
Joint Attribute and Model Generalization Learning for
Privacy-Preserving Action Recognition

Duo Peng
SUTD

Singapore
duo_peng@mymail.sutd.edu.sg

Li Xu
SUTD

Singapore
li_xu@mymail.sutd.edu.sg

Qiuhong Ke
Monash University

Australia
Qiuhong.Ke@monash.edu

Ping Hu
UESTC
China

chinahuping@gmail.com

Jun Liu∗
SUTD

Singapore
jun_liu@sutd.edu.sg

Abstract

Privacy-Preserving Action Recognition (PPAR) aims to transform raw videos into
anonymous ones to prevent privacy leakage while maintaining action clues, which is
an increasingly important problem in intelligent vision applications. Despite recent
efforts in this task, it is still challenging to deal with novel privacy attributes and
novel privacy attack models that are unavailable during the training phase. In this
paper, from the perspective of meta-learning (learning to learn), we propose a novel
Meta Privacy-Preserving Action Recognition (MPPAR) framework to improve
both generalization abilities above (i.e., generalize to novel privacy attributes and
novel privacy attack models) in a unified manner. Concretely, we simulate train/test
task shifts by constructing disjoint support/query sets w.r.t. privacy attributes or
attack models. Then, a virtual training and testing scheme is applied based on
support/query sets to provide feedback to optimize the model’s learning towards
better generalization. Extensive experiments demonstrate the effectiveness and
generalization of the proposed framework compared to state-of-the-arts.

1 Introduction

Recently, smart home cameras such as Amazon Echo and Google Nest Cam, have been widely used
in millions of families to provide intelligent monitoring services to enhance security (e.g., detecting
unusual behaviors and alerting householders remotely) [1, 2]. However, the widespread use of such
cameras has raised privacy concerns and even pressured changes in the regulations/laws in Europe
and US [13], as it generally requires uploading device-captured visual data that often contains rich
privacy information (such as face, gender and skin color, etc) to the intelligent system deployed on
cloud or public servers for analysis, which leads to the risk of privacy leakage [3, 4]. While traditional
cryptographic solutions can provide video encryption during transmission between the local camera
and the intelligent system, they would struggle with preventing authorized agents (e.g., the system
administrator) from misusing the privacy information [13, 14].

Therefore, there is an urgent need to find an appropriate anonymization transformation to erase
privacy information from the captured raw visual data at the local camera end (before the upload),
while still enabling certain target tasks required by the intelligent system [5, 6, 7]. Meanwhile,
since action recognition is a fundamental video understanding task with wide applications (such as
the above-mentioned smart home cameras), there is a growing interest in studying anonymization
transformation for privacy preservation in video action recognition, i.e., Privacy-Preserving Action
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Recognition (PPAR) [8, 9, 10, 11, 12, 13, 14, 15]. The goal of PPAR is to train an anonymization
model to transform the captured raw videos, so that the transformed (anonymous) videos not only
avoid undesired privacy disclosure but also enable performing the specified action recognition task.

Not that while using skeleton-based models could naturally handle the privacy concerns in action
recognition, the research regarding privacy preservation in RGB-based models still remains important
and practical. Here are the reasons: In many scenarios, it is sometimes also necessary to incorporate
information beyond action into the action recognition model. For instance, in the kitchen scenario
[18] which contains many fine-grained actions, there are many actions that can be similar, such
as wash dishes and cut vegetables (both require one hand to hold onto the object while the other
hand performs periodic shaking motions). In this case, accurately recognizing the action requires
richer contextual information from the background and surroundings. In such a scenario, simply
using the skeleton to remove all other information will lead to performance degradation [19]. This
indicates that in many scenarios, we still require RGB videos to provide reliable action recognition.
Therefore, In RGB-based action recogtion, learning how to remove privacy information while
retaining both action information and related visual cues for accurate action recognition becomes
extremely important. Recently, it has attracted increasing attention and a series of works [13, 15, 28]
has been proposed, reflecting the significance of tackling privacy concerns within RGB-based action
recognition. Furthermore, RGB-based action recognition has already been extensively deployed in
many household applications [20], such as Amazon Echo and Google Nest Cam. Therefore, the
privacy preservation for RGB-based action recognition (i.e., PPAR) is of utmost urgency.

In PPAR, some video downsampling-based methods [8, 9, 10] propose to produce extremely low-
resolution videos to create privacy-preserving “anonymous videos”. Besides, there exist some
obfuscation-based methods [11, 12] that propose to produce “anonymous videos” by blurring videos.
Although these video processing-based methods have shown promising results, simply discarding
visual content without end-to-end learning often cannot provide a good trade-off between action
recognition and privacy preservation. To handle this issue, recent methods [13, 14, 15] propose
to explicitly optimize the action-privacy trade-off by training an anonymization model to remove
privacy information through an adversarial learning framework. Specifically, the adversarial learning
framework incorporates the action recognition model and the privacy classification model, to train
the anonymization model using a minimax optimization strategy where the action recognition loss is
minimized while the privacy classification loss is maximized, ultimately achieving a good trade-off
between action recognition and privacy preservation. However, despite the progress, these methods
still struggle in real-world applications due to their limited generalization ability, which can manifest
in the following two aspects:

– In real-world applications, video data often contains very rich personal information that are difficult
to be exhaustively enumerated, such as palm prints, fingerprints, faces, credit cards, cellphone screen
information, etc. This makes it almost impossible to ensure that all potential privacy information has
been comprehensively labeled in the training data. Existing works focusing on locating and removing
privacy attributes through labeled supervision do not explicitly deal with the novel (unseen) privacy
attributes, which can be unsuitable to handle the real-world applications where the video data can
include a broad range of potential privacy attributes.

– On the other hand, an ideal privacy-preserving framework should also be model-agnostic, i.e.,
preventing various possible privacy attack (i.e., privacy classification) models from stealing privacy
information [13, 14]. However, previous studies often use specified privacy attack models for
privacy-preserving training, which might limit their privacy-preserving performance when facing
novel privacy attack models. Furthermore, due to the rapid development and evolution of privacy
classification models [16, 17], it is impractical to collect all possible privacy attack models for
privacy-preservation training to ensure the attack model during testing is always seen before.

Thus in this paper, we aim to build a privacy-preserving action recognition framework with bet-
ter generalization abilities in terms of both the above-mentioned aspects: handling novel privacy
attributes as well as novel privacy attack models. We observe that these two aspects both require
the anonymization model to learn generalizable knowledge about identifying and removing privacy
information, that can generalize beyond the given dataset (with limited labeled privacy attributes)
and specified attack models. Despite the conceptual simplicity, how to guide anonymization models
to learn such generalizable knowledge is challenging. Here from the perspective of meta learn-
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ing, we propose a novel framework, Meta Privacy-Preserving Action Recognition (MPPAR), to
simultaneously improve both generalization abilities of the anonymization model.

Meta learning, also known as learning to learn, aims to enhance the model generalization capability
by performing virtual testing during model training [21, 22]. Inspired by this, to improve the
generalization capability of the anonymization model, our framework incorporates a virtual training
and testing scheme that consists of three steps: virtual training, virtual testing and meta optimization.
Specifically, we first construct a support set for virtual training, and a query set for virtual testing.
Since we aim to improve the model generalization capability w.r.t. both novel privacy attributes and
novel privacy attack models, we construct the support set and query set accordingly as follows. For
handling novel privacy attributes, we split the training data to construct a support set and a query set
where the videos of the query set contain labeled privacy attributes that are unseen in the support set.
Similarly, for handling novel privacy attack models, we split a collection of privacy attack models
(for training) into a support set and a query set, which contain different attack models.

Based on the constructed sets, we design a novel virtual training and testing scheme. Specifically, we
first train the model over the support set (i.e., virtual training), and then test the trained model on the
query set (i.e., virtual testing). Based on the testing performance (loss) on the query set, we perform
the meta optimization to update the model for better generalization capability. Since the query set
contains novel privacy attributes (and novel attack models) w.r.t. the support set, by improving the
model’s testing performance on the query set after training on the support set via virtual training and
testing, the model is driven to learn more generalizable knowledge that can help remove potentially
unseen privacy attributes (and defend against unknown privacy attackers), during virtual training.
In this way, we can effectively improve the model generalization capability, even when handling
samples with novel privacy attributes and facing attacks from novel privacy attack models.

2 Related Work

Privacy-Preserving Action Recognition (PPAR). Existing PPAR methods can be broadly classified
into three main categories: (1) downsampling-based methods, (2) obfuscation-based methods, and (3)
adversarial-learning-based methods. Generally, downsampling-based methods [8, 9, 10] propose to
down-sample each video frame into a low-resolution frame to anonymize the privacy information.
Obfuscation-based methods [11, 12] mainly use off-the-shelf object detectors to first detect privacy
regions, and then blur the detected regions. Recently, in order to achieve a better action-privacy trade-
off, adversarial-learning-based methods [13, 14, 15, 28] adopt a minimax optimization strategy (i.e.,
adversarial learning) to simultaneously optimize the action recognition and the privacy preservation.
Specifically, Sudhakar et al. [15] proposed a BDQ anonymization model to preserve privacy in a
spatio-temporal manner. While effective in dealing with seen privacy attributes and attack models,
this method may struggle in handling the generalization problem (e.g., novel attributes or novel
attack models). Although Wu et al. [13, 14] have proposed a model-ensemble strategy to enhance
the model generalization ability to novel attack models, such a strategy might make the trained
anonymization model biased towards the attack models used for training. Dave et al. [28] proposed
a novel contrastive learning approach to train a visual encoder for attribute-generalizable privacy
preservation. Nevertheless, due to its focus on generalization learning without utilizing labeled data,
it may lead to sub-optimal privacy protection performance when compared to supervised methods on
the labeled attributes. Differently, in this paper, we propose a novel framework that not only retains
the benefits from learning with labeled data, but also simultaneously improves the privacy-preserving
performance on both novel privacy attributes and novel privacy attack models, in a unified manner.

Meta Learning. The paradigm of learning to learn, known as meta learning, has emerged primarily to
tackle the problem of few-shot learning [21, 22, 23, 24]. Specifically, MAML [21] and its subsequent
works [22, 23] aim to learn a good initialization of network parameters to achieve fast test-time
updates and adapt to new few-shot learning tasks. More recently, meta learning has also been explored
in other domains [25, 26, 27] to enhance model performance without requiring test-time updates.
Different from typical meta learning methods for few-shot learning, our method aims to address the
challenging PPAR problem involving novel attributes and unknown attack models. To this end, we
propose a novel framework to optimize the PPAR model via a virtual training and testing scheme
over the carefully constructed support and query sets.
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3 Basic Model

Here we first introduce an adversarial-learning-based PPAR model and its training strategy, which has
shown promising performance and served as the basis of many state-of-the-art methods [13, 14, 15].
In this paper, we also adopt this model as the basis of our framework. In this basic model, the original
video data X is sent into the anonymization model fD to generate the anonymous video fD(X).
To train the anonymization model fD, its output (i.e., the anonymized video fD(X)) is sent into
an action recognition model fA and a privacy classification (attack) model fP , respectively. The
action recognition model predicts the class of the action presented in the anonymized video, while the
privacy classification model predicts the existence of each related privacy attribute in the video. The
three models (fD, fA, and fP ) are all learnable neural networks, and are trained under an adversarial
learning algorithm. Specifically, the optimization objective for updating the anonymization model
fD is defined as:

min
fD

L, where : L = Laction(f
A(fD(X)), Y A)− γLprivacy(f

P (fD(X)), Y P ), (1)

where Y A denotes the action recognition label, Laction denotes the classification (cross-entropy) loss.
Y P represents privacy attribute labels, Lprivacy is the multiple binary cross-entropy loss for multiple
privacy labels and γ is a weight coefficient to balance these two terms. By minimizing Laction and
−Lprivacy (i.e., maximizing Lprivacy), the anonymization model fD is optimized to learn to retain
the video content that can maintain the action recognition accuracy while removing privacy attribute
information as much as possible to lower the privacy classification accuracy, thus to fulfill the goal of
privacy-preserving action recognition.

The optimization objective for updating the action recognition model fA is defined as:

min
fA

Laction(f
A(fD(X)), Y A). (2)

The optimization objective for updating the privacy classification model fP is defined as:

min
fP

Lprivacy(f
P (fD(X)), Y P ). (3)

Eq. 2 and 3 are used to maintain the reliable performance of the action recognition model and the
privacy classification model, respectively. The total learning algorithm is handled as a competition
(adversarial) game [13, 14] among Eq. 1, 2 and 3. Thus after competition with each other, the
capabilities of all three models (i.e., fD, fA and fP ) can be gradually enhanced.

4 Proposed Framework

Support Set 

Ds

Query Set 

Dq

Anonymization  

Model ϕ

Intermediary ϕ' 

Virtual Training 

Loss  Lv_tr

Virtual Testing 

Loss  Lv_te

Virtual update (Eq. 5)

Actual update (Eq. 7 & 8 )

Eq. 4

Eq. 6

Attribute: e.g., hair color

Attribute: e.g., nudity

Attack Model: 

e.g., MobileNet

                 Attack Model: 

e.g., ResNet“Novel”
“Novel”

Figure 1: Illustration of our virtual training and testing
scheme. This scheme is handled by three steps: Virtual
Training (marked in blue), Virtual Testing (green), and Meta
Optimization (red).

In PPAR, existing state-of-the-art mod-
els: (1) generally focus on removing
privacy information based on given pri-
vacy attribute labels seen by the model
during training, and (2) typically han-
dle the privacy preservation task by
fooling the predefined privacy classi-
fication (attack) models. As a result,
after training with the given attribute
labels and attack models, these meth-
ods often struggle when encountering
new privacy attributes or new attack
models that are unseen during train-
ing. To handle this issue, we aim to
guide the model to learn more general-
izable knowledge that can be applied
for privacy preservation in an attribute-
agnostic and model-agnostic manner, which however is non-trivial. Here from the perspective of
meta learning, we propose a novel MPPAR framework to improve generalization abilities of the
anonymization model w.r.t. the above two aspects in a unified manner.
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As mentioned before, our framework is based on the Basic Model that contains three training
objectives for updating fD, fA and fP , respectively. Since we aim to improve fD for better
generalization, in our framework, we only modify the training of fD (Eq. 1), while the updates of
fA (Eq. 2) and fP (Eq. 3) remain the same. More specifically, our framework incorporates a virtual
training and testing scheme for training fD. In this scheme, taking the procedures for handling
novel privacy attributes as an instance, we intentionally split the original training set to construct
a support set Ds, and a query set Dq, where Dq contains novel privacy attribute labels w.r.t. Ds.
Then, we first train the anonymization model fD using the support set Ds (virtual training), and then
test the model’s performance on the query set Dq (virtual testing). As the query set contains novel
privacy attributes w.r.t. the support set, if the model can still achieve good testing performance on
the query set after being trained on the support set, it indicates that the trained model has learned
more generalizable knowledge about removing various potential privacy information (including the
novel privacy attributes) that are irrelevant to action recognition. With the virtual testing performance
as a feedback, we can optimize the virtual training process to drive the model’s learning behavior
towards learning more attribute-generalizable knowledge. Via similar process, we can also optimize
the model to handle novel privacy attack models. Below, we first describe the virtual training and
testing scheme, and then discuss how we construct the support set and query set.

4.1 Virtual Training and Testing

— Virtual Training. As shown in Fig. 1 (blue), during virtual training, we train the anonymization
model via conventional gradient descent with the support set Ds. Specifically, we denote the
parameters of the anonymization model as ϕ, and calculate the virtual training loss Lv tr as:

Lv tr(ϕ) = L(ϕ,Ds) (4)

where L is the loss function (defined in Eq. 1) for updating the anonymization model. After
calculating the virtual training loss, we can update our anonymization model’s parameters ϕ via
gradient descent:

ϕ′ = ϕ− α∇ϕLv tr(ϕ) (5)

where α is the learning rate for virtual training. In this way, the model may be easy to learn the
knowledge specific to the support set Ds (e.g., removing privacy attributes labeled in the support
set Ds). However, it might not be beneficial for the model performance on the query set (e.g.,
the query set contains novel privacy attributes). Therefore, in this step, we do not actually update
the anonymization model to be ϕ′ (hence the term “virtual”). Instead, the virtually updated model
parameters ϕ′ merely serve as an intermediary to calculate the virtual testing loss Lv te, which is
described in the next step.

— Virtual Testing. As shown in Fig. 1 (green), after virtual training, we then evaluate the performance
of the virtually trained model on the query set Dq:

Lv te(ϕ
′) = L(ϕ′, Dq) (6)

As we intentionally make the query set contain novel attributes w.r.t. the support set, this virtual testing
loss Lv te(ϕ

′) can indicate the model’s generalization capability to handle the privacy attributes
beyond the support set after virtual training. The lower the virtual testing loss is, the better the model
(after training) generalizes to unseen attributes. Thus, Lv te(ϕ

′) can serve as a feedback to drive the
model to adjust its training on the support set towards learning more generalizable knowledge via the
following meta optimization step.

— Meta Optimization. As discussed above, we aim to optimize the initial model ϕ, so that after
learning (update) on the support set (i.e., ϕ→ ϕ′), it can also obtain good testing performance (i.e.,
low Lv te(ϕ

′)) on the query set that contain novel privacy attributes against the training data. To this
end, we draw inspirations from MAML [21] and formulate the meta optimization objective as:

min
ϕ

Lv tr(ϕ) + Lv te(ϕ
′)

=min
ϕ

Lv tr(ϕ) + Lv te

(
ϕ− α∇ϕLv tr(ϕ)

) (7)

where the first term Lv tr(ϕ) indicates the model’s training performance, and the second term
Lv te(ϕ

′) represents the model’s testing performance (on novel privacy attributes) after virtual
updating. Note that instead of optimizing ϕ and ϕ′ sequentially, the meta optimization mentioned
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above is performed solely on the initial model ϕ, while ϕ′ merely serves as an intermediary for
evaluating the model’s generalization performance on novel privacy attributes. Intuitively, the
objective in Eq. 7 is to learn how to train ϕ on the support set (i.e., lower Lv tr(ϕ)) for better
generalization performance (i.e., lower Lv te(ϕ

′)). Based on Eq. 7, we actually update the model
with respect to ϕ as:

ϕ← ϕ− β∇ϕ

(
Lv tr(ϕ) + Lv te

(
ϕ− α∇ϕLv tr(ϕ)

))
(8)

where β denotes the learning rate for meta-optimization. The above process of meta optimization
is illustrated in Fig. 1 (red). As both Lv tr(·) and Lv te(·) in Eq. 8 are based on loss L(·) (Eq. 1),
which is proposed to learn to keep the action recognition accuracy while removing privacy attribute
information, thus by learning the meta optimization updating rule in Eq. 8, the anonymization model
can be guided to learn more generalizable knowledge about retaining action clues while removing
other irrelevant visual content that includes various potentially unseen privacy attributes.

Here we provide an intuitive explanation of the meta optimization. In the virtual training step,
we simply learn a model on the support set (i.e., ϕ → ϕ′). The model ϕ′ captures knowledge of
the provided set well, yet may suffer from the limited generalization ability when handling novel
attributes. Hence, it is critical to adjust the training process to optimize the model in a less biased
way. To this end, we add a virtual testing loss term as shown in Eq. 7. Since we intentionally design
the support set and query set to be disjoint, the virtual testing loss naturally serves as a regularization
(feedback) to penalize the learning objective with second-order gradients (i.e., meta gradients, see Eq.
8) when the model generalizes poorly after virtual training. As a result, the biases of the training set
are suppressed and the model turns to learn more generalizable knowledge that can help remove as
much action-irrelevant information (including various potential privacy attributes) as possible. Note
again, while we illustrate the above virtual training and testing scheme using privacy attributes as an
example, this scheme is equally applicable for handling novel privacy attack models. We will discuss
how to simultaneously address both aspects in Sec. 4.2.

From the above analysis, we show that the efficacy of our framework lies in incorporating the
virtual testing performance to provide the feedback (meta gradients) to optimize the training process,
which enables the model to learn how to train itself to exploit the desired general knowledge for
generalization to unseen concepts, such as novel privacy attributes and novel attack models. Note
that we do not aim to use the query set to simulate the real testing scenario (which is unknown during
training) for model to learn. Instead, we only need the query set to contain novel concepts w.r.t.
the support set, so as to provide an effective feedback to drive the model’s learning to learn more
set-generalizable knowledge and less set-specific knowledge.

4.2 Set Construction

Based on the above virtual training and testing scheme, we can achieve the two target objectives:
generalizing to novel privacy attributes and novel attack models, in a unified framework by construct-
ing respective support and query sets as follows: Given the training data Xtrain and a set of privacy
attack models (for training) fP

train, we construct a support set Ds and a query set Dq at the beginning
of each training iteration. Specifically, for every odd-numbered iteration, Ds and Dq are constructed
by splitting the training data Xtrain to construct two subsets: Xs and Xq, where Xq contains novel
privacy attributes w.r.t. Xs (i.e., Ds = Xs and Dq = Xq in this case). Thus at each odd-numbered
iteration, we train the anonymization model to learn to generalize to novel privacy attributes via the
virtual training and testing scheme based on the constructed Xs and Xq. For every even-numbered
iteration, Ds and Dq are constructed by splitting the privacy attack models fP

train to construct fP
s

and fP
q that contain different attack models (i.e., Ds = fP

s and Dq = fP
q in this case). Thus at each

even-numbered iteration, we train the anonymization model to learn to generalize to novel attack
models based on fP

s and fP
q . In this odd-even way, we alternate the learning of attribute-wise and

model-wise generalization iteratively, thus enhancing both generalization capabilities of the model.
This means that, due to the unified nature of our scheme, enhancing the model’s both generalization
abilities has now been reduced to a straightforward designing of their respective set construction
methods. Below, we separately discuss each construction method.

A. Constructing sets w.r.t. novel privacy attributes. With respect to the attribute labels, we
construct the support set and query set in two steps. Step (A1) At the beginning of each epoch, we
intentionally split the training data Xtrain into two subsets {X1, X2}, where X2 contains data with
novel privacy attributes w.r.t. X1. Step (A2) At the start of every odd-numbered training iteration,
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we select a batch of data from the first subset X1 to construct a support set Xs, and select a batch of
data from the second subset X2 to construct a query set Xq .

B. Constructing sets w.r.t. novel attack models. In a similar manner, we also construct the support
and query sets w.r.t. privacy attack models in the following two steps. Step (B1) At the start of each
epoch, we split all models in fP

train into two subsets {fP
1 , fP

2 } with different privacy attack models.
Step (B2) Then at the start of every even-numbered training iteration, we randomly select one model
from fP

1 as the support set fP
s and one model from fP

2 as the query set fP
q .

Note that at each odd-numbered iteration (for attribute-wise generalization learning), we randomly
select one privacy attack model from fP

train for anonymization model’s training (all models in fP
train

are trained by the adversarial learning algorithm). At each even-numbered iteration (for model-wise
generalization learning), we randomly sample a batch of data from Xtrain to train the anonymization
model. Moreover, to help the anonymization model to cover a wide range of possible attribute shift
(and attack model shift) from the provided data set (and model set), instead of fixing {X1, X2} (and
{fP

1 , fP
2 }) during the whole training process, at the beginning of each training epoch, we re-split

the training data Xtrain (and training attack models fP
train) to reconstruct {X1, X2} (and {fP

1 , fP
2 }).

It is worth mentioning that our method is convenient to use, since we only need to construct the
corresponding sets via the above strategy and change the model training loss without the need to
change model structures.

Notewise, an alternative approach to achieve both generalization objectives in a unified framework
is to perform both attribute-wise and model-wise learning simultaneously in each iteration, which
is also effective for enhancing model generalization capability w.r.t. the above-mentioned aspects,
while our method with odd-even alternation performs slightly better in both training convergence and
performance (see Sec. 5.5), since it decouples the twofold generalization problem into two individual
ones to solve, and thus eases the model training and obtains better performance.

4.3 Overall Training and Testing

During training, we follow previous works [13, 14] to alternatively update the three models (fD, fA

and fP ) by using the adversarial training algorithm. At the start of each iteration for updating the
anonymization model fD, we first construct the support set and query set w.r.t. privacy attributes in
odd-numbered iterations and privacy attack models in even-numbered iterations following Sec. 4.2.
Note that, here we only focus on the iterations of updating fD, i.e., we only count the number as odd
or even for iterations of updating fD. After that, the constructed support set and query set are used
to train the anonymization model fD through the virtual training and testing scheme as discussed
in Sec. 4.1. Hence, we alternatingly deal with the attribute-wise and model-wise generalization
problem over iterations, achieving the tackling of both problems. The training for updating fA and
fP remains the same as previous works [13, 14], detailed in Supplementary. During testing, we
follow the evaluation procedures of [13, 14, 28] to evaluate the model’s generalization ability to novel
privacy attack models and novel privacy attributes. We additionally provide an algorithm about the
overall training scheme in Supplementary.

5 Experiments
Previous PPAR works have proposed three evaluation protocols: evaluation on novel privacy attributes
only [28]; evaluation on novel attack models only [13, 14]; evaluation on known privacy attributes
and attack models [28, 15], and each protocol has its own experimental setting. Following these
works, we also evaluate our framework under these three protocols. Besides, to evaluate model
generalization capability more comprehensively, we further introduce a new evaluation protocol:
evaluation on both novel privacy attributes and novel privacy attack models together. In each of the
four protocols: we are given the training data Xtrain and training (attack) models fP

train for model
training; after training, we evaluate the trained anonymization model on the testing data Xtest with
testing (attack) models fP

test. The difference between these four protocols lies in whether Xtrain and
Xtest (or fP

train and fP
test) contain the same privacy attributes (or attack models).

Benchmarks. Following previous works [13, 14, 28], we conduct experiments using two benchmarks.
The first benchmark, HMDB51-VISPR, is comprised of HMDB51 [31] dataset and VISPR [30]
dataset. HMDB51 [31] is a collection of videos from movies and the Internet. It has 6,849 videos with
51 action categories. VISPR [30] is a collection with a diverse set of personal privacy information.
Following [13, 14, 28], we use PA-HMDB [13] that contains 515 video samples with both human
action and privacy attribute labels to serve as the testing set of HMDB51-VISPR. The second
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Algorithm 1: Overall Training Scheme
1 Given Xtrain and fP

train for training; Xtest and fP
test for testing.

2 Initialize ϕ.
3 for E epochs do
4 Process Xtrain and fP

train, following Step (A1) and Step (B1) in Sec. 4.2, respectively.
5 T = 0.
6 for iterations I in adversarial training do
7 if I is for updating anonymization model fD then
8 if T is odd then
9 Construct Xv tr and Xv te from Xtrain, following Step (A2) in Sec. 4.2.

10 else
11 Construct fP

v tr and fP
v te from fP

train, following Step (B2) in Sec. 4.2.
12 end
13 Calculate the virtual training loss Lv tr on Ds (i.e., Xv tr or fP

v tr) using Eq. 4: Lv tr(ϕ) = L(ϕ,Dv tr).
14 Calculate an updated version of anonymization model (ϕ′) using Eq. 5: ϕ′ = ϕ− α∇ϕLv tr(ϕ).
15 Calculate the virtual testing loss Lv te on Dq (i.e., Xv te or fP

v te) using Eq. 6: Lv te(ϕ
′) = L(ϕ′, Dv te).

16 Update using Eq. 8: ϕ← ϕ− β∇ϕ

(
Lv tr(ϕ) + Lv te

(
ϕ− α∇ϕLv tr(ϕ)

))
.

17 T = T + 1.
18 else if I is for updating action recognition model fA then
19 Randomly sample a batch of data from Xtrain to update fA using Eq. 2.
20 else
21 Randomly sample a batch of data from Xtrain to update fP using Eq. 3.
22 end
23 end
24 end

benchmark, UCF101-VISPR, consists of UCF101 [29] dataset and VISPR [30] dataset. UCF101 [29]
has 13,320 videos taken from 101 action categories. Following [13, 14, 28], we use the testing sets of
UCF101 [29] and VISPR [30] for evaluation in this benchmark. In all protocols, Xtrain (or Xtest) is
created by sampling from the training set (or the testing set) of the benchmark.
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Figure 2: The frames before and
after our anonymization. More re-
sults are in Supplementary.

Evaluation Method. In all protocols, we follow previous works
[13, 14] to evaluate methods in two folds: (1) action recognition
performance – whether the anonymous videos still contain the
action clues to enable the action recognition model to maintain
satisfactory performance; (2) privacy preservation performance
– whether the anonymous video can lead to poor performance
of the privacy attack models. As for the evaluation of action
recognition, we directly apply the trained fD and fA to the
testing data set Xtest (i.e., fA(fD(Xtest))) and compute the
action classification accuracy: the higher the better. As for the
evaluation of privacy preservation, to empirically verify that fD

prohibits reliable privacy prediction (attack) for each model in
the testing model set fP

test, we conduct the evaluation as follows: before evaluation, we train each
model in fP

test for privacy attribute classification; during evaluation, we apply each trained model
in fP

test to perform privacy attribute classification on anonymous videos fD(Xtest) (anonymized by
fD) and compute the classification accuracy. The highest accuracy achieved among all models of
fP
test will be by default used to indicate the privacy leakage risk of fD, where a lower value denotes

better privacy preservation.

5.1 Protocol A: Evaluation on Both Novel Privacy Attributes and Novel Attack Models

Table 1: Results on generalization to both
novel privacy attributes and attack models.

Methods
HMDB51-VISPR UCF101-VISPR

Action Privacy Action Privacy
(Top-1 ↑) (cMAP ↓) (Top-1 ↑) (cMAP ↓)

Raw Data 68.5 66.3 67.4 42.4

Downsample 2x [28] 59.0 63.1 50.2 36.1
Downsample 4x [28] 52.5 61.9 43.3 32.6
Obf-Blackening [28] 40.4 61.2 48.3 32.0
Obf-StrongBlur [28] 41.7 59.4 49.2 29.6
Obf-WeakBlur [28] 43.8 60.8 49.5 32.5
VITA [13] 67.9 54.5 66.5 30.2
SPAct [28] 67.6 53.8 65.7 29.3

Basic Model 67.3 55.2 65.6 31.7
Ours (full) 68.1 47.4 67.0 21.8

Experimental Setting. In this evaluation protocol, we
follow previous work [28] to set up the training data
Xtrain and testing data Xtest, making Xtrain have no
overlapped privacy attributes with Xtest. Besides, we
follow [13, 14] to set up the training models fP

train

and the testing models fP
test with totally different pri-

vacy attack models. This means in this protocol, we
need to simultaneously handle novel privacy attributes
and novel privacy attack models. The detailed list of
training/testing attributes and attack models can be
found in Supplementary.
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Implementation Details. Following [13, 14], we use the Image Transformation model [37] as
fD, the action recognition model C3D [32] as fA and a set of privacy classification models from
MobileNet-V2 [33] family as fP

train. Since we use C3D [32], we need to split the videos into clips
with a fixed frame number. We use the clip with of 16 frames with skip rate of 2. The spatial
resolution of each video is resized into 112× 112. For a fair comparison, our method and compared
methods use the same model architectures. On each benchmark, we construct the support set with the
videos containing 60% of the privacy attributes in the training data Xtrain, and use the remaining
training data to construct the query set. We set γ (in Eq. 1) as 0.4, the learning rate α for virtual
training (in Eq. 5) as 5e− 4, and the learning rate β for meta-optimization (in Eq. 8) as 1e− 4.

Experimental Results. As shown in Tab. 1, after applying our virtual training and testing scheme
to the basic model, our framework, i.e., Ours (full), improves the model performance by a large
margin, which demonstrates the effectiveness of our framework in generalizing to novel privacy
attributes and novel attack models simultaneously. “Raw Data” denotes directly using raw (clean)
videos for testing. Moreover, compared to existing methods, Ours (full) achieves significantly better
privacy performance while keeping the best action performance, demonstrating the superiority of our
framework. Qualitative results are shown in Fig. 2.

5.2 Protocol B: Evaluation on Novel Privacy Attributes Only

Table 2: Results on generalization to novel
privacy attributes.

Methods
HMDB51-VISPR UCF101-VISPR

Action Privacy Action Privacy
(Top-1 ↑) (cMAP ↓) (Top-1 ↑) (cMAP ↓)

Raw Data 47.8 61.7 62.9 58.3

Downsample 2x [28] 38.5 58.8 54.1 52.2
Downsample 4x [28] 32.4 58.2 39.7 41.5
Obf-Blackening [28] 20.7 57.0 53.1 53.6
Obf-StrongBlur [28] 21.3 56.9 55.6 53.7
Obf-WeakBlur [28] 23.5 57.3 61.5 55.8
VITA [13] 45.1 53.4 62.1 49.6
SPAct [28] 44.7 45.3 62.0 47.1
BDQ [15] 46.6 52.2 62.3 48.8

Basic Model 44.5 54.0 61.8 50.1
Ours (only attribute) 47.2 43.5 62.5 32.2
Ours (full) 47.5 43.2 62.6 32.0

Experiment Setting. In this experiment, we follow
the evaluation protocol in [28], which focuses on the
generalization to novel privacy attributes, to set up
Xtrain and Xtest containing different attributes, and
use the same privacy classification model for both
training and testing.

Implementation Details. Following [28], we utilize
UNet [34] as fD, R3D-18 [36] as fA, and ResNet-50
[35] as fP . Other implementation details remain the
same as in Protocol A.

Experimental Results. For a fair comparison, our
method removes the virtual training and testing iter-
ations w.r.t. model-wise generalization and only carries out the attribute-wise iterations, which is
denoted as Ours (only attribute) in Tab. 2. Compared to other methods, Ours (only attribute) brings
obvious performance improvement, demonstrating our method’s effectiveness in tackling privacy-
attribute generalization problem individually. Ours (full) denotes the model trained under Protocol A,
and here we also directly evaluate its performance under the current protocol. As shown, this model
also achieves remarkable trade-offs, demonstrating our method trained for both generalizations can
also well handle the generalization scenario where only the attributes are novel.

5.3 Protocol C: Evaluation on Novel Privacy Attack Models Only

Table 3: Results on generalization to novel
privacy attack models.

Methods
HMDB51-VISPR UCF101-VISPR

Action Privacy Action Privacy
(Top-1 ↑) (cMAP ↓) (Top-1 ↑) (cMAP ↓)

Raw Data 67.9 76.5 67.4 46.3
Downsample 2x [28] 58.9 73.2 50.2 38.3
Downsample 4x [28] 52.6 72.9 43.3 34.7
Obf-Blackening [28] 40.2 70.4 48.3 31.1
Obf-StrongBlur [28] 41.8 71.6 49.2 30.8
Obf-WeakBlur [28] 43.3 71.7 49.5 35.2
VITA [13] 66.6 64.8 66.5 34.2
SPAct [28] 66.3 66.7 65.7 35.0

Basic Model 66.1 66.9 65.2 35.3
Ours (only model) 67.3 53.9 66.9 27.7
Ours (full) 67.4 53.6 67.0 27.3

Experiment Setting. We follow the protocol used in
[13, 14], which focuses on the generalization to novel
privacy attack models, to set up the training and testing
models fP

train and fP
test containing totally different

privacy attack models. The training data Xtrain and
testing data Xtest contain the same privacy attributes.

Implementation Details. For a fair comparison, we
use the same model architectures as [13, 14] (Sec. 5.1).
Other implementation details are same as Protocol A.

Experimental Results. For a fair comparison, in this
experiment, our method only adopts virtual training
and testing iterations w.r.t. model-wise generalization, which is denoted as Ours (only model).
As shown in Tab. 3, compared to existing methods and the basic model, Ours (only model) can
reduce the privacy leakage by a large margin, showing our method’s effectiveness in model-wise
generalization. Furthermore, Ours (full) can also outperform existing methods on the privacy
performance while maintaining the best action performance, demonstrating our framework trained for
both generalizations can also well handle the generalization where only the attack models are novel.
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5.4 Protocol D: Evaluation on Known Privacy Attributes and Attack Models

Table 4: Results on generalization to known
privacy attributes and privacy attack models.

Methods
HMDB51-VISPR UCF101-VISPR

Action Privacy Action Privacy
(Top-1 ↑) (cMAP ↓) (Top-1 ↑) (cMAP ↓)

Raw Data 43.8 70.6 62.9 64.6
Downsample 2x [28] 36.1 61.2 54.1 57.2
Downsample 4x [28] 25.8 41.4 39.7 50.1
Obf-Blackening [28] 34.2 63.8 53.1 56.4
Obf-StrongBlur [28] 36.4 64.4 55.6 55.9
Obf-WeakBlur [28] 41.7 69.4 61.5 63.5
VITA [13] 42.3 62.3 62.1 55.3
SPAct [28] 43.1 62.7 62.0 57.4
BDQ [15] 43.3 61.8 62.3 53.5

Basic Model 42.1 62.8 62.0 55.7
Ours (only attribute) 43.4 61.0 62.5 53.2
Ours (full) 43.5 61.2 62.6 53.2

Experiment Setting. We follow the protocol used in
[28], which also proposes to conduct evaluation on
known privacy attributes and privacy attack models, to
use Xtrain and Xtest that contain the same attributes
and adopt the same privacy classification model for
both training and testing.

Implementation Details. For a fair comparison, we
follow the previous work [28] using the same model
architectures (see Sec. 5.2). Other implementation
details are the same as in Protocol A.

Experimental Results. In this protocol, since we
only have one privacy classification model, we cannot
perform the virtual training and testing iterations w.r.t. model-wise generalization, but we can still
carry out attribute-wise iterations, as Xtrain contains multiple privacy attributes. Therefore, in this
protocol, we adopt Ours (only attribute) to fairly compare with others. As shown in Tab. 4, the
downsampling-based methods bring obvious performance drop in action recognition. In contrast, our
method achieves the closest action recognition performance to Raw Data, and meanwhile outperforms
other learning-based methods [13, 28, 15] in privacy preservation. This can be attributed to that by
training the model to capture more general knowledge, our framework can help the model to better
understand the given video and find its privacy information, which thus can generally improve model
performance. We can also see that Ours (full) shows comparable results with Ours (only attribute).

5.5 Ablation Studies

Figure 3: The loss curves of attri+model
learning and alternate learning.

Impact of alternate learning with odd and even num-
bered iterations. To enhance model generalization abil-
ities to both novel privacy attributes and novel privacy
attack models, we perform the attribute-wise virtual train-
ing and testing and model-wise virtual training and testing
for odd-numbered iterations and even-numbered iterations,
respectively. In this alternate way, the model can learn
to improve both abilities in the whole training process, si-
multaneously. To investigate the impact of alternate learn-
ing, we evaluate the variant by using both virtual training
and testing strategies at each single iteration, denoted as
attri+model learning. As shown in Tab. 5 and Fig. 3, al-
ternate learning outperforms the variant and shows faster
convergence, which demonstrates its effectiveness. More
ablation studies are in Supplementary

6 Conclusion

In this paper, we have proposed a unified framework that improves the generalization ability of
anonymization model, through simultaneously improving its performance for handling novel privacy
attributes and novel privacy attack models. By carefully constructing the support set and query set
with different attributes and attack models, our framework trains the anonymization model with a
virtual training and testing scheme and guides it to learn knowledge that is general to scenarios where
the privacy attributes and attack models are novel. Extensive experiments have shown the efficacy of
our framework under different settings.
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