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ABSTRACT

Following its success for vision and text, the “foundation model” (FM)
paradigm—pretraining large models on massive data, then fine-tuning on target
tasks—has rapidly expanded to domains in the sciences, engineering, healthcare,
and beyond. Has this achieved what the original FMs accomplished, i.e. the
supplanting of traditional supervised learning in their domains? To answer we
look at three modalities—genomics, satellite data, and time series—with multiple
recent FMs and compare them to a standard supervised learning workflow:
model development, hyperparameter tuning, and training, all using only data
from the target task. Across those three specialized domains, we find that it is
consistently possible to train simple supervised models—no more complicated
than a lightly modified wide ResNet or UNet—that match or even outperform the
latest foundation models. Our work demonstrates that the benefits of large-scale
pretraining have yet to be realized in many specialized areas, reinforces the need
to compare new FMs to strong, well-tuned baselines, and introduces two new,
easy-to-use, open-source, and automated workflows for doing so.

1 INTRODUCTION

Recent years have witnessed a shift towards large-scale pretraining across domains like computer
vision and natural language processing. This workflow generally consists of two stages: pretraining
on vast amounts of domain-specific data to capture general knowledge followed by fine-tuning on
target tasks (Radford & Narasimhan, 2018). This pretrain-then-finetune paradigm has been tremen-
dously successful, enabling foundation models (Bommasani et al., 2021) to consistently outcompete
traditional supervised learning methods on a wide variety of downstream tasks in the vision and
language domains (Dosovitskiy et al., 2021; Liu et al., 2021; Devlin et al., 2019).

Driven by this success, the foundation model approach has been adapted to various specialized do-
mains, which we define to be ML application areas—e.g. genomics, satellite imaging, and time
series—whose data modalities lie outside those of classical AI tasks, i.e. natural images and text.
These domains have seen the introduction of many new FMs claiming to leverage large, domain-
specific pretraining datasets to achieve breakthrough performance on downstream tasks (Dalla-Torre
et al., 2023; Nguyen et al., 2024; Zhou et al., 2023b; Avsec et al., 2021; Ji et al., 2021; Fuller et al.,
2023; Cong et al., 2022; Mendieta et al., 2023). This claim underlies our study’s motivating question:

Do these new specialized FMs outperform traditional supervised learning applied to the same tasks?

Answering this question is critical because supervised workflows are usually much less expensive to
implement and deploy, but if FMs do dominate them then FMs have the potential to fundamentally
transform these domains, as we have seen with language and vision processing in the past decade.
However, despite ongoing efforts to promote their fair and comprehensive evaluation (Liang et al.,
2022; Bommasani & Liang, 2021), many new FMs have not been adequately compared to simpler,
often more efficient baselines. Indeed, we found that many works only benchmark their proposed
models against other FMs, essentially creating a comparison echo chamber (Fuller et al., 2023;
Mendieta et al., 2023; Nguyen et al., 2024; Zhou et al., 2023b).

We answer our motivating question by considering a reasonably representative set of three special-
ized domains—chosen according to the presence of multiple FMs and a standard set of evaluation
tasks—and comparing their performance on those tasks with that of a traditional supervised learning
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Figure 1: Across three domains, tuned supervised baselines match or outperform the best specialized
FMs while using two-to-five orders of magnitude less data. We plot total pretraining and fine-tuning
data (in kilobase-pairs for genomics, images for satellite, and unique series for time series) vs. the
mean percentage improvement (in MCC, accuracy / mAP, and RMSE, respectively) over an untuned
domain-specific baseline (respectively a 1D Wide ResNet, a 2D Wide ResNet, and Auto-ARIMA).

workflow. As depicted in Figure 2, the latter is a model development, hyperparameter tuning, and
training process in which all steps use only data from the target task, in contrast to the FM workflow,
which uses vast amounts of pretraining data. By leveraging model selection tools ranging from clas-
sical information criteria to cutting-edge architecture search, we build automated pipelines that effi-
ciently develop and train strong supervised models on over fifty tasks across three distinct domains.

Our high-level result is negative: we find that, despite being pretrained on massive datasets, special-
ized FMs struggle and very often fail to outperform models trained exclusively on downstream task
data with traditional supervised learning (c.f. Figure 1). Specifically, we show that lightly adapted
convolutional neural network (CNN) architectures such as wide ResNet and UNet attain state-of-the-
art on the Nucleotide Transformer benchmark in genomics and match the latest pretrained satellite
FMs on downstream classification. Furthermore, we show that tuned linear auto-regression (AR)
outperforms all open-source time series FMs on a standard suite of eight forecasting tasks and ap-
proaches the performance of two other closed-source models that only evaluate on subsets of them.

These results demonstrate that genomics, satellite imaging, and time series have not yet had their
“BERT moment” (Devlin et al., 2019), i.e. these domains have not yet pretrained FMs that dominate
traditional supervised approaches. This is despite the fact that all them have BERT-scale FMs—
hundreds of millions of parameters or larger—and the fact that many of them are already witnessing
a shift towards not comparing with supervised approaches, as was seen in natural language process-
ing (NLP) post-BERT. More broadly, since these domains are among the most high-profile areas
with specialized FMs, our results challenge the prevailing assumption that pretraining them has lead
to superior performance. They also reinforce the need for robust and well-tuned baselines, with sur-
prising findings such as (a) simply tuning kernel sizes and dilation rates in standard CNN backbones
dominates a genomics classification benchmark and (b) rescuing the century-old AR forecaster from
obsolescence is as easy as considering lookback parameters larger than five and training on a GPU.
To facilitate ongoing research in these domains and others, we will make code associated with both
our CNN-tuning pipeline (DASHA) and our AR-on-GPU workflow (Auto-AR) publicly available.

2 RELATED WORK

Foundation models have been trained in numerous specialized domains beyond vision and text,
including genomics (Ji et al., 2021), satellite imaging (Cong et al., 2022), time series (Goswami
et al., 2024), weather (Bodnar et al., 2024), differential equation solving (Sun et al., 2024), web
traffic (Zhao et al., 2023), and beyond. To get a representative sense of their success, we focus on
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Figure 2: Our goal is to compare the pretrain-then-fine-tune paradigm (top) with a standard super-
vised workflow (bottom) on the tasks on which specialized FMs are evaluated. While for time series
we go through a traditional process of developing and tuning a supervised model, this manual ap-
proach does not scale to many domains; as a result, in Section 3.1 we develop a way to simulate it us-
ing architecture search. Note that FM fine-tuning hyperparameters are not always tuned in practice,
but we assume their creators make a best-effort attempt to present their own method in the best light.

domains that combine the following properties: (a) multiple BERT-scale FMs, (b) a standard suite
of evaluation tasks, and (c) significant applied interest. This restriction naturally suggest looking
at three domains that all have at least five FMs evaluated on at least nine tasks: genomics (which
has some of the largest-available non-text FMs (Dalla-Torre et al., 2023)), satellite imaging (which
has a large ongoing benchmarking effort (Lacoste et al., 2024)), and time series (which has already
seen significant industry interest (Cohen et al., 2024)). The remainder of this section examines how
different learning workflows approach problems in these domains.

2.1 SPECIALIZED FOUNDATION MODELS

Our three target domains have more than twenty FMs between them, many developed via the “lift-
and-shift” approach—borrowing terminology from Rolf et al. (2024)—in which techniques from
core AI areas such as vision and language processing are applied with modest tailoring to special-
ized domains. In particular, many methods are built around out-of-domain models such as BERT,
Swin, and Hyena (Ji et al., 2021; Mendieta et al., 2023; Nguyen et al., 2024), with adaptations such as
specialized tokenizations, embeddings, and model modifications for handling domain-specific con-
siderations such long-range dependencies (Dalla-Torre et al., 2023; Zhou et al., 2023b; Das et al.,
2023; Cohen et al., 2024) or multispectral data (Cong et al., 2022).

While the “lift-and-shift” approach can often be useful or at least a good starting point, its
widespread use underlines the need for strong in-domain baselines to make sure that the combina-
tion of out-of-domain tooling and massive pretraining data is actually helpful. Such comparisons are
not always conducted, e.g. the satellite FM SatMAE (Cong et al., 2022) is compared to ImageNet-
initialized and randomly initialized ResNet-50 (He et al., 2015), while most of the time series FMs
we consider only do a full comparison to one linear baseline, DLinear (Zeng et al., 2023). While
this can sometimes be justified—e.g. in the case of NLP post-BERT—our results suggest that for
now, specialized FMs should still compare to in-domain supervised model development.

2.2 SPECIALIZED BASELINES

Both of the automated supervised learning pipelines we develop are heavily influenced by successful
in-domain model development. In particular, the NAS-based pipeline we use to achieve our results in
genomics and satellite imaging is inspired by the success of the human-driven specification of kernel
sizes and dilation rates in successful architectures like TCN (Lea et al., 2016) and ConvNeXt (Liu
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et al., 2022). At the same time, for time series our approach is based upon a well-tuned GPU
implementation of perhaps the most basic forecasting model, AR.

2.3 AUTOML FOR SPECIALIZED DOMAINS

While often evaluated on domains such as vision, automated techniques have long been used in
specialized domains as well. An important example is Auto-ARIMA (Hyndman & Khandakar,
2008) for time series, although it has been found to underperform on the specific suite of tasks we
consider (Challu et al., 2022). However, to avoid requiring significant expertise in any one domain,
we also make use of AutoML methods developed specifically for diverse tasks (Roberts et al.,
2021b; Shen et al., 2023), in particular the NAS method DASH (Shen et al., 2022) that can discover
good kernel sizes and dilation rates for a CNN backbone faster than it can be trained from scratch.

3 METHODOLOGY

Recall that our goal is to conduct a robust comparison between traditional supervised learning and
specialized FMs; the natural way to do this is to take existing benchmarks used to evaluate FMs in
our three target domains and run a typical supervised workflow on the same tasks. As depicted in
Figure 2, this pipeline involves three steps: (1) model development, (2) hyperparameter tuning, and
(3) training. The first stage involves using both reasoning and trial-and-error to find a good architec-
ture to tune and train on the data; for example, Lea et al. (2016) developed the temporal convolutional
network (TCN) architecture with a multi-layer dilation rate pattern specifically suited to sequential
data, while Liu et al. (2022) designed the breakthrough ConvNeXt architecture by methodically
exploring ways to make CNNs more like Transformers without introducing attention. The second
stage (hyperparameter tuning) can also be done via human-driven iteration, but there exist effective
automated procedures for it as well (Li et al., 2020). Lastly, the third step of the pipeline involves
simply training the selected model with the selected configuration on the data of the target task.

While it standard to automate the last two steps of the procedure, model development is typically
done by hand and so is difficult to do for fifty tasks across three domains. As a result, we settle for
approximating the traditional supervised learning workflow by simulating the model development
component using neural architecture search. To ensure fair comparison and reduce computational
costs, we restrict ourselves to low-fidelity NAS methods that return an architecture in less time than
it takes to train it. The results we obtain using NAS can therefore be viewed as lower bounds on
the performance of supervised learning, as the model development might be significantly improved
using less-heuristic or human-driven architecture design.

In the remainder of this section we detail how we handle the different steps of the supervised learning
pipeline. Note that our NAS-dependent supervised workflow (DASHA)—which we cover in the
first part of this section—yields our main results for genomics and satellite imaging but not for time
series; in that domain we find its performance to be less competitive. There we instead focus on an
even simpler approach based on linear auto-regression, whose model development and tuning we
describe in the second subsection.

3.1 DASHA: SIMULATING THE SUPERVISED WORKFLOW USING NAS

To simulate model development we need a search space over architectures that is (a) efficient,
(b) flexible, and (c) applicable to the types of high-dimensional unstructured data that arise in
domains targeted by specialized FMs; these requirements make CNN-based search spaces a nat-
ural choice. In particular, inspired by the success of hand-tuned kernel sizes and dilation rates
in traditional model development (Lea et al., 2016; Bai et al., 2018; Liu et al., 2022), we apply
DASH (Shen et al., 2022), a NAS method that starts with an existing CNN backbone—e.g. a wide
ResNet (Zagoruyko & Komodakis, 2017)—and uses the weight-sharing heuristic (Liu et al., 2018)
to determine the right kernel size and dilation rate to use at each convolutional layer. DASH has been
successfully used in AutoML competitions (Roberts et al., 2021a) and to advance the state-of-the-art
on NAS benchmarks (Tu et al., 2022), making it likely to be useful beyond the domains we consider.

As described in Algorithm 1, we augment the existing DASH approach in two ways: (1) trying
more than one CNN backbone (e.g. both wide ResNet and U-Net (Ronneberger et al., 2015)) and
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Algorithm 2: Pseudocode for the DASHA workflow. Starting with a set of backbone CNNs,
we use DASH (Shen et al., 2022) to set the right kernel size and dilation rate for each of its
convolutional layers and then use ASHA (Li et al., 2020) to configure a training routine for the
resulting architecture. Lastly, we pick the best backbone using validation data and train it.
Input: target task dataset D, candidate CNN backbone architectures A
for CNN backbone a ∈ A do

// set a kernel size and dilation rate for each layer of a
archa ← DASH(D, a)
// tune hyperparameters for the discovered architecture archa

configa,val scorea ← ASHA(D,archa)

// train the architecture with the highest validation score
a← argmaxa∈A val scorea

Output: train(D,archa,configa)

(2) using the well-known hyperparameter tuner ASHA (Li et al., 2020) to configure architecture-
specific training settings. This combination gives our workflow its name. Following the NAS and
hyperparameter tuning stages, we train the discovered architecture with the selected configuration
on the target data. Further details, including the resources given to the three steps of the pipeline and
the exact search spaces used by DASH and ASHA, are provided in Appendix A.1. Note that, while
our focus is on data-efficient baselines, we do ensure that the entire workflow is never substantially
more computationally expensive than fine-tuning an FM.

3.2 AUTO-AR: MAKING A BASELINE STRONGER BY MAKING IT SIMPLER

While DASHA can be applied to forecasting tasks, it is not competitive with state-of-the-art time
series FMs. At the same time, the field of time series forecasting has long employed automated
workflows, notably the Auto-ARIMA approach of Hyndman & Khandakar (2008) that uses statis-
tical tests and information criteria to tune ARIMA’s lookback and differencing parameters. Auto-
ARIMA was evaluated on the time series tasks we consider by Challu et al. (2022), who found that
it performed poorly compared to deep learning approaches. However, their implementation does not
make use of multi-channel data and tunes up to a lookback window of at most five, which is much
less data than used by time series FMs. While tuning ARIMA with larger lookback parameters is
computationally costly, we find the following simplified tuning pipeline to be effective:

1. use the KPSS test (Kwiatkowski et al., 1992) to decide whether to take first differences

2. use the Bayesian Information Criterion to select the maximum lookback parameter of the
auto-regressive (AR) component of ARIMA, ignoring the moving average (MA) part

3. maximize the multi-channel likelihood of AR with the chosen differencing and lookback

By dropping the MA component of the model and running the procedure on GPU, we are able
to tune the lookback windows up the maximum allowable length (usually 512); we find that longer
lookbacks are critical for performance. Note that this is just a tuned version of the classic AR model.

4 EMPIRICAL RESULTS

We now present the results of applying the automated pipelines described in the previous section
to our three target domains. For each domain, we provide a brief justification of the specific FMs
and evaluation tasks that we consider, followed by details on how we apply our workflows; further
information can be found in Appendix A and Appendix B. As there are too many separate results to
present outside the appendix, in this section we mainly present aggregate statistics that summarize
our findings for each domain, with detailed results relegated to Appendix B. The domains have
different performance metrics, but they can all be aggregated via the following quantities: average
score, average rank, and mean / median percentage improvement over a baseline. For each
domain, we define a domain-specific baseline and measure the improvement of FMs and our
approach relative to it. This standardizes comparisons across tasks of varying scales.
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Model Model Pretraining Avg. Avg. Mean Median
Size Base-Pairs MCC ↑ Rank ↓ %Imp.↑ %Imp.↑

Foundation Models
NT-1000G (500M) 500M 20.5T 0.625 8.42 2.15 -6.41
NT-1000G (2.5B) 2.5B 20.5T 0.656 5.47 7.15 -0.83
DNABERT-2 117M 32.5B 0.680 5.39 10.40 -0.81
HyenaDNA-1K 436K 3.2B 0.708 5.47 15.14 -2.63
HyenaDNA-32K 1.6M 3.2B 0.630 8.17 2.55 -11.12
Enformer – 4B 0.568 9.75 -8.58 -19.26
NT-Multispecies (2.5B) 2.5B 174B 0.697 3.19 13.66 1.59
NT-Multispecies (500M) 500M 174B 0.700 2.97 14.09 2.28

Supervised Methods
Wide ResNet 2.0M 0 0.657 5.69 0.00 0.00
UNet 4.5M 0 0.614 7.39 -6.94 -1.45
DASHA (our workflow) 10.5M 0 0.752 4.08 22.58 2.66

Table 1: Aggregate performance on genomics tasks, showing that our supervised work-
flow (DASHA) attains state-of-the-art on the NT benchmark, outperforming all FMs ac-
cording to most measures while using no pretraining data and oftentimes many fewer
parameters. For Mean/Median %Imp. we report percentage improvement over a vanilla
1D Wide ResNet baseline, and for DASHA the model size refers to the largest configura-
tion across tasks. “-” indicates unknown quantities.

4.1 GENOMICS

We begin our investigation in the genomics domain, which has witnessed the development of nu-
merous FMs, including the early Enformer Avsec et al. (2021), the DNABERT series (Ji et al., 2021;
Zhou et al., 2023b), the HyenaDNA family (Nguyen et al., 2024), and the NT family (Dalla-Torre
et al., 2023); the latter includes models with up to 2.5B parameters. To evaluate them, we consider
the Nucleotide Transformer (NT) benchmark of Dalla-Torre et al. (2023), which contains eighteen
tasks in three main categories: regulatory elements, RNA production, and histone modification.
We use this benchmark because of its diversity and because it has been evaluated on by all of the
aforementioned FMs, allowing us to include eight of them in the comparison. Our numbers for
these models are taken from Dalla-Torre et al. (2023, Supplementary Table 6); we use Matthew’s
Correlation Coefficient (MCC) as the main metric for evaluation.

4.1.1 BASELINES

CNNs have long been used for genomics tasks (Avsec et al., 2020; Zhou & Troyanskaya, 2015)
and so constitute natural supervised baselines; in particular we include 1D variants of Wide
ResNet (WRN) and UNet, which we find perform better than some domain-specific CNNs. We use
these same two backbones as the candidate CNNs tuned and selected from by our DASHA workflow.

4.1.2 RESULTS

Our genomics results are displayed in Table 1, which shows that our supervised workflow (DASHA)
outperforms all FMs across all aggregate metrics except average rank, where it lags behind the two
NT-Multispecies models. Notably, according to the last column those are also the only two FMs
that even improve over Wide ResNet on the typical task in the NT benchmark. As discussed in Ap-
pendix B, our strong performance is driven in large part by outstanding performance on the histone
modification tasks (c.f. Table 9). The more detailed results also highlight the importance of consider-
ing diverse baselines, with Wide ResNet usually being the selected architecture but UNet performing
significantly better for promoter and splice site classification tasks. Overall, DASHA arguably sets
a new state-of-the-art on the NT benchmark and certainly demonstrates that supervised methods
remain quite competitive in genomics, despite the availability of massive pretraining datasets.
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Model Model Pretraining Average Average Mean Median
Size Images Score ↑ Rank ↓ %Imp.↑ %Imp.↑

Foundation Models
CROMA-base 90.6M 2M 77.39 4.33 5.85 4.22
CROMA-large 312M 2M 78.03 3.33 6.90 6.09
SatMAE-base 85.6M 700K 76.99 6.22 5.27 3.59
SatMAE-large 303M 700K 77.75 4.5 6.52 4.62
GFM 86.8M 1.3M 77.18 5.56 5.77 4.08
SwinT-base 86.8M 14M 76.69 5.28 4.86 1.43

Supervised Methods
ResNet50 23.5M 0 73.76 8.34 0.30 00.07
Wide ResNet 17.2M 0 73.97 8.22 0.00 0.00
UNet 17.3M 0 75.73 5.89 3.01 1.07
DASHA (our workflow) 32.4M 0 77.85 3.33 6.67 5.16

Table 2: Aggregate performance on satellite imaging tasks, demonstrating that a super-
vised learning workflow (DASHA) can match the performance of state-of-the-art special-
ized FMs, all while using no pretraining data and having two-to-ten times fewer param-
eters. For Mean/Median %Imp. we report percentage improvement over a vanilla Wide
ResNet, and for DASHA the model size refers to the largest configuration across tasks.

4.2 SATELLITE IMAGING

While they do not get as large as those in genomics, numerous BERT-scale FMs have also been in-
troduced for satellite imaging, including SeCo (Manas et al., 2021), the SatMAE family (Cong et al.,
2022), the CROMA family (Fuller et al., 2023), GFM (Mendieta et al., 2023), Scale-MAE (Reed
et al., 2023), Satlas (Bastani et al., 2023), Prithvi (Jakubik et al., 2023), and SkySense (Guo et al.,
2024). Because our evaluation includes GeoBench (Lacoste et al., 2024), a recently introduced satel-
lite benchmark that has not been considered by many of these FMs, we must obtain all the results
using our own fine-tuning; therefore we only consider a restricted subset of top-performing, open-
source, and compatibly-formatted models. In all cases we use the fine-tuning workflow suggested
by the authors of each FM plus some automated hyperparameter tuning. We take our tasks mainly
from GeoBench’s five classification tasks and then add four additional tasks—BigEarthNet (Sumbul
et al., 2019), EuroSAT (Helber et al., 2019), Canadian Cropland (Jacques et al., 2023), and fMoW-
Sentinel (Cong et al., 2022)—that are commonly used to evaluate other FMs.1 As we focus on
classification—sometimes with multiple labels—we report top-1 accuracy or mAP as appropriate.

4.2.1 BASELINES

Since satellite imaging closely resembles RGB imaging, it is common to “lift-and-shift” vision
models to this domain (Rolf et al., 2024). As a result we use several CNN backbones as additional
baselines, and use wide ResNet as the candidate architecture for our DASHA workflow. Note specif-
ically that because we treat ResNet50 architectures as one of our supervised baselines, it is trained
with random initialization. Lastly, we also consider the performance of fine-tuning the vision FM
SwinT-base (Liu et al., 2021), which is pretrained on ImageNet.

4.2.2 RESULTS

As shown by Table 2, our supervised workflow attains the best or second-best performance across
all aggregate metrics and is only ever slightly outperformed by CROMA-large. Notably, unlike
in genomics, the FMs here consistently outperform CNN backbones, likely because the associated
papers compare to them as baselines. However, the frequently superior performance of DASHA
here suggests that domain-aware model development would yield effective supervised models in
this field. Another contrast with genomics is that the larger versions of different FMs consistently
attain superior performance here, suggesting they are making at least somewhat effective use of the
pretraining data. However, the fact that this improvement can also be attained by DASHA, which

1In Appendix B we report results when excluding tasks where missing channels may affect performance.
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Model
Full setting (8 datasets / 32 tasks) Partial setting (6 datasets / 24 tasks)

Model Pretraining Avg. Avg. Mean Median Avg. Avg. Mean Median
Size Series RMSE ↓ Rank ↓ %Imp.↑ %Imp.↑ RMSE ↓ Rank ↓ %Imp.↑ %Imp.↑

Foundation Models
GPT4TS (OFA) 60M 8M 0.659 3.22 33.09 31.38 0.540 6.23 27.30 16.60
LLM4TS 60M 8M – – – – 0.526 2.46 29.25 20.96
MOMENT 385M 13M 0.689 2.81 32.35 26.99 0.534 4.56 28.07 18.66
TEMPO (Zero Shot) - - 0.733 6.06 27.63 24.51 0.579 9.42 22.69 15.72
TimesFM (Zero Shot) 200M 5M 0.720 4.81 28.94 27.67 0.569 7.98 23.61 17.33
Moirai (Zero Shot) 14M 6M – – – – 0.566 7.46 24.53 18.52
Toto (Zero Shot) 103M - – – – – 0.505 4.38 32.40 31.35
Supervised Methods
Auto-ARIMA 10 0 1.104 7.94 0.00 0.00 0.806 11.88 0.00 0.00
AR 513 0 0.680 3.66 32.23 30.06 0.540 5.79 27.24 17.28
DLinear 700k 0 0.680 4.42 31.27 30.50 0.551 7.29 25.59 16.94
Auto-AR 513 0 0.660 3.08 33.45 32.20 0.534 4.94 28.12 19.63
DASHA 480K 0 – – – – 0.549 5.62 25.94 16.78

Table 3: Aggregate performance on time series tasks across both six tasks (ETT, Weather, & ECL)
and eight tasks (those plus ILI & Traffic). The latter evaluation demonstrates that simply tuning a
classical AR model is competitive with state-of-the-art FMs while using no pretraining data and tens
of thousands of times fewer parameters. For Mean/Median %Imp. we report percentage improve-
ment over Auto-ARIMA, and for both Auto-AR and DASHA the model size refers to the largest
configuration across tasks. “-” indicates unknown quantities.

uses no pretraining data and produces a model that is ten times smaller, shows that there remains
significant room for improvement.

4.3 TIME SERIES

The last domain we investigate is time series, where multiple FMs have been introduced, includ-
ing those that use the standard pretrain-then-fine-tune workflow (GPT4TS (OFA) (Zhou et al.,
2023a), LLM4TS (Chang et al., 2023), MOMENT (Goswami et al., 2024), and Time-LLM (Jin
et al., 2024))2 and others that evaluate in a zero-shot (ZS) regime (TEMPO (Cao et al., 2024),
TimesFM (Das et al., 2024), Moirai (Woo et al., 2024), and Toto (Cohen et al., 2024)). As we
are comparing to supervised baselines, our evaluation of ZS models will of course be in a less
challenging setting than the one they report numbers for. We study the performance of these models
and our baselines on the problem of long-horizon forecasting, for which there exists a standard set
of datasets summarized in Goswami et al. (2024, Table 11).3 Our main results are on eight of these
datasets, but we also report aggregate performance on a subset of six in order to include FMs that
do not report numbers on one or more of the other two. Note that each dataset consists of four tasks
corresponding to four different time horizons, so in total this yields thirty-two tasks. Lastly, we
compute aggregate metrics using RMSE, instead of MSE, so that performance scales linearly with
prediction error; this choice has no effect on average rank.

4.3.1 BASELINES

To baseline these FMs we use mainly linear forecasting methods, including the classical (untuned)
linear auto-regression (AR), the automated workhorse method Auto-ARIMA (Hyndman & Khan-
dakar, 2008), the more recent DLinear (Zeng et al., 2023), and our own workflow Auto-AR described
in Section 3.2. Lastly, we also evaluate our other automated workflow, DASHA, on six of the tasks.

4.3.2 RESULTS

Table 3 shows that on the full eight-dataset evaluation our Auto-AR workflow always attains the
best or second best performance across all aggregate metrics considered, and in particular attains
the best average improvement over Auto-ARIMA. Notably, the two closest methods in this subset
are not zero-shot, which is perhaps not surprising given the extra data. However, it does reinforce

2We do not compare to Time-LLM because they report MAE whereas most models focus on MSE.
3We do not consider one of them, Exchange, because most FMs do not report performance on it.
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Figure 3: Scatterplot depicting performance
(averaged across time horizons) of the best time
series methods on the six-dataset subset from
Table 3. This visually demonstrates that the
recent Toto method wins according to aggregate
metrics mainly due to its dominant performance
on ETTh2; elsewhere it is middle-of-the-pack.
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Figure 4: PCA visualization of the architectures
discovered for three different tasks when the
DASHA workflow is run multiples times. The
spatial clustering across tasks demonstrates
the within-task consistency of the workflow’s
architecture search component and the utility of
using diverse models as baselines.

the intuition that settings with high data availability should prefer supervised methods, including
simple ones like AR. Notably, even our untuned implementation of AR that uses no differencing
and a large lookback window is quite effective, doing better than ZS FMs across all aggregate
metrics and even MOMENT on some of them.

In the more limited six-dataset evaluation we consider three additional FMs, two of which—
LLM4TS and Toto—are closed-source and thus challenging to evaluate on the other tasks. While
our supervised Auto-AR workflow is reasonably close to LLM4TS across most metrics, Toto domi-
nates all metrics except average rank; impressively, it does this despite being zero-shot. However, a
look at Figure 3 reveals that Toto is not truly dominant on these six tasks, with its aggregate metrics
being strongly influenced by its dramatically better performance on ETTh2, a dataset where all other
FMs struggle to do more than 10% better than Auto-ARIMA. Thus, while its ZS performance is quite
good, it is unclear whether its domination of aggregate metrics would continue with additional tasks.

5 DISCUSSION

At a high level, our results show that the foundation models in these three domains have not yet
surpassed supervised learning, and thus more broadly that the latter remains a strong baseline for
specialized FMs. This is a surprising and consequential finding due the paradigm’s popularity and
the data and compute costs associated with large-scale pretraining. In this section we discuss lessons
and implications for the development of machine learning in these and other application areas.

5.1 THE IMPORTANCE OF DIVERSE, WELL-TUNED, AND DOMAIN-SPECIFIC BASELINES

The main lesson of our work is to select a diverse array of baselines, drawing from both “lift-and-
shift” and domain-specific approaches, and then to carefully tune them. For example, in genomics
the vanilla wide ResNet baseline does remarkably well, with the majority of FMs doing worse than
even this “lift-and-shift” baseline on the typical task in the NT benchmark. While satellite FMs
do outperform such baselines, lightly modifying these CNNs via different kernel sizes and dilation
rates was enough to match state-of-the-art models there as well. Lastly, our time series results
demonstrate in dramatic fashion the need to carefully tune domain-specific approaches, as we show
that simply allowing the classical AR forecaster to make use of long lookback windows and GPU-
based optimization leads better forecasting than all open-source FMs.
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5.2 COMPUTATIONAL EFFICIENCY CONSIDERATIONS

While not the main focus of our work, it is nevertheless worth highlighting that any performance
gains of using FMs must be balanced against their additional cost. In addition to the extensive
GPU-hours used for pretraining, the resulting models are often much bigger and so lead to much
more costly inference. Indeed, apart from the special case of HyenaDNA, the CNN architectures
discovered and trained using our DASHA workflow are typically over ten times smaller than FMs
in the case of genomics and three to ten times smaller in the case of satellite imaging. Moreover, for
time series our Auto-AR approach is quick-to-train and yields simple models with less than a 1K
parameters—over ten-thousand times smaller than any FM—while attaining performance that on
some datasets is competitive even with closed-source models. In aggregate, these examples further
demonstrate the efficiency of supervised approaches and the resulting high performance bar that
FMs need to clear before they can be deemed useful.

5.3 THE POWER OF TUNING KERNEL SIZES AND DILATION RATES

Our results in the first two domains, genomics and satellite imaging, are driven by the DASHA
workflow, whose crucial component is the tuning of kernel sizes and dilation rate in CNN backbones
such as wide ResNet. Its success demonstrates that the procedure is an effective surrogate for human-
driven model development, enabling the automated discovery of the types of diverse and in some
sense domain-specific baselines stressed in Section 5.1. To understand this further, we study whether
the architecture search component selects different kernel sizes and dilation rates for different tasks,
and whether it does so in a consistent manner. Specifically, we run DASHA on three of the smaller
datasets in the NT benchmark with fifteen different random seeds, construct eighteen-dimensional
vectors of the discovered kernel sizes and dilation rates assigned to each of the nine layers, and
project these to two dimensions using principal component analysis (PCA). The result in Figure 4
reveals that the architectures are clustered by task, demonstrating that the procedure selects different
but consistent-within-task kernel parameters. This visualization suggests that architecture search is
a useful surrogate for model development, and consequently that the DASHA workflow may also be
useful for automating similar studies and baselining FMs in other domains with high-dimensional,
unstructured data.

5.4 THE SURPRISING EFFECTIVENESS OF LINEAR AUTO-REGRESSION

Perhaps our most surprising finding is the competitiveness of linear auto-regression (AR), a very
old method, on long-horizon forecasting. It is likely that the lack of comparison with this baseline
was driven by existing evaluations (e.g. by Challu et al. (2022)) of Auto-ARIMA (Hyndman &
Khandakar, 2008), which is perceived to be a stronger baseline because it both combines AR with
another model (MA) and tunes the lookback and differencing parameters. However, in most Auto-
ARIMA packages the default maximum lookback is around five, whereas we often found much
(hundred-fold) larger settings to wokr best. Since these implementations are also generally too slow
to support such long lookbacks, the possibility of expanding the hyperparameter space was more
likely to be ignored. By implementing an efficient tuning procedure over a larger space of lookback
parameters, our Auto-AR workflow comprises a significant contribution to forecasting baselines.

6 CONCLUSION

We conduct a thorough investigation to evaluate whether the cost of training specialized foundation
models across three major domains are justified by their superior performance relative to traditional
supervised learning. Our results demonstrate that FMs in these domains have not yet surpassed su-
pervised workflows and are often outperformed by fairly simple methods, including lightly modified
CNN backbones (in genomics and satellite imaging) and classical linear forecasters (for time series).
As part of our study, we introduce two automated workflows—DASHA for simulating in-domain
model development of CNNs and Auto-AR for tuning linear auto-regression on GPUs—that we
believe will be useful tools for evaluating future work in these and other areas. The code for these
pipelines and to reproduce our results will be made publicly available.
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APPENDIX

A FURTHER EXPERIMENTAL DETAILS

A.1 HYPERPARAMETER SEARCH SPACE

Table 4: Hyperparameter Search Space

Hyperparameter Search Space Type of Search Space

random seed [0, 500] Integer
lr [10−5, 5× 10−1] Log Uniform
drop rate {0, 0.05, 0.1} Discrete
weight decay [5× 10−7, 5× 10−3] Log Uniform
momentum [0.9, 1] Uniform

A.2 DATASETS

Genomics For the Genomics domain, we use the 18 classification tasks from the Nucleotide Trans-
former benchmark Dalla-Torre et al. (2023) that has widely been used for other genomics FMs. The
benchmark datasets consist of nucleotide base sequences ranging from 200 to 600 bases in length.
It provides a realistic and biological meaningful benchmark across four main categories: promotor
(human/mouse), enhancer (human), splice site (SS) (human/multispecies) and histone modification
(yeast). Within the benchmark, the enhancers types and splice sites all datasets are
classification tasks with three classes each, while the remaining datasets are binary classification
tasks.

Satellite image In the satellite imaging domain, we aim to conduct evaluations with real-world rel-
evance to Earth science. To achieve this, we include a variety of data from different sources to cover
a diverse range of tasks, such as brick kiln identification, deforestation prediction, and photovoltaic
monitoring. We utilize five classification tasks provided by the GeoBench dataset (Lacoste et al.,
2024), a recently developed benchmark that offers a clean and carefully curated collection of tasks
specifically designed for satellite imaging. In addition to GeoBench, we evaluate our model on three
additional datasets (Helber et al., 2019; Jacques et al., 2023; Sumbul et al., 2019) commonly used in
the literature as benchmarks for this domain . This brings the total to eight datasets, encompassing a
wide range of features. These tasks vary in complexity, with single-class classification ranging from
binary to 62-class problems, as well as two multilabel classification tasks. The datasets are further
characterized by diverse input channels, ranging from 3 RGB channels to 18 channels that integrate
data from both Sentinel-1 and Sentinel-2 formats.

15

https://arxiv.org/abs/2302.11939


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dataset # of classes # of samples Maximum
train test sequence length

enhancers 2 14968 400 200
enhancers types 3 14968 400 200
promoter all 2 53276 5920 300
promoter no tata 2 47767 5299 300
promoter tata 2 5509 621 300
splice sites acceptors 2 19961 2218 600
splice sites all 3 27000 3000 400
splice sites donors 2 19775 2198 600
H3 2 13468 1497 500
H3K14ac 2 29743 3305 500
H3K36me3 2 31392 3488 500
H3K4me1 2 28509 3168 500
H3K4me2 2 27614 3069 500
H3K4me3 2 25953 2884 500
H3K79me3 2 25953 2884 500
H3K9ac 2 25003 2779 500
H4 2 13140 1461 500
H4ac 2 30685 3410 500

Table 5: Statistics for Genomics datasets

For Geo-Bench datasets, we do not use any mixup and cutmix augmentations. For other datasets,
we universally use mixup = 0.8, cutmix = 1.0, and a switch probability of 0.5. Following
(Fuller et al., 2023), we use only 10% of training set from BigEarthNet and fMoW-Sentiel while
using the full evaluation set for validation.

Dataset Image # of classes # of samples # of
Size train val test channels

m-bigearthnet 120 × 120 43 20000 1000 1000 12
m-brickkiln 64 × 64 2 15063 999 999 13
m-so2sat 32 × 32 17 19992 986 986 18
m-forestnet 332 × 332 12 6464 989 993 6
m-pv4ger 320 × 320 2 11814 999 999 3
BigEarthNet 120 × 120 19 31166 103944 103728 12
EuroSAT 64 × 64 13 16200 10800 5400 13
Canadian Cropland 120 × 120 10 53884 11414 11674 12
fMoW-Sentinel 96 × 96 62 71287 84939 84966 13

Table 6: Statistics for Satellite datasets

Time series In the time series domain, we focus on the long horizon forecasting task. We use a
subset of the common benchmark datasets for evaluating models across different domains (ETT,
Electricity, Weather, Illness, Traffic, Exchange Rate) (Wang et al., 2024), specifically, the ETT,
Waether, Electricity, Illness, and Traffic datasets. Note that the ETT dataset is actually a collection
of four series: ETTh1, ETTh2, ETTm1, and ETTm2; we follow the rest of the literature in treating
each series as a separate dataset. Each dataset contains measurements of one or more channels at
evenly spaced time steps.

B RESULTS AND IMPLEMENTATION DETAILS

ASHA tuning details Following the architecture search, we perform hyperparameter tuning using
ASHA. The hyperparameter search space includes learning rate, weight decay, momentum, drop
rate, and random seed for model initialization. We define a continuous search space, with further
specific details provided in Appendix A.1. Using ASHA, we evaluate 200 sample configurations
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Dataset # of # of samples
channels train val test

ETTh1 7 8033 2785 2785
ETTh2 7 8033 2785 2785
ETTm1 7 33953 11425 11425
ETTm2 7 33953 11425 11425
Weather 21 36280 5175 10444
Electricity 321 17805 2537 5165
ILI 7 69 2 98
Traffic 862 11673 1661 3413

Table 7: Statistics for Time Series datasets

over a maximum of 20 epochs, using a reduction factor of 2. The low-performing configurations
are pruned based on their validation scores.

Before retraining the final model, we load the model checkpoint corresponding to the optimal hy-
perparameter configuration. The model is then trained for 200 epochs on the training data, with the
best-performing checkpoint selected based on validation performance. This process is repeated for
each backbone architecture, and the best-performing backbone is selected using the validation score.
Finally, the checkpoint for the selected backbone is evaluated on the test set to obtain the final score.

Genomics As the score presented are taken from Dalla-Torre et al. (2023, Supplementary Table 6),
we do realize that in their reported table, all the promoter and splice sites tasks are mislabeled with
some histone modification tasks. In order to get the results, we infer an order for the mislabeled
datasets with most confidence. We also include all FMs listed on the leaderboard in our evaluation
for comprehensive comparison. In alignment with the leaderboard, we apply a 0.1 validation split
for DASHA during our evaluation. Additionally, we use an architecture set that includes both Wide
ResNet and UNet for the search with DASHA on these datasets. We use batch size= 128 for all
datasets, and cross entropy loss for all the training and finetuning. Individual scores for each task in
the benchmark are provided in Tables 9 and 8.

Model
Regulatory Elements RNA Production

enhancers enhancers promoter promoter promoter splice sites splice sites splice sites
types all no tata tata acceptors all donors

NT-Multispecies-v2 (500M) 0.559 0.438 0.976 0.976 0.965 0.981 0.984 0.987
NT-Multispecies (2.5B) 0.545 0.444 0.975 0.977 0.959 0.986 0.982 0.987
NT-1000G (500M) 0.509 0.395 0.951 0.951 0.936 0.965 0.968 0.971
NT-1000G (2.5B) 0.546 0.432 0.965 0.967 0.957 0.98 0.976 0.979
HyenaDNA-32K 0.489 0.352 0.956 0.954 0.939 0.96 0.962 0.957
HyenaDNA-1K 0.52 0.403 0.959 0.959 0.944 0.959 0.956 0.947
Enformer 0.454 0.312 0.955 0.955 0.959 0.915 0.847 0.906
DNABERT-2 0.525 0.423 0.972 0.972 0.955 0.975 0.939 0.963
DNABERT-1 0.495 0.367 0.961 0.962 0.956 – 0.975 –

Wide ResNet 0.525 0.416 0.915 0.914 0.890 0.659 0.279 0.608
UNet 0.490 0.366 0.910 0.919 0.896 0.944 0.265 0.618

DASHA 0.527 0.432 0.923 0.920 0.903 0.959 0.972 0.961

Table 8: Regulatory Elements and RNA Production Downstream Tasks

Satellite Imaging Training on satellite datasets requires relatively large computational resources
due to the high number of channels and the size of the datasets. To ensure a fair comparison, we
fine-tuned all the foundation models ourselves by sweeping across a fixed set of base learning rates
[5e − 3, 2e − 3, 2e − 4, 4e − 5]. We then calculate the actual learning rate from base learning rate
following previous work by lr = base lr · batch size

256 . This approach ensures that approximately the
same amount of resources were used as during the DASHA tuning process, allowing for a balanced
evaluation of model performance.

We closely followed the reported evaluation processes from previous studies on FMs (Cong et al.,
2022; Fuller et al., 2023; Mendieta et al., 2023). These models do not employ a validation set for
hyperparameter tuning or model selection, and we adhered to this same approach when fine-tuning
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Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me3 H3K9ac H4 H4ac

NT-Multispecies-v2 (500M) 0.786 0.549 0.624 0.55 0.32 0.406 0.63 0.567 0.799 0.496
NT-Multispecies (2.5B) 0.793 0.538 0.618 0.541 0.324 0.408 0.623 0.547 0.808 0.492
NT-1000G (500M) 0.736 0.381 0.468 0.38 0.26 0.235 0.562 0.479 0.755 0.342
NT-1000G (2.5B) 0.754 0.453 0.53 0.418 0.278 0.311 0.574 0.491 0.787 0.408
HyenaDNA-32K 0.747 0.405 0.479 0.387 0.276 0.291 0.567 0.472 0.761 0.379
HyenaDNA-1K 0.781 0.608 0.614 0.512 0.455 0.55 0.669 0.586 0.763 0.564
Enformer 0.724 0.284 0.345 0.291 0.207 0.156 0.498 0.415 0.735 0.275
DNABERT-2 0.785 0.515 0.591 0.512 0.333 0.353 0.615 0.545 0.797 0.465
DNABERT-1 0.763 0.403 0.474 0.396 0.282 0.258 0.578 0.505 0.784 0.359

Wide ResNet 0.798 0.667 0.670 0.554 0.541 0.660 0.706 0.620 0.754 0.657
UNet 0.797 0.647 0.482 0.541 0.553 0.292 0.562 0.624 0.760 0.389

DASHA 0.790 0.683 0.630 0.528 0.640 0.714 0.721 0.709 0.776 0.744

Table 9: Histone Modification Downstream Tasks

Model Average Average Mean Median
Score ↑ Rank ↓ %Imp.↑ %Imp.↑

Foundation Model
CROMA-base 77.98 3.57 6.95 5.30
CROMA-large 79.06 2.14 8.84 6.26
SatMAE-base 77.71 6.00 6.74 4.56
SatMAE-large 78.44 4.07 7.87 6.75
GFM 76.95 5.57 5.40 4.08
SwinT-Base 76.12 6.50 3.98 1.43

Supervised Methods
ResNet50 73.25 9.00 -0.27 -0.38
Wide ResNet 73.90 8.00 0.00 0.00
UNet 75.29 6.57 2.33 0.87
DASHA 78.00 3.57 7.02 5.16

Figure 5: Aggregated metrics on Satellite Imaging datasets, excluding the m-pv4ger and m-forestnet datasets,
where input channels do not match the model requirements for FMs

the FMs. However, for DASHA, since we performed extensive hyperparameter optimization over a
large search space, we used a validation set to ensure fair and accurate comparisons between DASHA
and the FMs. This is a less favorable setting for DASHA, as it relies on extensive hyperparameter
tuning, but we demonstrate that, even under these conditions, DASHA matches the performance of
the FMs.

It is also important to note that SatMAE only accepts 3-channel and 12-channel inputs, while
CROMA is limited to 12-channel inputs. GeoBench, however, includes a wide range of tasks with
varying numbers of input channels, ranging from 3 to 18. Despite these differences, we include all
datasets in our evaluation because they are valuable benchmarks in the satellite image domain, and it
is crucial for FMs in this field to generalize across diverse datasets. For datasets where the input size
does not match the model requirements, we pad missing channels with zeros and prune any extra
channels. However, to ensure a fair comparison, in addition to reporting the average scores across
all datasets, we also provide average scores excluding m-pv4ger and m-forestnet, where missing
channels may affect the performance of the FMs. The performance profile and aggregate scores
excluding m-pv4ger and m-forestnet are presented in Figure 5.

For training and finetuning, we universally use batch size = 16 and loss function as cross
entropy with 0.1 label smoothing for single label classification, and multi-label soft margin loss for
multilabel classification. Individual scores for each task are provided in Table 10.

Time series The long horizon forecasting task for a time series can be summarized as follows: at
every timestep t, take the L historical observations at times (t − L + 1, ..., t) for each channel and
predict the next H observations (t + 1, ..., t + H) for every channel. Following the literature, we
evaluate models on H ∈ {24, 36, 48, 60} for the Illness dataset and H ∈ {96, 192, 336, 720}. For
most methods, we report results when L = 512.

In addition to the results for DASHA, Auto-AR, DLinear, and FMs, we evaluate the performance of
two simple baselines

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Model Average m-bigearthnet m-brickkiln m-so2sat m-forestnet m-pv4ger BigEarth EuroSAT Canadian fMoW
Net Cropland Sentinel

CROMA-base 77.39 72.07 98.99 60.04 54.07 96.6 86.94 98.81 75.87 53.14
CROMA-large 78.03 73.36 99.01 59.22 51.96 96.9 87.98 98.98 76.56 58.32
SatMAE-base 76.99 72.3 98.22 54.56 51.89 97.0 86.04 98.69 74.64 59.55
SatMAE-large 77.75 73.82 98.6 55.79 53.7 96.92 86.75 98.86 75.38 59.89
GFM 77.18 71.97 98.35 57.52 59.38 96.54 85.93 99.02 72.03 53.84

ResNet50 73.76 60.31 98.4 51.83 54.29 96.79 79.16 98.23 72 52.84
SwinT-base 76.69 70.14 98.81 56.49 59.78 97.54 85.91 98.99 70.15 52.37
Wide ResNet 73.97 69.15 98.95 49.04 52.14 96.34 80.48 98.6 72.05 49.00
UNet 75.73 69.89 98.6 56.87 57.18 97.39 83.9 98.99 72.68 46.11

DASHA 77.85 72.72 98.92 56.28 57.24 97.4 86.09 99.07 75.69 57.20

Table 10: Satellite Imaging Tasks

Model ETTh1 ETTh2 ETTm1 ETTm2

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

GPT4TS (OFA) 0.376 0.416 0.442 0.477 0.285 0.354 0.373 0.406 0.292 0.332 0.366 0.417 0.173 0.229 0.286 0.378
LLM4TS 0.371 0.403 0.42 0.422 0.269 0.328 0.353 0.383 0.285 0.324 0.353 0.408 0.165 0.22 0.268 0.35
MOMENT 0.387 0.41 0.422 0.454 0.288 0.349 0.369 0.403 0.293 0.326 0.352 0.405 0.17 0.227 0.275 0.363
TEMPO (Zero Shot) 0.4 0.426 0.441 0.443 0.301 0.355 0.379 0.409 0.438 0.461 0.515 0.591 0.185 0.243 0.309 0.386
TimesFM (Zero Shot) 0.421 0.472 0.51 0.514 0.326 0.399 0.434 0.451 0.357 0.411 0.441 0.507 0.205 0.294 0.367 0.473
Moirai (Zero Shot) 0.375 0.399 0.412 0.413 0.281 0.34 0.362 0.38 0.404 0.435 0.462 0.49 0.205 0.261 0.319 0.415
Toto (Zero Shot) 0.307 0.329 0.396 0.419 0.093 0.135 0.16 0.294 0.306 0.328 0.39 0.463 0.2 0.269 0.264 0.354

ARIMA 0.646 0.704 0.732 0.738 0.324 0.411 0.456 0.462 1.131 1.172 1.197 1.231 0.225 0.298 0.37 0.478
AR (d=0) 0.358 0.39 0.41 0.424 0.271 0.334 0.361 0.395 0.299 0.336 0.368 0.426 0.163 0.218 0.271 0.366
DLinear 0.375 0.405 0.439 0.472 0.289 0.383 0.448 0.605 0.299 0.335 0.369 0.425 0.167 0.224 0.281 0.397

Auto-AR 0.357 0.39 0.41 0.422 0.269 0.332 0.359 0.394 0.299 0.336 0.368 0.426 0.163 0.218 0.271 0.367
DASHA 0.369 0.401 0.430 0.478 0.284 0.377 0.396 0.745 0.305 0.335 0.367 0.418 0.169 0.224 0.290 0.378

Model Weather Electricity ILI Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

GPT4TS (OFA) 0.162 0.204 0.254 0.326 0.139 0.153 0.169 0.206 2.063 1.868 1.79 1.979 0.388 0.407 0.412 0.45
LLM4TS 0.147 0.191 0.241 0.313 0.128 0.146 0.163 0.2 – – – – 0.372 0.391 0.405 0.437
MOMENT 0.154 0.197 0.246 0.315 0.136 0.152 0.167 0.205 2.728 2.669 2.728 2.883 0.391 0.404 0.414 0.45
TEMPO (Zero Shot) 0.211 0.254 0.292 0.37 0.178 0.198 0.209 0.279 3.0 2.956 2.651 2.701 0.476 0.496 0.503 0.538
TimesFM (Zero Shot) 0.122 0.169 0.242 0.391 0.119 0.137 0.158 0.206 2.595 2.984 3.34 3.227 0.327 0.353 0.378 0.42
Moirai (Zero Shot) 0.173 0.216 0.26 0.32 0.205 0.22 0.236 0.27 – – – – – – – –
Toto (Zero Shot) 0.18 0.235 0.252 0.356 0.124 0.138 0.155 0.211 – – – – – – – –

ARIMA 0.217 0.263 0.33 0.425 1.22 1.264 1.311 1.364 5.554 6.94 7.192 6.648 1.997 2.044 2.096 2.138
AR (d=0) 0.171 0.215 0.263 0.332 0.138 0.153 0.17 0.212 2.084 2.04 2.004 2.011 0.398 0.413 0.426 0.464
DLinear 0.176 0.22 0.265 0.323 0.14 0.153 0.169 0.203 2.215 1.963 2.13 2.368 0.41 0.423 0.436 0.466

Auto-AR 0.172 0.215 0.263 0.332 0.138 0.153 0.17 0.212 2.084 2.04 2.004 2.011 0.398 0.413 0.426 0.464
DASHA 0.163 0.205 0.251 0.314 0.136 0.151 0.165 0.200 – – – – – – – –

Table 11: Time Series Forecasting Tasks

1. Vanilla Autoregressive Model (Box & Jenkins, 1976): This model predicts the (scalar)
value of a time series at t+1 as a linear combination of the last L timesteps and a constant,
i.e. x̂t+1 = α0 + α1xt + α2xt−1 + ... + αLxt−L+1 for learnable parameters α0, ..., αL.
We fit these parameters using standard maximum likelihood techniques.

2. ARIMA is a statistical method used for time series forecasting that combines three compo-
nents: AutoRegressive (AR), Integrated (I), and Moving Average (MA). The AR compo-
nent models the relationship between an observation and its lagged (past) values, assuming
that past values have a linear influence on future ones. The Integrated component applies
differencing to the data to remove trends or seasonality, making the time series stationary
by stabilizing its mean over time. The MA component models the relationship between an
observation and the residual errors from a moving average model applied to previous obser-
vations. ARIMA is characterized by three parameters: p (the number of lag observations),
d (the number of differencing steps to achieve stationarity), and q (the number of lagged
forecast errors). This model is particularly effective for univariate time series forecasting
where patterns like trends or seasonality are present.

All results are reported on a 70/10/20 train/validation/test split for each datasets, except for the
ETT datasets which have predefined splits. MSE is reported after all datasets have been scaled
by the mean and variance of the training data. Both autoregressive models have only one tunable
hyperparameter (number of lags). Similarly, the linear model has only one tunable hyperparameter
(number of training epochs).
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The baselines as described can handle only univariate time series, while all of the benchmark datasets
are multivariate (multiple channels). These baselines, as well as DASHA, are trained under channel
independence: each channel of a time series is treated independently. While channel independence
fails to take into account cross-channel dependencies, we note that developing methods that leverage
cross-channel dependencies for a variable number of channels remains an open problem.
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