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ABSTRACT

Diffusion models have shown promising generative capabilities across diverse
domains, yet aligning their outputs with desired reward functions remains a chal-
lenge, particularly in cases where reward functions are non-differentiable. Some
gradient-free guidance methods have been developed, but they often struggle to
achieve optimal inference-time alignment. In this work, we newly frame inference-
time alignment in diffusion as a search problem and propose Dynamic Search for
Diffusion (DSearch), which subsamples from denoising processes and approxi-
mates intermediate node rewards. It also dynamically adjusts beam width and tree
expansion to efficiently explore high-reward generations. To refine intermediate
decisions, DSearch incorporates adaptive scheduling based on noise levels and a
lookahead heuristic function. We validate DSearch across multiple domains, in-
cluding biological sequence design, molecular optimization, and image generation,
demonstrating superior reward optimization compared to existing approaches.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015} |Ho et al.,[2020; [Song et al.|, [2020)) have emerged as
a powerful generative framework for a wide range of domains, from image synthesis to molecular
design. While diffusion models excel at capturing complex data distributions, there is often a need to
further optimize downstream reward functions, a task known as alignment. For instance, in image
synthesis, we may seek to optimize rewards such as aesthetic scores. In drug design, the goal might
be to optimize binding affinity.

Diffusion models can be adapted to maximize rewards. This alignment problem has been addressed
by guiding generation at inference time using rewards. Classifier guidance (Dhariwal & Nichol, [2021)
provides a standard scheme for doing this using the gradient of the reward functions, but critically
depends on differentiable reward functions—an assumption that fails in many real-world scientific
applications. In these domains, rewards are often non-differentiable or given in a black-box manner.
For example, widely used docking softwares AutoDock Vina (Trott & Olson, 2010) for predicting
binding affinity, which relies on physical simulations, as well as rewards derived from secondary
structure estimation algorithms like DSSP (Kabsch & Sander, |1983) or structure predictors like
AlphaFold3 (Abramson et al.,2024), which incorporate scientific knowledge via lookup tables, do not
support gradient computation. Similarly, rewards based on widely-used molecular descriptors such as
molecular fingerprints (Todeschini & Consonni, |[2008) are inherently non-differentiable. Therefore,
it is extremely difficult or infeasible to learn accurate differentiable surrogates for these scientific
rewards. As a result, gradient-free guidance methods have gained increasing attention (Wu et al.
2024; |Li et al., 2024). While proven simple and effective, they do not provide optimally accurate
inference alignment. More sophisticated methods in this direction have yet to be explored.

In this work, we propose a novel gradient-free inference-time alignment method based on our
new insight: framing inference-time alignment in diffusion models as a search problem. Pre-
trained diffusion models inherently induce a tree structure that characterizes the generation process.
By appropriately defining the search tree, search algorithms can be applied to maximize rewards
effectively. Given the success of search in biochemical designs (Yang et al., [2017; Kajita et al.,
2020; | Yang et al.,[2020; [Swanson et al.| 2024) and language models (Yao et al.| 2024; Besta et al.|
2024])) for maximizing rewards in general, we believe search methods integrated into diffusion models
would offer considerable potential for inference-time alignment. Specifically, we first establish the
search tree formulation by subsampling from denoising processes of pre-trained diffusion models,
assigning rewards to the leaf nodes, and introducing a heuristic function to evaluate intermediate
nodes. Then, we propose “Dynamic Search for Diffusion (DSearch)” for inference-time alignment in
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diffusion models. DSearch applies dynamic beam search which dynamically adjusts the beam size
and tree width across time steps, as shown in in contrast, the ndive approach such as static
beam search can lead to wasted computational resources when encountering suboptimal samples at
intermediate steps.

Our contributions are summarized as follows. In brief, we propose a novel search framework for
inference-time alignment in diffusion models. Specifically, we introduce a method, DSearch, which
features dynamically reducing the beam width while extending the tree width. Meanwhile, DSearch
incorporates a dynamic scheduling of tree expansion based on noise levels and a novel lookahead
heuristic function for intermediate nodes, which further enhance the efficiency and guidance precision.
We experimentally validate the effectiveness of our proposal across multiple domains, including
biological sequence design, molecular structure optimization, and image generation. DSearch
demonstrates strong reward optimization for generative tasks with balanced sample naturalness,
diversity, and efficiency, making it particularly suitable for real-world applications.

2 PRELIMINARY
In this section, we introduce diffusion models and outline our objective of inference-time alignment.

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al.,2015;|Ho et al.,|2020; |Song et al.,[2020) aim to learn a sampler
pPe () € A(X) over a given design space X (e.g., Euclidean space or discrete space) from a data
distribution. The primary objective in training diffusion models is to establish a sequential mapping,
i.e., a denoising process, that transforms from a noise distribution to the true data distribution. The
training procedure follows several steps. First, a forward noising process ¢; : X — A(X) is
predefined, evolving over time from ¢ = 0 to ¢ = T'. This noising process is often referred to as
a policy, drawing from reinforcement learning terminology. The goal is then to learn a reverse
denoising process p;, where each p; : X — A(X) ensures that the marginal distributions induced by
the forward and backward processes remain equivalent.

Next, we explain how to obtain such p;. For this purpose, we define the forward noising processes.
When X' is a Euclidean space, we typically use the Gaussian distribution ¢, (- | z¢) = N (y/azx, (1 —
ay)]) as the forward noising process where «; € R denote a noise schedule. Then, the backward
process p:(+|z¢) is parameterized as a normal distribution with mean

Vor (1 — 1)z + a1 (1 — o) To (w3 0)

1—ay

Y

where &@; = Hle ;. Importantly, Zo(z;) is treated as a predictor for E[xg | x¢].
Remark 2.1 (Parametrization). Note that alternative parametrizations, such as noise or scores, can
also be used in place of ¢ (x;) (Luol[2022).

2.2 INFERENCE-TIME ALIGNMENT

Our objective is to obtain natural designs that exhibit a high likelihood pP™(-) while maximizing the
rewardr : X — R.
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This goal can be formulated as sampling from:

P () oc exp(r(a) /a)p™e (). M

Here, « is the temperature parameter, which is set low in practice, as our primary focus is optimizing
rewards. Note this objective has been widely adopted in the context of alignment in generative
models, including autoregressive models (Wang et al.| 2024)).

Many inference-time alignment techniques have also been proposed in diffusion models, which
organically combine {p}"°(- | #;_1)} and r. As shown in (Uehara et al.,|2024b, Theorem 1), this
goal is achieved by sampling from the following policy from¢ =T tot =0

P (1) o< exp(vp—1 () /)™ (|we—1)- @
Here, v;_1(-) is soft value function defined as v;_1(-) := alog Ey ppre (go|a, ) [€xP(7(20) /)| 24],
where the expectation is taken with respect to the distribution from the pre-trained policies. This soft
value function acts as a look-ahead function that predicts future rewards from intermediate states.
However, exact sampling from this policy p;_; is not feasible since the soft value functions are
unknown, and computing the normalizing constant is challenging due to the large action space. To
address these challenges, several approaches, such as gradient-based classifier guidance or gradient-
free guidance, have been proposed (refer to[Section 5). While these methods have shown success, in
this work, we introduce a more efficient search framework that extends beyond these approaches.

3 SEARCH FRAMEWORK FOR INFERENCE-TIME ALIGNMENT IN DIFFUSION

We aim to introduce an efficient search method for alignment in diffusion models. To this end, we
define a formulation of search tree framework leveraging pre-trained diffusion models in this section.

We begin by examining the naive approach to leverage pre-trained diffusion models. This involves
defining a tree where each child is recursively determined by the support of the pre-trained diffusion
models: ¢ € [T];Ch(zy) = {w—1 : pP*°(x4—1|z;) > 0}. Then, the leaf nodes correspond to
Supp(pP*®) := {x : pP**(x) > 0}. The alignment problem is then addressed by selecting the
maximum (or top several) samples from the leaf nodes based on rewards, as this corresponds to:
argmax, cupp(pere) 7(2), Which is equivalent to our goal in (I) with o = 0. However, in practice,

exact search within this tree is not feasible, as the tree’s size is O(]X|T) in the worst case. We
proceed by explaining how to resolve this issue.

3.1 LIMIT TREE WIDTH: PRUNING WITH PRE-TRAINED POLICIES

Instead of using the entire support Supp(pP*®), we employ its empirical distribution. In the context
of search, this involves constraining the tree width by sampling nodes from the pre-trained model
during expansion, thereby limiting further growth to a specified threshold w : [T] — N. Specifically,
the tree is recursively defined by setting child nodes

Ch(zy) = {w [l 1D, {21 i)} ~ pPo(Jae—s),

as illustrated in[Figure T| After defining this tree, the alignment problem is addressed by selecting leaf
nodes with high rewards. Notably, when w(t) = 1 for all ¢ € [T, this reduces to best-of-N sampling.

However, this approach still remains computationally expensive once the width exceeds 1, as the tree
size grows to O(w’) where w := max; w(t). One potential solution to this issue is to use heuristic
functions that guide the search in intermediate nodes, avoiding the need to traverse the entire tree.
Next, we introduce such heuristic functions.

3.2 DEFINE “HEURISTIC FUNCTIONS” IN NODES

We propose using “estimated” value functions as heuristic functions. The rationale is as follows.
Suppose we take a greedy action at x;_; based on the exact value function. In this case, the decision
simplifies to: argmax, ccy (s, ) Vt—1 (z), which corresponds to the soft optimal policy in equation
(@) as « approaches 0, with pre-trained policies replaced by empirical distributions. While the
remaining challenge is how to estimate such value functions, building on recent works, we introduce

our novel approach in[Section 3.
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Figure 2: Illustration of DSearch. Our proposed dynamic search has expanding tree widths. We
dynamically adjust weaker beams and reallocate their computational resources to other beams across
time steps, fixing w(t)b(t) while strategically scheduling b(t).

3.3 LOOK-AHEAD HEURISTIC FUNCTION ESTIMATION
We also extend to construct more accurate estimations for value functions. The most commonly used

approach in many contexts (e.g., DPS (Chung et al.} [2022)), reconstruction guidance (Ho et al. [2022),
SVDD 2024)) is

Oe(x) = r(2o(xt)). 3)

Intuitively, this is very natural since & () introduced in|Section 2.1|is a one-step mapping from

x¢ to xg (i.e., approximation of E[xq | z;]). Mathematically, this is based on the reasoning below.

Recall that the definition of soft value functions involves an expectation w.r.t. p§"°(+|a;). Then (3] is
pre

derived by replacing the probability pg* (-|z;) with its mean:

P () = 3(Blaola]) 2 0(i0(x0)) @
(4) (B)

While this approximation has been widely used due to its training-free nature, we propose using a
more accurate approach.

Algorithm 1 Look-Ahead Search for Value Estimation

1: Require: Lookahead step K, duplication size M
2 {af i Y~ D).
3: Output: 1/M M (@02 )

The look-ahead value estimation is summarized in [ATgorithm 1] It consists of three steps: running
M particles for K steps ahead (Line 2), mapping to 7(z¢) using & (), and evaluate its reward. Our
approach is based on the following approximation:

po - Clze) = Epere o yjen [P0 Clze—k)] = 1/MZ5(E[$0|$§1]) ~ 1M 5(do(w-k))-

Now we compare this with the approximation used in the existing method (@). Here, the approximation
in (A) of (@) is enhanced by considering multiple particles. Meanwhile, the approximation in (B) of
() is improved, as Zo(x) is expected to become more accurate as ¢ approaches 0. From the next
section, assuming we have a reliable estimate v : X — R, we present our proposed search algorithm.

4 DYNAMIC SEARCH FOR DIFFUSION

In this section, we present our proposed search algorithm, Dynamic Search for Diffusion (DSearch),
for inference-time alignment in diffusion models.

4.1 DYNAMIC SEARCH TREE EXPANSION

Based on the tree formulation in[Section 3] a straightforward yet effective approach is to perform beam
search with a fixed tree width and beam size, guided by heuristic functions. However, the underlying
challenge is computational efficiency, as static tree search may lead to wasted computational resources
when encountering suboptimal samples at intermediate steps. To address this issue, we adopt a
dynamic strategy for tree search.

We propose a dynamic search algorithm with expanding tree width that dynamically adjusts the
beam size and tree width across time steps by beam schedule b(-) : [T] — N and tree schedule
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Algorithm 2 Dynamic Search for Diffusion (DSearch)

1: Require: Heuristic functions {@t}?:T (refer to |Section 3.3)), Search set .4, (monotonically
decreasing) beam width b(-) : [T] — N, tree width w() : [T] = N

2: forte[T+1,---,1] do
3:  ift € Athen , _ .
4: For each beam j € [b(t)], we expand the node as Ch(z\") = {z\?), [i]}“1) ~ prre(-|z{))
and perform greedy selection
Z,Ej,)l = argmax, ., ) ()

5: Change beam width from b(t) to b(t — 1), i.e., set
x5 = Selection({z }74)
where Selection(+) is a function choosing top b(t — 1) samples with ©(-) among {zt(j_ )1 }?(:t)l
6: else , , .
7 SetCh(ay”) = o) ~ pe(fzy”)
8: endif
9: end for

10: Output: {xg]}

w(+) : [T] = N, which significantly outperforms static beam search methods. A practical question is
how to control the dynamic beam size and tree width. Given the allocated memory budget during
inference, we typically select these values under the constraint w(t)b(t) = C', where C'is a constant.
Our design for tree expansion with dynamic beam-tree width is outlined in [Algorithm 2] Intuitively,
if a beam performs poorly, we apply early stopping for that beam and allocate its computational
resources to other beams by increasing the tree width, as illustrated in This step is executed
in Line 4 of our algorithm. Note that the set A in line 3 is determined by search scheduling, which is
detailed in[Section 4.2|below. Since the tree width w(¢) is determined by C'/b(t), we focus primarily
on the selection of the beam width below.

Here we introduce beam scheduling technique, which aims to improve sample selection by initially
over-sampling a larger batch of candidates and then progressively pruning weaker samples at inter-
mediate steps. Instead of treating all samples equally throughout the entire diffusion process, this
approach selectively retains high-quality candidates, allowing computational resources to be focused
on the most promising sequences. Given an initial beam size b(0) and the final beam size b(T), we

t/T
can apply exponential scheduling, which is an interpolation following b(¢) = b(0) - (%) , and

illustrated as the left histogram (brown) of Exponential beam scheduling is particularly
effective, as it ensures that early-stage candidates are explored broadly while later-stage refinement
is performed on only the most promising samples. Note that while we generally recommend the
exponential way, we consider the beam scheduling strategy as a hyperparameter and experiment with

multiple functions, which is detailed in|Appendix F.3.

4.2 SCHEDULING OF SEARCH NODES

In[ATgorithm 2] to efficiently allocate computational resources during diffusion inference, we propose
using a time-aware scheduling mechanism to dynamically determine the expansion of the search tree
(i.e., Line 3). Hereafter, we explain its details.

We first start with the intuition on why we need such a scheduling mechanism. Unlike in autore-
gressive models (Feng et al.,[2023}; [Hao et al.| [2023), where the importance of each step remains
relatively uniform, diffusion decoding exhibits sparse information in early steps and increasingly
dense information as time approaches the final stages. Also, when ¢ is large, heuristic functions are
typically less accurate due to the high noise in the state at early times. This phenomenon motivates a
scheduling strategy to focus search efforts where it is most impactful, particularly in later time steps,
thereby balancing computational efficiency and model performance. Specifically, we define the set
A C [T, which corresponds to the nodes selected for expansion as follows. Note the computational
time is reduced from O(T'C) to O(|.A|C), which equals to O(T'C), where C' = (|A|C+T — |A|)/T.
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To define such a set A. Given a budget for the size of A as C, we consider the exponential scheduling
function A = {t € [T]|1(U1) < e’T=9/T) = 1}, thus by integration CT = T(1 — e—/),
with Ct ~ T when 3 — 0 (uniform inclusion) and C't ~ 0 as 5 — oo (aggressive filtering). Thus
we can control the total search based on computational preference. An illustration is as the left
histogram (green) of where interstices (choice of minimal tree width) become less frequent
as t progresses to 0. Exponential search scheduling is generally effective, as prioritizing late-stage
refinement leads to better optimization. Still, we consider the scheduling function as a hyperparameter

and explore multiple cases, detailed in

5 RELATED WORKS

Gradient-Free guidance in diffusion models. We focus on inference-time methods for optimizing
rewards in diffusion models without fine-tuning. The early approach generates multiple samples and
select the top samples based on the reward functions, known as best-of-N in autoregressive models
(Stiennon et al.| [2020; Nakano et al.,[2021; Touvron et al., [2023; Beirami et al., 2024} Gao et al.| [2023).
This approach is significantly less efficient, since merely interfering with the final state does not shift
the overall distribution effectively. Recently, gradient-free methods have been proposed to guide
generation with non-differentialble rewards at inference time. SMC (sequential monte carlo)-based
methods (Wu et al.l 2024} Trippe et al., [2022; Dou & Song, [2024; |Phillips et al.,[2024; (Cardoso et al.,
2023 |Kim et al.}|2025;[Singhal et al.;,[2025;|Ma et al.| 2025} /Guo et al., 2025) perform resampling with
replacement to approximate a non-deteriorated optimal policy. While they are originally designed for
conditioning (by setting rewards as classifiers), they can also be applied to reward maximization. The
other approach is SVDD (Li et al., [2024))), which performs value-based importance sampling in an
iterative nature using soft value functions, approximating sampling from the optimal policy. While
these approaches are related, our proposed method is fundamentally different, where we frame the
task as a search problem. From this perspective, we introduce a search algorithm with dynamically
controlled beams, a technique not explored in existing work. One concurrent work (Singhal et al.|
20235)) studies inference-time scaling for diffusion; however, our contributions differ substantially in
that we dig into adaptive search methods such as dynamic beam/tree scheduling proposals.

Search and decoding in autoregressive models. The decoding strategy, which dictates how
sentences are generated from the model, is a critical component of text generation in autoregressive
language models (Wu et al.,|2016; |Chorowski & Jaitly} 2016; |Leblond et al.,|2021). Recent studies
have explored inference-time techniques for optimizing downstream reward functions (Dathathri
et al.,|2019; | Yang & Klein, 2021} |Qin et al.,2022; Mudgal et al., [2023; Zhao et al.,[2024} [Han et al.,
2024). Search algorithms, such as Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvari, 2006
Browne et al.,[2012; [Hubert et al., 2021} [Xiao et al.| | 2019), have also been explored in decoding for
autoregressive models. More recently, several studies (Yao et al.,[2024; Besta et al., 2024)) showed
the potential of applying search to LLMs for enhancing performances on text-based reasoning tasks.
Others have applied MCTS to improve the performance of LMs (Xie et al.,|2024; |Chen et al., 2024;
Zhang et al., [2024; [Zhou et al., [2024; |Hao et al.| |2023) on math benchmarks (Cobbe et al., 2021}
or synthetic tasks (Yao et al.l[2022; [Valmeekam et al., [2023)). However, such sophisticated search
methodology in decoding is largely under-explored in diffusion models.

For more related works on fine-tuning and gradient-based methods, please refer to|Appendix B

6 EXPERIMENTS

We conduct experiments to assess the performance of our algorithm relative to baselines and its
sensitivity to hyperparameters. We start by outlining the experimental setup, including baselines and
tasks, and then present the results. The code is available at this anonymous linkl.

6.1 EXPERIMENTAL SETUP

Baselines. We compare DSearch to several representative methods performing reward maximization
during inference. The pre-trained baseline generates samples using pre-trained diffusion models.
Best-of-N generates samples from pre-trained models and select the top 1/N samples. DPS (Chung
et al.,2022) is a widely used training-free version of classifier guidance. For discrete diffusion, we
combine it with the state-of-the-art approach (Nisonoff et al.l 2024). SMC resamples among batch
samples at each time step from the weighted distribution based on value estimations. SVDD performs
value-based importance sampling with fixed duplication-size at each time step.
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Figure 3: Generated samples from DSearch. For more samples, please refer to Note
that the surfaces and ribbons in (e) are representations of the target proteins, while the generated
small molecules are displayed in the center.

Hereafter, we explain more about how we compare with each algorithm. Since DSearch uses C
times of computation compared to baseline sampling, we set N = C for Best-of-N and duplication-
size C for SVDD, as well as use Best-of-N (N = () on top of DPS and SMC, to ensure that
the computational budget during inference is approximately equivalent across different methods.
Further details are provided in[Appendix F.2] For DSearch, implementation details are provided in
Unless otherwise stated, we use exponential search and beam scheduling.

Tasks & Rewards. We introduce the pre-trained diffusion models and downstream reward functions
used. Further details are provided in[Appendix F.I| For images, we use Stable Diffusion v1.5 as
the pre-trained diffusion model (7" = 50). For downstream reward oracles, we use compressibility,
aesthetic score (LAION Aesthetic Predictor V2 in[Schuhmann| (2022))) and human preference score

(HPS V2 in (2023)), as employed by [Black et al.|(2023); [Fan et al.| (2023). For biological
sequences, we use the discrete diffusion model (Sahoo et al.| 2024), trained on datasets from |Gosai|

for DNA enhancers, and those from [Sample et al.| (2019) for 5’ Untranslated regions
(5’UTRs), as our pre-trained diffusion model (7" = 128). For the reward oracles, we use an Enformer
model (Avsec et al.,[2021)) to predict activity for enhancers under cell-specificity, specifically in the
HepG2 cell line. For 5’UTRs, we respectively use ConvGRU models to predict the mean ribosomal
load (MRL) measured by polysome profiling (Sample et al., [2019), and the stability measured by half
life (Agarwal & Kelley, [2022). Note that the stability reward is non-differentiable since the half life
of 5’UTR is measured after concatenation with coding regions and 3’ Untranslated regions. These
tasks are highly relevant for cell and RNA therapies, respectively (Taskiran et al.,[2024} [Castillo-Hair
& Seelig, 2021). For molecules, we use GDSS 2022), trained on ZINC-250k (Irwin
& Shoichet, |2005)), as the pre-trained diffusion model (I" = 1000). For reward oracles, we use
drug-likeness (QED) and synthetic accessibility (SA) calculated by RDKit, as well as binding affinity
to protein Parpl (Yang et al.| measured by docking score (DS) (calculated by QuickVina 2
(AThossary et al.l 2015)), which are all non-differentiable feedbacks. Here, we renormalize SA to
(10 — SA)/9 and docking score to max(—DS, 0), so that a higher value indicates better performance.
These tasks are critical for drug discovery.
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Table 1: Performance of different methods on alignment tasks w.r.t. reward, NLL/quality, and
diversity. The computation budget C for the image compressibility, aesthetic and HPS tasks are 40,
45 and 55, Enhancer, 5’UTR MRL, and 5’UTR Stability tasks 100, 50, and 80, and molecular tasks
50, respectively. 1 indicates higher values correspond to better performance while | indicates lower
for better. bold highlights the best performances.

Method Image Compressibility Image Aesthetic Score Image Human Preference Score
Compressibility T Quality | Diversity T AestheticT Quality| Diversity T HPST Quality| Diversity T

Pre-trained -95.7+738 114+£74 028524 0.0301 545+0.15 11.4+£74 0.2852+0.0302 | 0.2729 £0.0037 145+13 0.5161 £0.0476
Best-N -65.9 +3.4 240+64 02972 +£0.0283 | 6.25+0.05 32423  0.27134+0.0306 | 0.2907 £ 0.0006 12.1 +10.2 0.3182 + 0.0322
DPS -61.0 £ 4.9 227413 02392+0.0499 | 6.16 +0.07 6.1 £29 0.2875+0.0184 | 0.2971 £0.0026 14.1 £3.5 0.4173 + 0.0304
SMC -66.0 = 7.8 219+78 0.1825+£0.0791 | 6.08 +0.05 47+0.8 0.0649 +0.0347 | 02771 £0.0015 17.6 £ 1.8  0.4445 + 0.0230
SVDD -373+6.6 467+ 1.6 0.2758 +0.0363 | 6.37 +0.26 4.6+57 0.265540.0540 | 0.2970 £ 0.0051  22.1 £8.0 0.4577 +0.0144
DSearch -35.7+42 427409 03156+0.0111 | 6.54+0.12 58+10.5 02667 +£0.0166 | 0.3133 £0.0058 16.5+4.6 0.4323 £0.0534
Method Enhancer HepG2 5’UTR MRL 5’UTR Stability

HepG21 NLL| Diversity T MRLT NLL] DiversityT Stability NLL| Diversity
Pre-trained  0.305+£0.295  261.0+£0.5 0.7197 £0.1650 | 0.345£0.112 684402 0.7380 +0.1263 | 0.212 £ 0.010 68.4+03 0.7375 £0.1735
Best-N 3319+0.152  263.0+0.8 0.7097 £0.1703 | 1.009 +0.006 68.0 £0.4 0.7280 +0.1248 | 0.342 + 0.002 689+02 0.7275 £0.1710
DPS 3.665+0.222  258.0+2.1 0.7454 £0.0755 | 0.995+0.016 72.0+£0.2 0.7408 +0.0956 | 0.419 + 0.002 67.0+0.5 0.6040 £ 0.2188
SMC 5.601 £0.208  288.0+ 1.0 0.5737 £0.3563 | 1.008 +£0.013 68.5+0.5 0.5544 +0.2857 | 0.329 + 0.006 69.0+0.6 0.4856 + 0.4068
SVDD 7.040 £ 0.068  2462+53 0.7159 £0.1024 | 1.356 £ 0.009 66.7+0.8 0.6349 +0.2027 | 0.469 + 0.002 69.2+0.8  0.7309 £ 0.1572
DSearch 7.245+0.502  260.1 £1.9 0.7063 +0.1684 | 1.521 £0.011 68.6 0.6 0.6258 +0.2135 | 0.533 £ 0.004 71.0+0.7  0.7001 £ 0.1783
Method Molecule Drug-likeness Molecule Synthetic Accessibility Molecule Binding Affinity - Parpl

QEDT NLL| Diversity SAT NLL| Diversity Docking Scoret NLL| Diversity
Pre-trained  0.656 + 0.007 958 £58  0.8733 +0.1580 | 0.65240.006 971 £69  0.8429 + 0.2227 72+05 971 £32  0.7784 + 0.2998
Best-N 0.887 + 0.008 943 £33 0.8779+£0.1579 | 0.921 +£0.014 946 £ 62  0.8442 + 0.2220 102+0.4 951+22  0.7938 & 0.3052
DPS 0.885 £ 0.019 971 £41  0.8961 £ 0.0761 | 0.968 +0.026 917 +£57  0.8968 + 0.0752 11.6 +0.1 948 £63  0.8882 + 0.0581
SMC 0.796 + 0.007 1086 +21  0.6441 £0.2591 | 0.633 +0.007 1050 £28 0.6894 + 0.2268 10.6 + 0.5 957 £36  0.5092 + 0.3673
SVDD 0.931 £ 0.003 1049 24 0.8920 £ 0.0589 | 0.986 +0.019 1068 +24 0.8633 + 0.2277 127 +£0.2 993 £25  0.8980 + 0.0635
DSearch 0.946 + 0.002 911 £28  0.8424 +£0.2195 | 1.000 - 0.009 892 + 61  0.8546 =+ 0.2424 13.7+03 731 £35  0.7650 + 0.2934
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Figure 4: Reward (median & standard deviation) under different constraints C.

Metrics. We measure the target reward as well as naturalness and diversity metrics for comprehensive
evaluation. We calculate the negative log-likelihood (NLL) of the generated samples w.r.t the
pretrained model to measure how likely the samples are to be natural. The likelihood is calculated
using the ELBO of the pretrained diffusion model. For images, we use BRISQUE to assess the quality
(naturalness) of generated samples (Mittal et al., 2011). We also evaluate the diversity of generated
samples. A higher diversity score indicates greater variability in generation, ensuring broader
exploration of the data space. For discrete biological sequences, we measure diversity using the
pairwise distance of one-hot representation subtracted by 1 to capture structural variations. For images,
we use CLIP (Radford et al.| [2021)) embeddings of samples to calculate average pairwise cosine
similarity. For molecules, we use Tanimoto similarity on molecular Morgan fingerprints (ECFP),
with diversity quantified as the average pairwise similarity of generated molecules, subtracted by 1.

6.2 EFFECTIVENESS OF DSEARCH

We compare the performance of DSearch with other methods. The main results are summarized in
Table[T)on page[8] To visualize the generated samples, we also present several examples in [Figure 3
Further results and studies, including runtime, more metrics and ablations are in Appendices |E|GlH]|

DSearch achieves superior reward performance across all evaluated tasks, consistently outperforming
baselines. This trend is particularly evident in biological sequence generation tasks, where DSearch
exhibits significantly higher scores in HepG2 enhancer activity, 5’UTR MRL, and stability. The
improvement over methods such as Best-of-N, SVDD, and SMC suggests that DSearch’s dynamic
tree search effectively prioritizes high-reward samples while maintaining efficient exploration. While
DSearch generally improves sample rewards, its naturalness remains competitive with baselines. In
molecular generation tasks, DSearch achieves lower NLL compared to baselines, suggesting that
it generates chemically realistic molecules. DSearch also exhibits a balance between diversity and
reward, ensuring a reasonable level of diversity while significantly enhancing reward. In contrast, the
baseline SMC, which rely on batch resampling strategies, show a marked drop in diversity.

In we illustrate how DSearch performance scales with computational budget C. As C
increases, reward scores improve for all methods, but the gains are most pronounced for DSearch.
This shows that dynamic tree search effectively utilizes additional computation to align samples.
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Figure 5: Reward distributions of generated samples using DSearch with different scheduling
algorithms. We fix C' = 40 for DNA task and C' = 20 for molecular task. For search scheduling,

“all” has |A| = T while other algorithms have |A|/T = 65% =+ 1%. For beam scheduling, we use

% = 4 for different algorithms except “None”, which does not use beam reduction.
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Figure 6: Reward (median and standard deviation) of generated samples with different lookahead
hyperparamters. We fix C' = 40.

6.3 EFFECTIVENESS OF SCHEDULING SEARCH EXPANSION

Search scheduling. We compare different search scheduling strategies, including uniform, linear,
exponential, and no search schedules (detailed in [Appendix F). As shown in [Figure 5{(a,c), we
observe that exponential scheduling achieves better rewards while reducing computational cost by
35% compared to the no scheduling (“‘all”’) baseline. This suggests that focusing search efforts in the
later steps of the generation process leads to better sample quality without requiring a proportional
increase in computation. Linear and uniform scheduling also improve efficiency but do not reach
the same level of performance, as they distribute search operations more evenly across time steps.
These results validate that adaptive scheduling allows for significant computational savings while
maintaining or even improving rewards, highlighting the importance of strategic search in diffusion.

Beam scheduling. We also evaluate different beam scheduling strategies, including quadratic, linear,
sigmoid, exponential, and no pruning schedules. From[Figure 3[b,d), we observe that dropping weaker
samples through exponential beam scheduling performs the best. This demonstrates that reducing
the search space aggressively in earlier steps allows for wider and more refined exploration later,
adapting to the dynamic nature of the search. These results indicate that progressively focusing efforts
on high-quality samples enhances overall alignment performance without increasing computational
overhead, which is a key factor in DSearch.

6.4 EFFECTIVENESS OF LOOKAHEAD MECHANISM

Another component of DSearch is the lookahead mechanism introduced in which
strengthens the reward estimation of intermediate states. We explore the impact of different lookahead
horizons K and the number of forward evaluations M. For each sample, we generate M lookaheads
of K steps, compute the corresponding final rewards, and select the best intermediate states either
by the maximum or mean of these evaluations. From we observe that increasing K
consistently improves performance across different tasks, as it allows for a more informed selection
of intermediate states. However, the gains saturate beyond a certain threshold, suggesting a limit
of gain from the estimation accuracy. Additionally, choosing states by maximum reward generally
outperforms averaging, as it ensures that the highest-quality rollouts guide the generation process.
The effect of M is more subtle; higher M leads to better optimization in some tasks where exploration
is crucial, such as 5’UTR stability.

7 CONCLUSION

This work builds on works in diffusion models, value-guided generation, and search algorithms,
proposing a coherent framework for inference alignment. Our proposals open new avenues for
tackling alignment tasks with diffusion models, a powerful tool for property-driven generation. Our
studies show that DSearch effectively balances reward maximization and sample diversity, while
maintaining reasonable likelihood.
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A BROADER IMPACT

This paper presents work whose goal is to advance the field of Deep Learning, particularly diffusion
models. While this research primarily contributes to technical advancements in generative modeling,
it has potential implications in domains such as drug discovery and biomolecular engineering. We
acknowledge that generative models, particularly those optimized for specific reward functions, could
be misused if not carefully applied. However, our work is intended for general applications, and
we emphasize the importance of responsible deployment and alignment with ethical guidelines in
generative Al. Overall, our contributions align with the broader goal of machine learning methodolo-
gies, and we do not foresee any immediate ethical concerns beyond those generally associated with
generative models.

B FURTHER RELATED WORKS

We further discuss works on diffusion post-training in a broader context.

Fine-tuning of diffusion models. Several methods exist for fine-tuning generative models to optimize
downstream reward functions, such as classifier-free guidance (Ho & Salimans| 2022, RL-based
fine-tuning (Fan et al.| 2023} Black et al.}[2023), and its variants (Dong et al.,2023; Wallace et al.,
2024). However, these approaches come with caveats, including high computational costs and the
risk of easily forgetting pre-trained models. In this work, we focus on inference-time techniques that
eliminates the need for fine-tuning generative models.

Gradient-based guidance in diffusion models. Classifier guidance (Dhariwal & Nichol, 2021}
Song et al., [2020) has been widely used to condition pre-trained diffusion models without fine-
tuning. Although these methods do not originally focus on optimizing reward functions, they can
be applied for this purpose (Uehara et al., 2024a)). In this approach, an additional derivative of a
certain value function is incorporated into the drift term (mean) of pre-trained diffusion models during
inference. Subsequent variants (e.g., (Chung et al.| (2022)); Ho et al.| (2022); Bansal et al.| (2023);
Guo et al.|(2024); Wang et al.[(2022); Yu et al.| (2023); Nisonoff et al.|(2024)) have been proposed
to simplify the learning of value functions. However, these methods require the differentiability
of proxy models, which limits their applicability to non-differentiable features/reward feedbacks
commonly encountered in scientific domains. Additionally, this approach cannot be directly extended
to discrete diffusion models (e.g., (Lou et al., 2023} |Shi et al., [2024;|Sahoo et al.,[2024))) in a principle
way. Note a notable exception of classifier guidance tailored to discrete diffusion models has been
recently proposed by |Nisonoff et al.|(2024). However, our approach can be applied to both continuous
and discrete diffusion models in a unified manner. Furthermore, their practical method requires the
differentiability of proxy models.

C FAQ & DISCUSSIONS
In this section, we explore several additional questions on the design of DSearch.

C.1 DOES DYNAMIC SEARCH REDUCE DIVERSITY?

Here we include in-depth analysis on how the DSearch design preserve diversity. In DSearch, we
intentionally avoid redundant sampling from the same parent nodes by designing oversampling and
controlled beam/tree scheduling. At the beginning of the reverse process, we oversample more initial
beams than needed in the final output to enable broader exploration. At each denoising step, while
we selectively retain high-reward beams and discard certain beams, for each retained beam, we select
exactly one of its own next states as the node to continue with. Crucially, this ensures that no two
beams at any timestep share the same parent. Each child has its unique parent beam, maintaining
diversity across paths. We control the beam width to decrease under a certain schedule and thus tree
width increases: the computational resources freed up by discarded beams are allocated to other
beams. At the final step, we have the number of output samples (beams) we need, and each sample
comes from a distinct ancestral trajectory. This design guarantees that the final samples are not
collapsed to descendants of same parents or ancestors. Thus our dynamic search does not lead to near
identical samples, but rather makes well use of resources by focusing the search on promising paths.
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In addition, we include diversity metrics for all domains and tasks, including pairwise cosine for
sequences and molecules, CLIP distance for images. Additional molecular metrics including various
validity and diversity metrics are provided in[Appendix G.5] Results show that DSearch maintains
comparable or better diversity than SVDD and Best-of-N for the same reward level. This is due to
oversampling and dynamic width control, which help maintain multiple diverse beams while still
guiding toward high-reward modes. Meanwhile, a variant of DSearch introduced in [Appendix E]
DSearch-R (aggressive version) does reduce diversity as expected, which we discuss in[Appendix E|

C.2 WHY IS THE GRADIENT-FREE DESIGN BENEFICIAL?

our work specifically targets a common and important class of real-world problems where reward
functions are non-differentiable, sparse, black-box, or expensive to compute. This includes many
settings in scientific discovery domains.

* For drug design, we often want to optimize physics-based feedback such as Autodock Vienna (Trott
& Olson, 2010) for binding affinity. Many powerful science models include non-differentiable
features based on domain knowledge in our target scores. E.g., the famous Alphafold (Abramson
et al., 2024) incorporates lots of non-differentiable features such as MSA (Lipman et al.| [1989))
and conformation search for functional scores. Another well-known non-differentiable feature is
molecular fingerprints (Rogers & Hahnl 2010).

* In many scientific tasks, training a differentiable reward model is infeasible due to the lack of data.
E.g., for many novel targets (new protein binding pockets), there is no known binder (molecule),
let alone a sufficient labeled dataset to train a neural predictor.

» Even with data, we emphasize that it is extremely hard to construct differentiable models in these
scenarios. Since practical calculation of many scientific properties requires chemical algorithms
or physical simulations (as the examples above), which even state-of-the-art ML models cannot
approximate with good accuracy, and are not scientifically trustworthy due to lack of interpretability.

In this common case for science tasks, it is a necessity to use non-differentiable rewards. Our
method does not preclude the use of differentiable rewards but rather offers a model-agnostic and
plug-and-play inference-time strategy that is broadly applicable, even in low-data or black-box, or
high-stakes applications. Furthermore, DSearch can technically integrate gradient information by
using classifier guidance as proposal distribution (instead of pretrained models) to make the tree.
Thus our method can be effectively integrated with gradient-based techniques.

D POTENTIAL LIMITATIONS

Although totally controllable, our approach requires more computational resources (when not paral-
lelized) or memory (when parallelized) than standard inference methods, as noted in[Section 4} Taking
this aspect into account, we compare DSearch, with baselines such as best-of-N in our experimental
section ([Section 6)). For gradient-based approaches like classifier guidance and DPS, it is important
to note that these methods also incur additional computational and memory complexity due to the
backward pass, which DSearch avoids.

E VARIANT: DYNAMIC BEAM RESAMPLE

Under the strategy of dynamic search, we also explore an alternative design choice for beam control,
as outlined in[Algorithm 3] In this algorithm, we mitigate the waste of computational resources by
replacing poor beams with high-quality ones, while both the beam width and the tree width can be
fixed. Specifically, at each time step, after performing a greedy selection based on heuristic functions,
we discard suboptimal beams of a certain percentage and resample from high-quality samples in
Line 4 using the selection function, which samples by probability of exponential tiling. With beam
replacement, DSearch-R drives extreme optimization at the expense of sample variability, while
DSearch maintains a strong balance between diversity and reward optimization.

We compare the performance of DSearch and its variant DSearch-R with other methods. The main
results are summarized in Table [2] on page [[9] DSearch achieves superior reward performance
across all evaluated tasks, consistently outperforming baselines. This trend is particularly evident in
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Algorithm 3 DSearch with Beam Resample (DSearch-R)

1: Require: Heuristic function {@t}?:T, Search set .4, Beam width b, tree width w, resample rate
Ty
2: forte [T+1,---,1]do
3: ift € Athen
4: Do Line 4 in|Algorithm 2
5: Vg = Quantz‘lel_m({ﬁ(zt(i)l) ?:1)
6 Drop beams and remain B, = {zé@ﬂ]l(ﬁ(zﬁ)l) > o) =1}
7 Resampling with replacement:
|Br| o0, (1)
i) 7 g(0(224)) (i)
a1t ~ > i),
= X, 9(0(z2)
where zt(z_)l € B, g(-) = exp(-/(max; @(zt(z_)i)))
(4) b

8: Remaining {z;", }5_, ;.1 = B,
9: else ) ) )
10: Ch(z) = 2%y ~ pPre(:|z;”")
11:  endif

12: end for

13: Output: {xgj]}

biological sequence generation tasks, where DSearch exhibits significantly higher scores in HepG2
enhancer activity, S’UTR MRL, and stability. The improvement over methods such as Best-of-N,
SVDD, and SMC suggests that DSearch’s dynamic tree search effectively prioritizes high-reward
samples while maintaining efficient exploration. DSearch-R, which employs beam replacement,
exhibits an even stronger tendency to maximize rewards. However, as anticipated, this comes at the
cost of reduced diversity, as the replacement mechanism strongly biases toward highly rewarding
samples while discarding potential alternatives. While DSearch generally improves sample rewards,
its naturalness remains competitive with baselines. In molecular generation tasks, DSearch achieves
lower NLL compared to baselines, suggesting that it generates chemically realistic molecules.
DSearch also exhibits a balance between diversity and reward, ensuring a reasonable level of diversity
while significantly enhancing reward. In contrast, the baseline SMC and DSearch-R, which rely on
batch resampling strategies, show a marked drop in diversity.

In we illustrate how DSearch and DSearch-R performances scale with computational
budget C'.

F EXPERIMENTAL DETAILS

F.1 TASK SETTINGS

F.1.1 IMAGES

We define compressibility score as the negative file size in kilobytes (kb) of the image after JPEG
compression following (Black et al.| [2023). We define aesthetic scorer implemented as a linear MLP
on top of the CLIP embeddings, which is trained on more than 400k human evaluations. The human
preference scorer Wu et al.| (2023)) is the CLIP model fine-tuned using an extensive dataset comprising
798,090 human ranking choices across 433,760 pairs of images. As pre-trained models, we use
Stable Diffusion, which is a common text-to-image diffusion model. As prompts to condition, we
use animal prompts following (Black et al., [2023) such as [Dog, Cat, Panda, Rabbit, Horse, ...] for
aesthetic score task and human instruction prompts following (Wu et al.,|2023) for HPS task.

F.1.2 MOLECULES

We calculate QED and SA scores using the RDKit (Landrum et al.l[2016) library. We use the docking
program QuickVina 2 (Alhossary et al.,[2015) to compute the docking scores following Yang et al.
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Table 2: Performance of different methods on alignment tasks w.r.t. reward, NLL/quality, and
diversity. The computation budget C' for the image compressibility, aesthetic and HPS tasks are 40,
45 and 55, Enhancer, 5’UTR MRL, and 5’UTR Stability tasks 100, 50, and 80, and molecular tasks
50, respectively. T indicates higher values correspond to better performance while | indicates lower
for better. bold and underline highlight the best and second best performance, respectively.

Method Image Compressibility Image Aesthetic Score Image Human Preference Score
Compressibility Quality] Diversity Aesthetict Quality| Diversity? HPST Quality] Diversity
Pre-trained -95.7+78 114+£74 028524 0.0301 545+£0.15 11.4+£74 0.2852+£0.0302 | 0.2729 +0.0037 145+ 13 05161 +0.0476
Best-N -65.9 +3.4 240464 02972 +£0.0283 | 6.25+0.05 32+£23  0.271340.0306 | 0.2907 £0.0006 12.1 +£10.2 0.3182 + 0.0322
DPS -61.0 £ 4.9 227413  02392+0.0499 | 6.16 +0.07 6.1 £29 0.2875+0.0184 | 0.2971 £0.0026 14.1 £3.5 0.4173 +0.0304
SMC -66.0 7.8 2194+7.8 0.1825+0.0791 | 6.08 +0.05 47+0.8 0.0649 +0.0347 | 0.2771 £0.0015 17.6 £ 1.8  0.4445 + 0.0230
SVDD -373+6.6 467+ 1.6 0.2758 +0.0363 | 6.37 +0.26 4.6 +£57 0.265540.0540 | 0.2970 £0.0051  22.1 £8.0 0.4577 +0.0144
DSearch -357+42 427409 03156 £00111 | 6.54+0.12 58+10.5 0.2667 +0.0166 | 0.3133 +0.0058 16.5+4.6 0.4323 £ 0.0534
DSearch-R -21.6 £ 0.5 829431 0.1711 £0.0059 | 6.67 + 0.08 1.8+£2.1 0.2020 & 0.0041 | 0.2984 +0.0001 ~ 21.7 +2.0  0.3935 & 0.0062
Method Enhancer HepG2 5’UTR MRL 5’UTR Stability
HepG21 NLL] Diversity MRL?T NLL| Diversity Stability NLL] Diversity
Pre-trained  0.305+£0.295  261.0+£0.5 0.7197 £0.1650 | 0.345£0.112 684402 0.7380 +0.1263 | 0.212 £ 0.010 68.4+03 0.7375 £0.1735
Best-N 3319+0.152  263.0+0.8 0.7097 £0.1703 | 1.009 +0.006 68.0 0.4 0.7280 +0.1248 | 0.342 + 0.002 689+02 0.7275+0.1710
DPS 3.665+0.222 2580+2.1 0.7454 £0.0755 | 0.995 £0.016 72.0+0.2 0.7408 £ 0.0956 | 0.419 & 0.002 67.0£05 0.6040 + 0.2188
SMC 5.601 £0.208  288.0+ 1.0 0.5737 £0.3563 | 1.008 £0.013 68.5+£0.5 0.5544 +0.2857 | 0.329 + 0.006 69.0+0.6 0.4856 + 0.4068
SVDD 7.040 £0.068 2462+ 53 0.7159 £0.1024 | 1.356 £0.009 66.7 £0.8 0.6349 +0.2027 | 0.469 + 0.002 69.2+08  0.7309 £ 0.1572
DSearch 7.245+0.502  260.1 £ 1.9 0.7063 £0.1684 | 1.521 +£0.011 68.6+0.6 0.6258 +0.2135 | 0.533 + 0.004 71.0+0.7  0.7001 £ 0.1783
DSearch-R  8.149 £0.268  249.5+ 3.8 0.5661 £ 0.3508 | 1.591 £ 0.006 66.9 +0.8 0.5236 +0.3051 | 0.573 + 0.003 69.5+0.8  0.5403 £ 0.3459
Method Molecule Drug-likeness Molecule Synthetic Accessibility Molecule Binding Affinity - Parp1
QED?T NLLJ) Diversity T SAT NLL/| Diversity Docking Score? NLLJ Diversity T
Pre-trained  0.656 + 0.007 958 £58  0.8733 +£0.1580 | 0.6524+0.006 971 +£69  0.8429 + 0.2227 72+05 971 £32  0.7784 + 0.2998
Best-N 0.887 £ 0.008 943 £33 0.8779+£0.1579 | 0.921 £0.014 946 £ 62  0.8442 + 0.2220 102+0.4 951 £22  0.7938 + 0.3052
DPS 0.885 £ 0.019 971 £41  0.8961 £ 0.0761 | 0.968 +0.026 917 £57  0.8968 £ 0.0752 11.6 0.1 948 £63  0.8882 + 0.0581
SMC 0.796 + 0.007 1086 21 0.6441 £0.2591 | 0.633 +0.007 1050 =28 0.6894 + 0.2268 10.6 + 0.5 957 £36  0.5092 + 0.3673
SVDD 0.931 £ 0.003 1049 =24 0.8920 4+ 0.0589 | 0.986 +0.019 1068 +24 0.8633 £ 0.2277 127+£0.2 993 £25  0.8980 £ 0.0635
DSearch 0.946 + 0.002 911 +£28  0.8424 +0.2195 | 1.000 +0.009 892 + 61  0.8546 + 0.2424 13.7+03 731 +£35  0.7650 + 0.2934
DSearch-R  0.934 + 0.001 527+£54  0.6145+0.2053 | 1.000 +0.168 935+ 31  0.4465 + 0.3830 144 +£0.2 647 £39  0.6871 + 0.2555

(2021)), with exhaustiveness as 1. Note that the docking scores are initially negative values, while we
reverse it to be positive and then clip the values to be above 0, i.e.. We compute DS regarding protein
parpl (Poly [ADP-ribose] polymerase-1), which is a target protein that has the highest AUROC
scores of protein-ligand binding affinities for DUD-E ligands approximated with AutoDock Vina.

F.1.3 BIOLOGICAL SEQUENCES

We examine two publicly available large datasets: enhancers (n ~ 700k) (Gosai et al.,|2023) and
UTRs (n ~ 300k) (Sample et al., 2019), with activity levels measured by massively parallel reporter
assays (MPRA) (Inoue et al., 2019), where the expression driven by each sequence is measured.
These datasets have been widely used for sequence optimization in DNA and RNA engineering,
particularly in advancing cell and RNA therapies (Castillo-Hair & Seeligl [2021} [Lal et al., [2024;
Ferreira DaSilva et al., 2024; [Uehara et al., 2024b). We pretrain the masked discrete diffusion model
(Sahoo et al.,[2024) on all the sequences.

In the Enhancers dataset, each x is a DNA sequence of length 200. The reward oracle is learned from
this dataset using the Enformer architecture (Avsec et al., 2021)), while y € R is the measured activity
in the HepG2 cell line. The Enformer trunk has 7 convolutional layers, each having 1536 channels. as
well as 11 transformer layers, with 8 attention heads and a key length of 64. Dropout regularization is
applied across the attention mechanism, with an attention dropout rate of 0.05, positional dropout of
0.01, and feedforward dropout of 0.4. The convolutional head for final prediction has 2*1536 input
channels and uses average pooling, without an activation function. These datasets and reward models
are widely used in the literature on computational enhancer design (Lal et al., 2024} Sarkar et al.}
2024).

In the 5°’UTRs dataset, = is a 5’UTR RNA sequence of length 50. The reward oracles are learned
from datasets using ConvGRU|models (Dey & Salem| 2017), which has been widely acknowledged
for computational RNA design, and y € R is the mean ribosomal load (MRL) measured by polysome
profiling, and the stability measured by half life (Agarwal & Kelleyl [2022), respectively. The
ConvGRU trunk has a stem input with 4 channels and a convolutional stem that outputs 64 channels
using a kernel size of 15. The model contains 6 convolutional layers, each initialized with 64 channels
and a kernel size of 5. The convolutional layers use ReLU as the activation function, and a residual
connection is applied across layers. Batch normalization is applied to both the convolutional and
GRU layers. A single GRU layer with dropout of 0.1 is added after the convolutional layers. The
convolutional head for final prediction uses 64 input channels and average pooling, without batch
normalization. Note that the stability reward is non-differentiable since the half life of 5’UTR is
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measured after concatenation with coding regions and 3’ Untranslated regions, following |Agarwal &
Kelley| (2022).

F.2 BASELINES DETAILS

We will explain in more detail how to implement baselines.

SVDD. For this baseline, we compare with SVDD-PM (Li et al.}[2024). SVDD-PM directly use the
reward feedback to evaluate, i.e., use 7(Zo(z¢)) as the estimated value function, which aligns with
our usage for DSearch. The advantage of this approach is that no additional training is required as
long as we have r. The duplication size is set for fair comparisons.

DPS. We require differentiable models. For this task, for those non-differentiable rewards in images,
5’UTRs and molecules, we need to learn differentiable estimations of the reward oracle using deep
learning models. For images, we use standard CNNs for this purpose, which contain 3 residual blocks
and use average pooling. For molecules, we follow the implementation in [Lee et al.| (2023)), and
we use Graph Isomorphism Network (GIN) model (Xu et al., 2018)). In GIN, we use mean global
pooling and the RELU activation function, and the dimension of the hidden layer is 300. The number
of convolutional layers in the GIN model is selected from the set {3, 5}; and we select the maximum
number of iterations from {300, 500, 1000}, the initial learning rate from {le-3, 3e-3, 5¢-3, le-4},
and the batch size from {32, 64, 128}. Note that we cannot compute derivatives with respect to
adjacency matrices when using the GNN model. For the 5’UTR task, we use the ConvGRU model
(Dey & Salem, 2017). The ConvGRU trunk has a stem input with 4 channels and a convolutional
stem that outputs 64 channels using a kernel size of 15. The model contains 6 convolutional layers,
each initialized with 64 channels and a kernel size of 5. The convolutional layers use ReLLU as the
activation function, and a residual connection is applied across layers. Batch normalization is applied
to both the convolutional and GRU layers. A single GRU layer with dropout of 0.1 is added after
the convolutional layers. The convolutional head for final prediction uses 64 input channels and
average pooling, without batch normalization. For training, the batch size is selected from {16, 32,
64, 128}, the learning rate from {1le-4, 2e-4, Se-4}, and the maximum number of iterations from {2k,
5k, 10k}. Regarding hyperparameter «, we choose several candidates and report the best one. For
image tasks we select from {5.0, 10.0} and for bio-sequence tasks we select from {1.0, 2.0}. For
molecule QED task we select from {0.2, 0.3, 0.4, 0.5}, for molecule SA task {0.1, 0.2, 0.3}, and for
molecule docking tasks we select from {0.4, 0.5, 0.6}. The hyperparameters are chosen for good
reward and diversity balance.

SMC. For value function models, we use the same method as SVDD-PM. Regarding o, we choose
several candidates and report the best one. For image tasks we select from [10.0, 40.0]. For Enhancer
and 5’UTR tasks as well as molecule QED and SA tasks we select from {0.1, 0.2, 0.3, 0.4}, while for
molecule docking tasks we select from {1.5, 2.0, 2.5}. The hyperparameters are chosen for good
reward and diversity balance.

F.3 METHOD IMPLEMENTATION DETAILS

We will explain in more detail how to implement our proposal. For DSearch, we control the search
tree expansion with an initial width w(7") and an initial over-sample rate 0o(0) = N(0)/N(T"), where
C = w(T)*x N(T), and N is the number of samples. Over the time steps, we use dynamic beam
scheduling to gradually and strategically reduce N (t), while maintain C' = w(t) * N (t), until we
reach our defined final NV (0). The dynamic beam scheduling can be done using many algorithms; thus
we regard it as a hyperparameter, which is detailed in the below subsections. In the main experiments,
we select exponential beam scheduling. For DSearch-R, we control the search tree expansion with
the computation budget C' = w * N, which is of the same value as DSearch. At each time step, we
use the selection function g to resample and replace rr * 100% percent of suboptimal samples in the
batch. We regard rr as a hyperparameter which is selected from {0.03, 0.04, 0.05}. The dynamic
search scheduling can be done using many functions; thus we regard it as a hyperparameter, which is
detailed in the below subsections. In the main experiments, we select exponential search scheduling
and control | A|/T = 65%. Note that to control the computational budget for fair comparisons with
the baselines, we have not included look-ahead value estimation in the main results.
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F.3.1 DYNAMIC BEAM SCHEDULING

We use a progressive sample reduction strategy of dynamic beam scheduling to further optimize
computational efficiency. This method dynamically reduces the number of candidate samples at each
time step, starting with an over-sampled batch and gradually pruning less promising candidates. Such
refinement aligns with the observation that early steps in diffusion are less critical, while later steps
require greater precision (Li et al.,2024).

Let Ny denote the initial sample size, N the target batch size, and ¢ € [1,T]. At each step ¢, we
maintain a sample size [V; that decreases according to a predefined schedule, subject to Ny > Nrp.
We experiment with several reduction strategies:

¢ Linear Reduction: N; = max (NT7 Nog—t-
linearly over time.

No }N L ), where the sample size decreases

t/T
« Exponential Decay: N; = max <NT, Ny - (11\\%) ) ensuring faster reduction in early

steps.

 Quadratic Reduction: N; = max ( Ny, Ny + (Ng — Np) - (1 — 4 2 , prioritizing sam-
T p g

ple diversity in early steps.

¢ Sigmoid Reduction: A smooth reduction, N; = max (NT7 HFKN%), where « adjusts
the steepness of the transition.

At each step, the scores of all candidates are evaluated using the reward estimation #(x). The top N;
samples are retained for the next step, where:

Selected Samples = argmax{r(z;)}**, .
T, €EX

This approach ensures that computational resources are concentrated on high-quality candidates,
aligning with the goals of diffusion decoding.

F.3.2 SEARCH SCHEDULING

A key consideration in search-based inference for diffusion models is the efficient allocation of
computational resources across diffusion time steps. Unlike the uniform search strategy employed
in autoregressive search works, we incorporate a search scheduling mechanism that dynamically
adjusts the computational effort during the diffusion process. This adjustment is motivated by the
observation that early time steps often contain sparse information, while later time steps are more
information-dense and critical for achieving accurate predictions.

We explore multiple scheduling strategies inspired by related work in reinforcement learning (Silver|
et al.L[2016}|Grill et al.||2020) and molecular design (Yang et al.,[2020). Each strategy is parameterized
to allow for flexibility, depending on the desired trade-off between computation and decoding quality.

Let T represent the total number of time steps, ¢ € [0,7 — 1] the current time step, and f(¢) the
frequency of search operations. The scheduling strategies are defined as follows:
* Linear Scheduling: Search frequency increases linearly with ¢, defined as f(t) = « - ¢,
where « is a scaling factor.

* Exponential Scheduling: Search frequency grows exponentially, prioritizing later steps,
given by f(t) = e?*/T — 1, where 3 controls the growth rate.

* Step-Based Scheduling: Searches are conducted at fixed intervals I(¢) that decrease over
time. For example, search every |T/(2¢/7) | steps.

* Quadratic Scheduling: A more gradual transition, given by f(¢) = v - (t/T)?, where 7y
adjusts the quadratic scaling.

* Sigmoid Scheduling: A smooth transition, defined as f(t) =
the steepness of the curve.

W, where § adjusts
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Each strategy dynamically modulates the computational intensity of search, with exact parameters
(a, 8,7, 9) chosen to control |A| = C' based on the computation budget. Empirical results demon-
strate that some schedules significantly reduce computation while maintaining decoding quality.

The proposed search scheduling and progressive sample reduction strategies are integrated into
diffusion models. By adaptively controlling the number of search operations and candidate samples,
we achieve a balance between computational efficiency and decoding accuracy. Future work may
explore adaptive learning methods to optimize these schedules dynamically.

F.4 SOFTWARE AND HARDWARE

Our implementation is under the architecture of PyTorch (Paszke et al.| [2019). The deployment
environments are Ubuntu 20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB
RAM, and graphics cards NVIDIA RTX 2080Ti. Each of our image experiments is conducted on a
single A100 GPU, while Each of our experiments on other tasks on a single NVIDIA RTX 2080Ti or
RTX A6000 GPU.

F.5 LICENSES
The pretrained models and datasets for image tasks are under MIT license and |Apache license 2.0,
respectively. The dataset for molecular tasks is under Database Contents License (DbCL) v1.0. The

dataset for DNA task is covered under AGPL-3.0 license. The dataset for RNA tasks is under GPL-3.0
license. We follow the regulations for all licenses.

G EXPERIMENTAL ANALYSIS AND STUDIES

G.1 PERFORMANCE SCALING FOR ALL TASKS

[Figure 7]and [Figure §]illustrates how DSearch performance scales with computational budge across
all tasks. Similarly, As C' increases, reward scores improve for all methods, but the gains are most
pronounced for DSearch and DSearch-R. This shows that dynamic tree search effectively utilizes
additional computation to align samples.

G.2 VISUALIZATION OF TREE WIDTH AND BEAM WIDTH IN DSEARCH

To better understand the impact of DSearch as well as our proposed exponential search scheduling
and beam scheduling in an actual task setting, we visualize the evolution of tree width w(¢) and beam
width b(t) during the molecule optimization process under a controlled computational budget of
C = 55. As can be observed in the right side shows the corresponding beam width b(¢),
representing the number of retained candidates at each step, while the left side of the figure illustrates
the variation of tree width w(¢), which determines the number of candidate expansions at each step.
As time progresses, the beam width is progressively reduced using exponential beam scheduling,
ensuring computational resources are concentrated on high-quality candidates. Meanwhile, the search
tree width dynamically expands following an exponential growth strategy, prioritizing later steps
where higher reward regions are more effectively explored. We can also observe the exponential
search scheduling, where tree width is 1 at some time steps, particularly earlier ones. The figure
implies how these scheduling strategies practically balance exploration and exploitation, improving
search efficiency while maintaining diversity in generated molecules.

G.3 RUNTIME AND COMPUTATIONAL COMPLEXITY STUDIES

In we have analyzed the computational complexity of DSearch, which is O(T'C'), where
C = (JA|[C +T — |A])/T, considering the time complexity of one diffusion inference time step
as the unit. While we have theoretically ensured that DSearch and baseline methods operate under
the same computational budget C, practical execution time may vary due to implementation details,
memory efficiency, and computational overhead. To empirically validate the runtime efficiency
of DSearch, we compare its execution time against baseline SVDD across different values of C,
which represents the computational budget allocated for inference. The results are shown in Table
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Figure 8: Reward (median & standard deviation) under larger constraints C (25-45).

on page At lower computation budgets ( C=10), DSearch incurs a slightly higher execution
time than SVDD. This overhead is expected, as DSearch dynamically adjusts beam search width,
introducing additional computations beyond simple intermediate state selection like SVDD. As C'
increases to 20, the execution times of both methods become more comparable. This suggests that
the initial overhead of DSearch becomes less significant relative to the overall computation. At
higher computation budgets ( C' > 40), DSearch achieves reduction in execution time compared to
SVDD. This demonstrates that DSearch scales more efficiently as computation increases, likely due
to its adaptive beam scheduling, which reduces the total number of samples. This empirical study
reinforces the theoretical claims that DSearch not only matches but might surpasses the efficiency
of other alignment methods making it a compelling choice for structured sequence and molecule
generation tasks.

We also provide plot with time as x-axis beyond time comparisons. To enable this, we run under
multiple budgets for all methods to choose similar runtimes, while data points are unevenly distributed
due to the uncontrollableness of precise runtime shows DSearch and DSearch-R scale
significantly faster in reward per second, much more efficient than DPS and Best-of-N. These results
further confirm that DSearch retains better cost-effectiveness.
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Figure 9: Visualization of dynamic tree width and beam width change in molecular task.

Table 3: Runtime comparison (in seconds) across different methods and computational budgets C.
All methods are evaluated under consistent hardware. Runtimes are from measured wall-clock time.
For DPS and SMC, we apply Best-of-N (N=C') on top for fair comparison regarding computations.

Method C=10 C=20 C=40 C=60 C=280
2

Best-of-N 7.56 63.24 94.81 13546  183.55
DPS 81.14 155.40  309.62  460.27  564.05
SMC 55.80 111.21 22446 32644 43281
SVDD 23.36 44.93 88.52 128.14 17241
DSearch 31.43 48.31 81.78 11620  145.87

DSearch-R ~ 27.78 51.12 77.90 104.70  140.22

G.4 REWARD ESTIMATION ANALYSIS

To show the quality of our estimated value functions, i.e., heuristic functions, we evaluate the
effectiveness of our value estimation method for predicting the final reward of diffusion-generated
samples at intermediate time steps. Since the true reward is only available at the final state x(, we
assess the accuracy of our intermediate state value predictions by computing the Pearson correlation
coefficient between the estimated reward and the actual reward obtained at xg. We visualize this
relationship using scatter density plots across several time steps, illustrating how well the estimated
reward aligns with the expected ground-truth reward. For each sampled trajectory, we estimate
rewards at various intermediate diffusion steps and compare them against the final ground-truth
reward. Specifically, we track the correlation at time steps 32, 64, 88, 112, 116, 120, 124, and 127,
covering a range from early diffusion stages to the final steps. The Pearson correlation coefficient
is used as a measure of how well the estimated rewards predict the final reward. Higher values of
Pearson correlation indicate better alignment between the estimated and actual rewards.

As shown in Figures [T} [12] [T3] during early diffusion steps, the estimated rewards show a weak
correlation with the final reward, suggesting that at early stages they carry limited predictive power.
This is expected, as diffusion-based generation starts from a highly noisy prior, and meaningful
structure has not yet emerged. In mid diffusion steps the correlation improves noticeably, indicating
that as the denoising process progresses, the estimated reward begins to capture useful information
about the final state. The scatter plots show that the spread of points starts to concentrate along the
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Figure 10: Reward (median & standard deviation) comparisons across different methods under
different runtimes. We run all experiments on the same hardware to obtain comparisons within a
certain time region, though the data points are unevenly distributed due to the uncontrollableness of

the precise runtime.

diagonal, reflecting a stronger relationship between estimated and actual rewards. At late diffusion
steps, the estimated rewards achieve a high correlation with the final reward. At T = 127, the
correlation is nearly perfect, confirming that by the end of the diffusion process, our value estimation
method accurately predicts the final reward. The density of points along the red diagonal line suggests
that the estimated values are well-calibrated. The strong correlation in later steps supports the
effectiveness of using this value function for intermediate state selection in our search strategies.
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Figure 11: Scatter density plots between estimated reward and ground truth reward for DNA Enhancer
task.
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Figure 12: Scatter density plots between estimated reward and ground truth reward for 5’UTR MRL
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Figure 13: Scatter density plots between estimated reward and ground truth reward for 5’UTR
stability task.

G.5 MORE METRICS FOR MOLECULE GENERATION.

To further evaluate the validity of our method in molecule generation, we report several key metrics
that capture different aspects of molecule quality and diversity in Table ] on page 26}

Table 4: Comparison of the generated molecules across various metrics. The best values for each
metric are highlighted in bold.

Method Validt Uniquet Noveltyt FCD| SNN1 Fragt Scaff NSPDKMMD | Mol Stable? Atm Stable 1
Pre-trained  1.000 1.000 1.000 12979 0414 0513  1.000 0.038 0.320 0.917
DPS 1.000 1.000 1.000 13230 0389  0.388  1.000 0.040 0.310 0.878
SMC 1.000 0.406 1.000 22710 0.225  0.068  1.000 0.285 0.000 0.968
SVDD 1.000 1.000 1.000 14765 0.349 0478  1.000 0.063 0.375 0.932
DSearch 1.000 1.000 1.000 13305 0.389 0412  1.000 0.086 0.200 0.902
DSearch-R  1.000 0.766 1.000 11.873 0344  0.519  1.000 0.117 0.030 0.891
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The validity of a molecule indicates its adherence to chemical rules, defined by whether it can be
successfully converted to SMILES strings by RDKit. Uniqueness refers to the proportion of generated
molecules that are distinct by SMILES string. Novelty measures the percentage of the generated
molecules that are not present in the training set. Fréchet ChemNet Distance (FCD) measures the
similarity between the generated molecules and the test set. The Similarity to Nearest Neighbors
(SNN) metric evaluates how similar the generated molecules are to their nearest neighbors in the
test set. Fragment similarity measures the similarity of molecular fragments between generated
molecules and the test set. Scaffold similarity assesses the resemblance of the molecular scaffolds
in the generated set to those in the test set. The neighborhood subgraph pairwise distance kernel
Maximum Mean Discrepancy (NSPDK MMD) quantifies the difference in the distribution of graph
substructures between generated molecules and the test set considering node and edge features. Atom
stability measures the percentage of atoms with correct bond valencies. Molecule stability measures
the fraction of generated molecules that are chemically stable, i.e., whose all atoms have correct bond
valencies. Specifically, atom and molecule stability are calculated using conformers generated by
RDK:it and optimized with UFF (Universal Force Field) and MMFF (Merck Molecular Force Field).

We compare the metrics using 512 molecules generated from the pre-trained GDSS model and from
different methods optimizing QED, as shown in Table 4] on page Overall, DSearch achieves
comparable performances with the pre-trained model and other baselines, maintaining high validity,
novelty, and uniqueness while outperforming on several metrics such as FCD and fragment similarity.
DSearch-R achieves the best FCD (distribution similarity) but sacrifices stability. SVDD achieves a
good balance between FCD, fragment similarity, and stability. SMC performs poorly in fragment
similarity, NSPDK MMD, and molecular stability, indicating that it generates unrealistic molecules.
Pre-trained performs consistently well across all metrics, particularly in SNN and atomic stability.
However, it does not optimize specific molecular properties as effectively as the other methods. These
results indicate that our approach can generally generate a diverse set of novel molecules that are
chemically plausible and relevant.

H FURTHER EXPERIMENTAL RESULTS

H.1 REWARD HISTOGRAMS

In the main text, we present the medians. Here, we plot the reward score distributions of generated

samples as histograms, shown in [Figure 14] - [Figure 22|

H.2 MORE ABLATION STUDIES ON THE EFFECTIVENESS OF SCHEDULING

To improve the efficiency of the search process, we apply scheduling search expansion. In diffusion-
based sampling, earlier time steps contribute less to the final quality of the generated sequences,
while later time steps contain more crucial information. To exploit this property, Search Scheduling
dynamically adjusts the frequency of search operations, allocating more resources where they are
most impactful. For search scheduling, we compare different scheduling strategies, including uniform,
linear, exponential, and no search schedules, and evaluate how well they balance computational
efficiency and performance. As shown in [Figure 23] we observe that exponential scheduling achieves
better rewards while reducing computational cost by 35% compared to the no scheduling (“all’”)
baseline. This suggests that focusing search efforts in the later steps of the generation process leads
to better sample quality without requiring a proportional increase in computation. Linear and uniform
scheduling also improve efficiency but do not reach the same level of performance, as they distribute
search operations more evenly across time steps and inefficiently expends resources. These results
validate that adaptive scheduling allows for significant computational savings while maintaining
or even improving generation quality. The effectiveness of exponential scheduling suggests that
prioritizing late-stage refinement leads to better sample optimization, highlighting the importance of
strategic search allocation in diffusion-based methods. Beam scheduling aims to improve sample
selection by initially generating a larger batch of candidates and then progressively pruning weaker
samples at intermediate steps. Instead of treating all samples equally throughout the entire diffusion
process, this approach selectively retains high-quality candidates, allowing computational resources
to be focused on the most promising sequences. We evaluate different beam scheduling strategies,
including quadratic, linear, sigmoid, exponential, and no pruning schedules. From we
observe that dropping weaker samples through exponential beam scheduling performs the best. This
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Figure 14: We show the histogram of generated samples in terms of rewards in compressibility of
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Figure 18: We show the histogram of generated samples in terms of rewards in MRL of 5’UTRs. We

consistently observe that our method demonstrates strong performances.
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Figure 19: We show the histogram of generated samples in terms of rewards in stability of 5’UTRs.
We consistently observe that our method demonstrates strong performances.
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Figure 22: We show the histogram of generated samples in terms of rewards in binding affinity of
molecules. We consistently observe that our method demonstrates strong performances.

demonstrating that reducing the search space aggressively in earlier steps allows for wider and more
refined exploration later in the process, adapting to the dynamic nature of the search. In contrast,
linear pruning strategies lead to suboptimal results, likely because they remove candidates at a fixed
rate rather than adapting to the dynamic nature of the search. These results indicate that progressively
focusing efforts on high-quality samples enhances overall alignment performance without increasing
computational overhead, and dynamic beam reduction is a key factor in DSearch. Exponential
beam pruning is particularly effective, as it ensures that early-stage candidates are explored broadly
while later-stage refinement is performed on only the most promising samples. This confirms that
dynamic beam reduction is a key factor in improving sample quality without increasing computational
overhead.

H.3 MORE ABLATION STUDIES ON THE EFFECTIVENESS OF LOOK AHEAD VALUE
ESTIMATION

Lookahead mechanism strengthens the reward estimation of intermediate states. We explore the
impact of different lookahead horizons K. For each sample, we generate M = 6 lookaheads of K
steps, compute the corresponding final rewards, and select the best intermediate states either by the
maximum of these evaluations. From [Figure 24] we observe that increasing K consistently improves
performance across different tasks, as it allows for a more informed selection of intermediate states.
However, the gains saturate beyond a certain threshold, suggesting a limit of gain from the estimation
accuracy.

H.4 VISUALIZATION OF GENERATED SAMPLES

We provide additional generated samples in this section. [Figure 25| [Figure 26} and [Figure 27] show
comparisons of generated images from baseline methods and DSearch regarding compressibility,
aesthetic score, and HPS, respectively. [Figure 28|and [Figure 29|presents the comparisons of visualized
molecules generated from the baseline methods and DSearch regarding QED and SA, respectively.
The visualizations validate the strong performances of DSearch, showing that DSearch can achieve
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Figure 23: We show the reward distributions of generated samples using DSearch with different
scheduling hyper-selections.
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Figure 24: We show the reward distributions of generated samples with different K values.

optimal SA for many molecules. In[Figure 30} and[Figure 31| we visualizes the docking of DSearch-
generated molecular ligands to protein parpl. Docking scores presented above each column quantify
the binding affinity of the ligand-protein interaction, while the figures include various representations
and perspectives of the ligand-protein complexes. We aim to provide a complete picture of how each
ligand is situated within both the local binding environment and the larger structural framework of
the protein. First rows show close-up views of the ligand bound to the protein surface, displaying
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the topography and electrostatic properties of the protein’s binding pocket and providing insight
into the complementarity between the ligand and the pocket’s surface. Second rows display distant
views of the protein using the surface representation, offering a broader perspective on the ligand’s
spatial orientation within the global protein structure. Third rows provide close-up views of the ligand
interaction using a ribbon diagram, which represents the protein’s secondary structure, such as alpha-
helices and beta-sheets, to highlight the specific regions of the protein involved in binding. Fourth
rows show distant views of the entire protein structure in ribbon diagram, with ligands displayed
within the context of the protein’s full tertiary structure. Ligands generally fit snugly within the
protein pocket, as evidenced by the close-up views in both the surface and ribbon diagrams, which
show minimal steric clashes and strong surface complementarity.
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Figure 25: Visualization of generated images using different methods optimizing the reward of
compressibility.
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Figure 26: Visualization of generated images using different methods optimizing the reward of
aesthetic score.
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Figure 28: Visualization of generated molecules using different methods for optimizing QED.
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Figure 29: Visualization of generated molecules using different methods for optimizing SA.
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14.1 13.4 11.6 14.5

Figure 30: Visualization of generated molecules using DSearch optimizing the reward of docking
score for parpl (normalized as max(—D.S, 0)).
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13.8 13.5 14.6 13.6

Figure 31: Visualization of more generated molecules using DSearch optimizing the reward of
docking score for parpl (normalized as max(—D.S, 0)).
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