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ABSTRACT

Minimax problems have achieved widely success in machine learning such as
adversarial training, robust optimization, reinforcement learning. Existing stud-
ies focus on minimax problems with specific algorithms in stochastic optimiza-
tion, with only a few work on generalization performance. Current generaliza-
tion bounds almost all depend on stability, which need case-by-case analyses for
specific algorithms. Additionally, recent work provides the O(

p
d/n) general-

ization bound in expectation based on uniform convergence. In this paper, we
study the generalization bounds measured by the gradients of primal functions
using the uniform localized convergence. We relax the Lipschitz continuity as-
sumption and give a sharper high probability generalization bound for nonconvex-
strongly-concave (NC-SC) stochastic minimax problems considering the local-
ized information. Furthermore, we provide dimension-independent results under
Polyak-Lojasiewicz condition for the outer layer. Based on the uniform localized
convergence, we analyze some popular algorithms such as the empirical saddle
point (ESP), gradient descent ascent (GDA) and stochastic gradient descent as-
cent (SGDA) and improve the generalization bounds for primal functions. We
can even gain approximate O(1/n2) excess primal risk bounds with further as-
sumptions that the optimal population risks are small, which, to the best of our
knowledge, are the sharpest results in minimax problems.

1 INTRODUCTION

Modern machine learning settings such as reinforcement learning (Du et al., 2017; Dai et al., 2018),
adversarial learning (Goodfellow et al., 2016), robust optimization (Chen et al., 2017; Namkoong
& Duchi, 2017) often need to solve minimax problems, which divide the training process into two
groups: one for minimization and one for maximization. To solve the problems, various efficient
optimization algorithms such as gradient descent ascent (GDA), stochastic gradient descent ascent
(SGDA) have been proposed. Most of them were focused on the iteration complexity, which only
considered the optimization error. In contrast, the generalization performance analysis is less con-
sidered, which is an important measure to foresee their prediction behavior after training.

Recently, Zhang et al. (2022) introduced an expectation generalization error for primal functions
in minimax problems using complexity. Naturally, we want to create a high-probability version,
preferably using local methods to introduce variance information and obtain a tighter upper bound.
A straightforward idea is that we can continue with the traditional localized approach and solve
the problem with covering numbers Bartlett et al. (2002). However, these technologies require
additional bounded assumptions (Assumption 2), or need certain distributional assumptions for un-
bounded condition. For example, Mei et al. (2018) introduced the “Hessian statistical noise” as-
sumption when using covering numbers. Fortunately, Xu & Zeevi (2020) developed a novel “uni-
form localized convergence” framework using generic chaining for the minimization problems and
Li & Liu (2021b) extended it to analyze stochastic algorithms.

This novel framework can not only relax the bounded (or specific distribution) assumptions but
also impose fewer restrictions on the surrogate function for the localized method, enabling us to
design the measurement functional to achieve a sharper bound. Consequently, we introduce this
remarkable framework into minimax problems. Our generalization bound uses weaker assumptions
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comparing with Zhang et al. (2022) and is sharper in some conditions due to our utilization of
variance information.

Introducing this new framework into minimax problems is not straightforward. Zhang et al. (2022)
indeed established a connection between inner and outer layers with the loss of primal functions, but
we need do this with a new generic chaining approach. Furthermore, while Zhang et al. (2022) only
needed to bound the error caused by the connection between inner and outer layer with O(1/

p
n).

We need to introduce the variance for a sharper bound, to bound the error involved by the two layers.

Next, we turn to applications. Firstly, for a sharper excess risk bound, we need to introduce the
PL-SC condition to establish a connection between excess risk and the gradient of primal functions,
leading to our results for ESP. Unfortunately, for GDA and SGDA algorithms, we found that all the
related optimization papers in minimax problems focused on the iteration complexity (or gradient
complexity). As a result, they only require E[kr�(xT )k] for average of round T with an expected
outcome. We were compelled to derive the high probability empirical optimization bound ourselves
using classical optimization methods under SC-SC conditions.

Notice that even under SC-SC settings, achieving this for SGDA remains difficult. Drawing inspi-
ration from Lei et al. (2021)’s proof of Primal-Dual Risk optimization bound, we eventually derive
the optimization bound for primal risk. The proofs for excess risks in applications differ from mini-
mization problems Li & Liu (2021b) and pose challenges. These challenges stem from errors in the
inner and outer layers of minimax problems. Consequently, we can only achieve a result close to
O(1/n2). Our contributions are summarized as follows:

1. We introduce local uniform comvergence using new generic chaining techniques. Comparing
with traditional uniform convergence results in Zhang et al. (2022), we derive sharper generalization
bounds measured by the gradients of primal functions for NC-SC minimax problems. It provides
problem independent results that can be used in various minimax algorithms.

2. Under the Polyak-Lojasiewicz condition for the outer layer, we provide dimension-independent
results and remove the dimension of parameters d from our generalization bound when the sample
size n is large enough, which is, to our knowledge, the first result in minimax problems.

3. We extend our main theorems into various algorithms such as ESP, GDA, SGDA. We establish
faster O(1/n) order bounds for excess primal risk. We can even gain approximate O(1/n2) bounds
with further assumptions that the optimal population risk is small. To our best knowledge, it is the
first time to gain approximate O(1/n2) for NC-SC minimax problems in expectation and the first
result nearly to O(1/n2) high probability bound for SC-SC settings.

This paper is organized as follows. In Section 2, we review the related work. In Section 3, we
introduce the notations and assumptions about the problems. Section 4 presents our main results.
Then we apply our main theorems into various algorithms and give the sharper bounds for different
settings in Section 5. Section 6 concludes our paper. All the proofs in our paper are given in
Appendix.

2 RELATED WORK

Minimax optimization. Minimax optimization analysis has been widely studied in different set-
tings. For example, one of the most popular SGDA algorithm and its variants have been analyzed
in several recent works including Palaniappan & Bach (2016); Hsieh et al. (2019) for SC-SC cases,
Nedić & Ozdaglar (2009); Nemirovski et al. (2009) for convex-concave (C-C) cases, Lin et al.
(2020); Luo et al. (2020); Yan et al. (2020); Rafique et al. (2022) for NC-SC problems, Thekumpara-
mpil et al. (2019); Yan et al. (2020) for nonconvex-concave (NC-C) cases and Loizou et al. (2020);
Liu et al. (2021); Yang et al. (2020) for nonconvex-nonconcave (NC-NC) minimax optimization
problems. All these works focus on the iteration complexity (or the gradient complexity) of the
algorithms, which only proved the optimization error bounds for the sum of T iteration’s gradient
of primal empirical function in expectation. Recently Li & Liu (2021a); Lei et al. (2021) gave op-
timization bounds with high probability for Primal-Dual risk. We notice that the optimization error
of the gradients of primal functions with high probability haven’t been studied yet.

Algorithmic stability. Algorithmic stability is a classical approach, which was presented by Rogers
& Wagner (1978). It gives the generalization bound by analyzing the sensitivity of a particular
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learning algorithm when changing one data point in the dataset. Modern framework of stability
analysis was established by Bousquet & Elisseeff (2002), where they present an important concept
called uniform stability. Since then, a lot of works based on uniform stability have emerged. On
the one hand, the generalization bound with algorithmic stability have been significantly improved
by Bousquet et al. (2020); Feldman & Vondrak (2018; 2019); Klochkov & Zhivotovskiy (2021).
On the other hand, different algorithmic stability measures such as uniform argument stability (Liu
et al., 2017; Bassily et al., 2020), on average stability (Shalev-Shwartz et al., 2010; Kuzborskij
& Lampert, 2018), collective stability (London et al., 2016) have been developed. For minimax
problems, many useful stability measures have also been extended, for example, weak stability (Lei
et al., 2021), argument stability (Lei et al., 2021; Li & Liu, 2021a), and uniform stability (Lei et al.,
2021; Li & Liu, 2021a; Zhang et al., 2021; Farnia & Ozdaglar, 2021; Ozdaglar et al., 2022). Most of
them focused on the expectation generalization bounds and only Lei et al. (2021); Li & Liu (2021a)
established some high probability bounds.

Uniform convergence. Uniform convergence is another popular approach in statistical learning
theory to study generalization bounds (Fisher, 1922; Vapnik, 1999; Van der Vaart, 2000). The main
idea is to bound the generalization gap by its supremum over the whole (or a subset) of the hy-
pothesis space via some space complexity measures, such as VC dimension, covering number and
Rademacher complexity. For finite-dimensional problem, Kleywegt et al. (2002) provided that the
generalization error is O(

p
d/n) depended on the sample size n and the dimension of parameters d

in high probability. For nonconvex settings, Mei et al. (2018); Davis & Drusvyatskiy (2022) showed
that the empirical of generalization error is O(

p
d/n). Xu & Zeevi (2020) developed a novel “uni-

form localized convergence” framework using generic chaining for the minimization problems and
Li & Liu (2021b) extended it to analyze stochastic algorithms. In minimax problems, Zhang et al.
(2022) established the first uniform convergence and showed that the empirical generalization error
of the gradients for primal functions is O(

p
d/n) under NC-SC settings.

3 PRELIMINARIES

Let X 2 Rd and Y 2 Rd0
be two nonempty closed convex parameters spaces. Let P be a probability

measure defined on a sample space Z . We consider the following minimax optimization problem
min
x2X

max
y2Y

F (x,y) := Ez⇠P[f(x,y; z)], (1)

where f : X ⇥ Y ⇥ Z ! R is continuously differentiable and Lipschitz smooth jointly in x and y
for any z. This above minimax objective called as the population minimax problem represents an
expectation of a cost function f(x,y; z) for minimization variable x, maximization variable y and
data variable z. In this paper, we focus on the NC-SC problem which means that f is nonconvex
in x and strongly concave in y. Obviously, our goal is to gain the optimal solution (x⇤

,y⇤) to
(1). Since the distribution P is unavailable, we can only gain a dataset S = {z1, . . . , zn} drawn n

times independently according to P. Therefore, we solve the following empirical minimax problem
instead

min
x2X

max
y2Y

FS(x,y) :=
1

n

nX

i=1

f(x,y; zi). (2)

Next we introduce one of the common measures in minimax problems called primal functions.
Definition 1 (primal function (empirical/population)). The primal population function and the pri-
mal empirical function are given by

�(x) := max
y2Y

F (x,y) and �S(x) := max
y2Y

FS(x,y).

Since F and FS are nonconvex in x, it is difficult to find the global optimal solution in general. In
practice, we design an algorithm A that finds an ✏-stationary point

kr�(Ax(S))k  ✏, (3)
where Ax(S) is the x-component of the output using any algorithm A(S) = (Ax(S),Ay(S))
for solving (2). Then the optimization error for solve the population minimax problem (1) can be
decomposed into two terms:

kr�(Ax(S))k  kr�S(Ax(S))k+ kr�(Ax(S))�r�S(Ax(S))k, (4)
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where the first term on the right-hand-side corresponds to the optimization error of solving the
empirical minimax problem (2) and the second term corresponds to the generalization error of the
gradients of primal function. The above inequality satisfies from the triangle inequality.

Let k · k be the Euclidean norm for simplicity and B(x0, R) := {x 2 Rd : kx�x0k  R} denote a
ball with center x0 2 Rd and radius R. For the closed convex set X , we assume that there is a radius
R1 such that X 2 B(x⇤

, R1). Let A(S) := (Ax(S),Ay(S)) denote the output of an algorithm A

for solving the empirical minimax problem (2) with dataset S and rf = (rxf,ryf) denote the
gradient of a function f .
Definition 2 (Strongly convex function). Let µy > 0. A differentiable function g : W ! R is called
µ-strongly-convex in w if the following inequality holds for every w1, w2:

g(w1)� g(w2) � hrg(w2),w1 �w2i+
µ

2
kw1 �w2k

2
,

we say g is µ-strongly-concave if �g is µ-strongly-convex.
Definition 3 (Smooth function). Let � > 0. A function f : X ⇥Y⇥Z ! R is �-smooth in (x,y) if
the function is continuous differentiable and for any x1,x2 2 X , y1,y2 2 Y and z 2 Z , f(x,y; z)
satisfies

����

✓
rxf(x1,y1; z)�rxf(x2,y2; z)
ryf(x1,y1; z)�ryf(x2,y2; z)

◆����  �

����

✓
x1 � x2

y1 � y2

◆���� .

Assumption 1 (Nonconvex-strongly-concave minimax problem). In order to obtain meaningful
conclusions, we make the following assumptions:

• Let µy > 0. The function f(x,y; z) is µy-strongly concave in y 2 Y for any x 2 X and
z 2 Z .

• The function f(x,y; z) is �-smooth in (x,y) 2 X ⇥ Y for any z.

• X and Y are compact convex sets, which means that there exist constants DX , DY > 0
such that for any x 2 X , kxk2  DX and for any y 2 Y , kyk2  DY .

The first two assumptions in Assumption 1 are standard in NC-SC minimax problems (Zhang et al.,
2021; Farnia & Ozdaglar, 2021; Lei et al., 2021; Li & Liu, 2021a) and the last one in Assumption
1 is widely used in uniform convergence analysis (Kleywegt et al., 2002; Davis & Drusvyatskiy,
2022; Zhang et al., 2022).
Assumption 2 (Lipschitz continuity). Let L > 0, assume that for any x 2 X and any y 2 Y

respectively for any z, the function f(x,y; z) satisfies

krxf(x,y; z)k  L and kryf(x,y; z)k  L.

Lipschitz assmuption is also the standard assumption and widely used in literature such as Zhang
et al. (2021); Farnia & Ozdaglar (2021); Lei et al. (2021); Li & Liu (2021a). But we need to
emphasize that our main Theorem 1 and Theorem 3 do not require the Lipschitz assumption. Instead,
we introduce a weaker assumption called Bernstein condition in minimax problems.
Definition 4 (Bernstein condition). Given a random variable X with mean µ = E[X] and variance
�
2 = E[X2] � µ

2, we say that Bernstein’s condition holds if there exists B > 0 such that for all
2  k  n,

|E[(X � µ)k]| 
1

2
k!�2

B
k�2

. (5)

Remark 1. Bernstein condition has been widely used to obtain tail bounds that may be tighter than
the Hoeffding bounds. It is easy to verify that any bounded variable satisfies the Bernstein condition.
Moreover, the Bernstein condition is milder than the bounded assumption of random variables and
is also satisfied by various unbounded variables. For example, a random variable is sub-exponetial
if it satisfies the Bernstein condition (Wainwright, 2019). Please refer to Wainwright (2019) for
more discussions. Next, we introduce a straightforward generalization of the Bernstein condition to
minimax problems. We formally state these extension in the following assumptions.
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Assumption 3. In minimax problems, the function f(x,y; z) satisfies Bernstein condition in x⇤ for
y⇤: there exists Bx⇤ > 0 such that for all 2  k  n,

E[krxf(x
⇤
,y⇤; z)kk] 

1

2
k!E[krxf(x

⇤
,y⇤; z)k2]Bk�2

x⇤ . (6)

And the function f(x,y; z) satisfies Bernstein condition in y⇤(x) for any fixed x: there exists By⇤ >

0 such that for all 2  k  n,

E[kryf(x,y
⇤(x); z)kk] 

1

2
k!E[kryf(x,y

⇤(x); z)k2]Bk�2
y⇤ , (7)

where y⇤(x) := argmaxy2Y F (x,y).
Remark 2. We can easily obtain that Assumption 2 can derive Assumption 3. For example, if
function f is L-Lipschitz continuous, then krxf(x,y; z)k  L. Thus for any x 2 X ,y 2 Y and
for all 2  k  n, we have E[kryf(x,y; z)kk] 

1
2k!E[kryf(x,y; z)k2]Lk�2, which means

that the function f satisfies Bernstein condition for any x,y. Similarly, E[krxf(x,y; z)kk] 
1
2k!E[krxf(x,y; z)k2]Lk�2 can be easily derived. Furthermore, Bernstein condition assumption
is pretty mild since By⇤ only depends on gradients at (x,y⇤(x)) for any x 2 X and Bx⇤ only
depends on gradients at (x⇤

,y⇤).

4 UNIFORM LOCALIZED CONVERGENCE AND GENERALIZATION BOUNDS

Uniform convergence of the gradients for the primal functions measures the deviation between the
gradients of the primal population function r�(x) and the gradients of the primal empirical function
r�S(x). In this section, we provide the sharper uniform convergence of the gradients for the primal
functions comparing with Zhang et al. (2022).
Theorem 1. Under Assumption 1 and 3, we have the following inequality that for any � 2 (0, 1)
and for all x 2 X , with probability at least 1� �,

kr�(x)�r�S(x)k 
�

µy

0

@

s
2Ekryf(x,y⇤(x); z)k2 log 4

�

n
+

By⇤ log 4
�

n

1

A

+

s
2Ekrxf(x⇤,y⇤; z)k2 log 8

�

n
+

Bx⇤ log 8
�

n
+

C�(µy + �)

µy
max

⇢
kx� x⇤

k,
1

n

�

⇥

0

@

s
d+ log 16 log2(

p
2R1n+1)
�

n
+

d+ log 16 log2(
p
2R1n+1)
�

n

1

A ,

where C is a absolute constant.

There is only one uniform convergence of gradients for primal functions in minimax problems given
in Zhang et al. (2022). Here is their main theorem in NC-SC settings.
Theorem 2 (Theorem in (Zhang et al., 2022)). Under Assumption 1 and 2, we have

E

max
x2X

kr�(x)�r�S(x)k

�
= Õ

 
L(µy + �)

µy

r
d

n

!
,

where Õ(·) hides logarithmic factors.
Remark 3. We now compare our uniform convergence of gradient for primal functions with Zhang
et al. (2022). Firstly, our result is the only one with high-probability format. Besides, we successfully
relax the assumptions. Theorem 2 requires the Lipschitz continuity assumption, while our result
only needs Bernstein condition assumption. Please refer to Remark 1 Remark 2 for the detailed
comparison between these assumptions. Then, the factor in Theorem 2 is L(µy+�)

µy
, while our result

in Theorem 1 is C�(µy+�)
µy

max
�
kx� x⇤

k,
1
n

 
, not involving the term L, which may be very large

and even infinite without Lipschitz continuity assumption. Finally, while Zhang et al. (2022) studied
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the worst-case upper bounds on the parameters, results based on generic chaining yield upper bound
related to the parameters. As shown Theorem 1, we have the term max{kx�x⇤

k,
1
n} before the term

O(
p
d/n), indicating that our results improve as the calculated parameters of algorithms approach

the optimal solution. In the optimal scenario, when kx� x⇤
k 

1
n , we can attain the best (sharper)

results.

Next, we privide a dimension-free uniform convergence of gradients for the primal functions when
the PL condition is satisfied. Firstly, we introduce the extension of the PL condition to the minimax
problem used in Guo et al. (2020); Yang et al. (2020).
Assumption 4 (x-side µx-Polyak-Lojasiewicz condition). For any y 2 Y , the function F (x,y)
satisfies the x-side µx-Polyak-Lojasiewicz (PL) condition with parameter µx > 0 on all x 2 X if

F (x,y)� inf
x0

F (x0
,y) 

1

2µx
krxF (x,y)k2.

Remark 4. Numerous studies have been conducted on deep learning to provide evidence for the
validity of the PL condition in risk minimization problems. This condition has been demonstrated to
hold either globally or locally in certain networks with specific structural, activation, or loss func-
tion characteristics (Hardt & Ma, 2016; Li & Yuan, 2017; Zhou & Liang, 2017; Li & Liang, 2018;
Arora et al., 2018; Charles & Papailiopoulos, 2018; Du et al., 2018; Allen-Zhu et al., 2019). For
instance, Du et al. (2018) has exhibited that if a two-layer neural network possesses a sufficiently
wide width, the PL condition is upheld within a ball centered at the initial solution, and the global
optimum is situated within this same ball. Additionally, Allen-Zhu et al. (2019) have further demon-
strated that in overparameterized deep neural networks utilizing ReLU activation, the PL condition
is applicable to a global optimum located in the vicinity of a random initial solution.
Theorem 3. Under Assumption 1 and 3, assume that the population risk F (x,y) satisfies As-
sumption 4 with parameter µx and let c = max{16C2

, 1}. We have that for all x 2 X , when

n �
c�2(µy+�)2(d+log

8 log2
p

2R1n+1
� )

µ2
yµ

2
x

with probability at least 1� �

kr�(x)�r�S(x)k  kr�S(x)k+ 2

s
2Ekrxf(x⇤,y⇤; z)k2 log 8

�

n

+
2Bx⇤ log 8

�

n
+

µx

n
+

2�

µy

0

@

s
2Ekryf(x,y⇤(x); z)k2 log 4

�

n
+

By⇤ log 4
�

n

1

A .

Remark 5. The following inequality can be easily derived using the norm triangle inequality and
Cauchy–Bunyakovsky–Schwarz inequality.

�(x)� �(x⇤) 
8kr�S(x)k2

µx
+

16�2Ekryf(x,y⇤(x); z)k2 log 4
�

µxµ
2
yn

+
16Ekrxf(x⇤

,y⇤; z)k2 log 8
�

µxn
+

2
⇣

2�By⇤

µy
log 4

� + 2Bx⇤ log 8
� + µx

⌘2

µxn
2

.

(8)

We can easily derive (8) from Theorem 3 to gain the excess primal risk bound, where kr�S(x)k is
the empirical optimization error of the primal function. In Theorem 3 and (8), kr�S(x)k can be
very tiny since most famous optimization algorithms such as GDA and SGDA, can optimize it small
enough. The term Ekrxf(x⇤

,y⇤; z)k2 and Ekryf(x,y⇤(x); z)k2 can be also tiny since they only
depend on the the gradient of the optima x⇤ w.r.t x and the gradient of the optima y⇤(x) w.r.t. y.
Thus, comparing with Theorem 2 in Zhang et al. (2022), this uniform localized convergence bound is
clearly tighter when relaxing Lipschitz continuity (Assumption 2) and considering PL condition (As-
sumption 4). We further analyze these two terms Ekrxf(x⇤

,y⇤; z)k2 and Ekryf(x,y⇤(x); z)k2

using “Self-bounding” property for smooth function (Srebro et al., 2010) and considering specific
algorithms in Section 5, which can derive to almost O(1/n2) bounds. Additionally, uniform con-
vergence often implies results with a square-root dependence on the dimension d such as Theorem
1 and Zhang et al. (2022). Another distinctive improvement of Theorem 3 is that we remove the
dimension d when the population risk F (x,y) satisfies the x-side PL condition and the sample size
n is large enough.
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Remark 6. There are two mainly challenges in our work for minimax problems. On one hand,
comparing with uniform convergence in Zhang et al. (2022), we use a novel uniform localized con-
vergence techniques (Xu & Zeevi, 2020) to construct a functional w.r.t. loss functions on mini-
max problems. This two layer structure involves difficulties. On the other hand, it is notewor-
thy that the optimal point y⇤(x) := argmaxy2Y F (x,y) for a given x differs from y⇤

S(x) :=
argmaxy2Y FS(x,y), thus introducing an additional error term ky⇤(x) � y⇤

S(x)k. Compared to
Zhang et al. (2022), they only need to bound this term with O( 1p

n
). But we need to reach the upper

bound of order O( 1n ) under certain assumptions.

5 APPLICATION

5.1 EMPIRICAL SADDLE POINT

Empirical saddle point (ESP) problem, which is also known as sample average approximation
(SAA) (Zhang et al., 2021) refers to (2). We denote (x̂⇤

, ŷ⇤) as one of the ESP solution to (2).
Then we can provide some important theorems in this subsection.
Theorem 4. Suppose the empirical saddle point (x̂⇤

, ŷ⇤) exists and Assumption 1 and 3 hold, for
any � 2 (0, 1), with probability at least 1� �, we have

kr�(x̂⇤)k = O

0

@

s
d+ log logn

�

n

1

A

Remark 7. When Assumption 1 and 3 hold, Theorem 4 gives that the population optimization error

kr�(x̂⇤)k is of order O
✓q

d+log 1
�

n

◆
(log n is small and can be ignored typically). Note that this

result doesn’t require the Lipschitz continuity assumption (Assumption 2). Although it may be hard
to find (x̂⇤

, ŷ⇤) in NC-SC minimax problems, it is still meaningful when assuming the ESP (x̂⇤
, ŷ⇤)

has been found.
Theorem 5. Suppose Assumption 1 and 3 hold. Assume that the population risk F (x,y) satisfies
Assumption 4 with parameter µx. For any � 2 (0, 1), with probability at least 1 � �, when n �

c�2(µy+�)2(d+log
8 log2

p
2R1n+1
� )

µ2
yµ

2
x

, where c is an absolute constant, we have

�(x̂⇤)� �(x⇤) 
12�2Ekryf(x̂⇤

,y⇤(x̂⇤); z)k2 log 4
�

µxµ
2
yn

+
12Ekrxf(x⇤

,y⇤; z)k2 log 8
�

µxn

+
3
⇣

2�By⇤

µy
log 4

� + 2Bx⇤ log 8
� + µx

⌘2

2µxn
2

.

Furthermore, if we let n � max

⇢
c�2(µy+�)2(d+log

8 log2
p

2R1n+1
� )

µ2
yµ

2
x

,
48�3 log 4

�
µxµ2

y

�
and assume the func-

tion f(x,y; z) is non-negative and �(x⇤) = O
�
1
n

�
, we have

�(x̂⇤)� �(x⇤) = O

0

@ log2 1
�

n

⇣
n�

48�3 log 4
�

µxµ2
y

⌘

1

A .

Remark 8. Theorem 5 shows that when the population minimax risk F (x,y) satisfies x-side PL
condition, we can provide a sharper excess risk bound for primal function, which can be almost
O(1/n2). Note that the optimal population primal function �(x⇤) = O (1/n) is a very common
assumption in many researches such as Srebro et al. (2010); Zhang et al. (2017); Liu et al. (2018);
Zhang & Zhou (2019); Lei & Ying (2020), which is natural because F (x⇤

,y⇤) is the minimal popu-
lation risk. Now we compare our results with recent related work (Li & Liu, 2021b), which studied
the general machine learning settings for f(w) under PL condition. Their empirical risk mini-
mizer (ERM) excess risk bounds provided O

�
1/n2

�
order rates. We analyze the excess risk with

primal functions which involve an additional error term. In consequence, our result for ESP just
approximate O

�
1/n2

�
order rate.
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Algorithm 1 Two-timescale GDA for mini-
max problem

1: Input: (x1,y1), step sizes ⌘x > 0, ⌘y >

0 and dataset S = {z1, . . . , zn}
2: for t = 1, . . . , T do
3: update xt+1 = xt � ⌘xrxFS(xt,yt)

4: update yt+1 = yt + ⌘yryFS(xt,yt)

Algorithm 2 Two-timescale SGDA for minimax
problem

1: Input: (x1,y1) = (0, 0), step sizes {⌘xt}t >

0, {⌘yt}t > 0 and dataset S = {z1, . . . , zn}
2: for t = 1, . . . , T do
3: update xt+1 = xt � ⌘xtrxf(xt,yt; zit)
4: update yt+1 = yt + ⌘ytryf(xt,yt; zit)

5.2 GRADIENT DESCENT ASCENT

Gradient descent ascent (GDA) presented in Algorithm 1 is one of the most popular algorithms and
has been widely used in minimax problems. In this subsection, we provide the generalization and
excess risk bounds of primal functions with the two-timescale GDA Algorithm which is harder to
analyze compared to GDMax and multistep GDA (Lin et al., 2020).
Theorem 6. Suppose Assumption 1 and 2 hold. Let {xt}t be the sequence produced by Algorithm
1 with the step sizes chosen as ⌘x = 1

16( �
µ+1)2�

and ⌘y = 1
� , for any � 2 (0, 1), with probability at

least 1� �, we have

1

T

TX

t=1

kr�(xt)k
2
O

✓
1

T

◆
+O

 
d+ log 16 log2(

p
2R1n+1)
�

n
T

!
.

Furthermore, when T ⇣ O
�p

n
d

�
, we have

1

T

TX

t=1

kr�(xt)k
2
 O

 
d+ log logn

�
p
nd

!
.

Remark 9. Theorem 6 reveals that we need to balance the optimization error and the generalization
error for GDA. According to the results, the iterative complexity of Algorithm 1 should be chosen as
T ⇣ O

�p
n
d

�
, which achieves the optimal population optimization error of primal function.

In comparison to Theorem 4, Theorem 6 derives into population optimization error w.r.t SGD, which
is much more difficult. To establish population optimization error, we need to bound the empirical
optimization error, an area where no research has been conducted in NC-SC settings with high
probability. One possible approach is to construct the martingale difference sequence of step T for
primal functions, yet this constitutes a separate topic warranting further exploration. Theorem 6
aims to directly apply Theorem 1 to SGD. Comparing with Theorem 3, Theorem 6 only necessitates
smooth and Lipschitz conditions (Assumption 1 and 2) and doesn’t require PL conditions. In fact,
Theorem 7 constitutes a further extension of Theorem 3.

Next, we provide the excess risk of primal functions �(x̄T ) � �(x⇤) for Algorithm 1, where
x̄T = 1

T

PT
t=1 xt. We need to know the empirical optimization error kr�S(x̄T )k. Unfortunately,

although the generalization bounds we proved are in NC-SC settings, we require the SC-SC as-
sumptions to derive the empirical optimization error bound of primal functions, to gain the high
probability bound. We relax this SC-SC assumption in Appendix E using existing optimization
error bound with expectation format.
Definition 5. A function g : X ⇥ Y ! R is µx-strongly-convex-µy-strongly-concave if g(·,y) is
µx-strongly-convex for any y 2 Y and g(x, ·) is µy-strongly-concave for any x 2 X

Assumption 5 (Strongly-convex-strongly-concave minimax problem). Assume Assumption 1 holds
and let µx > 0, µy > 0. The function f(x,y; z) is µx-strongly-convex-µy-strongly-concave in
y 2 Y for any x 2 X and z 2 Z .
Remark 10. Assumption 5 is commonly used in SC-SC problems (Zhang et al., 2021; Li & Liu,
2021a). We require this assumption to derive the empirical optimization error bound of primal
functions. The detailed proofs of the optimization error bound kr�S(x̄T )k are given in Section D.2
for GDA and in Section D.3 for SGDA.
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Theorem 7. Suppose Assumption 3 and 5 hold. Let {xt}t be the sequence produced by Algorithm 1
and x̄T = 1

T

PT
t=1 xt with the step sizes chosen as ⌘x = 1

16( �
µ+1)2�

and ⌘y = 1
� , for any � 2 (0, 1),

with probability at least 1� �, when T ⇣ n and n �
c�2(µy+�)2(d+log

8 log2
p

2R1n+1
� )

µ2
yµ

2
x

, where c is an
absolute constant, we have

�(x̄T )� �(x⇤) = O

 
Ekrxf(x⇤

,y⇤; z)k2 log 1
�

n
+

Ekryf(x̄T ,y⇤(x̄T ); z)k2 log
1
�

n
+

log2 1
�

n2

!
.

Furthermore, Let T ⇣ n
2 and n � max

⇢
c�2(µy+�)2(d+log

8 log2
p

2R1n+1
� )

µ2
yµ

2
x

,
128�3 log 4

�
µxµ2

y

�
. Assume

the function f(x,y; z) is non-negative and �(x⇤) = O
�
1
n

�
, we have

�(x̄T )� �(x⇤) = O

0

@ log2 1
�

n

⇣
n�

128�3 log 4
�

µxµ2
y

⌘

1

A .

Remark 11. Theorem 7 shows that the excess risk for primal functions can be bound almost to
O
�
1/n2

�
comparing with the optimal result O(1/n) given in Li & Liu (2021a) when n is large

enough. Note that we require the SC-SC assumption to derive the empirical optimization error. If
we give this bound in expectation, we can relax the SC-SC assumption with x-side PL-strongly-
concave assumption instead.

5.3 STOCHASTIC GRADIENT DESCENT ASCENT

We now analyze the excess risk bound of primal functions for stochastic gradient descent ascent
(SGDA). The algorithmic scheme that we study is two-timescale SGDA (⌘x 6= ⌘y) with variable
stepsizes, presented in Algorithm 2 which is more nature in the real problems.
Theorem 8. Suppose Assumption 2 and 5 hold, let {xt}t be the sequence produced by Algorithm
2 and x̄T = 1

T

PT
t=1 xt with the step sizes chosen as ⌘xt = 1

µx(t+t0)
and ⌘yt = 1

µy(t+t0)
, for any

� 2 (0, 1), with probability at least 1 � �, when T ⇣ n
2 and n �

c�2(µy+�)2(d+log
8 log2

p
2R1n+1
� )

µ2
yµ

2
x

,
where c is an absolute constant, we have

�(x̄T )� �(x⇤) = O

 
Ekrxf(x⇤

,y⇤; z)k2 log 1
�

n
+

Ekryf(x̄T ,y⇤(x̄T ); z)k2 log
1
�

n
+

log2 1
�

n2

!
.

Furthermore, let T ⇣ n
4 and n � max

⇢
c�2(µy+�)2(d+log

8 log2
p

2R1n+1
� )

µ2
yµ

2
x

,
128�3 log 8

�
µxµ2

y

�
. Assume the

function f(x,y; z) is non-negative and �(x⇤) = O
�
1
n

�
, we have

�(x̄T )� �(x⇤) = O

0

@ log2 1
�

n

⇣
n�

128�3 log 8
�

µxµ2
y

⌘

1

A .

Remark 12. Theorem 8 reveals that under the SC-SC settings, the excess risk bound can be approx-
imate O(1/n2) comparing with the optimal result O(1/n) given in (Li & Liu, 2021a). Similarly,
since the SC-SC assumption is required to derive the empirical optimization bound, we can relax the
assumptions when we only need expectation bounds instead of high probability bounds.

6 CONCLUSION

In this paper, we provide the improved generalization bounds for minimax problems with uniform
localized convergence. We firstly provide a sharper bound measured by the gradients of primal
functions with weaker assumptions. Then we provide dimension-independent results under PL con-
dition. Finally we extend our main theorems into various algorithms to reach the optimal excess
primal risk bounds. We notice that most optimization works focused on the gradient complexity
with expectation results. It would be interesting to give the optimization error of x̄T or even xT

with high probability under weaker conditions. Combining with our generalization work, we can
get a tighter excess primal risk bound with weaker conditions.
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