differ in value of the protected attribute.262
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Table 3: Comparison of our method and the CAV baseline on the CelebA dataset.
Method KL ↓ MaxSkew ↓ wgROC-AUC ↑
Vanilla 0.113880 0.293723 0.754743

CAV 0.145891 0.288400 0.754424
S&P TopK 0.079235 0.260566 0.752426

D Intuition263

Our work is motivated by the conceptual similarity between Concept Activation Vectors (CAVs) [18]264

and SAE encoder weights. CAVs represent directional vectors pointing toward samples containing265

the concept of interest and away from those lacking it. We observe analogous behavior in SAE266

encoder weights, which function as attribute detectors. For feature activation to occur, the corre-267

sponding encoder weight must exhibit positive cosine similarity with samples containing the target268

attribute and negative similarity with samples lacking it (since preactivation zi can be expressed as269

cos(x,E:,i)|x||E:,i|, representing the cosine similarity scaled by vector norms).270

In our application, we seek features corresponding to concepts like ’male’ or ’female’. However, SAE271

features do not encode pure ’male’ or ’female’ attributes, but rather composite representations such272

as ’human + male’ and ’human + female’. These features consequently capture human characteristics273

(e.g. , hair, eyes) alongside gender information. Direct projection onto existing encoder features274

removes not only gender concepts but also essential human traits like hair-related features, explaining275

performance degradation on CelebA. Our interpolation approach using linear classifier weights276

effectively computes the difference between ’human + male’ and ’human + female’ features by277

assigning positive weights to one gender’s features and negative weights to the other, thereby278

eliminating the shared ’human’ component and yielding a ’male - female’ variation axis that preserves279

task-relevant information during projection.280

The interpolated SAE encoder axis outperforms regular CAVs trained on image embeddings due to281

several key factors. Since interpolation weights w are trained on SAE preactivations, the operation282

(xE:,S)w can be regrouped as x(E:,Sw). With u = E:,Sw representing a vector in Rn, we effectively283

learn a vector using the same data as the CAV baseline in Table 3. The crucial difference is that u is284

constrained to a lower-dimensional subspace defined by the span of columns in E:,S . This constraint285

prevents u from exploiting spurious correlations for classification, as it can only utilize concepts286

encoded by the selected features. Consequently, with proper feature set S selection, a CAV for the287

target attribute can be learned even from noisy data containing spurious correlations, and with fewer288

examples due to the reduced parameter count compared to regular CAVs (k ≪ n).289

E Experimental Setup Details290

We engage two lines of experimentation in the context of the current work.291

Debiasing with Sparse Autoencoders. Our first experimental line investigates optimal sparse292

autoencoder utilization for test-time debiasing. Results are presented in Tables 1, 5 and 4. We evaluate293

three SAE feature selection methods: CLIP score correlation (CLIP Score), linear probing (LP), and294

Stylist. Additionally, we assess different debiasing approaches: Masked Reconstruction, orthogonal295

projection against encoder weights ("⊥ TopK Encoder Weights"), and orthogonal projection against296

decoder weights ("⊥ TopK Decoder Weights"). We also validate our proposed weight interpolation297

technique for preserving downstream performance.298

In Tables 1 and 5, we initially assess selection methods using a fixed removal approach without weight299

interpolation. After identifying the optimal selection method, we present results across different300

removal techniques. Table 4 provides comprehensive results covering all combinations of selection,301

removal, and interpolation choices.302

Masked Reconstruction baseline. To account for the inherent reconstruction error of SAEs [8]303

we follow standard procedure and subtract from the original input the reconstruction of the selected304

features. That is, the final debiased input is x− ẑ:,SDS,:.305
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Table 4: We present results on CelebA evaluating all combinations of feature selection and removal
protocols, while simultaneously demonstrating the effectiveness of our proposed axis interpolation
technique.

Selection Removal Interpolation KL ↓ MaxSkew ↓ wgROC-AUC ↑
None None - 0.113880 0.293723 0.754743

CLIP Score Masked Reconstruction N/A 0.101393 0.237183 0.747717
CLIP Score ⊥ TopK Decoder Weights - 0.096210 0.305892 0.750047
CLIP Score ⊥ TopK Encoder Weights - 0.164876 0.308559 0.744376
CLIP Score ⊥ TopK Decoder Weights ✓ 0.130474 0.332680 0.755762
CLIP Score ⊥ TopK Encoder Weights ✓ 0.122708 0.317317 0.753262
LP Masked Reconstruction N/A 0.260455 0.573577 0.521133
LP ⊥ TopK Decoder Weights - 0.083154 0.319729 0.654926
LP ⊥ TopK Encoder Weights - 0.055613 0.250359 0.631793
LP ⊥ TopK Decoder Weights ✓ 0.103445 0.275211 0.753322
LP ⊥ TopK Encoder Weights ✓ 0.104126 0.288260 0.751229
Stylist Masked Reconstruction N/A 0.061290 0.263063 0.527940
Stylist ⊥ TopK Decoder Weights - 0.067286 0.299477 0.651578
Stylist ⊥ TopK Encoder Weights - 0.035051 0.235039 0.629358
Stylist ⊥ TopK Decoder Weights ✓ 0.098754 0.317625 0.751755
Stylist ⊥ TopK Encoder Weights ✓ 0.079235 0.260566 0.752426

Comparison with state-of-the-art results. Our second experimental line compares our method306

against existing state-of-the-art approaches in Tables 2 and 6. We evaluate against OrthoProj and307

OrthoCali [5], both the "P0" projection component and complete BendVLM method [11], and a308

standard SAE debiasing protocol using Linear Probing (LP) for selection and Mask Reconstruction309

(MR) for removal.310

We distinguish between debiasing approaches based on their intervention targets. Our method311

operates on input images, while others like BendVLM debias CLIP prompts used for retrieval. During312

calibration, both OrthoCali and BendVLM leverage downstream task prompts for more informed313

debiasing.314

We also evaluate our method combined with BendVLM, as they complement each other by debiasing315

input embeddings and retrieval prompts respectively.316

Tasks. On both datasets we debias the image embeddings with respect to the ’gender’ attribute. We317

note that the FairFace [16] dataset is only annotated for ’race’, ’gender’ and ’age’, which constitute318

protected attributes. As such there is no annotated downstream task on which the wgROC-AUC319

performance metric can be reported, as opposed to the CelebA [20] dataset where the ’hair-color’320

attribute is used.321

Implementation details. We consistently set k = 16 throughout our experimental evaluation. Linear322

probes are implemented as Logistic Regressors featuring an L2 penalty, no bias, and class balancing323

weights. For all experiments we followed the setup proposed by BendVLM [11], which implies a324

5-fold validation using 50% of the samples as a reference dataset. The KL divergence and MaxSkew325

metrics are computed using the top 500 retrieved samples. Consequently, in Tables 1 and 5 we report326

the mean and the confidence intervals for all methods.327

F Additional Results328

We present additional results on the FairFace dataset in Tables 5 and 6, along with comprehensive329

results covering all selection, removal, and interpolation combinations in Table 4. These findings330

reinforce the conclusions outlined in Section 5. Notably, linear probing yields optimal SAE feature331

selection for FairFace, demonstrating that no universal best method exists for feature identification.332

However, Stylist achieves comparable performance and exhibits greater overall robustness across333

datasets.334
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Table 5: We present results on FairFace evaluating various combinations of feature selection and
removal protocols, while simultaneously demonstrating the effectiveness of our proposed axis interpo-
lation technique. Our findings reveal that linear probing outperforms Stylist as a selection mechanism
on this dataset, and that projection against encoder weights still exceeds masked reconstruction in
terms of debiasing performance.

Selection Removal KL ↓ MaxSkew ↓
None None 0.129757 0.334185

CLIP Score ⊥ TopK Encoder Weights 0.346062 0.560762
LP ⊥ TopK Encoder Weights 0.041860 0.195931
Stylist ⊥ TopK Encoder Weights 0.047666 0.204429
LP Masked Reconstruction 0.057230 0.224937
LP ⊥ TopK Decoder Weights 0.105178 0.325300

Table 6: FairFace evaluation encompassing multiple state-of-the-art methods, where asterisk-marked
(*) results are sourced from [11]. Findings reveal that our approach surpasses the standard SAE
debiasing procedure utilizing linear probe-based selection and masked reconstruction removal. No-
tably, our method helps establish new state-of-the-art results for KL Divergence and MaxSkew when
combined with BendVLM.

Debiases Debiases Downstream
Method Input Prompt Knowledge KL ↓ MaxSkew ↓
Vanilla - - - .1297± .0025 .3341± .0056
Regular SAE ✓ - - .0572± .0147 .2249± .0296
BendVLM P0 - ✓ - .3283± .0038 .5147± .0060
S&P TopK ✓ - - .0476± .0062 .2044± .0157
OrthoProj* - ✓ - .3400± .0030 .5200± .0010
OrthoCali* - ✓ ✓ .4260± .0020 .6060± .0010
BendVLM - ✓ ✓ .0100± .0016 .1166± .0101
S&P TopK + BendVLM ✓ ✓ ✓ .0080 ± .0029 .1001 ± .0241
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