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Alexandru Ţifrea3 Elena Burceanu1,2

1Bitdefender, Romania 2University Politehnica of Bucharest, Romania 3ETH Zurich, Switzerland
{ext-abarbalau,cpaduraru,eburceanu}@bitdefender.com
dan_teodor.poncu@upb.ro, alexandru.tifrea@ethz.ch

Abstract

Sparse Autoencoders (SAEs) have proven valuable due to their ability to provide
interpretable and steerable representations. Current debiasing methods based on
SAEs manipulate these sparse activations presuming that feature representations
are housed within decoder weights. We challenge this fundamental assumption and
introduce an encoder-focused alternative for representation debiasing, contributing
three key findings: (i) we highlight an unconventional SAE feature selection
strategy, (ii) we propose a novel SAE debiasing methodology that orthogonalizes
input embeddings against encoder weights, and (iii) we establish a performance-
preserving mechanism during debiasing through encoder weight interpolation. Our
Selection and Projection framework, termed S&P TopK, surpasses conventional
SAE usage in fairness metrics by a factor of up to 3.2 and advances state-of-the-
art test-time VLM debiasing results by a factor of up to 1.8 while maintaining
downstream performance.

1 Introduction
Sparse Autoencoders (SAEs) have become pivotal in mechanistic interpretability through their ability
to factorize neural network representations into interpretable components [10, 14, 17]. These sparse
decompositions are commonly employed for model steering [1, 6], especially in debiasing contexts
where researchers conventionally zero out specific activations associated with unwanted features.
Given that this masking operation yields a weighted combination of decoder weights, the prevailing
assumption posits that SAE’s semantic features are stored within the decoder.

Questioning this assumption, we introduce a SAE-based, encoder-centric debiasing framework. Our
methodology, illustrated in Figure 1 and elaborated in Section 3, follows a three-stage process: after
computing SAE preactivations, we (i) employ a selection mechanism to identify relevant features,
(ii) calculate a weighted sum of the encoder weights corresponding to the selected features to derive
a unified bias axis, and (iii) compute a projection that orthogonalizes input vectors relative to this
identified axis. We term this feature Selection and Projection methodology S&P TopK, reflecting
its use of the top-k features that encode a desired protected attribute. The resulting projection can
be applied to debias any input with respect to the specified attribute for any given downstream
application. The main contributions embedded within our approach can be summarized as follows:

1. Challenging the conventional use of SAEs. In lieu of masking protected SAE attributes, under
the assumption that feature representations are stored in decoder weights, we propose orthogonalizing
input embeddings with respect to encoder weights.

∗Equal contribution.
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Figure 1: Illustration of the proposed S&P TopK protocol. The main steps of our approach are
highlighted in green. We first employ a selection mechanism to identify relevant SAE features. We
further propose a debiasing procedure based on orthogonalizing input embeddings with respect to
encoder weights. To this end, we compute in the second step a weighted sum of the encoder weights
corresponding to the selected features to derive a unified bias axis. Finally, we compute a projection
that orthogonalizes input vectors relative to this identified axis.

2. Highlighting an atypical approach to feature selection. Our investigation showed that natural
approaches to identifying relevant SAE features, such as relying on CLIP scores or training linear
probes, are not always optimal, and we highlight Stylist [26] as a robust alternative.

3. Proposing a mechanism designed to maintain downstream performance during debiasing.
While latent feature masking and orthogonal projections based on SAE features affect the downstream
performance, we show that linearly interpolating encoder weights before computing the orthogonal
projection fully preserves downstream performance.

4. Empirical validation showcasing state-of-the-art test-time debiasing performance. We conduct
a test-time VLM debiasing study on the CelebA and FairFace datasets, showcasing that our approach
surpasses conventional SAE usage in terms of inducing fairness, as measured by conventional KL
Divergence metrics, improving results by a factor of 3.2 and advances state-of-the-art results by a
factor of 1.8 while maintaining downstream performance.

2 Problem Setting
We consider the problem of debiasing embeddings obtained with a large pretrained model (e.g. VLM)
at test-time in retrieval and classification setups. Test-time VLM debiasing constitutes a research
domain focused on eliminating a protected attribute a (e.g. , gender) from VLM (e.g. , CLIP[22])
representations, while preserving other attribute information. Under this paradigm, the VLM operates
as a black-box system with modifications applied exclusively to final output representations. This
setup features a reference dataset R containing images labeled with a desired protected attribute a
(e.g. , male and female annotations) in order to pinpoint it for removal. We designate Rai

as the
reference subset where attribute a assumes value ai.

Debiasing performance is assesed on retrieval and classification benchmarks and quantified via
KL divergence and MaxSkew metrics [11] that compare the distribution of a in the dataset against
its distribution within retrieved results. Furthermore, downstream performance is measured for
classification tasks by means of the worst group ROC-AUC (wgROC-AUC) metric [11], where
groups are formed by means of combining attributes and labels, e.g. (female, blonde hair) for CelebA.

3 Method
Our approach utilizes a JumpReLU SAE [23] trained on VLM image embeddings x ∈ Rn. The
SAE framework incorporates linear encoder and decoder layers with projection matrices E ∈
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Table 1: We present results on CelebA evaluating various combinations of feature selection and
removal protocols, while simultaneously demonstrating the effectiveness of our proposed axis
interpolation technique. Our findings reveal that interpolation preserves downstream accuracy,
Stylist outperforms linear probing as a selection mechanism, and projection against encoder weights
substantially exceeds masked reconstruction in terms of debiasing performance.

Selection Removal Interpolation KL ↓ MaxSkew ↓ wgROC-AUC ↑
None None - 0.113880 0.293723 0.754743

CLIP Score ⊥ TopK Encoder Weights - 0.164876 0.308559 0.744376
LP ⊥ TopK Encoder Weights - 0.055613 0.250359 0.631793
Stylist ⊥ TopK Encoder Weights - 0.035051 0.235039 0.629358
Stylist Masked Reconstruction N/A 0.061290 0.263063 0.527940
Stylist ⊥ TopK Decoder Weights - 0.067286 0.299477 0.651578
Stylist ⊥ TopK x Weights ✓ 0.079235 0.260566 0.752426

Rn,m, D ∈ Rm,n and biases bE ∈ Rm, bD ∈ Rn. Preactivations within the SAE are expressed as
z = (x − bD)E + bE , leading to activations ẑ = JumpReLU(z) and subsequent reconstructions
x̂ = ẑD+bD. For selective weight operations, we establish the notation W:,i = [W1,iW2,i . . .Wn,i]

⊤

to represent individual weight columns, and W:,I = [Wi1Wi2 . . .Wiq ] for index collections I =
(i1, i2, . . . iq), thereby enabling precise weight subset selection. Similarly, we use WI,: to denote row
selection operations.

Feature selection. We forward three approaches aimed at identifying the SAE features that corre-
spond to the protected attribute a: (i) using a linear probe to weight SAE features (ii) using CLIP
score to identify which features are correlated with the protected concept and (iii) using Stylist to see
which SAE features vary the most across the different reference subsets Rai

.

For the initial methodology, we train a Linear Probe (LP) on the reference dataset R to predict
attribute a using SAE preactivations as input features. Subsequently, we rank SAE features according
to the absolute magnitude of their corresponding classifier weights.

For the second methodology, we generate text prompts following the template "a photo of a ai" for
each instantiation ai (e.g. , male, female) of the protected attribute a. We subsequently compute CLIP
scores between these prompts and image embeddings x ∈ R from the reference dataset. SAE features
are then ranked according to the correlation between their preactivation values across samples in R
and the corresponding CLIP scores for each sample.

Finally, we highlight the applicability of Stylist [26] within the current context, a technique originally
proposed for novelty detection. Stylist ranks features by computing the average Wasserstein distance
between the distributions of preactivation values zt of each feature t across different reference
subsets Rai and Raj where i ̸= j. Since attribute a represents the primary source of variation
among reference subsets, features exhibiting the largest distributional distances should correspond to
encodings of a.

After applying the chosen selection method, we proceed with the top-k SAE features, and denote the
selected subset as S.

Synthesizing the protected attribute axis. We train a Logistic Regression classifier with weights
w ∈ Rk to predict attribute a using preactivations from the chosen feature subset S. The variation
axis v ∈ Rn for attribute a is subsequently constructed through a weighted aggregation of encoder
weights, where the weights correspond to the learned classifier parameters: v = E:,Sw

⊤.

Orthogonal projection. We orthogonalize the image embeddings x with respect to the identified
axis v through projection using the orthogonal projection matrix V = In − v(v⊤v)−1v⊤ [5], where
In denotes the n-dimensional identity matrix.

4 Experimental setup
Datasets. We use CelebA [20], which contains over 200,000 images annotated with facial attributes,
to analyze gender bias in hair color classification. We evaluate both accuracy and fairness. We use
FairFace [16], with over 100,000 demographically balanced images, for fairness evaluation of the
stereotype-based retrieval tasks (e.g. violent person, burglar), that reflect gender bias.
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Table 2: CelebA evaluation encompassing multiple state-of-the-art methods, where asterisk-marked
(*) results are sourced from [11]. Findings reveal that our approach significantly surpasses the
standard SAE debiasing procedure utilizing linear probe-based selection and masked reconstruction
removal. Notably, our method helps establish new state-of-the-art results for KL Divergence and
MaxSkew when combined with BendVLM.

Debiases Debiases Downstream
Method Input Prompt Knowledge KL ↓ MaxSkew ↓
Vanilla - - - .1138± .0059 .2937± .0077
Regular SAE (LP & MR) ✓ - - .2604± .1540 .5735± .1790
BendVLM P0 [11] - ✓ - .1485± .0052 .2915± .0178
S&P TopK ✓ - - .0792± .0067 .2605± .0148
OrthoProj* [5] - ✓ - .0710± .0030 .2520± .0060
OrthoCali* [5] - ✓ ✓ .0590± .0010 .2600± .0040
BendVLM [11] - ✓ ✓ .0186± .0062 .1803± .0316
S&P TopK + BendVLM ✓ ✓ ✓ .0101 ± .0044 .1153 ± .0266

Models. We employ CLIP ViT-B/16 as the target VLM for debiasing. We train the JumpReLU
SAE [23] with 16,384 features, following the methodology outlined in [2] on approximately 37M
images from CC12M [4], ImageNet-21k [24], ImageNet-1k [7], ImageNet-A [13], ImageNet-R [12],
ImageNet-Sketch [28] and a small subset of LAION-2B-en [25].

5 Results
We provide extended details about the experimental setup in Appx. E and additional results in Appx.
F. We summarize the main takeaways from our experiments as follows:

Maintaining downstream performance. As shown in Table 1 and Table 4 from Appx. F, Regular
SAE usage via Masked Reconstruction leads to a noticeable drop in wgROC-AUC. In contrast, our
projection-based debiasing consistently preserves more performance than masked reconstruction.
Finally, and most importantly, we highlight that our proposed interpolation strategy fully preserves
downstream task accuracy across all combinations of selection and removal methods.

Unconventional feature selection. As shown in Tables 1, 5 and 4 the selection based on CLIP score
does not manage to pinpoint relevant features. Furthermore, the selection based on linear probing
is not always optimal: on CelebA, when projecting with respect to encoder weights, the selection
provided by Stylist yields KL Divergence results which are better by a factor of 1.5.

Encoder-based debiasing.. As shown in Tables 1, 5 and 4 computing the projection matrix based
on encoder weights rather than decoder weights yields a 1.9x increase in performance, measured
in terms of KL Divergence, on CelebA and a 2.5x improvement on FairFace. We further highlight
that our proposed debiasing mechanism based on orthogonalizing with respect to encoder weights,
outperforms the standard procedure of masked reconstruction, yielding a 1.3x increase in perfromance
on FairFace and a 1.7x increase in performance on CelebA.

State-of-the-art test-time debiasing results. As shown in Table 2, our method significantly outper-
forms Regular SAE debiasing with selection based on Linear Probing (LP) and removal via Masked
Reconstruction (MR), yielding a 3.2x improvement in KL Divergence. Furthermore, when combined
with prompt debiasing techniques, it manages to improve upon the state-of-the-art results, yielding
a 1.8x improvement. We observe a similar outcome on the FairFace dataset, as shown in Table 6.
Furthermore, unlike BendVLM and OrthoProj, our method does not make use of CLIP’s contrastive
properties, making it applicable to unimodal and generative models as well.

6 Conclusion
We reexamined conventional SAE-based representation debiasing. By exploiting encoder weights
through our selection and projection architecture, complemented by interpolation, our S&P TopK
approach realizes substantial fairness enhancements without compromising task utility. Results on
CelebA and FairFace establish new state-of-the-art performance in test-time VLM debiasing.
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Appendix

A Limitations

Our methodology requires a SAE trained on image embeddings of the VLM to be debiased. This
implies that a new SAE must be trained for each new VLM that one wants to debias, leading to
increased costs. The current formulation of the interpolation step only targets binary attributes, but
other protected attributes (e.g. , race or religion) do not fall in this category. Lastly, the current work
also does not address the whac-a-mole dilemma [19], a known phenomena whereby mitigating one
bias leads to an amplification of a different bias

B Software

The code that reproduces the main experiment can be accessed at the following link.

C Related work

C.1 Sparse Autoencoders

While Sparse Autoencoders present themselves are a remarkable and useful approach to model
steering and interpretability, there has been a recent wave of pessimism in the literature. A recent
systematic evaluation [27] shows that SAEs perform worse than linear probes on an out-of-distribution
harmful-intent detection task. Similar negative results have appeared for interpretability, unlearning,
steering, robustness [9, 15, 21]. Kantamneni et al. [15] found that SAE probes fail to offer a consistent
overall advantage when added to a simulated practitioner’s toolkit. Mayne et al. [21] analyzed the
use of SAEs for interpreting steering vectors finding that (i) steering vectors fall outside the input
distribution for which SAEs are designed, and (ii) steering vectors can have meaningful negative
projections in SAE feature directions, which SAEs are not designed to accommodate. Farell et al.[9]
found that "zero ablating features is ineffective" and that simultaneous interventions across multiple
SAE features, while capable of unlearning various topics, produce comparable or greater unwanted
side effects than existing techniques. These findings suggest that substantial improvements in either
SAE quality or intervention methodologies are necessary. Through our work we aim to forward a
new perspective upon SAE usage which may alleviate some of the existing pessimism.

C.2 Test-time Debiasing

Berg et al. [3] propose a VLM debiasing method that adds a trainable soft prefix to textual prompts
in order to suppress the protected attribute. The soft prefix is trained such that it only suppresses the
attribute in prompts that do not explicitly feature said attribute, maintaining the image-text alignment
in such situations. This is achieved through a mixture of the original CLIP [22] loss and an adversarial
loss that prevents an MLP from predicting the protected attribute of an image based on its CLIP
scores with respect to prompts that do not feature the attribute.

Chuang et al. [5] introduce two debiasing methods, dubbed OrthProj and OrthCali. In OrthProj
they make the query embeddings orthogonal to text embeddings of prompts featuring only instances
of the protected attribute. OrthCali starts from the projection matrix of OrthProj and calibrates it such
that it also minimizes the post-projection distance between embeddings of prompt-pairs that feature
the attribute of interest but differ only in the value of a, the protected one (e.g. , ’a photo of a male
doctor’ and ’a photo of a female doctor’).

BendVLM [11] is a state-of-the-art two-stage debiasing method that uses additional information from
the downstream task. For a given retrieval prompt (e.g. , "a photo of a doctor") it estimates a local
protected attribute axis from embeddings of prompts featuring both the protected (gender) and target
(doctor) attributes. It then optimizes the text embedding to be equidistant from a set of reference
image embeddings that feature the target attribute but differ in value of the protected attribute.

1

https://anonymous.4open.science/r/snp_topk-3552/README.md


Table 3: Comparison of our method and the CAV baseline on the CelebA dataset.
Method KL ↓ MaxSkew ↓ wgROC-AUC ↑
Vanilla 0.113880 0.293723 0.754743

CAV 0.145891 0.288400 0.754424
S&P TopK 0.079235 0.260566 0.752426

D Intuition

Our work is motivated by the conceptual similarity between Concept Activation Vectors (CAVs) [18]
and SAE encoder weights. CAVs represent directional vectors pointing toward samples containing
the concept of interest and away from those lacking it. We observe analogous behavior in SAE
encoder weights, which function as attribute detectors. For feature activation to occur, the corre-
sponding encoder weight must exhibit positive cosine similarity with samples containing the target
attribute and negative similarity with samples lacking it (since preactivation zi can be expressed as
cos(x,E:,i) ∥x∥2 ∥E:,i∥2, representing the cosine similarity scaled by vector norms).

In our application, we seek features corresponding to concepts like ’male’ or ’female’. However, SAE
features do not encode pure ’male’ or ’female’ attributes, but rather composite representations such
as ’human + male’ and ’human + female’. These features consequently capture human characteristics
(e.g. , hair, eyes) alongside gender information. Direct projection onto existing encoder features
removes not only gender concepts but also essential human traits like hair-related features, explaining
performance degradation on CelebA. Our interpolation approach using linear classifier weights
effectively computes the difference between ’human + male’ and ’human + female’ features by
assigning positive weights to one gender’s features and negative weights to the other, thereby
eliminating the shared ’human’ component and yielding a ’male - female’ variation axis that preserves
task-relevant information during projection.

The interpolated SAE encoder axis outperforms regular CAVs trained on image embeddings due to
several key factors. Since interpolation weights w are trained on SAE preactivations, the operation
(xE:,S)w can be regrouped as x(E:,Sw). With u = E:,Sw representing a vector in Rn, we effectively
learn a vector using the same data as the CAV baseline in Table 3. The crucial difference is that u is
constrained to a lower-dimensional subspace defined by the span of columns in E:,S . This constraint
prevents u from exploiting spurious correlations for classification, as it can only utilize concepts
encoded by the selected features. Consequently, with proper feature set S selection, a CAV for the
target attribute can be learned even from noisy data containing spurious correlations, and with fewer
examples due to the reduced parameter count compared to regular CAVs (k ≪ n).

E Experimental Setup Details

We engage two lines of experimentation in the context of the current work.

Debiasing with Sparse Autoencoders. Our first experimental line investigates optimal sparse
autoencoder utilization for test-time debiasing. Results are presented in Tables 1, 5 and 4. We evaluate
three SAE feature selection methods: CLIP score correlation (CLIP Score), linear probing (LP), and
Stylist. Additionally, we assess different debiasing approaches: Masked Reconstruction, orthogonal
projection against encoder weights ("⊥ TopK Encoder Weights"), and orthogonal projection against
decoder weights ("⊥ TopK Decoder Weights"). We also validate our proposed weight interpolation
technique for preserving downstream performance.

In Tables 1 and 5, we initially assess selection methods using a fixed removal approach without weight
interpolation. After identifying the optimal selection method, we present results across different
removal techniques. Table 4 provides comprehensive results covering all combinations of selection,
removal, and interpolation choices.

Masked Reconstruction baseline. To account for the inherent reconstruction error of SAEs [8]
we follow standard procedure and subtract from the original input the reconstruction of the selected
features. That is, the final debiased input is x− ẑ:,SDS,:.
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Table 4: We present results on CelebA evaluating all combinations of feature selection and removal
protocols, while simultaneously demonstrating the effectiveness of our proposed axis interpolation
technique.

Selection Removal Interpolation KL ↓ MaxSkew ↓ wgROC-AUC ↑
None None - 0.113880 0.293723 0.754743

CLIP Score Masked Reconstruction N/A 0.101393 0.237183 0.747717
CLIP Score ⊥ TopK Decoder Weights - 0.096210 0.305892 0.750047
CLIP Score ⊥ TopK Encoder Weights - 0.164876 0.308559 0.744376
CLIP Score ⊥ TopK Decoder Weights ✓ 0.130474 0.332680 0.755762
CLIP Score ⊥ TopK Encoder Weights ✓ 0.122708 0.317317 0.753262
LP Masked Reconstruction N/A 0.260455 0.573577 0.521133
LP ⊥ TopK Decoder Weights - 0.083154 0.319729 0.654926
LP ⊥ TopK Encoder Weights - 0.055613 0.250359 0.631793
LP ⊥ TopK Decoder Weights ✓ 0.103445 0.275211 0.753322
LP ⊥ TopK Encoder Weights ✓ 0.104126 0.288260 0.751229
Stylist Masked Reconstruction N/A 0.061290 0.263063 0.527940
Stylist ⊥ TopK Decoder Weights - 0.067286 0.299477 0.651578
Stylist ⊥ TopK Encoder Weights - 0.035051 0.235039 0.629358
Stylist ⊥ TopK Decoder Weights ✓ 0.098754 0.317625 0.751755
Stylist ⊥ TopK Encoder Weights ✓ 0.079235 0.260566 0.752426

Comparison with state-of-the-art results. Our second experimental line compares our method
against existing state-of-the-art approaches in Tables 2 and 6. We evaluate against OrthoProj and
OrthoCali [5], both the "P0" projection component and complete BendVLM method [11], and a
standard SAE debiasing protocol using Linear Probing (LP) for selection and Mask Reconstruction
(MR) for removal.

We distinguish between debiasing approaches based on their intervention targets. Our method
operates on input images, while others like BendVLM debias CLIP prompts used for retrieval. During
calibration, both OrthoCali and BendVLM leverage downstream task prompts for more informed
debiasing.

We also evaluate our method combined with BendVLM, as they complement each other by debiasing
input embeddings and retrieval prompts respectively.

Tasks. On both datasets we debias the image embeddings with respect to the ’gender’ attribute. We
note that the FairFace [16] dataset is only annotated for ’race’, ’gender’ and ’age’, which constitute
protected attributes. As such there is no annotated downstream task on which the wgROC-AUC
performance metric can be reported, as opposed to the CelebA [20] dataset where the ’hair-color’
attribute is used.

Implementation details. We consistently set k = 16 throughout our experimental evaluation. Linear
probes are implemented as Logistic Regressors featuring an L2 penalty, no bias, and class balancing
weights. For all experiments we followed the setup proposed by BendVLM [11], which implies a
5-fold validation using 50% of the samples as a reference dataset. The KL divergence and MaxSkew
metrics are computed using the top 500 retrieved samples. Consequently, in Tables 1 and 5 we report
the mean and the confidence intervals for all methods.

F Additional Results

We present additional results on the FairFace dataset in Tables 5 and 6, along with comprehensive
results covering all selection, removal, and interpolation combinations in Table 4. These findings
reinforce the conclusions outlined in Section 5. Notably, linear probing yields optimal SAE feature
selection for FairFace, demonstrating that no universal best method exists for feature identification.
However, Stylist achieves comparable performance and exhibits greater overall robustness across
datasets.
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Table 5: We present results on FairFace evaluating various combinations of feature selection and
removal protocols, while simultaneously demonstrating the effectiveness of our proposed axis interpo-
lation technique. Our findings reveal that linear probing outperforms Stylist as a selection mechanism
on this dataset, and that projection against encoder weights still exceeds masked reconstruction in
terms of debiasing performance.

Selection Removal KL ↓ MaxSkew ↓
None None 0.129757 0.334185

CLIP Score ⊥ TopK Encoder Weights 0.346062 0.560762
LP ⊥ TopK Encoder Weights 0.041860 0.195931
Stylist ⊥ TopK Encoder Weights 0.047666 0.204429
LP Masked Reconstruction 0.057230 0.224937
LP ⊥ TopK Decoder Weights 0.105178 0.325300

Table 6: FairFace evaluation encompassing multiple state-of-the-art methods, where asterisk-marked
(*) results are sourced from [11]. Findings reveal that our approach surpasses the standard SAE
debiasing procedure utilizing linear probe-based selection and masked reconstruction removal. No-
tably, our method helps establish new state-of-the-art results for KL Divergence and MaxSkew when
combined with BendVLM.

Debiases Debiases Downstream
Method Input Prompt Knowledge KL ↓ MaxSkew ↓
Vanilla - - - .1297± .0025 .3341± .0056
Regular SAE ✓ - - .0572± .0147 .2249± .0296
BendVLM P0 - ✓ - .3283± .0038 .5147± .0060
S&P TopK ✓ - - .0476± .0062 .2044± .0157
OrthoProj* - ✓ - .3400± .0030 .5200± .0010
OrthoCali* - ✓ ✓ .4260± .0020 .6060± .0010
BendVLM - ✓ ✓ .0100± .0016 .1166± .0101
S&P TopK + BendVLM ✓ ✓ ✓ .0080 ± .0029 .1001 ± .0241
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