
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC SEARCH FOR INFERENCE-TIME ALIGNMENT
IN DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have shown promising generative capabilities across diverse
domains, yet aligning their outputs with desired reward functions remains a chal-
lenge, particularly in cases where reward functions are non-differentiable. Some
gradient-free guidance methods have been developed, but they often struggle to
achieve optimal inference-time alignment. In this work, we newly frame inference-
time alignment in diffusion as a search problem and propose Dynamic Search for
Diffusion (DSearch), which subsamples from denoising processes and approxi-
mates intermediate node rewards. It also dynamically adjusts beam width and tree
expansion to efficiently explore high-reward generations. To refine intermediate
decisions, DSearch incorporates adaptive scheduling based on noise levels and a
lookahead heuristic function. We validate DSearch across multiple domains, in-
cluding biological sequence design, molecular optimization, and image generation,
demonstrating superior reward optimization compared to existing approaches.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have emerged as
a powerful generative framework for a wide range of domains, from image synthesis to molecular
design. While diffusion models excel at capturing complex data distributions, there is often a need to
further optimize downstream reward functions, a task known as alignment. For instance, in image
synthesis, we may seek to optimize rewards such as aesthetic scores. In drug design, the goal might
be to optimize binding affinity.

Diffusion models can be adapted to maximize rewards. This alignment problem has been addressed
by guiding generation at inference time using rewards. Classifier guidance (Dhariwal & Nichol, 2021)
provides a standard scheme for doing this using the gradient of the reward functions, but critically
depends on differentiable reward functions—an assumption that fails in many real-world scientific
applications. In these domains, rewards are often non-differentiable or given in a black-box manner.
For example, widely used docking softwares AutoDock Vina (Trott & Olson, 2010) for predicting
binding affinity, which relies on physical simulations, as well as rewards derived from secondary
structure estimation algorithms like DSSP (Kabsch & Sander, 1983) or structure predictors like
AlphaFold3 (Abramson et al., 2024), which incorporate scientific knowledge via lookup tables, do not
support gradient computation. Similarly, rewards based on widely-used molecular descriptors such as
molecular fingerprints (Todeschini & Consonni, 2008) are inherently non-differentiable. Therefore,
it is extremely difficult or infeasible to learn accurate differentiable surrogates for these scientific
rewards. As a result, gradient-free guidance methods have gained increasing attention (Wu et al.,
2024; Li et al., 2024). While proven simple and effective, they do not provide optimally accurate
inference alignment. More sophisticated methods in this direction have yet to be explored.

In this work, we propose a novel gradient-free inference-time alignment method based on our
new insight: framing inference-time alignment in diffusion models as a search problem. Pre-
trained diffusion models inherently induce a tree structure that characterizes the generation process.
By appropriately defining the search tree, search algorithms can be applied to maximize rewards
effectively. Given the success of search in biochemical designs (Yang et al., 2017; Kajita et al.,
2020; Yang et al., 2020; Swanson et al., 2024) and language models (Yao et al., 2024; Besta et al.,
2024) for maximizing rewards in general, we believe search methods integrated into diffusion models
would offer considerable potential for inference-time alignment. Specifically, we first establish the
search tree formulation by subsampling from denoising processes of pre-trained diffusion models,
assigning rewards to the leaf nodes, and introducing a heuristic function to evaluate intermediate
nodes. Then, we propose “Dynamic Search for Diffusion (DSearch)” for inference-time alignment in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

……

……

<latexit sha1_base64="nrFdllomy+W0yXYooWhsvfgoth8=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAR6qYkItVlwU2XFewD2hgm00k7dDIJMxNpiXHjr7hxoYhb/8Kdf+OkzUJbDwwczrmHO/d4EaNSWda3UVhZXVvfKG6WtrZ3dvfM/YO2DGOBSQuHLBRdD0nCKCctRRUj3UgQFHiMdLzxdeZ37omQNOS3ahoRJ0BDTn2KkdKSax5FbmKnd4kOpZWJm1jpwyRTzlyzbFWtGeAysXNSBjmarvnVH4Q4DghXmCEpe7YVKSdBQlHMSFrqx5JECI/RkPQ05Sgg0klmF6TwVCsD6IdCP67gTP2dSFAg5TTw9GSA1Eguepn4n9eLlX/lJJRHsSIczxf5MYMqhFkdcEAFwYpNNUFYUP1XiEdIIKx0aSVdgr148jJpn1ftWrV2c1GuN/I6iuAYnIAKsMElqIMGaIIWwOARPINX8GY8GS/Gu/ExHy0YeeYQ/IHx+QOn1ZcN</latexit>

ppre
1 (x0|x1)

<latexit sha1_base64="nVrRIdcFn8zvidy79F/PqqoCXI0=">AAACB3icbVDNS8MwHE3n15xfVY+CBIcwD452yPQ48LLjhH3BVkuaZVtYmpYklY3amxf/FS8eFPHqv+DN/8Z060GnDwIv7/0eye95IaNSWdaXkVtZXVvfyG8WtrZ3dvfM/YO2DCKBSQsHLBBdD0nCKCctRRUj3VAQ5HuMdLzJdep37oiQNOBNNQuJ46MRp0OKkdKSax6Hbtw8t5PbWMeS0jS9VZL76UI9c82iVbbmgH+JnZEiyNBwzc/+IMCRT7jCDEnZs61QOTESimJGkkI/kiREeIJGpKcpRz6RTjzfI4GnWhnAYSD04QrO1Z+JGPlSznxPT/pIjeWyl4r/eb1IDa+cmPIwUoTjxUPDiEEVwLQUOKCCYMVmmiAsqP4rxGMkEFa6uoIuwV5e+S9pV8p2tVy9uSjW6lkdeXAETkAJ2OAS1EAdNEALYPAAnsALeDUejWfjzXhfjOaMLHMIfsH4+AYJZpjO</latexit>

ppre
T→1(xT→2|xT→1)

<latexit sha1_base64="AksQyYb+OdV+xYIjY6FZTNxKs+Y=">AAACA3icbVDNS8MwHE3n15xfVW96CQ5hHhytyPQ48LLjhH3BVkuapVtYmpYkFUctePFf8eJBEa/+E978b0y3HnT6IOTx3u+R/J4XMSqVZX0ZhaXlldW14nppY3Nre8fc3evIMBaYtHHIQtHzkCSMctJWVDHSiwRBgcdI15tcZX73lghJQ95S04g4ARpx6lOMlJZc8yByk1Z6k+hQWrnT/NRO77M7PXHNslW1ZoB/iZ2TMsjRdM3PwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4y2yGFx1oZQj8U+nAFZ+rPRIICKaeBpycDpMZy0cvE/7x+rPxLJ6E8ihXheP6QHzOoQpgVAodUEKzYVBOEBdV/hXiMBMJK11bSJdiLK/8lnbOqXavWrs/L9UZeRxEcgiNQATa4AHXQAE3QBhg8gCfwAl6NR+PZeDPe56MFI8/sg18wPr4BNcKX6Q==</latexit>

ppre
T (xT→1|xT)

<latexit sha1_base64="OwZODOJcC3lDt2axe/luLkjBXqg=">AAACBnicbVDNS8MwHE3n15xfVY8iBIc4D45WZHoceNlxgvuArZY0y7ZgmpYkFUftyYv/ihcPinj1b/Dmf2Pa9aCbDwIv7/0eye95IaNSWda3UVhYXFpeKa6W1tY3NrfM7Z22DCKBSQsHLBBdD0nCKCctRRUj3VAQ5HuMdLzby9Tv3BEhacCv1SQkjo9GnA4pRkpLrrkfurE6Sm5inUoq9+nlxE4eMpIcu2bZqloZ4Dyxc1IGOZqu+dUfBDjyCVeYISl7thUqJ0ZCUcxIUupHkoQI36IR6WnKkU+kE2drJPBQKwM4DIQ+XMFM/Z2IkS/lxPf0pI/UWM56qfif14vU8MKJKQ8jRTiePjSMGFQBTDuBAyoIVmyiCcKC6r9CPEYCYaWbK+kS7NmV50n7tGrXqrWrs3K9kddRBHvgAFSADc5BHTRAE7QABo/gGbyCN+PJeDHejY/paMHIM7vgD4zPHwSjmNw=</latexit>

ppre
t→ (xt→→1|xt→)

<latexit sha1_base64="Md9rnnHrrw+Mded0LGYVY1DT6D0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseClx4r2lpoQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IhK81jem0mCfkSHkoecUWOlu6e+2y9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6R9UfVq1drtZaXeyOMowgmcwjl4cAV1aEATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcPjI2w</latexit>x0

<latexit sha1_base64="vSDUX13Yo8rroiek4riA2TIRheA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI8BLzlGzAuSJcxOJsmQ2dllplcMSz7BiwdFvPpF3vwbJ8keNLGgoajqprsriKUw6LrfTm5jc2t7J79b2Ns/ODwqHp+0TJRoxpsskpHuBNRwKRRvokDJO7HmNAwkbweTu7nffuTaiEg1cBpzP6QjJYaCUbTSw1O/0S+W3LK7AFknXkZKkKHeL371BhFLQq6QSWpM13Nj9FOqUTDJZ4VeYnhM2YSOeNdSRUNu/HRx6oxcWGVAhpG2pZAs1N8TKQ2NmYaB7Qwpjs2qNxf/87oJDm/9VKg4Qa7YctEwkQQjMv+bDITmDOXUEsq0sLcSNqaaMrTpFGwI3urL66R1VfYq5cr9dalay+LIwxmcwyV4cANVqEEdmsBgBM/wCm+OdF6cd+dj2ZpzsplT+APn8wdGHI3U</latexit>xT

……

……

……

……

Aesthetic score = 6.8 Docking score = 14.6

Reward
Alignment

Druglikeness = 0.95

Diffusion Denoising
Figure 1: Inference-time alignment of diffu-
sion model as a search problem. We propose
a dynamic search to maximize rewards effi-
ciently and effectively. The top-down process
visualizes the diffusion denoising trajectory
starting from Gaussian noise down to the final
sample x0. Green circles indicate tree nodes,
representing candidate samples at a time step,
while darker nodes mark higher potential re-
wards. Red slashes denote selections, while
nodes without selected children are pruned
branches (suboptimal candidates eliminated
during search). Blue arrows trace the final
high-reward trajectory dynamically selected to
maximize the downstream reward under com-
putational budgets.

diffusion models. DSearch applies dynamic beam search which dynamically adjusts the beam size
and tree width across time steps, as shown in Figure 1; in contrast, the näive approach such as static
beam search can lead to wasted computational resources when encountering suboptimal samples at
intermediate steps.

Our contributions are summarized as follows. In brief, we propose a novel search framework for
inference-time alignment in diffusion models. Specifically, we introduce a method, DSearch, which
features dynamically reducing the beam width while extending the tree width. Meanwhile, DSearch
incorporates a dynamic scheduling of tree expansion based on noise levels and a novel lookahead
heuristic function for intermediate nodes, which further enhance the efficiency and guidance precision.
We experimentally validate the effectiveness of our proposal across multiple domains, including
biological sequence design, molecular structure optimization, and image generation. DSearch
demonstrates strong reward optimization for generative tasks with balanced sample naturalness,
diversity, and efficiency, making it particularly suitable for real-world applications.

2 PRELIMINARY

In this section, we introduce diffusion models and outline our objective of inference-time alignment.

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) aim to learn a sampler
ppre(·) ∈ ∆(X) over a given design space X (e.g., Euclidean space or discrete space) from a data
distribution. The primary objective in training diffusion models is to establish a sequential mapping,
i.e., a denoising process, that transforms from a noise distribution to the true data distribution. The
training procedure follows several steps. First, a forward noising process qt : X → ∆(X) is
predefined, evolving over time from t = 0 to t = T . This noising process is often referred to as
a policy, drawing from reinforcement learning terminology. The goal is then to learn a reverse
denoising process pt, where each pt : X → ∆(X) ensures that the marginal distributions induced by
the forward and backward processes remain equivalent.

Next, we explain how to obtain such pt. For this purpose, we define the forward noising processes.
When X is a Euclidean space, we typically use the Gaussian distribution qt(· | xt) = N (

√
αtxt, (1−

αt)I) as the forward noising process where αt ∈ R denote a noise schedule. Then, the backward
process pt(·|xt) is parameterized as a normal distribution with mean

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x̂0(xt; θ)

1− ᾱt
,

where ᾱt =
∏t

i=1 αi. Importantly, x̂0(xt) is treated as a predictor for E[x0 | xt].
Remark 2.1 (Parametrization). Note that alternative parametrizations, such as noise or scores, can
also be used in place of x̂0(xt) (Luo, 2022).

2.2 INFERENCE-TIME ALIGNMENT

Our objective is to obtain natural designs that exhibit a high likelihood ppre(·) while maximizing the
reward r : X → R.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This goal can be formulated as sampling from:

p(α)(·) ∝ exp(r(x)/α)ppre(·). (1)

Here, α is the temperature parameter, which is set low in practice, as our primary focus is optimizing
rewards. Note this objective has been widely adopted in the context of alignment in generative
models, including autoregressive models (Wang et al., 2024).

Many inference-time alignment techniques have also been proposed in diffusion models, which
organically combine {ppret (· | xt−1)} and r. As shown in (Uehara et al., 2024b, Theorem 1), this
goal is achieved by sampling from the following policy from t = T to t = 0

p⋆t−1(·|xt−1) ∝ exp(vt−1(·)/α)ppret−1(·|xt−1). (2)

Here, vt−1(·) is soft value function defined as vt−1(·) := α logEx0∼ppre(x0|xt−1)[exp(r(x0)/α)|xt],
where the expectation is taken with respect to the distribution from the pre-trained policies. This soft
value function acts as a look-ahead function that predicts future rewards from intermediate states.
However, exact sampling from this policy p⋆t−1 is not feasible since the soft value functions are
unknown, and computing the normalizing constant is challenging due to the large action space. To
address these challenges, several approaches, such as gradient-based classifier guidance or gradient-
free guidance, have been proposed (refer to Section 5). While these methods have shown success, in
this work, we introduce a more efficient search framework that extends beyond these approaches.

3 SEARCH FRAMEWORK FOR INFERENCE-TIME ALIGNMENT IN DIFFUSION

We aim to introduce an efficient search method for alignment in diffusion models. To this end, we
define a formulation of search tree framework leveraging pre-trained diffusion models in this section.

We begin by examining the naı̈ve approach to leverage pre-trained diffusion models. This involves
defining a tree where each child is recursively determined by the support of the pre-trained diffusion
models: t ∈ [T]; Ch(xt) = {xt−1 : ppre(xt−1|xt) > 0}. Then, the leaf nodes correspond to
Supp(ppre) := {x : ppre(x) > 0}. The alignment problem is then addressed by selecting the
maximum (or top several) samples from the leaf nodes based on rewards, as this corresponds to:
argmaxx∈Supp(ppre) r(x), which is equivalent to our goal in (1) with α = 0. However, in practice,
exact search within this tree is not feasible, as the tree’s size is O(|X |T) in the worst case. We
proceed by explaining how to resolve this issue.

3.1 LIMIT TREE WIDTH: PRUNING WITH PRE-TRAINED POLICIES

Instead of using the entire support Supp(ppre), we employ its empirical distribution. In the context
of search, this involves constraining the tree width by sampling nodes from the pre-trained model
during expansion, thereby limiting further growth to a specified threshold w : [T] → N. Specifically,
the tree is recursively defined by setting child nodes

Ch(xt) = {xt−1[i]}w(t)
t=1 , {xt−1[i]}w(t)

i=1 ∼ ppre(·|xt−1),

as illustrated in Figure 1. After defining this tree, the alignment problem is addressed by selecting leaf
nodes with high rewards. Notably, when w(t) = 1 for all t ∈ [T], this reduces to best-of-N sampling.

However, this approach still remains computationally expensive once the width exceeds 1, as the tree
size grows to O(wT) where w := maxt w(t). One potential solution to this issue is to use heuristic
functions that guide the search in intermediate nodes, avoiding the need to traverse the entire tree.
Next, we introduce such heuristic functions.

3.2 DEFINE “HEURISTIC FUNCTIONS” IN NODES

We propose using “estimated” value functions as heuristic functions. The rationale is as follows.
Suppose we take a greedy action at xt−1 based on the exact value function. In this case, the decision
simplifies to: argmaxx∈Ch(xt−1) vt−1(x), which corresponds to the soft optimal policy in equation
(2) as α approaches 0, with pre-trained policies replaced by empirical distributions. While the
remaining challenge is how to estimate such value functions, building on recent works, we introduce
our novel approach in Section 3.3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Diffusion Denoising

✓

✗

✓✓ ✗

✓ ✓

……

……

✓✗ ✓

✓ ✓

……

……

……

<latexit sha1_base64="0xu+nxlK6NPPtP8t5VDid2bRP9M=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQLyURqR4LXnqsYD+gDWWz3bRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28ptbG5t7+R3C3v7B4dHxeOTlo4SRVmTRiJSHZ9oJrhkTeQoWCdWjIS+YG1/fDf32xOmNI/kA05j5oVkKHnAKUEjeT1kT+gHqV92Lmf9YsmpOAvY68TNSAkyNPrFr94goknIJFJBtO66ToxeShRyKtis0Es0iwkdkyHrGipJyLSXLo6e2RdGGdhBpExJtBfq74mUhFpPQ990hgRHetWbi/953QSDWy/lMk6QSbpcFCTCxsieJ2APuGIUxdQQQhU3t9p0RBShaHIqmBDc1ZfXSeuq4lYr1fvrUq2exZGHMziHMrhwAzWoQwOaQOERnuEV3qyJ9WK9Wx/L1pyVzZzCH1ifP0mckdE=</latexit>

b(0)

<latexit sha1_base64="mpcpl4FMvbfQCw6fiCIqfkRZv9Y=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQLyURqR4LXnqsYD+gDWWz3bRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28ptbG5t7+R3C3v7B4dHxeOTlo4SRVmTRiJSHZ9oJrhkTeQoWCdWjIS+YG1/fDf32xOmNI/kA05j5oVkKHnAKUEjeT1kT+gHqV/Gy1m/WHIqzgL2OnEzUoIMjX7xqzeIaBIyiVQQrbuuE6OXEoWcCjYr9BLNYkLHZMi6hkoSMu2li6Nn9oVRBnYQKVMS7YX6eyIlodbT0DedIcGRXvXm4n9eN8Hg1ku5jBNkki4XBYmwMbLnCdgDrhhFMTWEUMXNrTYdEUUompwKJgR39eV10rqquNVK9f66VKtnceThDM6hDC7cQA3q0IAmUHiEZ3iFN2tivVjv1seyNWdlM6fwB9bnD7E0khU=</latexit>

b(t)

<latexit sha1_base64="kmfJ5rA1bv/lwLQ5emjv0URzyCI=">AAAB9HicbVBNS8NAEJ34WetX1aOXYBHqpSQi1WPBS48V+gVtKJvtpl262cTdSbGE/g4vHhTx6o/x5r9x2+agrQ8GHu/NMDPPjwXX6Djf1sbm1vbObm4vv39weHRcODlt6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vbH93O/PWFK80g2cBozLyRDyQNOCRrJ6yF7Qj9I/VLjatYvFJ2ys4C9TtyMFCFDvV/46g0imoRMIhVE667rxOilRCGngs3yvUSzmNAxGbKuoZKETHvp4uiZfWmUgR1EypREe6H+nkhJqPU09E1nSHCkV725+J/XTTC481Iu4wSZpMtFQSJsjOx5AvaAK0ZRTA0hVHFzq01HRBGKJqe8CcFdfXmdtK7LbqVcebgpVmtZHDk4hwsogQu3UIUa1KEJFB7hGV7hzZpYL9a79bFs3bCymTP4A+vzB4B0kfU=</latexit>

b(T)
<latexit sha1_base64="QTEDroCUoNs8HpO5nBNI8peklxY=">AAAB9HicbVDLSgNBEJyNrxhfUY9eFoMQL2FXJHoMeMkxQl6QLGF20psMmZ1dZ3qjYcl3ePGgiFc/xpt/4+Rx0MSChqKqm+4uPxZco+N8W5mNza3tnexubm//4PAof3zS1FGiGDRYJCLV9qkGwSU0kKOAdqyAhr6Alj+6m/mtMSjNI1nHSQxeSAeSB5xRNJLXRXhCP0gfi/XLaS9fcErOHPY6cZekQJao9fJf3X7EkhAkMkG17rhOjF5KFXImYJrrJhpiykZ0AB1DJQ1Be+n86Kl9YZS+HUTKlER7rv6eSGmo9ST0TWdIcahXvZn4n9dJMLj1Ui7jBEGyxaIgETZG9iwBu88VMBQTQyhT3NxqsyFVlKHJKWdCcFdfXifNq5JbLpXvrwuV6jKOLDkj56RIXHJDKqRKaqRBGHkgz+SVvFlj68V6tz4WrRlrOXNK/sD6/AGgnJIK</latexit>

w(T)

<latexit sha1_base64="f1Ow3iXQwuc4gxok2K5MEh4te+o=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNQY8kXjhiIo8ENmR26IUJsw9nelGy4Tu8eNAYr36MN//GAfagYCWdVKq6093lxVJotO1va219Y3NrO7eT393bPzgsHB03dZQoDg0eyUi1PaZBihAaKFBCO1bAAk9CyxvdzvzWGJQWUXiPkxjcgA1C4QvO0EhuF+EJPT99LOHFtFco2mV7DrpKnIwUSYZ6r/DV7Uc8CSBELpnWHceO0U2ZQsElTPPdREPM+IgNoGNoyALQbjo/ekrPjdKnfqRMhUjn6u+JlAVaTwLPdAYMh3rZm4n/eZ0E/Rs3FWGcIIR8schPJMWIzhKgfaGAo5wYwrgS5lbKh0wxjianvAnBWX55lTQvy06lXLm7KlZrWRw5ckrOSIk45JpUSY3USYNw8kCeySt5s8bWi/VufSxa16xs5oT8gfX5A9Fckio=</latexit>

w(t)

<latexit sha1_base64="7GqhUvEWRV4KzAMxPlju1DSL9a4=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSEzwQnaNQY8kXjhiIo8ENmR26IUJsw9nelGy4Tu8eNAYr36MN//GAfagYCWdVKq6093lxVJotO1va219Y3NrO7eT393bPzgsHB03dZQoDg0eyUi1PaZBihAaKFBCO1bAAk9CyxvdzvzWGJQWUXiPkxjcgA1C4QvO0EhuF+EJPT99LNkX016haJftOegqcTJSJBnqvcJXtx/xJIAQuWRadxw7RjdlCgWXMM13Ew0x4yM2gI6hIQtAu+n86Ck9N0qf+pEyFSKdq78nUhZoPQk80xkwHOplbyb+53US9G/cVIRxghDyxSI/kRQjOkuA9oUCjnJiCONKmFspHzLFOJqc8iYEZ/nlVdK8LDuVcuXuqlitZXHkyCk5IyXikGtSJTVSJw3CyQN5Jq/kzRpbL9a79bFoXbOymRPyB9bnD2nEkeY=</latexit>

w(0)

<latexit sha1_base64="nrFdllomy+W0yXYooWhsvfgoth8=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAR6qYkItVlwU2XFewD2hgm00k7dDIJMxNpiXHjr7hxoYhb/8Kdf+OkzUJbDwwczrmHO/d4EaNSWda3UVhZXVvfKG6WtrZ3dvfM/YO2DGOBSQuHLBRdD0nCKCctRRUj3UgQFHiMdLzxdeZ37omQNOS3ahoRJ0BDTn2KkdKSax5FbmKnd4kOpZWJm1jpwyRTzlyzbFWtGeAysXNSBjmarvnVH4Q4DghXmCEpe7YVKSdBQlHMSFrqx5JECI/RkPQ05Sgg0klmF6TwVCsD6IdCP67gTP2dSFAg5TTw9GSA1Eguepn4n9eLlX/lJJRHsSIczxf5MYMqhFkdcEAFwYpNNUFYUP1XiEdIIKx0aSVdgr148jJpn1ftWrV2c1GuN/I6iuAYnIAKsMElqIMGaIIWwOARPINX8GY8GS/Gu/ExHy0YeeYQ/IHx+QOn1ZcN</latexit>

ppre
1 (x0|x1)

<latexit sha1_base64="nVrRIdcFn8zvidy79F/PqqoCXI0=">AAACB3icbVDNS8MwHE3n15xfVY+CBIcwD452yPQ48LLjhH3BVkuaZVtYmpYklY3amxf/FS8eFPHqv+DN/8Z060GnDwIv7/0eye95IaNSWdaXkVtZXVvfyG8WtrZ3dvfM/YO2DCKBSQsHLBBdD0nCKCctRRUj3VAQ5HuMdLzJdep37oiQNOBNNQuJ46MRp0OKkdKSax6Hbtw8t5PbWMeS0jS9VZL76UI9c82iVbbmgH+JnZEiyNBwzc/+IMCRT7jCDEnZs61QOTESimJGkkI/kiREeIJGpKcpRz6RTjzfI4GnWhnAYSD04QrO1Z+JGPlSznxPT/pIjeWyl4r/eb1IDa+cmPIwUoTjxUPDiEEVwLQUOKCCYMVmmiAsqP4rxGMkEFa6uoIuwV5e+S9pV8p2tVy9uSjW6lkdeXAETkAJ2OAS1EAdNEALYPAAnsALeDUejWfjzXhfjOaMLHMIfsH4+AYJZpjO</latexit>

ppre
T→1(xT→2|xT→1)

<latexit sha1_base64="AksQyYb+OdV+xYIjY6FZTNxKs+Y=">AAACA3icbVDNS8MwHE3n15xfVW96CQ5hHhytyPQ48LLjhH3BVkuapVtYmpYkFUctePFf8eJBEa/+E978b0y3HnT6IOTx3u+R/J4XMSqVZX0ZhaXlldW14nppY3Nre8fc3evIMBaYtHHIQtHzkCSMctJWVDHSiwRBgcdI15tcZX73lghJQ95S04g4ARpx6lOMlJZc8yByk1Z6k+hQWrnT/NRO77M7PXHNslW1ZoB/iZ2TMsjRdM3PwTDEcUC4wgxJ2betSDkJEopiRtLSIJYkQniCRqSvKUcBkU4y2yGFx1oZQj8U+nAFZ+rPRIICKaeBpycDpMZy0cvE/7x+rPxLJ6E8ihXheP6QHzOoQpgVAodUEKzYVBOEBdV/hXiMBMJK11bSJdiLK/8lnbOqXavWrs/L9UZeRxEcgiNQATa4AHXQAE3QBhg8gCfwAl6NR+PZeDPe56MFI8/sg18wPr4BNcKX6Q==</latexit>

ppre
T (xT→1|xT)

<latexit sha1_base64="EPruKpLCTOXuFYk+Lea9J/UuYro=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEqseClx4r2FZsQ9lsJ+3SzSbsTsQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqObR4LGN9HzADUihooUAJ94kGFgUSOsH4ZuZ3HkEbEas7nCTgR2yoRCg4Qys99BCeMAgznPbLFbfqzkFXiZeTCsnR7Je/eoOYpxEo5JIZ0/XcBP2MaRRcwrTUSw0kjI/ZELqWKhaB8bP5xVN6ZpUBDWNtSyGdq78nMhYZM4kC2xkxHJllbyb+53VTDK/9TKgkRVB8sShMJcWYzt6nA6GBo5xYwrgW9lbKR0wzjjakkg3BW355lbQvql6tWru9rNQbeRxFckJOyTnxyBWpkwZpkhbhRJFn8kreHOO8OO/Ox6K14OQzx+QPnM8fJiiRRA==</latexit>

t

<latexit sha1_base64="oPuQ2gDlDwo6DvAaVOCYF8nRqGU=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lEqheh4KXHCrYWmlI220m7dLMJuxOxhP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2cag4tHstYdwJmQAoFLRQooZNoYFEg4SEY3878h0fQRsTqHicJ9CI2VCIUnKGVfB/hCYMwwxt32i9X3Ko7B10lXk4qJEezX/7yBzFPI1DIJTOm67kJ9jKmUXAJ05KfGkgYH7MhdC1VLALTy+Y3T+mZVQY0jLUthXSu/p7IWGTMJApsZ8RwZJa9mfif100xvO5lQiUpguKLRWEqKcZ0FgAdCA0c5cQSxrWwt1I+YppxtDGVbAje8surpH1R9WrV2t1lpd7I4yiSE3JKzolHrkidNEiTtAgnCXkmr+TNSZ0X5935WLQWnHzmmPyB8/kDHbORxQ==</latexit>

t=0

<latexit sha1_base64="mtTS3qQfKONiW4AqfDRdVaPiscw=">AAAB83icdVDLSgNBEJyNrxhfUY9eBoPgKWw0z4MQ8JJjhDyE7BJmJ7PJkNnZZaZXDEt+w4sHRbz6M978GyfJCipa0FBUddPd5UWCa7DtDyuztr6xuZXdzu3s7u0f5A+PejqMFWVdGopQ3XpEM8El6wIHwW4jxUjgCdb3ptcLv3/HlOah7MAsYm5AxpL7nBIwkuMAuwfPT+CqMx/mC3bRrlfKdgMbsoQhDbtWr1ziUqoUUIr2MP/ujEIaB0wCFUTrQcmOwE2IAk4Fm+ecWLOI0CkZs4GhkgRMu8ny5jk+M8oI+6EyJQEv1e8TCQm0ngWe6QwITPRvbyH+5Q1i8OtuwmUUA5N0tciPBYYQLwLAI64YBTEzhFDFza2YTogiFExMORPC16f4f9K7KJaqxepNudBspXFk0Qk6ReeohGqoiVqojbqIogg9oCf0bMXWo/Viva5aM1Y6c4x+wHr7BKgfkiM=</latexit>

t=T

<latexit sha1_base64="VAR3PdWh9gqAU4OyE+2WTPguEzQ=">AAAB9XicdVDJSgNBEO2JW4xb1KOXxiB4Mcxo1oMQ8JJjhGyQjKGn05M06VnorlHDkP/w4kERr/6LN//GTjKCij4oeLxXRVU9JxRcgWl+GKmV1bX1jfRmZmt7Z3cvu3/QVkEkKWvRQASy6xDFBPdZCzgI1g0lI54jWMeZXM39zi2Tigd+E6Yhsz0y8rnLKQEt3fSB3YPjxnDZPLNmg2zOzJuVYsGsYk0W0KRqlivFC2wlSg4laAyy7/1hQCOP+UAFUapnmSHYMZHAqWCzTD9SLCR0Qkasp6lPPKbseHH1DJ9oZYjdQOryAS/U7xMx8ZSaeo7u9AiM1W9vLv7l9SJwK3bM/TAC5tPlIjcSGAI8jwAPuWQUxFQTQiXXt2I6JpJQ0EFldAhfn+L/Sfs8b5XypetCrlZP4kijI3SMTpGFyqiG6qiBWogiiR7QE3o27oxH48V4XbamjGTmEP2A8fYJifmSlQ==</latexit>

t=T-1

<latexit sha1_base64="O6o5A/1s/eLQRrNV8Hk9fi4gj68=">AAAB9HicdVDLSgNBEJz1GeMr6tHLYBA9hY3meRACXnKMYB6QLGF2MpsMmZ1dZ3qDYcl3ePGgiFc/xpt/4yRZQUULGoqqbrq73FBwDbb9Ya2srq1vbKa20ts7u3v7mYPDlg4iRVmTBiJQHZdoJrhkTeAgWCdUjPiuYG13fD332xOmNA/kLUxD5vhkKLnHKQEjOT1g9+B6MVzB2ayfydo5u1Is2FVsyAKGVO1ypXiJ84mSRQka/cx7bxDQyGcSqCBad/N2CE5MFHAq2CzdizQLCR2TIesaKonPtBMvjp7hU6MMsBcoUxLwQv0+ERNf66nvmk6fwEj/9ubiX143Aq/ixFyGETBJl4u8SGAI8DwBPOCKURBTQwhV3NyK6YgoQsHklDYhfH2K/yeti1y+lCvdFLK1ehJHCh2jE3SO8qiMaqiOGqiJKLpDD+gJPVsT69F6sV6XrStWMnOEfsB6+wQ9lJJ0</latexit>

t=t’

<latexit sha1_base64="rD+qwysU7s4n5LTBU1eFFvC8bMQ=">AAAB83icdVDLSgNBEJyNrxhfUY9eBoPgKexqngch4CXHCOYB2RBmJ7PJkNnZZaZXDEt+w4sHRbz6M978GyfJCipa0FBUddPd5UWCa7DtDyuztr6xuZXdzu3s7u0f5A+POjqMFWVtGopQ9TyimeCStYGDYL1IMRJ4gnW96fXC794xpXkob2EWsUFAxpL7nBIwkusCuwfPT+DKmQ/zBbto18olu44NWcKQul2tlS+xkyoFlKI1zL+7o5DGAZNABdG679gRDBKigFPB5jk31iwidErGrG+oJAHTg2R58xyfGWWE/VCZkoCX6veJhARazwLPdAYEJvq3txD/8vox+LVBwmUUA5N0tciPBYYQLwLAI64YBTEzhFDFza2YTogiFExMORPC16f4f9K5KDqVYuWmVGg00ziy6ASdonPkoCpqoCZqoTaiKEIP6Ak9W7H1aL1Yr6vWjJXOHKMfsN4+AXLwkgA=</latexit>

t=1

<latexit sha1_base64="OwZODOJcC3lDt2axe/luLkjBXqg=">AAACBnicbVDNS8MwHE3n15xfVY8iBIc4D45WZHoceNlxgvuArZY0y7ZgmpYkFUftyYv/ihcPinj1b/Dmf2Pa9aCbDwIv7/0eye95IaNSWda3UVhYXFpeKa6W1tY3NrfM7Z22DCKBSQsHLBBdD0nCKCctRRUj3VAQ5HuMdLzby9Tv3BEhacCv1SQkjo9GnA4pRkpLrrkfurE6Sm5inUoq9+nlxE4eMpIcu2bZqloZ4Dyxc1IGOZqu+dUfBDjyCVeYISl7thUqJ0ZCUcxIUupHkoQI36IR6WnKkU+kE2drJPBQKwM4DIQ+XMFM/Z2IkS/lxPf0pI/UWM56qfif14vU8MKJKQ8jRTiePjSMGFQBTDuBAyoIVmyiCcKC6r9CPEYCYaWbK+kS7NmV50n7tGrXqrWrs3K9kddRBHvgAFSADc5BHTRAE7QABo/gGbyCN+PJeDHejY/paMHIM7vgD4zPHwSjmNw=</latexit>

ppre
t→ (xt→→1|xt→)

Value estimation by
heuristic function

✗

✓

Denoising step

Best child

Beam retained

Beam discarded

Assign tree width w(t)
and beam width b(t)

State evaluation

<latexit sha1_base64="Md9rnnHrrw+Mded0LGYVY1DT6D0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseClx4r2lpoQ9lsJ+3SzSbsbsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IhK81jem0mCfkSHkoecUWOlu6e+2y9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6R9UfVq1drtZaXeyOMowgmcwjl4cAV1aEATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcPjI2w</latexit>x0

<latexit sha1_base64="ysFzhJpYjr4iuEwaiRCy26lgS3c=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BItQLyURqR4LXnqsYD+giWWz2bRLN7thd1Ipof/DiwdFvPpfvPlv3LY5aOuDgcd7M8zMCxLONDjOt1XY2Nza3inulvb2Dw6PyscnHS1TRWibSC5VL8CaciZoGxhw2ksUxXHAaTcY38397oQqzaR4gGlC/RgPBYsYwWCkR2+EIZvMqh4JJVwOyhWn5ixgrxM3JxWUozUof3mhJGlMBRCOte67TgJ+hhUwwums5KWaJpiM8ZD2DRU4ptrPFlfP7AujhHYklSkB9kL9PZHhWOtpHJjOGMNIr3pz8T+vn0J062dMJClQQZaLopTbIO15BHbIFCXAp4Zgopi51SYjrDABE1TJhOCuvrxOOlc1t16r319XGs08jiI6Q+eoilx0gxqoiVqojQhS6Bm9ojfryXqx3q2PZWvBymdO0R9Ynz9dapJ1</latexit>

v̂(·)

Higher

Lower

Figure 2: Illustration of DSearch. Our proposed dynamic search has expanding tree widths. We
dynamically adjust weaker beams and reallocate their computational resources to other beams across
time steps, fixing w(t)b(t) while strategically scheduling b(t).

3.3 LOOK-AHEAD HEURISTIC FUNCTION ESTIMATION

We also extend to construct more accurate estimations for value functions. The most commonly used
approach in many contexts (e.g., DPS (Chung et al., 2022), reconstruction guidance (Ho et al., 2022),
SVDD (Li et al., 2024)) is

v̂t(xt) := r(x̂0(xt)). (3)

Intuitively, this is very natural since x̂0(xt) introduced in Section 2.1 is a one-step mapping from
xt to x0 (i.e., approximation of E[x0 | xt]). Mathematically, this is based on the reasoning below.
Recall that the definition of soft value functions involves an expectation w.r.t. ppre0 (·|xt). Then (3) is
derived by replacing the probability ppre0 (·|xt) with its mean:

ppre0 (·|xt) ≈︸︷︷︸
(A)

δ(E[x0|xt]) ≈︸︷︷︸
(B)

δ(x̂0(xt)). (4)

While this approximation has been widely used due to its training-free nature, we propose using a
more accurate approach.

Algorithm 1 Look-Ahead Search for Value Estimation

1: Require: Lookahead step K, duplication size M

2: {x⟨s⟩
t−K}Ms=1 ∼ ppret−K(xt−K |xt).

3: Output: 1/M
∑M

s=1 r(x̂0(x
⟨s⟩
t−K))

The look-ahead value estimation is summarized in Algorithm 1. It consists of three steps: running
M particles for K steps ahead (Line 2), mapping to r(x0) using x̂0(·), and evaluate its reward. Our
approach is based on the following approximation:

ppre0 (·|xt) = Eppre
t−k(xt−k|xt)[p

pre
0 (·|xt−k)] ≈ 1/M

∑
s

δ(E[x0|x⟨s⟩
t−k]) ≈ 1/M

∑
s

δ(x̂0(xt−k)).

Now we compare this with the approximation used in the existing method (4). Here, the approximation
in (A) of (4) is enhanced by considering multiple particles. Meanwhile, the approximation in (B) of
(4) is improved, as x̂0(xt) is expected to become more accurate as t approaches 0. From the next
section, assuming we have a reliable estimate v̂ : X → R, we present our proposed search algorithm.

4 DYNAMIC SEARCH FOR DIFFUSION

In this section, we present our proposed search algorithm, Dynamic Search for Diffusion (DSearch),
for inference-time alignment in diffusion models.

4.1 DYNAMIC SEARCH TREE EXPANSION

Based on the tree formulation in Section 3, a straightforward yet effective approach is to perform beam
search with a fixed tree width and beam size, guided by heuristic functions. However, the underlying
challenge is computational efficiency, as static tree search may lead to wasted computational resources
when encountering suboptimal samples at intermediate steps. To address this issue, we adopt a
dynamic strategy for tree search.

We propose a dynamic search algorithm with expanding tree width that dynamically adjusts the
beam size and tree width across time steps by beam schedule b(·) : [T] → N and tree schedule

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 Dynamic Search for Diffusion (DSearch)

1: Require: Heuristic functions {v̂t}0t=T (refer to Section 3.3), Search set A, (monotonically
decreasing) beam width b(·) : [T] → N, tree width w(·) : [T] → N

2: for t ∈ [T + 1, · · · , 1] do
3: if t ∈ A then
4: For each beam j ∈ [b(t)], we expand the node as Ch(x(j)

t) = {x(j)
t−1[i]}

w(t)
i=1 ∼ ppre(·|x(j)

t)
and perform greedy selection

z
(j)
t−1 = argmax

x∈Ch(x
(j)
t)

v̂(x)

5: Change beam width from b(t) to b(t− 1), i.e., set

{x(j)
t−1}

b(t−1)
j=1 := Selection({z(j)t−1}

b(t)
j=1)

where Selection(·) is a function choosing top b(t− 1) samples with v̂(·) among {z(j)t−1}
b(t)
j=1.

6: else
7: Set Ch(x(j)

t) = x
(j)
t−1 ∼ ppre(·|x(j)

t)
8: end if
9: end for

10: Output: {x[j]
0 }

w(·) : [T] → N, which significantly outperforms static beam search methods. A practical question is
how to control the dynamic beam size and tree width. Given the allocated memory budget during
inference, we typically select these values under the constraint w(t)b(t) = C , where C is a constant.
Our design for tree expansion with dynamic beam-tree width is outlined in Algorithm 2. Intuitively,
if a beam performs poorly, we apply early stopping for that beam and allocate its computational
resources to other beams by increasing the tree width, as illustrated in Figure 2. This step is executed
in Line 4 of our algorithm. Note that the set A in line 3 is determined by search scheduling, which is
detailed in Section 4.2 below. Since the tree width w(t) is determined by C/b(t), we focus primarily
on the selection of the beam width below.

Here we introduce beam scheduling technique, which aims to improve sample selection by initially
over-sampling a larger batch of candidates and then progressively pruning weaker samples at inter-
mediate steps. Instead of treating all samples equally throughout the entire diffusion process, this
approach selectively retains high-quality candidates, allowing computational resources to be focused
on the most promising sequences. Given an initial beam size b(0) and the final beam size b(T), we

can apply exponential scheduling, which is an interpolation following b(t) = b(0) ·
(

b(T)
b(0)

)t/T

, and
illustrated as the left histogram (brown) of Figure 2. Exponential beam scheduling is particularly
effective, as it ensures that early-stage candidates are explored broadly while later-stage refinement
is performed on only the most promising samples. Note that while we generally recommend the
exponential way, we consider the beam scheduling strategy as a hyperparameter and experiment with
multiple functions, which is detailed in Appendix F.3.1.

4.2 SCHEDULING OF SEARCH NODES

In Algorithm 2, to efficiently allocate computational resources during diffusion inference, we propose
using a time-aware scheduling mechanism to dynamically determine the expansion of the search tree
(i.e., Line 3). Hereafter, we explain its details.

We first start with the intuition on why we need such a scheduling mechanism. Unlike in autore-
gressive models (Feng et al., 2023; Hao et al., 2023), where the importance of each step remains
relatively uniform, diffusion decoding exhibits sparse information in early steps and increasingly
dense information as time approaches the final stages. Also, when t is large, heuristic functions are
typically less accurate due to the high noise in the state at early times. This phenomenon motivates a
scheduling strategy to focus search efforts where it is most impactful, particularly in later time steps,
thereby balancing computational efficiency and model performance. Specifically, we define the set
A ⊂ [T], which corresponds to the nodes selected for expansion as follows. Note the computational
time is reduced from O(TC) to O(|A|C), which equals to O(TC̄), where C̄ = (|A|C+T −|A|)/T .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To define such a set A. Given a budget for the size of A as C†, we consider the exponential scheduling
function A = {t ∈ [T]|1(U(0,1) ≤ eβ(T−t)/T) = 1}, thus by integration C† = T (1 − e−β/β),
with C† ≈ T when β → 0 (uniform inclusion) and C† ≈ 0 as β → ∞ (aggressive filtering). Thus
we can control the total search based on computational preference. An illustration is as the left
histogram (green) of Figure 2, where interstices (choice of minimal tree width) become less frequent
as t progresses to 0. Exponential search scheduling is generally effective, as prioritizing late-stage
refinement leads to better optimization. Still, we consider the scheduling function as a hyperparameter
and explore multiple cases, detailed in Appendix F.3.2.

5 RELATED WORKS

Gradient-Free guidance in diffusion models. We focus on inference-time methods for optimizing
rewards in diffusion models without fine-tuning. The early approach generates multiple samples and
select the top samples based on the reward functions, known as best-of-N in autoregressive models
(Stiennon et al., 2020; Nakano et al., 2021; Touvron et al., 2023; Beirami et al., 2024; Gao et al., 2023).
This approach is significantly less efficient, since merely interfering with the final state does not shift
the overall distribution effectively. Recently, gradient-free methods have been proposed to guide
generation with non-differentialble rewards at inference time. SMC (sequential monte carlo)-based
methods (Wu et al., 2024; Trippe et al., 2022; Dou & Song, 2024; Phillips et al., 2024; Cardoso et al.,
2023; Kim et al., 2025; Singhal et al., 2025; Ma et al., 2025; Guo et al., 2025) perform resampling with
replacement to approximate a non-deteriorated optimal policy. While they are originally designed for
conditioning (by setting rewards as classifiers), they can also be applied to reward maximization. The
other approach is SVDD (Li et al., 2024)), which performs value-based importance sampling in an
iterative nature using soft value functions, approximating sampling from the optimal policy. While
these approaches are related, our proposed method is fundamentally different, where we frame the
task as a search problem. From this perspective, we introduce a search algorithm with dynamically
controlled beams, a technique not explored in existing work. One concurrent work (Singhal et al.,
2025) studies inference-time scaling for diffusion; however, our contributions differ substantially in
that we dig into adaptive search methods such as dynamic beam/tree scheduling proposals.

Search and decoding in autoregressive models. The decoding strategy, which dictates how
sentences are generated from the model, is a critical component of text generation in autoregressive
language models (Wu et al., 2016; Chorowski & Jaitly, 2016; Leblond et al., 2021). Recent studies
have explored inference-time techniques for optimizing downstream reward functions (Dathathri
et al., 2019; Yang & Klein, 2021; Qin et al., 2022; Mudgal et al., 2023; Zhao et al., 2024; Han et al.,
2024). Search algorithms, such as Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006;
Browne et al., 2012; Hubert et al., 2021; Xiao et al., 2019), have also been explored in decoding for
autoregressive models. More recently, several studies (Yao et al., 2024; Besta et al., 2024) showed
the potential of applying search to LLMs for enhancing performances on text-based reasoning tasks.
Others have applied MCTS to improve the performance of LMs (Xie et al., 2024; Chen et al., 2024;
Zhang et al., 2024; Zhou et al., 2024; Hao et al., 2023) on math benchmarks (Cobbe et al., 2021)
or synthetic tasks (Yao et al., 2022; Valmeekam et al., 2023). However, such sophisticated search
methodology in decoding is largely under-explored in diffusion models.

For more related works on fine-tuning and gradient-based methods, please refer to Appendix B.

6 EXPERIMENTS

We conduct experiments to assess the performance of our algorithm relative to baselines and its
sensitivity to hyperparameters. We start by outlining the experimental setup, including baselines and
tasks, and then present the results. The code is available at this anonymous link.

6.1 EXPERIMENTAL SETUP

Baselines. We compare DSearch to several representative methods performing reward maximization
during inference. The pre-trained baseline generates samples using pre-trained diffusion models.
Best-of-N generates samples from pre-trained models and select the top 1/N samples. DPS (Chung
et al., 2022) is a widely used training-free version of classifier guidance. For discrete diffusion, we
combine it with the state-of-the-art approach (Nisonoff et al., 2024). SMC resamples among batch
samples at each time step from the weighted distribution based on value estimations. SVDD performs
value-based importance sampling with fixed duplication-size at each time step.

6

https://anonymous.4open.science/r/DSearch-6BFB/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Images: HPS (b) Images: Aesthetic Scores

(c) Images: Compressibility (d) Molecules: Docking - Parp1

(e) Molecules: QED (f) Molecules: SA
Figure 3: Generated samples from DSearch. For more samples, please refer to Appendix H.4. Note
that the surfaces and ribbons in (e) are representations of the target proteins, while the generated
small molecules are displayed in the center.
Hereafter, we explain more about how we compare with each algorithm. Since DSearch uses C̄
times of computation compared to baseline sampling, we set N = C̄ for Best-of-N and duplication-
size C̄ for SVDD, as well as use Best-of-N (N = C̄) on top of DPS and SMC, to ensure that
the computational budget during inference is approximately equivalent across different methods.
Further details are provided in Appendix F.2. For DSearch, implementation details are provided in
Appendix F.3. Unless otherwise stated, we use exponential search and beam scheduling.

Tasks & Rewards. We introduce the pre-trained diffusion models and downstream reward functions
used. Further details are provided in Appendix F.1. For images, we use Stable Diffusion v1.5 as
the pre-trained diffusion model (T = 50). For downstream reward oracles, we use compressibility,
aesthetic score (LAION Aesthetic Predictor V2 in Schuhmann (2022)) and human preference score
(HPS V2 in Wu et al. (2023)), as employed by Black et al. (2023); Fan et al. (2023). For biological
sequences, we use the discrete diffusion model (Sahoo et al., 2024), trained on datasets from Gosai
et al. (2023) for DNA enhancers, and those from Sample et al. (2019) for 5’Untranslated regions
(5’UTRs), as our pre-trained diffusion model (T = 128). For the reward oracles, we use an Enformer
model (Avsec et al., 2021) to predict activity for enhancers under cell-specificity, specifically in the
HepG2 cell line. For 5’UTRs, we respectively use ConvGRU models to predict the mean ribosomal
load (MRL) measured by polysome profiling (Sample et al., 2019), and the stability measured by half
life (Agarwal & Kelley, 2022). Note that the stability reward is non-differentiable since the half life
of 5’UTR is measured after concatenation with coding regions and 3’Untranslated regions. These
tasks are highly relevant for cell and RNA therapies, respectively (Taskiran et al., 2024; Castillo-Hair
& Seelig, 2021). For molecules, we use GDSS (Jo et al., 2022), trained on ZINC-250k (Irwin
& Shoichet, 2005), as the pre-trained diffusion model (T = 1000). For reward oracles, we use
drug-likeness (QED) and synthetic accessibility (SA) calculated by RDKit, as well as binding affinity
to protein Parp1 (Yang et al., 2021) measured by docking score (DS) (calculated by QuickVina 2
(Alhossary et al., 2015)), which are all non-differentiable feedbacks. Here, we renormalize SA to
(10− SA)/9 and docking score to max(−DS, 0), so that a higher value indicates better performance.
These tasks are critical for drug discovery.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of different methods on alignment tasks w.r.t. reward, NLL/quality, and
diversity. The computation budget C̄ for the image compressibility, aesthetic and HPS tasks are 40,
45 and 55, Enhancer, 5’UTR MRL, and 5’UTR Stability tasks 100, 50, and 80, and molecular tasks
50, respectively. ↑ indicates higher values correspond to better performance while ↓ indicates lower
for better. bold highlights the best performances.

Method Image Compressibility Image Aesthetic Score Image Human Preference Score
Compressibility↑ Quality↓ Diversity↑ Aesthetic↑ Quality↓ Diversity↑ HPS↑ Quality↓ Diversity↑

Pre-trained -95.7 ± 7.8 11.4 ± 7.4 0.2852 ± 0.0301 5.45 ± 0.15 11.4 ± 7.4 0.2852 ± 0.0302 0.2729 ± 0.0037 14.5 ± 1.3 0.5161 ± 0.0476
Best-N -65.9 ± 3.4 24.0 ± 6.4 0.2972 ± 0.0283 6.25 ± 0.05 3.2 ± 2.3 0.2713 ± 0.0306 0.2907 ± 0.0006 12.1 ± 10.2 0.3182 ± 0.0322
DPS -61.0 ± 4.9 22.7 ± 1.3 0.2392 ± 0.0499 6.16 ± 0.07 6.1 ± 2.9 0.2875 ± 0.0184 0.2971 ± 0.0026 14.1 ± 3.5 0.4173 ± 0.0304
SMC -66.0 ± 7.8 21.9 ± 7.8 0.1825 ± 0.0791 6.08 ± 0.05 4.7 ± 0.8 0.0649 ± 0.0347 0.2771 ± 0.0015 17.6 ± 1.8 0.4445 ± 0.0230
SVDD -37.3 ± 6.6 46.7 ± 1.6 0.2758 ± 0.0363 6.37 ± 0.26 4.6 ± 5.7 0.2655 ± 0.0540 0.2970 ± 0.0051 22.1 ± 8.0 0.4577 ± 0.0144
DSearch -35.7 ± 4.2 42.7 ± 0.9 0.3156 ± 0.0111 6.54 ± 0.12 5.8 ± 10.5 0.2667 ± 0.0166 0.3133 ± 0.0058 16.5 ± 4.6 0.4323 ± 0.0534

Method Enhancer HepG2 5’UTR MRL 5’UTR Stability
HepG2↑ NLL↓ Diversity↑ MRL↑ NLL↓ Diversity↑ Stability↑ NLL↓ Diversity↑

Pre-trained 0.305 ± 0.295 261.0 ± 0.5 0.7197 ± 0.1650 0.345 ± 0.112 68.4 ± 0.2 0.7380 ± 0.1263 0.212 ± 0.010 68.4 ± 0.3 0.7375 ± 0.1735
Best-N 3.319 ± 0.152 263.0 ± 0.8 0.7097 ± 0.1703 1.009 ± 0.006 68.0 ± 0.4 0.7280 ± 0.1248 0.342 ± 0.002 68.9 ± 0.2 0.7275 ± 0.1710
DPS 3.665 ± 0.222 258.0 ± 2.1 0.7454 ± 0.0755 0.995 ± 0.016 72.0 ± 0.2 0.7408 ± 0.0956 0.419 ± 0.002 67.0 ± 0.5 0.6040 ± 0.2188
SMC 5.601 ± 0.208 288.0 ± 1.0 0.5737 ± 0.3563 1.008 ± 0.013 68.5 ± 0.5 0.5544 ± 0.2857 0.329 ± 0.006 69.0 ± 0.6 0.4856 ± 0.4068
SVDD 7.040 ± 0.068 246.2 ± 5.3 0.7159 ± 0.1024 1.356 ± 0.009 66.7 ± 0.8 0.6349 ± 0.2027 0.469 ± 0.002 69.2 ± 0.8 0.7309 ± 0.1572
DSearch 7.245 ± 0.502 260.1 ± 1.9 0.7063 ± 0.1684 1.521 ± 0.011 68.6 ± 0.6 0.6258 ± 0.2135 0.533 ± 0.004 71.0 ± 0.7 0.7001 ± 0.1783

Method Molecule Drug-likeness Molecule Synthetic Accessibility Molecule Binding Affinity - Parp1
QED↑ NLL↓ Diversity↑ SA↑ NLL↓ Diversity↑ Docking Score↑ NLL↓ Diversity↑

Pre-trained 0.656 ± 0.007 958 ± 58 0.8733 ± 0.1580 0.652 ± 0.006 971 ± 69 0.8429 ± 0.2227 7.2 ± 0.5 971 ± 32 0.7784 ± 0.2998
Best-N 0.887 ± 0.008 943 ± 33 0.8779 ± 0.1579 0.921 ± 0.014 946 ± 62 0.8442 ± 0.2220 10.2 ± 0.4 951 ± 22 0.7938 ± 0.3052
DPS 0.885 ± 0.019 971 ± 41 0.8961 ± 0.0761 0.968 ± 0.026 917 ± 57 0.8968 ± 0.0752 11.6 ± 0.1 948 ± 63 0.8882 ± 0.0581
SMC 0.796 ± 0.007 1086 ± 21 0.6441 ± 0.2591 0.633 ± 0.007 1050 ± 28 0.6894 ± 0.2268 10.6 ± 0.5 957 ± 36 0.5092 ± 0.3673
SVDD 0.931 ± 0.003 1049 ± 24 0.8920 ± 0.0589 0.986 ± 0.019 1068 ± 24 0.8633 ± 0.2277 12.7 ± 0.2 993 ± 25 0.8980 ± 0.0635
DSearch 0.946 ± 0.002 911 ± 28 0.8424 ± 0.2195 1.000 ± 0.009 892 ± 61 0.8546 ± 0.2424 13.7 ± 0.3 731 ± 35 0.7650 ± 0.2934

(a) Image: Aesthetic (b) Image: HPS (c) 5’UTRs: stability (d) Molecule: SA

Figure 4: Reward (median & standard deviation) under different constraints C̄.

Metrics. We measure the target reward as well as naturalness and diversity metrics for comprehensive
evaluation. We calculate the negative log-likelihood (NLL) of the generated samples w.r.t the
pretrained model to measure how likely the samples are to be natural. The likelihood is calculated
using the ELBO of the pretrained diffusion model. For images, we use BRISQUE to assess the quality
(naturalness) of generated samples (Mittal et al., 2011). We also evaluate the diversity of generated
samples. A higher diversity score indicates greater variability in generation, ensuring broader
exploration of the data space. For discrete biological sequences, we measure diversity using the
pairwise distance of one-hot representation subtracted by 1 to capture structural variations. For images,
we use CLIP (Radford et al., 2021) embeddings of samples to calculate average pairwise cosine
similarity. For molecules, we use Tanimoto similarity on molecular Morgan fingerprints (ECFP),
with diversity quantified as the average pairwise similarity of generated molecules, subtracted by 1.

6.2 EFFECTIVENESS OF DSEARCH

We compare the performance of DSearch with other methods. The main results are summarized in
Table 1 on page 8. To visualize the generated samples, we also present several examples in Figure 3.
Further results and studies, including runtime, more metrics and ablations are in Appendices E,G,H.

DSearch achieves superior reward performance across all evaluated tasks, consistently outperforming
baselines. This trend is particularly evident in biological sequence generation tasks, where DSearch
exhibits significantly higher scores in HepG2 enhancer activity, 5’UTR MRL, and stability. The
improvement over methods such as Best-of-N, SVDD, and SMC suggests that DSearch’s dynamic
tree search effectively prioritizes high-reward samples while maintaining efficient exploration. While
DSearch generally improves sample rewards, its naturalness remains competitive with baselines. In
molecular generation tasks, DSearch achieves lower NLL compared to baselines, suggesting that
it generates chemically realistic molecules. DSearch also exhibits a balance between diversity and
reward, ensuring a reasonable level of diversity while significantly enhancing reward. In contrast, the
baseline SMC, which rely on batch resampling strategies, show a marked drop in diversity.

In Figure 4, we illustrate how DSearch performance scales with computational budget C̄. As C̄
increases, reward scores improve for all methods, but the gains are most pronounced for DSearch.
This shows that dynamic tree search effectively utilizes additional computation to align samples.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Search Schedule (DNA) (b) Beam Schedule (DNA) (c) Search Schedule (Molecule) (d) Beam Schedule (Molecule)

Figure 5: Reward distributions of generated samples using DSearch with different scheduling
algorithms. We fix C̄ = 40 for DNA task and C̄ = 20 for molecular task. For search scheduling,
“all” has |A| = T while other algorithms have |A|/T = 65%± 1%. For beam scheduling, we use
b(T)
b(0) = 4 for different algorithms except “None”, which does not use beam reduction.

(a) Different K (M -Max, M=6, DNA) (b) Different pooling (M=6, 5’UTR MRL) (c) Different M (M -Max, 5’UTR stability)

Figure 6: Reward (median and standard deviation) of generated samples with different lookahead
hyperparamters. We fix C̄ = 40.

6.3 EFFECTIVENESS OF SCHEDULING SEARCH EXPANSION

Search scheduling. We compare different search scheduling strategies, including uniform, linear,
exponential, and no search schedules (detailed in Appendix F). As shown in Figure 5(a,c), we
observe that exponential scheduling achieves better rewards while reducing computational cost by
35% compared to the no scheduling (“all”) baseline. This suggests that focusing search efforts in the
later steps of the generation process leads to better sample quality without requiring a proportional
increase in computation. Linear and uniform scheduling also improve efficiency but do not reach
the same level of performance, as they distribute search operations more evenly across time steps.
These results validate that adaptive scheduling allows for significant computational savings while
maintaining or even improving rewards, highlighting the importance of strategic search in diffusion.

Beam scheduling. We also evaluate different beam scheduling strategies, including quadratic, linear,
sigmoid, exponential, and no pruning schedules. From Figure 5(b,d), we observe that dropping weaker
samples through exponential beam scheduling performs the best. This demonstrates that reducing
the search space aggressively in earlier steps allows for wider and more refined exploration later,
adapting to the dynamic nature of the search. These results indicate that progressively focusing efforts
on high-quality samples enhances overall alignment performance without increasing computational
overhead, which is a key factor in DSearch.

6.4 EFFECTIVENESS OF LOOKAHEAD MECHANISM

Another component of DSearch is the lookahead mechanism introduced in Section 3.3, which
strengthens the reward estimation of intermediate states. We explore the impact of different lookahead
horizons K and the number of forward evaluations M . For each sample, we generate M lookaheads
of K steps, compute the corresponding final rewards, and select the best intermediate states either
by the maximum or mean of these evaluations. From Figure 6, we observe that increasing K
consistently improves performance across different tasks, as it allows for a more informed selection
of intermediate states. However, the gains saturate beyond a certain threshold, suggesting a limit
of gain from the estimation accuracy. Additionally, choosing states by maximum reward generally
outperforms averaging, as it ensures that the highest-quality rollouts guide the generation process.
The effect of M is more subtle; higher M leads to better optimization in some tasks where exploration
is crucial, such as 5’UTR stability.

7 CONCLUSION

This work builds on works in diffusion models, value-guided generation, and search algorithms,
proposing a coherent framework for inference alignment. Our proposals open new avenues for
tackling alignment tasks with diffusion models, a powerful tool for property-driven generation. Our
studies show that DSearch effectively balances reward maximization and sample diversity, while
maintaining reasonable likelihood.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

Vikram Agarwal and David R Kelley. The genetic and biochemical determinants of mrna degradation
rates in mammals. Genome biology, 23(1):245, 2022.

Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,
and reliable molecular docking with quickvina 2. Bioinformatics, 31(13):2214–2216, 2015.

Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,
Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene
expression prediction from sequence by integrating long-range interactions. Nature methods, 18
(10):1196–1203, 2021.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
Geiping, and Tom Goldstein. Universal guidance for diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 843–852, 2023.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein, Chirag
Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy.
arXiv preprint arXiv:2401.01879, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In AAAI, 2024.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 2012.

Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo guided
diffusion for bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023.

Sebastian M Castillo-Hair and Georg Seelig. Machine learning for designing next-generation mrna
therapeutics. Accounts of Chemical Research, 55(1):24–34, 2021.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553, 2024.

Jan Chorowski and Navdeep Jaitly. Towards better decoding and language model integration in
sequence to sequence models. arXiv preprint arXiv:1612.02695, 2016.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment. arXiv
preprint arXiv:2304.06767, 2023.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations, 2024.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. DPOK: Reinforcement learning for
fine-tuning text-to-image diffusion models. arXiv preprint arXiv:2305.16381, 2023.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Lucas Ferreira DaSilva, Simon Senan, Zain Munir Patel, Aniketh Janardhan Reddy, Sameer Gabbita,
Zach Nussbaum, Cesar Miguel Valdez Cordova, Aaron Wenteler, Noah Weber, Tin M Tunjic, et al.
Dna-diffusion: Leveraging generative models for controlling chromatin accessibility and gene
expression via synthetic regulatory elements. bioRxiv, pp. 2024–02, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Sager J Gosai, Rodrigo I Castro, Natalia Fuentes, John C Butts, Susan Kales, Ramil R Noche,
Kousuke Mouri, Pardis C Sabeti, Steven K Reilly, and Ryan Tewhey. Machine-guided design of
synthetic cell type-specific cis-regulatory elements. bioRxiv, 2023.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis Antonoglou,
and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In International
Conference on Machine Learning, pp. 3769–3778. PMLR, 2020.

Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance for
diffusion models: An optimization perspective. arXiv preprint arXiv:2404.14743, 2024.

Yingqing Guo, Yukang Yang, Hui Yuan, and Mengdi Wang. Training-free guidance beyond differ-
entiability: Scalable path steering with tree search in diffusion and flow models. arXiv preprint
arXiv:2502.11420, 2025.

Seungwook Han, Idan Shenfeld, Akash Srivastava, Yoon Kim, and Pulkit Agrawal. Value augmented
sampling for language model alignment and personalization. arXiv preprint arXiv:2405.06639,
2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning, pp. 4476–4486. PMLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fumitaka Inoue, Anat Kreimer, Tal Ashuach, Nadav Ahituv, and Nir Yosef. Identification and
massively parallel characterization of regulatory elements driving neural induction. Cell stem cell,
25(5):713–727, 2019.

John J Irwin and Brian K Shoichet. ZINC- a free database of commercially available compounds for
virtual screening. Journal of chemical information and modeling, 45(1):177–182, 2005.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning, pp.
10362–10383. PMLR, 2022.

Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern recognition
of hydrogen-bonded and geometrical features. Biopolymers: Original Research on Biomolecules,
22(12):2577–2637, 1983.

Seiji Kajita, Tomoyuki Kinjo, and Tomoki Nishi. Autonomous molecular design by monte-carlo tree
search and rapid evaluations using molecular dynamics simulations. Communications Physics, 3
(1):77, 2020.

Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
reward over-optimization. In The Thirteenth International Conference on Learning Representations,
2025.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Avantika Lal, David Garfield, Tommaso Biancalani, and Gokcen Eraslan. reglm: Designing realistic
regulatory dna with autoregressive language models. In International Conference on Research in
Computational Molecular Biology, pp. 332–335. Springer, 2024.

Greg Landrum et al. Rdkit: Open-source cheminformatics software, 2016. URL http://www. rdkit.
org/, https://github. com/rdkit/rdkit, 2016.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Jean-Baptiste Lespiau, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding beyond beam
search. arXiv preprint arXiv:2104.05336, 2021.

Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation. In International Conference on Machine Learning, pp. 18872–18892.
PMLR, 2023.

Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-
calani, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-free guidance in continuous
and discrete diffusion models with soft value-based decoding. arXiv preprint arXiv:2408.08252,
2024.

David J Lipman, Stephen F Altschul, and John D Kececioglu. A tool for multiple sequence alignment.
Proceedings of the National Academy of Sciences, 86(12):4412–4415, 1989.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,
2022.

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
scaling denoising steps. arXiv preprint arXiv:2501.09732, 2025.

Anish Mittal, Anush K Moorthy, and Alan C Bovik. Blind/referenceless image spatial quality
evaluator. In 2011 conference record of the forty fifth asilomar conference on signals, systems and
computers (ASILOMAR), pp. 723–727. IEEE, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. arXiv preprint arXiv:2310.17022, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligiannidis,
and Arnaud Doucet. Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320, 2024.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based
constrained text generation with langevin dynamics. Advances in Neural Information Processing
Systems, 35:9538–9551, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information
and modeling, 50(5):742–754, 2010.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Paul J Sample, Ban Wang, David W Reid, et al. Human 5 utr design and variant effect prediction
from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.

Anirban Sarkar, Ziqi Tang, Chris Zhao, and Peter Koo. Designing dna with tunable regulatory activity
using discrete diffusion. bioRxiv, pp. 2024–05, 2024.

Chrisoph Schuhmann. LAION aesthetics, Aug 2022. URL https://laion.ai/blog/
laion-aesthetics/.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

13

https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Kyle Swanson, Gary Liu, Denise B Catacutan, Autumn Arnold, James Zou, and Jonathan M Stokes.
Generative ai for designing and validating easily synthesizable and structurally novel antibiotics.
Nature Machine Intelligence, 6(3):338–353, 2024.

Ibrahim I Taskiran, Katina I Spanier, Hannah Dickmänken, Niklas Kempynck, Alexandra Pančı́ková,
Eren Can Ekşi, Gert Hulselmans, Joy N Ismail, Koen Theunis, Roel Vandepoel, et al. Cell-type-
directed design of synthetic enhancers. Nature, 626(7997):212–220, 2024.

Roberto Todeschini and Viviana Consonni. Handbook of molecular descriptors. John Wiley & Sons,
2008.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024a.

Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scalia, Gökcen Eraslan, Avantika
Lal, Sergey Levine, and Tommaso Biancalani. Bridging model-based optimization and generative
modeling via conservative fine-tuning of diffusion models. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024b. URL https://openreview.net/
forum?id=zIr2QjU4hl.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. NeurIPS, 2023.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8228–8238, 2024.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490, 2022.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment techniques:
Rlhf, rlaif, ppo, dpo and more. arXiv preprint arXiv:2407.16216, 2024.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
asymptotically exact conditional sampling in diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. arXiv preprint arXiv:2306.09341, 2023.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

Chenjun Xiao, Ruitong Huang, Jincheng Mei, Dale Schuurmans, and Martin Müller. Maximum
entropy monte-carlo planning. Advances in Neural Information Processing Systems, 32, 2019.

14

https://openreview.net/forum?id=zIr2QjU4hl
https://openreview.net/forum?id=zIr2QjU4hl

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218, 2021.

Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead discovery
with explorative rl and fragment-based molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021.

Xiufeng Yang, Jinzhe Zhang, Kazuki Yoshizoe, Kei Terayama, and Koji Tsuda. Chemts: an efficient
python library for de novo molecular generation. Science and technology of advanced materials,
18(1):972–976, 2017.

Xiufeng Yang, Tanuj Kr Aasawat, and Kazuki Yoshizoe. Practical massively parallel monte-carlo
tree search applied to molecular design. arXiv preprint arXiv:2006.10504, 2020.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. NeurIPS, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. NeurIPS, 2024.

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-
free energy-guided conditional diffusion model. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 23174–23184, 2023.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing
gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394, 2024.

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference in
language models via twisted sequential monte carlo. arXiv preprint arXiv:2404.17546, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. ICML, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A BROADER IMPACT

This paper presents work whose goal is to advance the field of Deep Learning, particularly diffusion
models. While this research primarily contributes to technical advancements in generative modeling,
it has potential implications in domains such as drug discovery and biomolecular engineering. We
acknowledge that generative models, particularly those optimized for specific reward functions, could
be misused if not carefully applied. However, our work is intended for general applications, and
we emphasize the importance of responsible deployment and alignment with ethical guidelines in
generative AI. Overall, our contributions align with the broader goal of machine learning methodolo-
gies, and we do not foresee any immediate ethical concerns beyond those generally associated with
generative models.

B FURTHER RELATED WORKS

We further discuss works on diffusion post-training in a broader context.

Fine-tuning of diffusion models. Several methods exist for fine-tuning generative models to optimize
downstream reward functions, such as classifier-free guidance (Ho & Salimans, 2022), RL-based
fine-tuning (Fan et al., 2023; Black et al., 2023), and its variants (Dong et al., 2023; Wallace et al.,
2024). However, these approaches come with caveats, including high computational costs and the
risk of easily forgetting pre-trained models. In this work, we focus on inference-time techniques that
eliminates the need for fine-tuning generative models.

Gradient-based guidance in diffusion models. Classifier guidance (Dhariwal & Nichol, 2021;
Song et al., 2020) has been widely used to condition pre-trained diffusion models without fine-
tuning. Although these methods do not originally focus on optimizing reward functions, they can
be applied for this purpose (Uehara et al., 2024a). In this approach, an additional derivative of a
certain value function is incorporated into the drift term (mean) of pre-trained diffusion models during
inference. Subsequent variants (e.g., Chung et al. (2022); Ho et al. (2022); Bansal et al. (2023);
Guo et al. (2024); Wang et al. (2022); Yu et al. (2023); Nisonoff et al. (2024)) have been proposed
to simplify the learning of value functions. However, these methods require the differentiability
of proxy models, which limits their applicability to non-differentiable features/reward feedbacks
commonly encountered in scientific domains. Additionally, this approach cannot be directly extended
to discrete diffusion models (e.g., (Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024)) in a principle
way. Note a notable exception of classifier guidance tailored to discrete diffusion models has been
recently proposed by Nisonoff et al. (2024). However, our approach can be applied to both continuous
and discrete diffusion models in a unified manner. Furthermore, their practical method requires the
differentiability of proxy models.

C FAQ & DISCUSSIONS

In this section, we explore several additional questions on the design of DSearch.

C.1 DOES DYNAMIC SEARCH REDUCE DIVERSITY?

Here we include in-depth analysis on how the DSearch design preserve diversity. In DSearch, we
intentionally avoid redundant sampling from the same parent nodes by designing oversampling and
controlled beam/tree scheduling. At the beginning of the reverse process, we oversample more initial
beams than needed in the final output to enable broader exploration. At each denoising step, while
we selectively retain high-reward beams and discard certain beams, for each retained beam, we select
exactly one of its own next states as the node to continue with. Crucially, this ensures that no two
beams at any timestep share the same parent. Each child has its unique parent beam, maintaining
diversity across paths. We control the beam width to decrease under a certain schedule and thus tree
width increases: the computational resources freed up by discarded beams are allocated to other
beams. At the final step, we have the number of output samples (beams) we need, and each sample
comes from a distinct ancestral trajectory. This design guarantees that the final samples are not
collapsed to descendants of same parents or ancestors. Thus our dynamic search does not lead to near
identical samples, but rather makes well use of resources by focusing the search on promising paths.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In addition, we include diversity metrics for all domains and tasks, including pairwise cosine for
sequences and molecules, CLIP distance for images. Additional molecular metrics including various
validity and diversity metrics are provided in Appendix G.5. Results show that DSearch maintains
comparable or better diversity than SVDD and Best-of-N for the same reward level. This is due to
oversampling and dynamic width control, which help maintain multiple diverse beams while still
guiding toward high-reward modes. Meanwhile, a variant of DSearch introduced in Appendix E,
DSearch-R (aggressive version) does reduce diversity as expected, which we discuss in Appendix E.

C.2 WHY IS THE GRADIENT-FREE DESIGN BENEFICIAL?

our work specifically targets a common and important class of real-world problems where reward
functions are non-differentiable, sparse, black-box, or expensive to compute. This includes many
settings in scientific discovery domains.

• For drug design, we often want to optimize physics-based feedback such as Autodock Vienna (Trott
& Olson, 2010) for binding affinity. Many powerful science models include non-differentiable
features based on domain knowledge in our target scores. E.g., the famous Alphafold (Abramson
et al., 2024) incorporates lots of non-differentiable features such as MSA (Lipman et al., 1989)
and conformation search for functional scores. Another well-known non-differentiable feature is
molecular fingerprints (Rogers & Hahn, 2010).

• In many scientific tasks, training a differentiable reward model is infeasible due to the lack of data.
E.g., for many novel targets (new protein binding pockets), there is no known binder (molecule),
let alone a sufficient labeled dataset to train a neural predictor.

• Even with data, we emphasize that it is extremely hard to construct differentiable models in these
scenarios. Since practical calculation of many scientific properties requires chemical algorithms
or physical simulations (as the examples above), which even state-of-the-art ML models cannot
approximate with good accuracy, and are not scientifically trustworthy due to lack of interpretability.

In this common case for science tasks, it is a necessity to use non-differentiable rewards. Our
method does not preclude the use of differentiable rewards but rather offers a model-agnostic and
plug-and-play inference-time strategy that is broadly applicable, even in low-data or black-box, or
high-stakes applications. Furthermore, DSearch can technically integrate gradient information by
using classifier guidance as proposal distribution (instead of pretrained models) to make the tree.
Thus our method can be effectively integrated with gradient-based techniques.

D POTENTIAL LIMITATIONS

Although totally controllable, our approach requires more computational resources (when not paral-
lelized) or memory (when parallelized) than standard inference methods, as noted in Section 4. Taking
this aspect into account, we compare DSearch, with baselines such as best-of-N in our experimental
section (Section 6). For gradient-based approaches like classifier guidance and DPS, it is important
to note that these methods also incur additional computational and memory complexity due to the
backward pass, which DSearch avoids.

E VARIANT: DYNAMIC BEAM RESAMPLE

Under the strategy of dynamic search, we also explore an alternative design choice for beam control,
as outlined in Algorithm 3. In this algorithm, we mitigate the waste of computational resources by
replacing poor beams with high-quality ones, while both the beam width and the tree width can be
fixed. Specifically, at each time step, after performing a greedy selection based on heuristic functions,
we discard suboptimal beams of a certain percentage and resample from high-quality samples in
Line 4 using the selection function, which samples by probability of exponential tiling. With beam
replacement, DSearch-R drives extreme optimization at the expense of sample variability, while
DSearch maintains a strong balance between diversity and reward optimization.

We compare the performance of DSearch and its variant DSearch-R with other methods. The main
results are summarized in Table 2 on page 19. DSearch achieves superior reward performance
across all evaluated tasks, consistently outperforming baselines. This trend is particularly evident in

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 3 DSearch with Beam Resample (DSearch-R)

1: Require: Heuristic function {v̂t}0t=T , Search set A, Beam width b, tree width w, resample rate
rr

2: for t ∈ [T + 1, · · · , 1] do
3: if t ∈ A then
4: Do Line 4 in Algorithm 2.
5: vth = Quantile1−rr ({v̂(z(j)t−1)}bj=1)

6: Drop beams and remain Br = {z(j)t−1|1(v̂(z
(j)
t−1) ≥ vth) = 1}

7: Resampling with replacement:

{x(j)
t−1}rrbj=1 ∼

|Br|∑
i=1

g(v̂(z
(i)
t−1))∑

|Br| g(v̂(z
(i)
t−1))

δ(z
(i))
t−1),

where z
(i)
t−1 ∈ Br, g(·) = exp(·/(maxi v̂(z

(i))
t−1))).

8: Remaining {x(j)
t−1}bj=rrb+1 = Br

9: else
10: Ch(x

(j)
t) = x

(j)
t−1 ∼ ppre(·|x(j)

t)
11: end if
12: end for
13: Output: {x[j]

0 }

biological sequence generation tasks, where DSearch exhibits significantly higher scores in HepG2
enhancer activity, 5’UTR MRL, and stability. The improvement over methods such as Best-of-N,
SVDD, and SMC suggests that DSearch’s dynamic tree search effectively prioritizes high-reward
samples while maintaining efficient exploration. DSearch-R, which employs beam replacement,
exhibits an even stronger tendency to maximize rewards. However, as anticipated, this comes at the
cost of reduced diversity, as the replacement mechanism strongly biases toward highly rewarding
samples while discarding potential alternatives. While DSearch generally improves sample rewards,
its naturalness remains competitive with baselines. In molecular generation tasks, DSearch achieves
lower NLL compared to baselines, suggesting that it generates chemically realistic molecules.
DSearch also exhibits a balance between diversity and reward, ensuring a reasonable level of diversity
while significantly enhancing reward. In contrast, the baseline SMC and DSearch-R, which rely on
batch resampling strategies, show a marked drop in diversity.

In Appendix G.1, we illustrate how DSearch and DSearch-R performances scale with computational
budget C̄.

F EXPERIMENTAL DETAILS

F.1 TASK SETTINGS

F.1.1 IMAGES

We define compressibility score as the negative file size in kilobytes (kb) of the image after JPEG
compression following (Black et al., 2023). We define aesthetic scorer implemented as a linear MLP
on top of the CLIP embeddings, which is trained on more than 400k human evaluations. The human
preference scorer Wu et al. (2023) is the CLIP model fine-tuned using an extensive dataset comprising
798,090 human ranking choices across 433,760 pairs of images. As pre-trained models, we use
Stable Diffusion, which is a common text-to-image diffusion model. As prompts to condition, we
use animal prompts following (Black et al., 2023) such as [Dog, Cat, Panda, Rabbit, Horse, ...] for
aesthetic score task and human instruction prompts following (Wu et al., 2023) for HPS task.

F.1.2 MOLECULES

We calculate QED and SA scores using the RDKit (Landrum et al., 2016) library. We use the docking
program QuickVina 2 (Alhossary et al., 2015) to compute the docking scores following Yang et al.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: Performance of different methods on alignment tasks w.r.t. reward, NLL/quality, and
diversity. The computation budget C̄ for the image compressibility, aesthetic and HPS tasks are 40,
45 and 55, Enhancer, 5’UTR MRL, and 5’UTR Stability tasks 100, 50, and 80, and molecular tasks
50, respectively. ↑ indicates higher values correspond to better performance while ↓ indicates lower
for better. bold and underline highlight the best and second best performance, respectively.

Method Image Compressibility Image Aesthetic Score Image Human Preference Score
Compressibility↑ Quality↓ Diversity↑ Aesthetic↑ Quality↓ Diversity↑ HPS↑ Quality↓ Diversity↑

Pre-trained -95.7 ± 7.8 11.4 ± 7.4 0.2852 ± 0.0301 5.45 ± 0.15 11.4 ± 7.4 0.2852 ± 0.0302 0.2729 ± 0.0037 14.5 ± 1.3 0.5161 ± 0.0476
Best-N -65.9 ± 3.4 24.0 ± 6.4 0.2972 ± 0.0283 6.25 ± 0.05 3.2 ± 2.3 0.2713 ± 0.0306 0.2907 ± 0.0006 12.1 ± 10.2 0.3182 ± 0.0322
DPS -61.0 ± 4.9 22.7 ± 1.3 0.2392 ± 0.0499 6.16 ± 0.07 6.1 ± 2.9 0.2875 ± 0.0184 0.2971 ± 0.0026 14.1 ± 3.5 0.4173 ± 0.0304
SMC -66.0 ± 7.8 21.9 ± 7.8 0.1825 ± 0.0791 6.08 ± 0.05 4.7 ± 0.8 0.0649 ± 0.0347 0.2771 ± 0.0015 17.6 ± 1.8 0.4445 ± 0.0230
SVDD -37.3 ± 6.6 46.7 ± 1.6 0.2758 ± 0.0363 6.37 ± 0.26 4.6 ± 5.7 0.2655 ± 0.0540 0.2970 ± 0.0051 22.1 ± 8.0 0.4577 ± 0.0144
DSearch -35.7 ± 4.2 42.7 ± 0.9 0.3156 ± 0.0111 6.54 ± 0.12 5.8 ± 10.5 0.2667 ± 0.0166 0.3133 ± 0.0058 16.5 ± 4.6 0.4323 ± 0.0534
DSearch-R -21.6 ± 0.5 82.9 ± 3.1 0.1711 ± 0.0059 6.67 ± 0.08 1.8 ± 2.1 0.2020 ± 0.0041 0.2984 ± 0.0001 21.7 ± 2.0 0.3935 ± 0.0062

Method Enhancer HepG2 5’UTR MRL 5’UTR Stability
HepG2↑ NLL↓ Diversity↑ MRL↑ NLL↓ Diversity↑ Stability↑ NLL↓ Diversity↑

Pre-trained 0.305 ± 0.295 261.0 ± 0.5 0.7197 ± 0.1650 0.345 ± 0.112 68.4 ± 0.2 0.7380 ± 0.1263 0.212 ± 0.010 68.4 ± 0.3 0.7375 ± 0.1735
Best-N 3.319 ± 0.152 263.0 ± 0.8 0.7097 ± 0.1703 1.009 ± 0.006 68.0 ± 0.4 0.7280 ± 0.1248 0.342 ± 0.002 68.9 ± 0.2 0.7275 ± 0.1710
DPS 3.665 ± 0.222 258.0 ± 2.1 0.7454 ± 0.0755 0.995 ± 0.016 72.0 ± 0.2 0.7408 ± 0.0956 0.419 ± 0.002 67.0 ± 0.5 0.6040 ± 0.2188
SMC 5.601 ± 0.208 288.0 ± 1.0 0.5737 ± 0.3563 1.008 ± 0.013 68.5 ± 0.5 0.5544 ± 0.2857 0.329 ± 0.006 69.0 ± 0.6 0.4856 ± 0.4068
SVDD 7.040 ± 0.068 246.2 ± 5.3 0.7159 ± 0.1024 1.356 ± 0.009 66.7 ± 0.8 0.6349 ± 0.2027 0.469 ± 0.002 69.2 ± 0.8 0.7309 ± 0.1572
DSearch 7.245 ± 0.502 260.1 ± 1.9 0.7063 ± 0.1684 1.521 ± 0.011 68.6 ± 0.6 0.6258 ± 0.2135 0.533 ± 0.004 71.0 ± 0.7 0.7001 ± 0.1783
DSearch-R 8.149 ± 0.268 249.5 ± 3.8 0.5661 ± 0.3508 1.591 ± 0.006 66.9 ± 0.8 0.5236 ± 0.3051 0.573 ± 0.003 69.5 ± 0.8 0.5403 ± 0.3459

Method Molecule Drug-likeness Molecule Synthetic Accessibility Molecule Binding Affinity - Parp1
QED↑ NLL↓ Diversity↑ SA↑ NLL↓ Diversity↑ Docking Score↑ NLL↓ Diversity↑

Pre-trained 0.656 ± 0.007 958 ± 58 0.8733 ± 0.1580 0.652 ± 0.006 971 ± 69 0.8429 ± 0.2227 7.2 ± 0.5 971 ± 32 0.7784 ± 0.2998
Best-N 0.887 ± 0.008 943 ± 33 0.8779 ± 0.1579 0.921 ± 0.014 946 ± 62 0.8442 ± 0.2220 10.2 ± 0.4 951 ± 22 0.7938 ± 0.3052
DPS 0.885 ± 0.019 971 ± 41 0.8961 ± 0.0761 0.968 ± 0.026 917 ± 57 0.8968 ± 0.0752 11.6 ± 0.1 948 ± 63 0.8882 ± 0.0581
SMC 0.796 ± 0.007 1086 ± 21 0.6441 ± 0.2591 0.633 ± 0.007 1050 ± 28 0.6894 ± 0.2268 10.6 ± 0.5 957 ± 36 0.5092 ± 0.3673
SVDD 0.931 ± 0.003 1049 ± 24 0.8920 ± 0.0589 0.986 ± 0.019 1068 ± 24 0.8633 ± 0.2277 12.7 ± 0.2 993 ± 25 0.8980 ± 0.0635
DSearch 0.946 ± 0.002 911 ± 28 0.8424 ± 0.2195 1.000 ± 0.009 892 ± 61 0.8546 ± 0.2424 13.7 ± 0.3 731 ± 35 0.7650 ± 0.2934
DSearch-R 0.934 ± 0.001 527 ± 54 0.6145 ± 0.2053 1.000 ± 0.168 935 ± 31 0.4465 ± 0.3830 14.4 ± 0.2 647 ± 39 0.6871 ± 0.2555

(2021), with exhaustiveness as 1. Note that the docking scores are initially negative values, while we
reverse it to be positive and then clip the values to be above 0, i.e.. We compute DS regarding protein
parp1 (Poly [ADP-ribose] polymerase-1), which is a target protein that has the highest AUROC
scores of protein-ligand binding affinities for DUD-E ligands approximated with AutoDock Vina.

F.1.3 BIOLOGICAL SEQUENCES

We examine two publicly available large datasets: enhancers (n ≈ 700k) (Gosai et al., 2023) and
UTRs (n ≈ 300k) (Sample et al., 2019), with activity levels measured by massively parallel reporter
assays (MPRA) (Inoue et al., 2019), where the expression driven by each sequence is measured.
These datasets have been widely used for sequence optimization in DNA and RNA engineering,
particularly in advancing cell and RNA therapies (Castillo-Hair & Seelig, 2021; Lal et al., 2024;
Ferreira DaSilva et al., 2024; Uehara et al., 2024b). We pretrain the masked discrete diffusion model
(Sahoo et al., 2024) on all the sequences.

In the Enhancers dataset, each x is a DNA sequence of length 200. The reward oracle is learned from
this dataset using the Enformer architecture (Avsec et al., 2021), while y ∈ R is the measured activity
in the HepG2 cell line. The Enformer trunk has 7 convolutional layers, each having 1536 channels. as
well as 11 transformer layers, with 8 attention heads and a key length of 64. Dropout regularization is
applied across the attention mechanism, with an attention dropout rate of 0.05, positional dropout of
0.01, and feedforward dropout of 0.4. The convolutional head for final prediction has 2*1536 input
channels and uses average pooling, without an activation function. These datasets and reward models
are widely used in the literature on computational enhancer design (Lal et al., 2024; Sarkar et al.,
2024).

In the 5’UTRs dataset, x is a 5’UTR RNA sequence of length 50. The reward oracles are learned
from datasets using ConvGRU models (Dey & Salem, 2017), which has been widely acknowledged
for computational RNA design, and y ∈ R is the mean ribosomal load (MRL) measured by polysome
profiling, and the stability measured by half life (Agarwal & Kelley, 2022), respectively. The
ConvGRU trunk has a stem input with 4 channels and a convolutional stem that outputs 64 channels
using a kernel size of 15. The model contains 6 convolutional layers, each initialized with 64 channels
and a kernel size of 5. The convolutional layers use ReLU as the activation function, and a residual
connection is applied across layers. Batch normalization is applied to both the convolutional and
GRU layers. A single GRU layer with dropout of 0.1 is added after the convolutional layers. The
convolutional head for final prediction uses 64 input channels and average pooling, without batch
normalization. Note that the stability reward is non-differentiable since the half life of 5’UTR is

19

https://github.com/jacobkimmel/pytorch_convgru?tab=readme-ov-filea

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

measured after concatenation with coding regions and 3’Untranslated regions, following Agarwal &
Kelley (2022).

F.2 BASELINES DETAILS

We will explain in more detail how to implement baselines.

SVDD. For this baseline, we compare with SVDD-PM (Li et al., 2024). SVDD-PM directly use the
reward feedback to evaluate, i.e., use r(x̂0(xt)) as the estimated value function, which aligns with
our usage for DSearch. The advantage of this approach is that no additional training is required as
long as we have r. The duplication size is set for fair comparisons.

DPS. We require differentiable models. For this task, for those non-differentiable rewards in images,
5’UTRs and molecules, we need to learn differentiable estimations of the reward oracle using deep
learning models. For images, we use standard CNNs for this purpose, which contain 3 residual blocks
and use average pooling. For molecules, we follow the implementation in Lee et al. (2023), and
we use Graph Isomorphism Network (GIN) model (Xu et al., 2018). In GIN, we use mean global
pooling and the RELU activation function, and the dimension of the hidden layer is 300. The number
of convolutional layers in the GIN model is selected from the set {3, 5}; and we select the maximum
number of iterations from {300, 500, 1000}, the initial learning rate from {1e-3, 3e-3, 5e-3, 1e-4},
and the batch size from {32, 64, 128}. Note that we cannot compute derivatives with respect to
adjacency matrices when using the GNN model. For the 5’UTR task, we use the ConvGRU model
(Dey & Salem, 2017). The ConvGRU trunk has a stem input with 4 channels and a convolutional
stem that outputs 64 channels using a kernel size of 15. The model contains 6 convolutional layers,
each initialized with 64 channels and a kernel size of 5. The convolutional layers use ReLU as the
activation function, and a residual connection is applied across layers. Batch normalization is applied
to both the convolutional and GRU layers. A single GRU layer with dropout of 0.1 is added after
the convolutional layers. The convolutional head for final prediction uses 64 input channels and
average pooling, without batch normalization. For training, the batch size is selected from {16, 32,
64, 128}, the learning rate from {1e-4, 2e-4, 5e-4}, and the maximum number of iterations from {2k,
5k, 10k}. Regarding hyperparameter α, we choose several candidates and report the best one. For
image tasks we select from {5.0, 10.0} and for bio-sequence tasks we select from {1.0, 2.0}. For
molecule QED task we select from {0.2, 0.3, 0.4, 0.5}, for molecule SA task {0.1, 0.2, 0.3}, and for
molecule docking tasks we select from {0.4, 0.5, 0.6}. The hyperparameters are chosen for good
reward and diversity balance.

SMC. For value function models, we use the same method as SVDD-PM. Regarding α, we choose
several candidates and report the best one. For image tasks we select from [10.0, 40.0]. For Enhancer
and 5’UTR tasks as well as molecule QED and SA tasks we select from {0.1, 0.2, 0.3, 0.4}, while for
molecule docking tasks we select from {1.5, 2.0, 2.5}. The hyperparameters are chosen for good
reward and diversity balance.

F.3 METHOD IMPLEMENTATION DETAILS

We will explain in more detail how to implement our proposal. For DSearch, we control the search
tree expansion with an initial width w(T) and an initial over-sample rate o(0) = N(0)/N(T), where
C = w(T) ∗N(T), and N is the number of samples. Over the time steps, we use dynamic beam
scheduling to gradually and strategically reduce N(t), while maintain C = w(t) ∗N(t), until we
reach our defined final N(0). The dynamic beam scheduling can be done using many algorithms; thus
we regard it as a hyperparameter, which is detailed in the below subsections. In the main experiments,
we select exponential beam scheduling. For DSearch-R, we control the search tree expansion with
the computation budget C = w ∗N , which is of the same value as DSearch. At each time step, we
use the selection function g to resample and replace rr ∗ 100% percent of suboptimal samples in the
batch. We regard rr as a hyperparameter which is selected from {0.03, 0.04, 0.05}. The dynamic
search scheduling can be done using many functions; thus we regard it as a hyperparameter, which is
detailed in the below subsections. In the main experiments, we select exponential search scheduling
and control |A|/T = 65%. Note that to control the computational budget for fair comparisons with
the baselines, we have not included look-ahead value estimation in the main results.

20

https://github.com/jacobkimmel/pytorch_convgru?tab=readme-ov-filea

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.3.1 DYNAMIC BEAM SCHEDULING

We use a progressive sample reduction strategy of dynamic beam scheduling to further optimize
computational efficiency. This method dynamically reduces the number of candidate samples at each
time step, starting with an over-sampled batch and gradually pruning less promising candidates. Such
refinement aligns with the observation that early steps in diffusion are less critical, while later steps
require greater precision (Li et al., 2024).

Let N0 denote the initial sample size, NT the target batch size, and t ∈ [1, T]. At each step t, we
maintain a sample size Nt that decreases according to a predefined schedule, subject to Nt ≥ NT .
We experiment with several reduction strategies:

• Linear Reduction: Nt = max
(
NT , N0 − t · N0−NT

T

)
, where the sample size decreases

linearly over time.

• Exponential Decay: Nt = max

(
NT , N0 ·

(
NT

N0

)t/T
)

, ensuring faster reduction in early

steps.

• Quadratic Reduction: Nt = max
(
NT , NT + (N0 −NT) ·

(
1− t

T

)2)
, prioritizing sam-

ple diversity in early steps.

• Sigmoid Reduction: A smooth reduction, Nt = max
(
NT ,

N0

1+e−κ·(t−T/2)

)
, where κ adjusts

the steepness of the transition.

At each step, the scores of all candidates are evaluated using the reward estimation r̂(x). The top Nt

samples are retained for the next step, where:

Selected Samples = argmax
xi∈X

{r(xi)}Nt
i=1.

This approach ensures that computational resources are concentrated on high-quality candidates,
aligning with the goals of diffusion decoding.

F.3.2 SEARCH SCHEDULING

A key consideration in search-based inference for diffusion models is the efficient allocation of
computational resources across diffusion time steps. Unlike the uniform search strategy employed
in autoregressive search works, we incorporate a search scheduling mechanism that dynamically
adjusts the computational effort during the diffusion process. This adjustment is motivated by the
observation that early time steps often contain sparse information, while later time steps are more
information-dense and critical for achieving accurate predictions.

We explore multiple scheduling strategies inspired by related work in reinforcement learning (Silver
et al., 2016; Grill et al., 2020) and molecular design (Yang et al., 2020). Each strategy is parameterized
to allow for flexibility, depending on the desired trade-off between computation and decoding quality.

Let T represent the total number of time steps, t ∈ [0, T − 1] the current time step, and f(t) the
frequency of search operations. The scheduling strategies are defined as follows:

• Linear Scheduling: Search frequency increases linearly with t, defined as f(t) = α · t,
where α is a scaling factor.

• Exponential Scheduling: Search frequency grows exponentially, prioritizing later steps,
given by f(t) = eβ·t/T − 1, where β controls the growth rate.

• Step-Based Scheduling: Searches are conducted at fixed intervals I(t) that decrease over
time. For example, search every ⌊T/(2t/T)⌋ steps.

• Quadratic Scheduling: A more gradual transition, given by f(t) = γ · (t/T)2, where γ
adjusts the quadratic scaling.

• Sigmoid Scheduling: A smooth transition, defined as f(t) = 1
1+e−δ·(t−T/2) , where δ adjusts

the steepness of the curve.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Each strategy dynamically modulates the computational intensity of search, with exact parameters
(α, β, γ, δ) chosen to control |A| = C† based on the computation budget. Empirical results demon-
strate that some schedules significantly reduce computation while maintaining decoding quality.

The proposed search scheduling and progressive sample reduction strategies are integrated into
diffusion models. By adaptively controlling the number of search operations and candidate samples,
we achieve a balance between computational efficiency and decoding accuracy. Future work may
explore adaptive learning methods to optimize these schedules dynamically.

F.4 SOFTWARE AND HARDWARE

Our implementation is under the architecture of PyTorch (Paszke et al., 2019). The deployment
environments are Ubuntu 20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB
RAM, and graphics cards NVIDIA RTX 2080Ti. Each of our image experiments is conducted on a
single A100 GPU, while Each of our experiments on other tasks on a single NVIDIA RTX 2080Ti or
RTX A6000 GPU.

F.5 LICENSES

The pretrained models and datasets for image tasks are under MIT license and Apache license 2.0,
respectively. The dataset for molecular tasks is under Database Contents License (DbCL) v1.0. The
dataset for DNA task is covered under AGPL-3.0 license. The dataset for RNA tasks is under GPL-3.0
license. We follow the regulations for all licenses.

G EXPERIMENTAL ANALYSIS AND STUDIES

G.1 PERFORMANCE SCALING FOR ALL TASKS

Figure 7 and Figure 8 illustrates how DSearch performance scales with computational budge across
all tasks. Similarly, As C̄ increases, reward scores improve for all methods, but the gains are most
pronounced for DSearch and DSearch-R. This shows that dynamic tree search effectively utilizes
additional computation to align samples.

G.2 VISUALIZATION OF TREE WIDTH AND BEAM WIDTH IN DSEARCH

To better understand the impact of DSearch as well as our proposed exponential search scheduling
and beam scheduling in an actual task setting, we visualize the evolution of tree width w(t) and beam
width b(t) during the molecule optimization process under a controlled computational budget of
C̄ = 55. As can be observed in Figure 9, the right side shows the corresponding beam width b(t),
representing the number of retained candidates at each step, while the left side of the figure illustrates
the variation of tree width w(t), which determines the number of candidate expansions at each step.
As time progresses, the beam width is progressively reduced using exponential beam scheduling,
ensuring computational resources are concentrated on high-quality candidates. Meanwhile, the search
tree width dynamically expands following an exponential growth strategy, prioritizing later steps
where higher reward regions are more effectively explored. We can also observe the exponential
search scheduling, where tree width is 1 at some time steps, particularly earlier ones. The figure
implies how these scheduling strategies practically balance exploration and exploitation, improving
search efficiency while maintaining diversity in generated molecules.

G.3 RUNTIME AND COMPUTATIONAL COMPLEXITY STUDIES

In Section 4, we have analyzed the computational complexity of DSearch, which is O(TC̄), where
C̄ = (|A|C + T − |A|)/T , considering the time complexity of one diffusion inference time step
as the unit. While we have theoretically ensured that DSearch and baseline methods operate under
the same computational budget C̄, practical execution time may vary due to implementation details,
memory efficiency, and computational overhead. To empirically validate the runtime efficiency
of DSearch, we compare its execution time against baseline SVDD across different values of C̄,
which represents the computational budget allocated for inference. The results are shown in Table

22

https://github.com/mihirp1998/AlignProp/blob/trl_main/LICENSE
https://github.com/tgxs002/HPSv2/blob/master/LICENSE
https://opendatacommons.org/licenses/dbcl/1-0/
https://github.com/sjgosai/boda2/blob/main/LICENSE
https://github.com/pjsample/human_5utr_modeling/blob/master/LICENSE
https://github.com/pjsample/human_5utr_modeling/blob/master/LICENSE

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Image: Compressibility (b) Image: Aesthetic (c) Image: HPS

(d) DNA Enhancers: HepG2 (e) 5’UTRs: MRL (f) 5’UTRs: stability

(g) Molecule: QED (h) Molecule: SA (i) Molecule: Binding Affinity

Figure 7: Reward (median & standard deviation) under different constraints C̄.

(a) Image: Compressibility (b) Image: Aesthetic

Figure 8: Reward (median & standard deviation) under larger constraints C̄ (25-45).

3 on page 24. At lower computation budgets (C̄=10), DSearch incurs a slightly higher execution
time than SVDD. This overhead is expected, as DSearch dynamically adjusts beam search width,
introducing additional computations beyond simple intermediate state selection like SVDD. As C̄
increases to 20, the execution times of both methods become more comparable. This suggests that
the initial overhead of DSearch becomes less significant relative to the overall computation. At
higher computation budgets (C̄ ≥ 40), DSearch achieves reduction in execution time compared to
SVDD. This demonstrates that DSearch scales more efficiently as computation increases, likely due
to its adaptive beam scheduling, which reduces the total number of samples. This empirical study
reinforces the theoretical claims that DSearch not only matches but might surpasses the efficiency
of other alignment methods making it a compelling choice for structured sequence and molecule
generation tasks.

We also provide plot with time as x-axis beyond time comparisons. To enable this, we run under
multiple budgets for all methods to choose similar runtimes, while data points are unevenly distributed
due to the uncontrollableness of precise runtime Figure 10 shows DSearch and DSearch-R scale
significantly faster in reward per second, much more efficient than DPS and Best-of-N. These results
further confirm that DSearch retains better cost-effectiveness.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 9: Visualization of dynamic tree width and beam width change in molecular task.

Table 3: Runtime comparison (in seconds) across different methods and computational budgets C̄.
All methods are evaluated under consistent hardware. Runtimes are from measured wall-clock time.
For DPS and SMC, we apply Best-of-N (N=C̄) on top for fair comparison regarding computations.

Method C̄ = 10 C̄ = 20 C̄ = 40 C̄ = 60 C̄ = 80

Best-of-N 27.56 63.24 94.81 135.46 183.55
DPS 81.14 155.40 309.62 460.27 564.05
SMC 55.80 111.21 224.46 326.44 432.81
SVDD 23.36 44.93 88.52 128.14 172.41
DSearch 31.43 48.31 81.78 116.20 145.87
DSearch-R 27.78 51.12 77.90 104.70 140.22

G.4 REWARD ESTIMATION ANALYSIS

To show the quality of our estimated value functions, i.e., heuristic functions, we evaluate the
effectiveness of our value estimation method for predicting the final reward of diffusion-generated
samples at intermediate time steps. Since the true reward is only available at the final state x0, we
assess the accuracy of our intermediate state value predictions by computing the Pearson correlation
coefficient between the estimated reward and the actual reward obtained at x0. We visualize this
relationship using scatter density plots across several time steps, illustrating how well the estimated
reward aligns with the expected ground-truth reward. For each sampled trajectory, we estimate
rewards at various intermediate diffusion steps and compare them against the final ground-truth
reward. Specifically, we track the correlation at time steps 32, 64, 88, 112, 116, 120, 124, and 127,
covering a range from early diffusion stages to the final steps. The Pearson correlation coefficient
is used as a measure of how well the estimated rewards predict the final reward. Higher values of
Pearson correlation indicate better alignment between the estimated and actual rewards.

As shown in Figures 11, 12, 13, during early diffusion steps, the estimated rewards show a weak
correlation with the final reward, suggesting that at early stages they carry limited predictive power.
This is expected, as diffusion-based generation starts from a highly noisy prior, and meaningful
structure has not yet emerged. In mid diffusion steps the correlation improves noticeably, indicating
that as the denoising process progresses, the estimated reward begins to capture useful information
about the final state. The scatter plots show that the spread of points starts to concentrate along the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 10: Reward (median & standard deviation) comparisons across different methods under
different runtimes. We run all experiments on the same hardware to obtain comparisons within a
certain time region, though the data points are unevenly distributed due to the uncontrollableness of
the precise runtime.

diagonal, reflecting a stronger relationship between estimated and actual rewards. At late diffusion
steps, the estimated rewards achieve a high correlation with the final reward. At T = 127, the
correlation is nearly perfect, confirming that by the end of the diffusion process, our value estimation
method accurately predicts the final reward. The density of points along the red diagonal line suggests
that the estimated values are well-calibrated. The strong correlation in later steps supports the
effectiveness of using this value function for intermediate state selection in our search strategies.

Figure 11: Scatter density plots between estimated reward and ground truth reward for DNA Enhancer
task.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 12: Scatter density plots between estimated reward and ground truth reward for 5’UTR MRL
task.

Figure 13: Scatter density plots between estimated reward and ground truth reward for 5’UTR
stability task.

G.5 MORE METRICS FOR MOLECULE GENERATION.

To further evaluate the validity of our method in molecule generation, we report several key metrics
that capture different aspects of molecule quality and diversity in Table 4 on page 26.

Table 4: Comparison of the generated molecules across various metrics. The best values for each
metric are highlighted in bold.

Method Valid↑ Unique↑ Novelty↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ NSPDK MMD ↓ Mol Stable ↑ Atm Stable ↑
Pre-trained 1.000 1.000 1.000 12.979 0.414 0.513 1.000 0.038 0.320 0.917
DPS 1.000 1.000 1.000 13.230 0.389 0.388 1.000 0.040 0.310 0.878
SMC 1.000 0.406 1.000 22.710 0.225 0.068 1.000 0.285 0.000 0.968
SVDD 1.000 1.000 1.000 14.765 0.349 0.478 1.000 0.063 0.375 0.932
DSearch 1.000 1.000 1.000 13.305 0.389 0.412 1.000 0.086 0.200 0.902
DSearch-R 1.000 0.766 1.000 11.873 0.344 0.519 1.000 0.117 0.030 0.891

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The validity of a molecule indicates its adherence to chemical rules, defined by whether it can be
successfully converted to SMILES strings by RDKit. Uniqueness refers to the proportion of generated
molecules that are distinct by SMILES string. Novelty measures the percentage of the generated
molecules that are not present in the training set. Fréchet ChemNet Distance (FCD) measures the
similarity between the generated molecules and the test set. The Similarity to Nearest Neighbors
(SNN) metric evaluates how similar the generated molecules are to their nearest neighbors in the
test set. Fragment similarity measures the similarity of molecular fragments between generated
molecules and the test set. Scaffold similarity assesses the resemblance of the molecular scaffolds
in the generated set to those in the test set. The neighborhood subgraph pairwise distance kernel
Maximum Mean Discrepancy (NSPDK MMD) quantifies the difference in the distribution of graph
substructures between generated molecules and the test set considering node and edge features. Atom
stability measures the percentage of atoms with correct bond valencies. Molecule stability measures
the fraction of generated molecules that are chemically stable, i.e., whose all atoms have correct bond
valencies. Specifically, atom and molecule stability are calculated using conformers generated by
RDKit and optimized with UFF (Universal Force Field) and MMFF (Merck Molecular Force Field).

We compare the metrics using 512 molecules generated from the pre-trained GDSS model and from
different methods optimizing QED, as shown in Table 4 on page 26. Overall, DSearch achieves
comparable performances with the pre-trained model and other baselines, maintaining high validity,
novelty, and uniqueness while outperforming on several metrics such as FCD and fragment similarity.
DSearch-R achieves the best FCD (distribution similarity) but sacrifices stability. SVDD achieves a
good balance between FCD, fragment similarity, and stability. SMC performs poorly in fragment
similarity, NSPDK MMD, and molecular stability, indicating that it generates unrealistic molecules.
Pre-trained performs consistently well across all metrics, particularly in SNN and atomic stability.
However, it does not optimize specific molecular properties as effectively as the other methods. These
results indicate that our approach can generally generate a diverse set of novel molecules that are
chemically plausible and relevant.

H FURTHER EXPERIMENTAL RESULTS

H.1 REWARD HISTOGRAMS

In the main text, we present the medians. Here, we plot the reward score distributions of generated
samples as histograms, shown in Figure 14 - Figure 22.

H.2 MORE ABLATION STUDIES ON THE EFFECTIVENESS OF SCHEDULING

To improve the efficiency of the search process, we apply scheduling search expansion. In diffusion-
based sampling, earlier time steps contribute less to the final quality of the generated sequences,
while later time steps contain more crucial information. To exploit this property, Search Scheduling
dynamically adjusts the frequency of search operations, allocating more resources where they are
most impactful. For search scheduling, we compare different scheduling strategies, including uniform,
linear, exponential, and no search schedules, and evaluate how well they balance computational
efficiency and performance. As shown in Figure 23, we observe that exponential scheduling achieves
better rewards while reducing computational cost by 35% compared to the no scheduling (“all”)
baseline. This suggests that focusing search efforts in the later steps of the generation process leads
to better sample quality without requiring a proportional increase in computation. Linear and uniform
scheduling also improve efficiency but do not reach the same level of performance, as they distribute
search operations more evenly across time steps and inefficiently expends resources. These results
validate that adaptive scheduling allows for significant computational savings while maintaining
or even improving generation quality. The effectiveness of exponential scheduling suggests that
prioritizing late-stage refinement leads to better sample optimization, highlighting the importance of
strategic search allocation in diffusion-based methods. Beam scheduling aims to improve sample
selection by initially generating a larger batch of candidates and then progressively pruning weaker
samples at intermediate steps. Instead of treating all samples equally throughout the entire diffusion
process, this approach selectively retains high-quality candidates, allowing computational resources
to be focused on the most promising sequences. We evaluate different beam scheduling strategies,
including quadratic, linear, sigmoid, exponential, and no pruning schedules. From Figure 23, we
observe that dropping weaker samples through exponential beam scheduling performs the best. This

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) C̄=25 (b) C̄=30

(c) C̄=35 (d) C̄=40

(e) C̄=45

Figure 14: We show the histogram of generated samples in terms of rewards in compressibility of
images. We consistently observe that our method demonstrates strong performances.

(a) C̄=25 (b) C̄=30

(c) C̄=35 (d) C̄=40

(e) C̄=45

Figure 15: We show the histogram of generated samples in terms of rewards in aesthetic score of
images. We consistently observe that our method demonstrates strong performances.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) C̄=15 (b) C̄=25

(c) C̄=35 (d) C̄=45

(e) C̄=55

Figure 16: We show the histogram of generated samples in terms of rewards in human preference
score of images. We consistently observe that our method demonstrates strong performances.

(a) C̄=10 (b) C̄=20

(c) C̄=40 (d) C̄=60

(e) C̄=80

Figure 17: We show the histogram of generated samples in terms of rewards in HepG2 of DNA
Enhancers. We consistently observe that our method demonstrates strong performances.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) C̄=10 (b) C̄=30

(c) C̄=50 (d) C̄=80

(e) C̄=100

Figure 18: We show the histogram of generated samples in terms of rewards in MRL of 5’UTRs. We
consistently observe that our method demonstrates strong performances.

(a) C̄=10 (b) C̄=30

(c) C̄=50 (d) C̄=80

(e) C̄=100

Figure 19: We show the histogram of generated samples in terms of rewards in stability of 5’UTRs.
We consistently observe that our method demonstrates strong performances.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) C̄=2 (b) C̄=6

(c) C̄=10 (d) C̄=20

(e) C̄=50

Figure 20: We show the histogram of generated samples in terms of rewards in QED of molecules.
We consistently observe that our method demonstrates strong performances.

(a) C̄=2 (b) C̄=6

(c) C̄=10 (d) C̄=20

(e) C̄=50

Figure 21: We show the histogram of generated samples in terms of rewards in SA of molecules. We
consistently observe that our method demonstrates strong performances.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) C̄=2 (b) C̄=6

(c) C̄=10 (d) C̄=20

(e) C̄=50

Figure 22: We show the histogram of generated samples in terms of rewards in binding affinity of
molecules. We consistently observe that our method demonstrates strong performances.

demonstrating that reducing the search space aggressively in earlier steps allows for wider and more
refined exploration later in the process, adapting to the dynamic nature of the search. In contrast,
linear pruning strategies lead to suboptimal results, likely because they remove candidates at a fixed
rate rather than adapting to the dynamic nature of the search. These results indicate that progressively
focusing efforts on high-quality samples enhances overall alignment performance without increasing
computational overhead, and dynamic beam reduction is a key factor in DSearch. Exponential
beam pruning is particularly effective, as it ensures that early-stage candidates are explored broadly
while later-stage refinement is performed on only the most promising samples. This confirms that
dynamic beam reduction is a key factor in improving sample quality without increasing computational
overhead.

H.3 MORE ABLATION STUDIES ON THE EFFECTIVENESS OF LOOK AHEAD VALUE
ESTIMATION

Lookahead mechanism strengthens the reward estimation of intermediate states. We explore the
impact of different lookahead horizons K. For each sample, we generate M = 6 lookaheads of K
steps, compute the corresponding final rewards, and select the best intermediate states either by the
maximum of these evaluations. From Figure 24, we observe that increasing K consistently improves
performance across different tasks, as it allows for a more informed selection of intermediate states.
However, the gains saturate beyond a certain threshold, suggesting a limit of gain from the estimation
accuracy.

H.4 VISUALIZATION OF GENERATED SAMPLES

We provide additional generated samples in this section. Figure 25, Figure 26, and Figure 27 show
comparisons of generated images from baseline methods and DSearch regarding compressibility,
aesthetic score, and HPS, respectively. Figure 28 and Figure 29 presents the comparisons of visualized
molecules generated from the baseline methods and DSearch regarding QED and SA, respectively.
The visualizations validate the strong performances of DSearch, showing that DSearch can achieve

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

(a) DNA Enhancers - Search
Scheduling

(b) 5’UTRs (MRL) - Search Schedul-
ing

(c) 5’UTRs (stability) - Search
Scheduling

(d) DNA Enhancers - Beam Schedul-
ing

(e) 5’UTRs (MRL) - Beam Schedul-
ing

(f) 5’UTRs (stability) - Beam
Scheduling

(g) Molecule (QED) - Search
Scheduling

(h) Molecule (QED) - Beam Schedul-
ing

Figure 23: We show the reward distributions of generated samples using DSearch with different
scheduling hyper-selections.

(a) DNA Enhancers - DSearch (b) 5’UTRs (MRL) - DSearch (c) 5’UTRs (stability) - DSearch

(d) DNA Enhancers - DSearch-R (e) 5’UTRs (MRL) - DSearch-R (f) 5’UTRs (stability) - DSearch-R

Figure 24: We show the reward distributions of generated samples with different K values.

optimal SA for many molecules. In Figure 30, and Figure 31 we visualizes the docking of DSearch-
generated molecular ligands to protein parp1. Docking scores presented above each column quantify
the binding affinity of the ligand-protein interaction, while the figures include various representations
and perspectives of the ligand-protein complexes. We aim to provide a complete picture of how each
ligand is situated within both the local binding environment and the larger structural framework of
the protein. First rows show close-up views of the ligand bound to the protein surface, displaying

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

the topography and electrostatic properties of the protein’s binding pocket and providing insight
into the complementarity between the ligand and the pocket’s surface. Second rows display distant
views of the protein using the surface representation, offering a broader perspective on the ligand’s
spatial orientation within the global protein structure. Third rows provide close-up views of the ligand
interaction using a ribbon diagram, which represents the protein’s secondary structure, such as alpha-
helices and beta-sheets, to highlight the specific regions of the protein involved in binding. Fourth
rows show distant views of the entire protein structure in ribbon diagram, with ligands displayed
within the context of the protein’s full tertiary structure. Ligands generally fit snugly within the
protein pocket, as evidenced by the close-up views in both the surface and ribbon diagrams, which
show minimal steric clashes and strong surface complementarity.

Figure 25: Visualization of generated images using different methods optimizing the reward of
compressibility.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 26: Visualization of generated images using different methods optimizing the reward of
aesthetic score.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 27: Visualization of generated images using different methods optimizing the reward of human
preference score.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Pre-
trained

DPS

SMC

SVDD

DSearch

Figure 28: Visualization of generated molecules using different methods for optimizing QED.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Pre-
trained

DPS

SMC

SVDD

DSearch

Figure 29: Visualization of generated molecules using different methods for optimizing SA.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 30: Visualization of generated molecules using DSearch optimizing the reward of docking
score for parp1 (normalized as max(−DS, 0)).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 31: Visualization of more generated molecules using DSearch optimizing the reward of
docking score for parp1 (normalized as max(−DS, 0)).

40

	Introduction
	Preliminary
	Diffusion Models
	Inference-Time Alignment

	Search Framework for Inference-Time Alignment in Diffusion
	Limit Tree width: Pruning with Pre-trained Policies
	Define ``Heuristic Functions'' in Nodes
	Look-Ahead Heuristic Function Estimation

	Dynamic Search for Diffusion
	Dynamic Search Tree Expansion
	Scheduling of Search Nodes

	Related Works
	Experiments
	Experimental Setup
	Effectiveness of DSearch
	Effectiveness of Scheduling Search Expansion
	Effectiveness of Lookahead Mechanism

	Conclusion
	Broader Impact
	Further Related Works
	FAQ & Discussions
	Does Dynamic Search Reduce Diversity?
	Why is the Gradient-Free Design Beneficial?

	Potential Limitations
	Variant: Dynamic Beam Resample
	Experimental Details
	Task Settings
	Images
	Molecules
	Biological Sequences

	Baselines Details
	Method Implementation Details
	Dynamic Beam Scheduling
	Search Scheduling

	Software and Hardware
	Licenses

	Experimental Analysis and Studies
	Performance Scaling for All Tasks
	Visualization of Tree Width and Beam Width in DSearch
	Runtime and Computational Complexity Studies
	Reward Estimation Analysis
	More metrics for molecule generation.

	Further Experimental Results
	Reward Histograms
	More Ablation Studies on the Effectiveness of Scheduling
	More Ablation Studies on the Effectiveness of Look Ahead Value Estimation
	Visualization of Generated Samples

