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Abstract

Graph generation is a critical task across scientific domains. Existing methods
fall broadly into two categories: autoregressive models, which iteratively expand
graphs, and one-shot models, such as diffusion, which generate the full graph at
once. In this work, we provide an analysis of these two paradigms and reveal
a key trade-off: autoregressive models stand out in capturing fine-grained local
structures, such as degree and clustering properties, whereas one-shot models excel
at modeling global patterns, such as spectral distributions. Building on this, we
propose LGDC (latent graph diffusion via spectrum-preserving coarsening), a
hybrid framework that combines strengths of both approaches. LGDC employs
a spectrum-preserving coarsening-decoarsening to bidirectionally map between
graphs and a latent space, where diffusion efficiently generates latent graphs before
expansion restores detail. This design captures both local and global properties
with improved efficiency. Empirically, LGDC matches autoregressive models on
locally structured datasets (Tree) and diffusion models on globally structured ones
(Planar, Community-20), validating the benefits of hybrid generation.

1 Introduction

Graph generation underpins applications in drug discovery, molecular design, and social networks.
Most approaches fall into two classes: (i) autoregressive models, which construct graphs through
iterative local expansion, and (ii) one-shot models, which fix the graph size and generate the full
structure in a single pass.

Early work on graph generation largely followed the autoregressive paradigm. GraphRNN You
et al. [2018] pioneered this direction by modeling node interactions as a sequence of connection
events. Advances in sequential modeling, particularly transformers, led to the emergence of a
family of autoregressive graph generators, including GRAN [Liao et al., 2019], BiGG [Dai et al.,
2020a], and GraphGen [Goyal et al., 2020a]. The most advanced system in this line of research is
HSpectre [Bergmeister et al., 2024], which frames generation as an iterative expansion process that
grows a subgraph into a full graph; although architecturally distinct, each prediction step remains a
local expansion, keeping it within the autoregressive family.

More recently, one-shot generative models [Jo et al., 2022, Haefeli et al., 2022a, Vignac et al., 2023]
have gained prominence. Key approaches include diffusion models [Niu et al., 2020, Vignac et al.,
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2023, Haefeli et al., 2022b, Xu et al., 2024, Siraudin et al., 2024] and flow-based models [Eijkelboom
et al., 2024, Qin et al., 2024, Hou et al., 2024, Jiang et al., 2025], which generate entire graphs
in a single shot, unlike autoregressive expansion. These models learn progressive transformations
between a reference distribution and the data distribution by parameterizing the reverse denoising
process with a neural network to enable sampling.

While both autoregressive and one-shot approaches have achieved considerable success in graph
generation, a systematic understanding of their principles and trade-offs remains limited. This
motivates the central question of this work:

How do autoregressive and one-shot models compare, and can we combine their strengths?
We hypothesize a trade-off between the two paradigms: autoregressive models, which generate graphs
through sequential local expansions, excel at fine-grained local dependencies (e.g., parent–child links
in Tree graphs) but often lose long-range coherence. Conversely, one-shot models learn holistic
transformations of the adjacency structure, capturing global patterns, such as community structure
or planarity, though often at the expense of local detail. This intuition guides our evaluation on
datasets that stress different aspects: Tree graphs emphasize local attachment rules, while Planar
and SBM graphs stress global organization. This intuition guides our evaluation on datasets that
stress different aspects: Tree graphs emphasize local attachment rules, while Planar and SBM graphs
stress global organization. This intuition is supported by Table 1, which summarizes training dataset
characteristics across local and global metrics. Tree graphs are dominated by local dependencies,
reflected in their stable local statistics and minimal global variation, whereas Planar and SBM
graphs exhibit pronounced global organization in spectral and connectivity metrics, aligning with our
hypothesis of local–global structural contrast. As shown in Table 2, autoregressive models perform
best on Tree graphs, while one-shot models dominate on Planar and SBM graphs, confirming this
trade-off.

Table 1: Training Dataset Statistics across local and global metrics.
Local Metrics Global Metrics

Metric Tree Planar SBM Metric Tree Planar SBM

Degree 0.0002 0.0000 0.0003 Spectre 0.0091 0.0076 0.0060
Orbit 0.0000 0.0001 0.0310 Components 0.0000 0.0000 0.0004
Motif 0.0000 0.0007 0.0346 Edge Conn. 0.0000 0.0039 0.0205
Clustering 0.0000 0.0165 0.0331 ASPL 0.0065 0.0000 0.0009

Diameter 0.0241 0.0002 0.0001

Table 2: Graph Generation Comparison. Autoregression models v.s. One-Shot generation. For a
fair comparison, we disabled the training designs that are unrelated to the fundamental generation
path mechanism, such as the target guidance DeFoG and the predictor-corrector in Cometh. Details
regarding the evaluation metrics can be found in Section 3.1.

Planar Tree SBM

Model Class V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓
Train set — 100 1.0 100 1.0 85.9 1.0

BiGG [Dai et al., 2020b] Autoregressive 5.0 16.0 75.0 5.2 10.0 11.9
GraphGen [Goyal et al., 2020b] Autoregressive 7.5 210.3 95.0 33.2 5.0 48.8
HSpectre [Bergmeister et al., 2024] Autoregression 62.5 2.9 82.5 2.1 45.0 10.2
GruM [Jo et al., 2024] One-shot 74.4±5.15 3.2±0.4 / / 73.5±6.7 2.6±0.6

Cometh [Siraudin et al., 2024] One-shot 75.5± 7.37 3.0± 5.6 69.5± 3.6 1.40± 0.4 65.5±4.5 4.7±0.6

DeFoG [Qin et al., 2024] One-shot 77.5±8.37 3.5±1.7 73.1±11.4 1.50±0.3 85.0±7.1 3.7±0.9

Motivated by this complementarity, we propose a hybrid framework, latent graph diffusion via
spectrum-preserving coarsening (LGDC)2. The intuition is as follows: one-shot diffusion captures
global structure, but can be expensive on the original graph and may blur fine-grained connectivity.
We instead run diffusion on a coarsened latent graph for efficient global modeling. To ensure
global faithfulness, we adopt spectrum-preserving coarsening under restricted spectral similarity,
which keeps the principal Laplacian eigenvalues and eigenspaces of the coarse and original graphs

2In this work, ‘latent space’ refers to the coarsened graph domain, not a Euclidean embedding.
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(a) Graph generation with local expansion. The color
represents the child nodes expanded from a same an-
cestral node.

Time 𝑡 Time 𝑡 + 1

Graph 
Denoise

(b) Graph Generation with iterative denoising. The
number of nodes are fixed, where every individual
node and edge have the possibility to change.

Figure 1: Two categories of graph generation methods.

close [Loukas and Vandergheynst, 2018], allowing coarse eigenvectors to substitute for the originals,
yielding a compact yet globally coherent surrogate. A single autoregressive-inspired expansion-and-
refinement step during decoding then restores local connectivity. While Table 2 does not directly
evaluate our hybrid, it illustrates the motivating local–global trade-off: diffusion supplies global
coherence, while autoregressive refinement sharpens local structure.

Concretely, LGDC follows a two-stage framework: a diffusion model first samples a small fixed-size
latent graph Gc, which is then expanded back to a graph G in the original space via a decoarsening
model. Training leverages graph–coarsened graph pairs (G,Gc) from spectrum-preserving coarsening,
enabling joint optimization of the latent diffusion model pθ(Gc) and expansion model pϕ(G | Gc).
Our contributions are summarized as follows:

• We propose LGDC, a unified graph generation framework combining spectrum-preserving
coarsening, latent diffusion, and a single expansion–refinement step for scalable generation.

• LGDC captures both local (e.g., neighborhoods) and global (e.g., spectral) structures in
one generative process. Empirically, it achieves results comparable to diffusion models
on globally structured datasets (Planar, Community-20) and to autoregressive models on
locally structured ones (Tree), demonstrating LGDC’s strong balance between fine-grained
accuracy and global coherence while maintaining high sample validity and diversity.

• LGDC achieves high efficiency and lower computational complexity compared to pure
diffusion or autoregressive models (e.g., HSpectre). For graph size n, latent size nc, and
sampling steps T , its complexity is O(n2+Tn2

c) versus O(Tn2) for one-shot and O(Tn2/3)
for autoregressive generation assuming a same architecture for backbone models.

2 Methodology

In this section, we introduce LGDC, a hybrid graph generation model that first samples a graph in the
latent space and expands it back to the original space. An overview is shown in Fig. 2 and Eq. 1.

G coarsen (3)−−−−−−→ Gc
diffuse/denoise (9)–(8)−−−−−−−−−−−−→ Ĝc

one-shot expand/refine (10),(11)−−−−−−−−−−−−−−−−−→ Ĝ. (1)

The subsequent sections present the core components of our approach: Subsection 2.1 introduces the
problem formulation, Subsection 2.2 details the spectrum-preserving graph coarsening module, Sub-
section 2.3 describes the latent-space diffusion process, Subsection 2.4 outlines the parameterization
of the expansion model, and Subsection 2.5 summarizes the sampling pipeline of the framework.

2.1 Problem Formulation

We start by formalizing the problem. Let G = (X,A) denote a graph with n nodes, node features
X ∈ Rn×d, and edge types encoded in A ∈ {0, 1}n×n. The graph generation problem aims to
approximate the data distribution p(G) and sample novel graphs from it. Instead of modeling p(G)
directly in the original space, we introduce a coarsened latent graph representation Gc = (Xc,Ac) of
fixed size nc ≪ n. The generative process is parameterized by neural networks and expressed as:

p(G) = Epθ(Gc)pϕ(G | Gc), (2)
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Figure 2: The architecture of LGDC framework (Latent Graph Diffusion via Coarsening)

where pθ(Gc) defines a distribution over latent graphs, and pϕ(G | Gc) maps them back to the original
space.

2.2 Spectrum-Preserving Graph Coarsening

Our approach leverages latent diffusion to model a graph’s global structure by operating on coarsened
graphs that preserve key global properties of the original. We adopt spectrum-preserving coarsening
under restricted spectral similarity [Loukas and Vandergheynst, 2018], which guarantees that the
principal Laplacian eigenvalues and eigenspaces of the coarse and original graphs remain close.
Since these spectral quantities encode fundamental topological characteristics such as connectivity,
community structure, and planarity, the resulting coarse graph serves as a compact yet globally
faithful surrogate [Bergmeister et al., 2024].

Formally, given a graph G with Laplacian L = D −A and a projection matrix C ∈ {0, 1}nc×n that
maps each fine node to a coarse one, the coarsened graph Gc = (Xc,Ac) is defined as

Xc = CX, Ac = Dc −Lc, with Lc = C LC⊤. (3)
The coarse graph is spectrally ϵ-approximate to the original if

(1− ϵ) Tr(X⊤LX) ≤ Tr(X⊤
c LcXc) ≤ (1 + ϵ)Tr(X⊤LX). (4)

This restricted similarity criterion ensures the coarse graph preserves the spectral energy of the
original, enabling it to mimic global structural patterns. To satisfy this condition, we adopt the REC
algorithm [Loukas and Vandergheynst, 2018], a non-learning coarsening method in Algorithm 1.

2.3 Discrete Diffusion in the Latent Space

After coarsening the graphs, we lean on a discrete diffusion similar to Vignac et al. [2023] for
parameterizing pθ(Gc). Specifically, our goal is to build a diffusion model that transforms the samples
from an easy-to-sample source distribution, GTc ∼ pT (Gc), to samples from the target distribution,
G0c ∼ p(Gc). This is done through defining an iterative sampling process, where

pθ(G0c ) =
∫
G[1:T−1]
c

p(G0c | G1c ) · . . . p(Gt−1
c | Gtc) · . . . p(GT−1

c | GTc )p(GTc )dG[1:T−1]
c (5)

where we denote dG[1:T−1]
c ≜ dGT−1

c , . . . dG1c . Thus, the model design translates to fitting a transition
model, pθ(Gt−1

c | Gtc). To this end, we follow the permutation-equivariant graph transformer of Vignac
et al. [2023] and decompose the transition model as,

pθ(Gt−1
c | Gtc) = pθ(X

t−1
c | Gtc) · pθ(At−1

c | Gtc) (6)

with pθ(X
t−1
c | Gtc) =

∑
X0

c

p
(
Xt−1

c |X0
c ,X

t
c

)
pθ(X

0
c | Gtc), (7)

and pθ(A
(t−1)
c | G(t)c ) =

∑
A0

c

p
(
At−1

c | A0
c ,A

t
c

)
pθ(A

0
c | Gtc). (8)
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where we parameterize the joint reconstruction probability by factorizing the node and edge predic-
tions: pθ(G0c | Gtc) = pθ(X

0
c | Gtc) · pθ(A0

c | Gtc). The model is trained to reconstruct the original
graph G0c from its noisy version Gtc. We follow Vignac et al. [2023] and construct the noisy graph
iteratively perturbing the clean graph through,

p(Gtc | Gt−1
c ) =

(
Xt−1Qt

X , Et−1Qt
E

)
, such that p(G(t)c | G0c ) =

(
X Q

(1:t)
X , E Q

(1:t)
E

)
, (9)

where per–step transitions are defined by Q
(t)
X ∈ [0, 1]a×a and Q

(t)
E ∈ [0, 1]b×b,which we refer

to Vignac et al. [2023] for a detailed introduction.

Training objective. The parameters θ are optimized to reconstruct the clean graph G0c from its
noisy counterpart Gtc at any timestep t. This is achieved by minimizing the combined cross-entropy
loss for both node feature and adjacency matrix reconstruction.

2.4 Expansion and Refinement

To reconstruct a full-resolution graph in a single decoding pass, we adopt the expansion–refinement
formalism of Bergmeister et al. [2024]. Let v ∈ Nnc denote the node expansion vector, where vi

specifies how many fine nodes are generated from each coarse node i in Gc, such that
∑nc

i=1 vi = n.
Let e ∈ {0, 1}|Ẽ| be an edge-selection mask over a set of candidate edges Ẽ .

Expansion. The expansion operator G̃ = Expand(Gc;v) replicates each coarse node i into vi fine
nodes. Candidate edges are then constructed in two groups: (i) intra-cluster edges, connecting fine
nodes that originate from the same coarse node (modeling local substructure within a cluster); and (ii)
inter-cluster edges, connecting nodes that originate from different coarse nodes i and j whenever
(i, j) is an edge in the coarse graph Gc. In other words, inter-cluster connectivity is inferred from
the coarse-level adjacency, serving as a structural scaffold for generating fine-level links between
clusters. This process yields a dense candidate edge set Ẽ used in the subsequent refinement step.

Refinement. The refinement step then applies the binary mask e to prune edges and form the final
reconstructed graph Ĝ:

Gc
v−−→ G̃ e−−→ Ĝ. (10)

Hence, ek = 1 indicates that the k-th candidate edge in Ẽ is retained in Ĝ.

Parameterization and Training. Since G is uniquely determined by (v, e), the conditional model
is factorized as:

pϕ(G | Gc) = pϕ(v, e | Gc) = pϕ(v | Gc) pϕ(e | Expand(Gc;v),Gc). (11)

The supervision pairs (v⋆, e⋆) are obtained by inverting one spectrum-preserving coarsening step.
Model parameters ϕ are optimized to maximize the reconstruction likelihood (or equivalently the
ELBO) following Bergmeister et al. [2024], applied here to a single coarse-to-fine transition.

2.5 Sampling Pipeline

At test time, LGDC generates in two stages: (i) Latent diffusion starting from the prior at step T , we
apply the DiGress-style reverse transitions (Eqs. 9–8) to obtain a sampled latent graph Ĝc, and (ii)
One–shot decoding where we decode in a single coarse to fine pass by drawing (v, e) ∼ pϕ(· | Ĝc)
via Eq. 11 and applying Eq. 10 to produce Ĝ. Unlike Bergmeister et al. [2024], which uses multiple
expansion–refinement cycles (e.g., 1→ 3→ 8→· · ·→n), LGDC performs a single coarse to fine
inversion from nc to n at training and testing that significantly reduce the computation complexity.

End-to-end Complexity. LGDC’s inference cost decomposes into (i) latent denoising on Gc, which
is O(T n2

c), and (ii) one-shot expand/refine, which is O(n2) in the dense worst case. Thus the overall
complexity is O

(
n2 + T n2

c

)
. The sampling complexity calculation is in Appendix A.
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Table 3: Graph Generation Results. We compare the most advanced autoregressive and one-shot
methods and disable target guidance for fair comparison. The A.Ratio. result on Planar excludes Orbit
ratios. The HSepctre results are taken from Bergmeister et al. [2024] with one round of expansion.

Planar Tree Community-20

Model Class V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓ Deg. ↓ Clus. ↓ Orb. ↓
HSpectre [Bergmeister et al., 2024] Autoregression 62.5 2.90 82.5 2.10 / / /
DeFoG Qin et al. [2024] One-shot 77.5±8.37 4.07 73.1±11.4 1.50 0.071 0.115 0.037
LGDC (Ours) Hybrid 82.5±2.7 3.06 86.0±2.0 1.70 0.037 0.027 0.007

3 Experimental Results

3.1 Datasets and Evaluation Protocol

Datasets. We evaluate LGDC on three synthetic benchmarks that probe complementary structural
regimes: (i) Tree graphs [Bergmeister et al., 2024], which are deterministic and acyclic, testing local
structural fidelity; (ii) Planar graphs [Martinkus et al., 2022], which impose global planarity while
still requiring consistent local layouts; and (iii) Community-20 graphs [Vignac et al., 2023], a small
SBM dataset with connected clusters, challenging models to capture global community structure.

Setup. We fix the coarsening ratio to approximately nc ≈ n/5 to balance fidelity and cost under a
fixed compute budget. This ensures the latent graph remains large enough to preserve global structure
while reducing the quadratic cost of diffusion in that space. Concretely, we set M = 16 for Tree and
Planar, and M = 4 for Community-20. A broader sweep of coarsening ratios is left to future work.

Evaluation. We assess generated graphs on sample quality and structural fidelity. Table 3 reports
validity, uniqueness, and novelty (V.U.N.), and the average ratio (A. Ratio), summarizing deviations
of standard statistics from the reference distribution. To probe fidelity in detail, Table 4 separates
local metrics (degree, clustering, orbit/motif), global metrics (spectral distance, connectivity, di-
ameter/ASPL), and cross-scale wavelet statistics based on Laplacian eigen-decomposition, which
combine both aspects. For compactness, we also report Local and Global Ratios, normalizing
deviations against reference sets.

3.2 Performance and Complexity Analysis

Generation Performance. The results in Table 3 show that LGDC achieves the strongest perfor-
mance on the locally-focused Tree dataset, reaching a V.U.N. score of 86.0 that surpasses even the
specialized autoregressive HSpectre. On the globally oriented Planar and Community-20 graphs,
LGDC also delivers competitive results: it improves V.U.N. on Planar to 82.5, outperforming both
HSpectre and DeFoG, and attains consistently low discrepancy scores on Community-20 across statis-
tics. These outcomes highlight LGDC’s strength as a hybrid model that unifies the complementary
advantages of autoregressive and one-shot paradigms across both local and global generation tasks.

Generation Complexity. Standard one-shot graph generative models require O(Tn2) FLOPs,
while autoregressive methods average O(Tn2/3). In contrast, LGDC operates much more efficiently,
requiring only O

(
n2+T n2

c

)
FLOPs, when nc ≪ n (see Appendix A.2). Since T typically exceeds n

in graph generation tasks, the savings are substantial, and with small compression ratio nc/n, LGDC
achieves significant computational gains over both paradigms.

Capturing Local and Global Patterns. Table 4 provides a quantitative analysis of LGDC’s perfor-
mance before and after the expansion step. Each subtable corresponds to one dataset, while the two
columns (Diffusion vs. Expansion) represent the coarsened latent graphs (Gc) and the reconstructed
full graphs (Ĝ), respectively. Metrics are grouped into Local, Global, and Local+Global categories.
Local metrics (Degree, Clustering, Motif/Orbit) measure fine-grained connectivity; global metrics
(Spectral distance, Edge Connectivity, Components, Diameter, ASPL) reflect large-scale structure;
and joint metrics (Wavelet distance and V.U.N.) assess multi-scale consistency between both levels.

Numerically, the Local metrics in all datasets show clear improvement after expansion, for instance,
degree and motif errors typically decrease by one order of magnitude (e.g., from 0.0016 to 0.0006
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or 0.0697 to 0.0079), confirming that the refinement step successfully restores node-level structure
and motif statistics. The Global metrics remain of the same scale before and after expansion,
with small variations in spectral or diameter scores (e.g., spectral distance changes from 0.0085
to 0.0078 or 0.0126 to 0.0090), showing that the overall topological organization learned in the
latent space is largely preserved. Meanwhile, the Wavelet metric, which combines both local and
global information, typically decreases after expansion (e.g., 0.0078→ 0.0041 or 0.0089→ 0.0063),
indicating improved multi-scale coherence in the reconstructed graphs. V.U.N. scores also remain
high (above 80 in all cases), verifying that sample validity and diversity are retained.

Overall, these numerical patterns demonstrate that the latent diffusion step captures coherent global
structure, while the expansion–refinement step recovers fine-scale connectivity without sacrificing
global consistency. The complementary trends across all metric groups confirm LGDC’s ability
to produce graphs that are simultaneously globally organized and locally accurate within a single
decoding stage.

Table 4: Evaluation of LGDC across datasets. “Diffusion” refers to graphs in the coarsened latent
space, and “Expansion” shows the same metrics after decoding to the original size.

(a) Tree

Metric Diffusion Expansion

Local
Degree 0.0005 ± 0.0003 0.0002 ± 0.0002

Orbit 0.0001 ± 0.0000 0.0000 ± 0.0000

Clustering 0.0000 ± 0.0000 0.0000 ± 0.0000

L. Ratio 4.22 ± 3.11 0.86 ± 0.52

Global
Spectre 0.0085 ± 0.0012 0.0078 ± 0.0009

Components 0.0003 ± 0.0002 0.0088 ± 0.0053

Diameter 0.0249 ± 0.0120 0.0789 ± 0.0202

G. Ratio 1.79 ± 0.63 2.21 ± 0.31

Local + Global
Wavelet 0.0078 ± 0.0004 0.0041 ± 0.0003

VUN 97.5 ± 1.58 86.0 ± 2.0

(b) Planar

Metric Diffusion Expansion

Local
Degree 0.0016 ± 0.0005 0.0006 ± 0.0001

Clustering 0.0553 ± 0.0020 0.0509 ± 0.0133

Motif 0.0697 ± 0.0131 0.0079 ± 0.0030

L. Ratio 4.81 ± 1.52 19.88 ± 3.51

Global
Spectre 0.0126 ± 0.0021 0.0090 ± 0.0011

Edge Conn. 0.0162 ± 0.0036 0.0099 ± 0.0030

Diameter 0.0047 ± 0.0046 0.0106 ± 0.0086

G. Ratio 9.03 ± 6.81 19.46 ± 7.34

Local + Global
Wavelet 0.0089 ± 0.0008 0.0063 ± 0.0005

VUN 100.0 ± 0.0 82.5 ± 2.74

(c) Community-20

Metric Diffusion Expansion

Local
Degree 0.0060 ± 0.0030 0.0369 ± 0.0028

Clustering 0.0322 ± 0.0193 0.0266 ± 0.0023

Motif 0.0030 ± 0.0012 0.0317 ± 0.0059

L. Ratio 0.45 ± 0.24 1.92 ± 0.69

Global
Spectre 0.0457 ± 0.0175 0.1431 ± 0.0084

Components 0.0021 ± 0.0016 0.0029 ± 0.0017

ASPL 0.0022 ± 0.0020 0.0014 ± 0.0012

G. Ratio 0.53 ± 0.32 1.18 ± 0.14

Local + Global
Wavelet 0.0410 ± 0.0166 0.1175 ± 0.0061

VUN — —

4 Conclusion

We presented LGDC, a hybrid graph generator that combines spectrum-preserving coarsening with
latent discrete diffusion and a single expansion–refinement step. By design, this approach unifies the
complementary strengths of one-shot and autoregressive paradigms: diffusion in a compact latent
space imposes global organization at low cost, while local-expansion based decoding restores fine
local structure. Empirically, LGDC achieves strong V.U.N. and competitive discrepancy scores with
an end-to-end sampling complexity of O(n2+Tn2

c), offering practical efficiency. Nonetheless, several
limitations remain. The one-shot expand–refine decoding can be error-prone: small inaccuracies in
the edge mask e may propagate when the candidate edge set Ẽ is large, occasionally disturbing coarse-
level consistency. Although latent diffusion is efficient, the expansion step still scales as O(n2) in the
dense case, making very large graphs challenging to handle. The model’s performance also depends
on the chosen coarsening procedure and compression ratio nc/n, as different projection matrices can
yield variable cluster structures and reconstruction difficulty. Finally, the current refinement does
not explicitly enforce global constraints such as planarity or connectivity, and our experiments focus
on synthetic benchmarks rather than large, real-world graphs. Future work will explore iterative or
uncertainty-aware refinement to mitigate decoding errors, sparse or structured expansion to improve
scalability, and adaptive or learned spectrum-preserving coarsening for greater robustness. Extending
LGDC to richer node and edge attributes and larger heterogeneous graphs offers a promising path
toward scalable, structure-aware generative modeling across domains.
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A Complexity Comparison

A.1 Scalability in Graph Generation and the Computational Complexity Issue

Even though both autoregressive and one-shot models have achieve satisfactory results in graph
generation, the scalability has long been a problem due to the heavy computation budget. In this
section, we will illustrate the computational complexity of both families of graph generation methods.

The time complexity, consisting of Training Complexity and Inference Complexity, is related to the
number of the floating point operations (FLOPs) (e.g. plus/multiplication) in the forward-propagation
and back-propagation (where the gradient is calculated). The inference complexity consists of making
predictions through the model in each step. The space complexity mainly concerns the memory usage
of a model (RAM or GPU memory). The complexity of time and space is highly intertwined and is
measured through the model architecture. As a brief solution, calculating each step of propagation
with a specific model architecture is good enough for measuring the complexity.

The computational complexity of one-shot diffusion/flow models. The cost mainly comes from
the fact that one-shot graph generation models uses a dense representation of graphs for computation,
which results in a quadratic complexity w.r.t #nodes (n) and #dimension (d). The complexity of
one-shot graph generation models, including Digress Vignac et al. [2023], DeFogQin et al. [2024]
and BWFlowJiang et al. [2025], are generally similar as the recent development of this family of
models mainly focusing on accelerating the sampling and reducing the training cost. The sampling
steps T is a parameter that we cannot easily quantify. Though we assume it to be fixed here for
simplicity but we also wish to emphasize its importance in graph generation.
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FiLM: )(**,)

Q K V

X
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E
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Figure 3: The time complexity of One-shot graph generation. Given the number of nodes n, dimension
size d, number of layers L, and number of samples S, the overall model complexity for training is
given as O(S ·L·(n2 ·d2+n2 ·d+n·d2)). The inference complexity O(T ·L·(n2 ·d2+n2 ·d+n·d2))
for a single sample. The leading term is n2 · d2. which comes from the edge-wise prediction.

We consider the graph transformer Vignac et al. [2023] as the backbone model, which has a model
architecture that is shown in 3 (simplified by removing all the conditional generation component).
DiGress handles graphs with categorical node and edge attributes, represented by the spaces X and
E , respectively, with cardinalities a and b. We use xi to denote the attribute of node i and xi ∈ Ra

to denote its one-hot encoding. These encodings are organized in a matrix X ∈ Rn×a where n
is the number of nodes. A tensor E ∈ Rn×n×b groups the one-hot encoding rij of each edge,
treating the absence of edge as a particular edge type. Each step of diffusion can be thought to be a
joint node regression and link prediction process, where one would reverse the noising process of
q(Et,Xt | Et−1,Xt−1), as pθ(Et−1,Xt−1 | Et,Xt). The forward path progressively corrupts the
data points and formalizes a sequence, namely (X0, . . . ,XT ) and (E0, . . . ,ET ).

In the reverse path, a backbone model parameterized by θ is used to learn the process, where we
denote as pθ : X × E → X × E . As an example, the continuous graph generation models require
sample n2, which yields a complexity of O(n2T ). The discrete graph generation algorithm asks
for a transition matrix that is capable of modeling a transition space of Rn2 ×Rn2

. Omitting the
embedding size, the complexity is O(n2).
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The computational complexity of auto-regressive models. Assuming the backbone model to be
the same graph generation, a single step of autoregressive computation follows a similar pipeline.
However, the difference comes from the fact that each expansion steps the graph transformer operates
on graphs with different size. We consider T step expansion and each step expands (n− 1)/T nodes.
Omitting the hidden dimension and number of layers, we now aim to calculate

S = 12 +
(
1 +

n− 1

T

)2

+
(
1 + 2 · n− 1

T

)2

+ · · ·+ n2.

Let d = n−1
T ., we simplify toS =

∑T
t=0

(
1 + td

)2
.. Expanding, we get (1 + td)2 = 1+ 2td+ t2d2,

so

S =

T∑
t=0

(
1 + 2td+ t2d2

)
=

T∑
t=0

1 + 2d

T∑
t=0

t + d2
T∑

t=0

j2

=
T + 1

6T

(
6Tn+ (2T + 1)(n− 1)2

)
.

Thus, the complexity is O(Tn2

3 ).

A.2 The computational complexity of latent graph generation

In the image generation task, a solution to generation is latent diffusion Rombach et al. [2022], Vahdat
et al. [2021], where one first compares a high-resolution image into a low-rank latent space, and then
diffuses over the latent space to achieve efficient sampling.

For this scenario, lets consider first compressing the graph into a latent space, with size nc, we then
operates on the latent space for T/2 step of generation, which yields O(T/2 · L · (n2

cd
2)) inference

complexity. We then expand with one-step graph generation, which again has O(T/2 · L · (n2
cd

2))
FLOPs as the model only need to output the node expansion operator. Then, the edge predictor, which
is a sparse graph neural network that takes in the expanded graph, which has worst O(L · (n2d2))
complexity. Thus, omitting the embedding size and layer complexity, the total computation complexity
is O(n2+Tn2

c). Comparing to the full one-shot graph genertaion model (O(Tn2)) and autoregressive
model(O(Tn2/3)), the latent graph generation model has a significant gain in the computational
efficiency as long as nc

n is small sufficiently.

B Related Work

Hierarchical structures for graph generation have been explored in several prior works Guo et al.
[2023], Hy and Kondor [2023], Bergmeister et al. [2024]. Hy and Kondor [2023] proposed a hierar-
chical VAE that progressively reduces graph size from Nt to Nt+1 through soft cluster assignments,
similar to DiffPool Ying et al. [2018]. While effective for capturing multiscale structure, this ap-
proach assumes a fixed number of nodes per layer, is computationally expensive, and lacks theoretical
guarantees on information preservation. On the other hand, Bergmeister et al. [2024] interpret the
forward process of diffusion as graph coarsening and the reverse process as graph expansion. Their
method iteratively adds and removes nodes and edges, bridging between a singleton graph and the
full target distribution.

To the best of our knowledge, only two works explicitly consider latent graph diffusion Yang et al.
[2024], Zhou et al. [2024]. These frameworks apply diffusion in a latent space but do not compress
graphs by reducing the number of nodes (from n to nc with n≫ nc). Instead, they embed graphs
into a Euclidean vector space, which limits scalability and prevents fully leveraging the efficiency
benefits of latent diffusion. In contrast, our model combines spectrum-preserving graph coarsening
with latent diffusion in the non-Euclidean space of graphs and a single expansion–refinement stage.
This design enables efficient sampling in a substantially smaller space while maintaining a balance
between global structural organization and high-fidelity local reconstruction.

C Randomized edge contraction (REC) algorithm

We introduce the REC algorithm in 1.
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Algorithm 1: Randomized Edge Contraction (REC)
Input: Graph G = (X,A), iteration limit T .
Output: Coarsened graph Gc = (Xc,Ac).

C ← E , where E is the edge set where Aij ̸= 0;
Gc ← G;
Φ←

∑
eij∈E Aij ;

t← 0;
pnull ← 0;

while |C| > 0 and t < T do
t← t+ 1;
Sample an outcome from C ∪ {null} with probabilities pij = Aij/Φ and pnull;
if an edge eij ∈ C was sampled then

Gc ← contract(Gc, eij) ; // as in Eq. (2)
Let Nij be the set of edges incident to nodes i or j;
C ← C \ Nij ; // Remove neighbors
pnull ← pnull +

∑
epq∈Nij

ppq;
end

end
return Gc;

D Visualizations
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(a) Comm20 (Noise) (b) Comm20 (Coarsened) (c) Comm20 (Expanded)

(d) Tree (Noise) (e) Tree (Coarsened) (f) Tree (Expanded)

(g) Planar (Noise) (h) Planar (Coarsened) (i) Planar (Expanded)

Figure 4: Visualization of graph generation stages across three datasets. Rows correspond to datasets
(Comm20, Tree, Planar), and columns correspond to stages (Noise, Coarsened, Expanded).
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