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Abstract

This paper investigates convex-concave minimax optimization problems where
only the function value access is allowed. We introduce a class of Hessian-
aware quantum zeroth-order methods that can find the ǫ-saddle point within

Õ(d2/3ǫ−2/3) function value oracle calls. This represents an improvement of

d1/3ǫ−1/3 over the O(dǫ−1) upper bound of classical zeroth-order methods,
where d denotes the problem dimension. We extend these results to µ-strongly-
convex µ-strongly-concave minimax problems using a restart strategy, and show

a speedup of d1/3µ−1/3 compared to classical zeroth-order methods. The acceler-
ation achieved by our methods stems from the construction of efficient quantum
estimators for the Hessian and the subsequent design of efficient Hessian-aware
algorithms. In addition, we apply such ideas to non-convex optimization, leading
to a reduction in the query complexity compared to classical methods.

1 Introduction

We consider the following unconstrained minimax problem:

min
x∈Rm

max
y∈Rn

h(x,y), (1)

where h(·, ·) is convex in x and concave in y. Let d = m + n, z = (x⊤,y⊤)⊤ ∈ R
d, and

define f(z) , h(x,y). The above problem has received considerable attention in the field of
machine learning due to its wide applications, including fairness-aware learning [52, 32], AUC
maximization [51, 20], robust optimization [3], game theory [48], and reinforcement learning [15,
43].

There are numerous classical algorithms to solve the convex-concave minimax problem (1). First-
order methods, such as the optimistic gradient descent ascent (OGDA) [44, 36], extra gradient
method (EG) [27, 38], along with their variants [40, 39] find an ǫ-saddle point within O(ǫ−1) gra-
dient oracle queries when h(·, ·) is smooth. When ∇2h(·, ·) is Lipschitz continuous, second-order
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methods offer faster convergence rates. The Newton proximal extra gradient method (NPE) [37] and

its cubic-regularized realization [31, 22] require O(ǫ−2/3) queries to the second-order oracle. Very

recently, Chen et al. [11] further improved the second-order oracle complexity to Õ(ǫ−4/7). These
results have been generalized to the cases where the p-th order derivative of h(·, ·) is Lipschitz, with

query complexity of O(ǫ−
p

p+1 ) to the p-th order oracle [30, 23, 24].

However, access to the gradient oracle or higher-order oracles of h(·, ·) is not always available, as
the calculation of the exact gradient (or higher order) information can be expensive or even infea-
sible [42, 35, 25, 53]. This necessitates the design of efficient derivative-free algorithms to solve
equation (1). Beznosikov et al. [4] proposed a gradient-free algorithm with O(dǫ−2) query com-
plexity to h(·, ·) for the smooth convex-concave minimax problem (1). Subsequently, this rate was
improved to O(dǫ−1) by Sadiev et al. [45], whose dependence on ǫ−1 matches the lower bound for
first-order methods [54].

The aforementioned methods for minimax problems are all designed for classical computing ma-
chines. However, the advantage of quantum computing has been investigated for various optimiza-
tion problems. Accessing quantum counterparts of the classical oracles always leads to better query
complexities or even a breakthrough over the classical lower bounds, including convex [47, 8, 9, 55]
or non-convex optimization [46, 19], semi-definite programming [5, 6], non-smooth optimiza-
tion [8, 33, 28], stochastic optimization [41, 55, 46], and so on. There are also some previous
studies on some specific minimax problems, including the zero-sum game [29, 16] and minimizing
the maximal loss [49]. However, it remains an open question whether quantum speedup is available
for general convex-concave minimax problems. Thus, the first question we aim to address is:

Can quantum zeroth-order methods be designed to surpass the O(dǫ−1) query complexity of clas-
sical zeroth-order methods, thereby demonstrating a quantum speedup for general convex-concave
minimax problems?

A natural approach to achieve this is to leverage the fast gradient estimator [26], which can ap-

proximate the gradient of a smooth objective function within Õ(1) queries to the quantum function
value oracle, based on the quantum Fourier transform [50]. In convex optimization, employing
the fast gradient estimator within cutting-plane algorithms and gradient descent leads to improved
query complexities compared to classical zeroth-order methods. Specifically, the quantum cutting-

plane method [8] and the quantum gradient descent method [2] achieve query complexities of Õ(d)

and Õ(ǫ−1), respectively, improving upon the Õ(d2) and Õ(dǫ−1) complexities of classical zeroth-
order methods by a factor of d. For non-convex optimization, a similar strategy has been used in

the design of quantum perturbed AGD [19], resulting in an improved query complexity of Õ(ǫ−7/4)

compared to the Õ(dǫ−7/4) complexity of the classical zeroth-order method [53]. These methods
use the quantum gradient estimators to achieve the same query complexities as classical first-order
methods by accessing only zeroth-order oracles, which reduces the dependency on d. On the other
hand, the oracle complexity of classical second-order methods enjoys a better dependency on ǫ−1

when compared to the classical first-order methods. This motivates us to ask:

Can we go beyond quantum estimation for the gradient and design efficient Hessian-aware quantum
zeroth-order algorithms with better dependence on both ǫ−1 and d?

In this paper, we provide an affirmative answer to the above two questions. To this end, we develop
a quantum estimator for the Hessian matrix using the finite difference method and design a novel
Hessian-aware zeroth-order optimization framework. We summarize our contributions as follows.

• For the convex-concave problem, we propose a Hessian-aware quantum zeroth-order method

(HAQZO), with query complexity of Õ(dǫ−2/3) to find the ǫ-saddle point, which surpasses the

classical zeroth-order method by a factor of ǫ−1/3. We further accelerate such query complexity

to Õ(d + d2/3ǫ−2/3) by proposing a double-loop Hessian-aware quantum method (HAQZO+)
that can reuse the Hessian estimators. HAQZO+ accelerates the classical algorithms in terms
of ǫ−1 and d. We compare HAQZO and HAQZO+ with the existing method in Table 1. The
detailed analysis of HAQZO and HAQZO+ can be found in Sections 4.1 and 4.2, respectively.

• For the strongly-convex-strongly-concave problem, we apply the restart strategy in HAQZO+

and propose Restart-HAQZO+. We prove that Restart-HAQZO+ finds the ǫ-point with query

complexity of Õ(d + d2/3(L2/µ)
2/3), outperforms the classical method by a factor d1/3µ−1/3.
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Table 1: We summarize the complexities of function value oracles to find the ǫ-saddle point (c.f.
Section 2) for the convex-concave minimax problem (1).

Methods Oracle Query Complexity Reference

ZOSPA classical O
(
dǫ−2

)
Beznosikov et al. [4]

ZOVIA classical O
(
dǫ−1

)
Sadiev et al. [45]

HAQZO
Algorithm 3

quantum Õ
(
dǫ−2/3

)
Theorem 4.3

HAQZO+

Algorithm 4
quantum Õ

(
d+ d2/3ǫ−2/3

)
Theorem 4.5

Table 2: We summarize the complexities of function value oracles to find the ǫ-point for µ-strongly-
convex-µ-strongly-concave minimax problem (1), i.e. ‖z− z∗‖2 ≤ ǫ. We use Li (i = 1, 2) denotes
the Lipschitz continuous parameter of i-th order derivatives of f(·).

Methods Oracle Query Complexity Reference

ZOVIA classical Õ (dL1/µ) Sadiev et al. [45]

Restart-HAQZO+

Algorithm 5
quantum Õ

(
d+ d2/3(L2/µ)

2/3
)

Theorem 4.8

Table 3: We summarize the complexities of function value oracles to find the ǫ-stationary point of
non-convex minimization problem (10), i.e. ‖∇f(z)‖ ≤ ǫ. We use d to denote the dimension of the
problem.

Methods Oracle Query Complexity Reference

GFM classical O
(
dǫ−7/4

)
Zhang and Gu [53]

DF-CNM classical Õ
(
d2ǫ−3/2

)
Cartis et al. [7]

Zero-Order CNM classical Õ
(
d2 + d3/2ǫ−3/2

)
Doikov and Grapiglia [13]

Q-Perturbed-AGD quantum Õ
(
ǫ−7/4

)
Gong et al. [19]

QCNM
Algorithm 6

quantum Õ
(
d+ d1/2ǫ−3/2

)
Theorem 5.2

The comparison of the query complexities can be found in Table 2 and the detailed analysis is
presented in Section 4.3.

• We further generalize the design of Hessian-aware quantum methods to solve non-convex prob-
lems with Lipschitz continuous Hessian. We propose the quantum cubic regularized-Newton

method (QCNM) with query complexity of Õ(d + d1/2ǫ−3/2) to find the ǫ-stationary point,
which is better than all classical zeroth-order algorithms. The proposed QCNM method also en-
joys an improved quantum query complexity over the existing state-of-the-art quantum algorithm

when d = O(ǫ−1/2), demonstrating the power of designing Hessian-aware quantum algorithms.
We compare QCNM with existing classical algorithms and quantum algorithms in Table 3 and
present the results in Section 5.

2 Preliminaries

We make the following assumptions on f(z) , h(x,y).

Assumption 2.1. We assume f(z) = h(x,y) is convex in x and concave in y.
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Assumption 2.2. We assume the f(·), ∇f(·), ∇2f(·) are L0, L1, and L2-Lipschitz continuous,
respectively, i.e. we have |f(z)− f(z′)| ≤ L0‖z− z′‖, ‖∇f(z)−∇f(z′)‖ ≤ L1‖z− z′‖, and

∥∥∇2f(z)−∇2f(z′)
∥∥ ≤ L2‖z− z′‖, (2)

for any z, z′ ∈ R
d.

We aim to find the approximate saddle point [39, 31, 12], which is defined as follows.

Definition 1 (Nesterov [39]). Let Bβ(w) be the ball centered at w with radius β. Let z∗ ,

[
x∗

y∗

]

be the saddle point of function f(·). For a given point ẑ ,

[
x̂
ŷ

]
, we let β sufficiently large such that

max{‖x̂− x∗‖, ‖ŷ − y∗‖} ≤ β holds, we define the restricted gap function as

Gap(ẑ;β) := max
y∈Bβ(y∗)

f

([
x̂
y

])
− min

x∈Bβ(x∗)
f

([
x
ŷ

])
,

We call ẑ an ǫ-saddle point if Gap(ẑ;β) ≤ ǫ and β = Ω(‖z0 − z∗‖).

In the following context, we define F(·) as F(z) , J∇f(z) =

[
∇xh(x,y)
−∇yh(x,y)

]
, where J =

diag(Im,−In). The Jacobian of F(·) can be written as ∇F(x) = J∇2F(x). The following propo-
sition shows that F(·) is monotone if f(·) satisfies Assumption 2.1.

Proposition 2.3 (Lemma 2.7 [30]). If f satisfies Assumption 2.1, then for all z, z′ ∈ R
d it holds

that 〈F(z) − F(z′), z − z′〉 ≥ 0. For a given ẑ ∈ R
d, its gap can be bounded by Gap(ẑ;β) ≤

maxz∈B√
2β(z

∗)〈F(ẑ), ẑ− z〉.

We define the quantum evaluation oracle for a function f(·).
Definition 2.4 (Quantum Function Evaluation Oracle). A quantum evaluation oracle for a function
f is defined as the following unitary transformation

Uf : |z〉|v〉 7→ |z〉|v ⊕ f(z)〉. (3)

Here ⊕ is the bit-wise XOR operation. We say that we have a quantum evaluation oracle for f with

accuracy ǫ0 if we have a quantum evaluation oracle for f̃ , such that |f(z)− f̃(z)| ≤ ǫ0 for all z.

Remark 2.5. The quantum advantages are stated in terms of query complexity on the function eval-
uation oracle. In many situations, query complexity dominates the computational complexity of
the algorithm, which is a natural setting in both classical and quantum optimization. For example,
considering the generalized linear model such that f(x) = h(ATx) where A ∈ R

d×n. The circuit
implementation of the oracle of f may involve dominating computational complexity if n ≫ d in
this example, and our algorithm achieves meaningful quantum speedups under such a setting.

3 Gradient and Hessian Estimation via Quantum Function Evaluation

Oracle

Before introducing our quantum algorithms, we first introduce the quantum estimators for the gra-
dient and Hessian of the objective function by using the quantum evaluation oracle on f(·), which
are the critical components of our methods. These results are natural and direct extensions of Jor-
dan’s method [26] for the smooth objective. We do not consider them to be our primary technical
contribution, but state them for completeness.

3.1 Quantum Gradient Estimator

Quantum gradient estimator is first proposed in [26] for the smooth objective, and its rigorous state-
ment is given by Gilyén et al. [18], Chakrabarti et al. [8], van Apeldoorn et al. [47]. The following
is one of the statements.
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Lemma 3.1 (Lemma 2.2 [8]). Let f be an L0-Lipschitz continuous and L1-smooth function. Given
the access to a quantum evaluation oracle of f with ǫ0 accuracy, then for ǫg ≥ ǫ0 there is a quantum

algorithm A(f, ǫg, L0, L1, z) which outputs an estimate ∇̃f(z) of ∇f(z), satisfying that ∀i ∈ [d],

Pr
(∣∣∣
[
∇̃f(z)

]

i
− [∇f(z)]i

∣∣∣ ≥ 1500
√

L1dǫg

)
≤ 1

3 . Moreover, the A algorithm uses O(1) queries

to the quantum evaluation oracle and O
(
d log L0

dL1ǫg

)
quantum gates.

The following lemma allows for an arbitrarily small failure probability δ ∈ (0, 1) to the quantum
gradient estimator, which generalizes the results above.

Lemma 3.2 (Quantum Gradient Estimator). Let f(·) be a L0-Lipschitz continuous and L1-smooth
function. Given the access to a quantum evaluation oracle of f with ǫ0 accuracy, then for ǫg ≥ ǫ0,
there exists a quantum algorithm QuantumGradient(f, ǫg, L0, L1, z, δ) which outputs an estimate

∇̃f(z) of ∇f(z), satisfying

Pr
(∥∥∥∇̃f(z)−∇f(z)

∥∥∥
2
≥ 1500d

√
L1ǫg

)
≤ δ. (4)

Moreover, QuantumGradient uses O(log(dδ )) queries to Uf and O
(
d log( L0

dL1ǫg
) log(dδ )

)
gates.

3.2 Quantum Hessian-vector Estimator and Quantum Hessian Estimator

In this section, we show that the Hessian vector product of a smooth object function can also be

constructed within the Õ(1) quantum function evaluation oracle. Furthermore, since ∇2f(z) =
[∇2f(z)e1, · · · ,∇2f(z)ed], the Hessian of a smooth object function can be constructed within the

Õ(d) quantum function evaluation oracle.

We formally present our construction of the quantum Hessian vector product estimator in Algo-
rithm 1 and state its complexity in the following lemma.

Algorithm 1 QuantumHessianVector(f, ǫhv, L0, L1, L2, z,v, δ)

1: M = ‖v‖2
2: ∆ = 20

√
15ǫ

1/4
hv M−1/2L

−1/2
2 L

1/4
1 d1/2

3: ∇̃f(z) := QuantumGradient(f, ǫhv, L0, L1, z, δ/2)

4: ∇̃f(z+∆v) := QuantumGradient(f, ǫhv, L0, L1, z+∆ · v, δ/2)
5: Return 1

∆

(
∇̃f(x+∆v)− ∇̃f(x)

)

Lemma 3.3 (Quantum Hessian Vector Estimator). Suppose f satisfies Assumption 2.2. Given the
access to Uf with ǫ0 accuracy, let hv = QuantumHessianVector(f, ǫhv, L0, L1, L2, z,v, δ) be
the output of Algorithm 1 where ǫhv ≥ ǫ0, then it holds that

Pr
(∥∥hv −∇2f(z)v

∥∥
2
> 10

√
15(dL2M)1/2(ǫhvL1)

1/4
)
≤ δ.

Moreover, Algorithm 1 uses O(log(dδ )) queries to Uf and O
(
d log( L0

dL1ǫhv
) log(dδ )

)
gates.

Remark 3.4. He et al. [21] proposed a quantum estimator for a row of a Hessian, which can be
viewed as a special case of our quantum Hessian vector estimator. Besides, they do not provide
results on the query complexity and gate complexity.

Given the Hessian vector estimator, we are ready to construct the Hessian estimator by calculating
the estimators of the Hessian vector set {∇2f(x)ei}i∈[d], which is formally given in Algorithm 2.

The following results show how well the output of Algorithm 2 approximates ∇2f(z).

Lemma 3.5 (Quantum Hessian Estimator). Suppose f satisfies Assumption 2.2. Given ac-

cess to a quantum evaluation oracle of f with ǫ0 accuracy and ǫH ≥ ǫ0, let ∇̃2f(z) =
QuantumHessian(f, ǫH, L0, L1, L2, z, δ) be the output of Algorithm 2, then it holds that

Pr
(∥∥∥∇̃2f(z)−∇2f(z)

∥∥∥
2
> 10

√
15d2L

1/4
1 L

1/2
2 ǫ

1/4
H

)
≤ δ. (5)

Moreover, Algorithm 2 uses O(d log(dδ )) queries to Uf and O
(
d2 log( L0

dL1ǫH
) log(dδ )

)
gates.
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Algorithm 2 QuantumHessian(f, ǫH, L0, L1, L2, z, δ)

1: H = 0d×d

2: for i ∈ [d]
3: H[i, :] = QuantumHessianVector(f, ǫH, L0, L1, L2, z, ei, δ/d)

4: H̃ = 1
2 (H+H⊤)

5: Return H̃

Algorithm 3 HAQZO(z0, T, L0, L1, L2, δ)

1: for t = 0, · · · , T − 1 do
2: Choose ǫ1,t > 0 and ǫH,t > 0
3: g̃t = QuantumGradient(f, ǫ1,t, L0, L1, zt, δ/(3T )) and gt = Jg̃t

4: H̃t = QuantumHessian(f, ǫH,t, L0, L1, L2, zt, δ/(3T )) and Ht = JH̃t
5: Compute the inexact cubic step i.e. find zt+1/2 that satisfies

gt+
(

Ht+6(L2‖zt − zt+1/2‖+
√
1500d1/2L

1/4
1 ǫ

1/4
1,t +

√
1500d2L

1/4
1 L

1/2
2 ǫ

1/4
H,t)I

)

(zt+1/2 − zt) = 0

6: λt = 6
(
L2‖zt − zt+1/2‖+

√
1500d1/2L

1/4
1 ǫ

1/4
1,t +

√
1500d2L

1/4
1 L

1/2
2 ǫ

1/4
H,t)

)
.

7: Choose ǫ2,t > 0
8: ṽt+1/2 = QuantumGradient(f, ǫ2,t, L0, L1, zt+1/2, δ/(3T )) and vt = Jṽt

9: zt+1 = zt − λ−1
t vt.

10: end for
11: return z̄T = 1∑T−1

t=0 λ−1
t

∑T−1
t=0 λ−1

t zt+1/2.

Remark 3.6. We note an independent work by Zhang and Shao [56], who also employed the finite
difference method to construct a Hessian estimator for the more general class of complex analytical
functions. In contrast to our estimator, which is designed for smooth real functions, their approach
utilizes the more sophisticated spectral method to handle the complex case. On the other hand, our
theoretical error bound is measured using the spectral norm (‖ · ‖2), while the bound in [56] is given
in the infinity norm (‖ · ‖∞).

4 Quantum Speedups for Minimax Optimization

In this section, we introduce quantum algorithms to find the ǫ-saddle point for general convex-

concave minimax problems. In Section 4.1, we propose a Hessian-aware algorithm with Õ(dǫ−2/3)
queries to the quantum function evaluation oracle, which outperforms the classical state-of-the-art

algorithm by a factor of ǫ−1/3. We further improve such query complexity to Õ(d2/3ǫ−2/3), which

outperforms the classical algorithm by a factor of d1/3ǫ−1/3, by proposing a double-loop algorithm
that reuses the Hessian estimators in Section 4.2. In Section 4.3, we generalize our results to strongly-
convex-strongly-concave problems.

4.1 Hessian-Aware Quantum Algorithm with Better Dependency on ǫ−1

Our idea is to use the quantum gradient estimator and the quantum Hessian estimator to obtain a
close approximation of F(z) and ∇F(z) and then apply the Newton proximal extragradient frame-
work [37]. We present our Hessian-aware quantum zeroth-order method (HAQZO) in Algorithm 3.

To analyze Algorithm 3, we first consider the following generalized NPE update:
{

zt+1/2 = zt − (Ht + λtI)
−1gt

zt+1 = zt − λ−1
t vt

, (6)

where gt,vt, and Ht are some approximations to F(zt), F(zt+1/2), and ∇F(zt), which satisfy

‖gt − F(zt)‖ ≤ δ1,t, ‖vt − F(zt+1/2)‖ ≤ δ2,t, and ‖Ht −∇F(zt)‖ ≤ δH,t. (7)

The following lemma shows that the update of (6) recovers the convergence rates of the NPE method
if δ1,t, δ2,t, and δH,t are small enough.
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Algorithm 4 HAQZO+(z0, T, L0, L1, L2,M,m, δ)

1: for t = 0, · · · , T − 1 do
2: if t mod m = 0 do
3: Choose ǫH > 0
4: H̃ = QuantumHessian(f, ǫH,t, L0, L1, L2, zt, δ/(3T )) and H = JH̃
5: end if
6: Choose ǫ1,t > 0
7: g̃t = QuantumGradient(f, ǫ1,t, L0, L1, zt, δ/(3T )) and gt = Jg̃t

8: Compute the inexact cubic step i.e. find zt+1/2 that satisfies

gt+
(

H+ 6(M‖zt − zt+1/2‖+
√
1500d1/2L

1/4
1 ǫ

1/4
1,t +

√
1500d2L

1/4
1 L

1/2
2 ǫ

1/4
H

)I
)

(zt+1/2 − zt)=0

9: λt = 6
(
M‖zt − zt+1/2‖+

√
1500d1/2L

1/4
1 ǫ

1/4
1,t +

√
1500d2L

1/4
1 L

1/2
2 ǫ

1/4
H )

)
.

10: Choose ǫ2,t > 0
11: ṽt+1/2 = QuantumGradient(f, ǫ2,t, L0, L1, zt+1/2, δ/(3T )) and vt = Jṽt

12: zt+1 = zt − λ−1
t vt.

13: end for
14: return z̄T = 1∑T−1

t=0 λ−1
t

∑T−1
t=0 λ−1

t zt+1/2.

Lemma 4.1. Under Assumptions 2.1 and 2.2, let R = Ω(‖z0 − z∗‖), {zt+1/2}T−1
t=0 generated

from (6) where λt = 6
(
L2‖zt+1/2 − zt‖+ δH,t +

√
δ1,t
)
, and δ1,t, δ2,t, and δH,t in (7) satisfy

δ1,t ≤ R2

10T , δ2,t ≤ min

{
λtR

2

10T(‖zt+1/2−z0‖+R)
,
δ1,t
2

}
, δH,t ≤ R√

T
, then we have Gap(z̄T ;

√
3R) =

O
(

L2R
3

T 3/2

)
where z̄T = 1∑T−1

t=0 λ−1
t

∑T−1
t=0 λ−1

t zt+1/2.

Remark 4.2. We note that some prior works have also studied the inexact NPE methods [31, 1].
However, these methods only consider the case where the Hessian is inexact, while our Lemma 4.1
allows inexactness from both the gradient and the Hessian.

Because the iteration rule of Algorithm 3 can be interpreted as the generalized NPE update in (6)
with high probability, we can determine the query complexity of Algorithm 3 by incorporating the
quantum gradient and Hessian estimators. This result is formally stated in the following theorem.

Theorem 4.3. Under Assumptions 2.1 and 2.2, let R = Ω(‖z0−z∗‖), given desired accuracy ǫ > 0,
we run Algorithm 3 with

T =
⌈
(34561/3L

2/3
2 + 42/3)R2ǫ−2/3

⌉
, ǫ1,t =

R4

150002d2L1T 2
, ǫH,t =

R4

15002d8L1L2
2T

2

ǫ2,t = min

{
λtR

4

150002T 2d2L1(‖zt+1/2 − z0‖+R)2
,
ǫ21,t
4

}
, and δ ∈ (0, 1),

then with probability at 1 − δ, Algorithm 3 finds the ǫ-saddle point of f(·) with Õ(dL
2/3
2 R2ǫ−2/3)

queries to Uf , where Õ(·) hides the polylogarithm dependency on d, L0, L1, L2, ǫ−1, δ−1, and R.

4.2 Hessian-Aware Quantum Algorithm with Better Dependency on ǫ−1 and d

In this section, we further improve the query complexity of HAQZO by proposing a double-loop
Hessian-aware quantum method HAQZO+ in Algorithm 4, which is inspired by the recent advance
in lazy Hessian methods [14, 12, 10, 34].

The main difference between Algorithm 4 and Algorithm 3 is that we eliminate calling
quantumHessian in every iteration, but only call it at the snapshot point in iterations t when t
mod m = 0, and reuse such Hessian estimator in the next m iterations. In addition, we replace L2

with a larger parameter M ≥ L2 on Line 9 and Line 10 and tune it to guarantee convergence. We
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Algorithm 5 Restart-HAQZO+(z0, T, L0, L1, L2,M,m, S, δ)

1: z(0) = z0
2: for s = 0, · · · , S − 1
3: z(s+1) = HAQZO+(z(s), T, L0, L1, L2,M,m, δ/S)
4: end for
5: return z(S)

first consider the following iteration rule
{

zt+1/2 = zt − (Hπ(t) + λtI)
−1gt

zt+1 = zt − λ−1
t vt

, (8)

where π(t) , t − (t mod m) and gt,vt, Hπ(t) are some approximations to F(zt), F(zt+1/2),
∇F(zπ(t)) such that

‖gt − F(zt)‖ ≤ δ1,t, ‖vt − F(zt+1/2)‖ ≤ δ2,t, and ‖Hπ(t) −∇F(zπ(t))‖ ≤ δH. (9)

The following lemma shows that the update of (8) still enjoys the rate of T−3/2 if the regularization
term λt is chosen large enough and δ1,t, δ2,t, and δH are small.

Lemma 4.4. Under Assumpions 2.1 and 2.2, let R = Ω(‖z0 − z∗‖), {zt+1/2}T−1
t=0 generated from

(8) where λt = 6
(
M‖zt+1/2 − zt‖+ δH,t +

√
δ1,t
)
, and δ1,t, δ2,t, δH in (9) satisfies δ1,t ≤ R2

10T ,

δ2,t ≤ min

{
λtR

2

10T(‖zt+1/2−z0‖+R)
,
δ1,t
2

}
, δH ≤ R√

T
, if M ≥ mL2√

3
, then we have Gap(z̄T ;

√
3R) =

O
(

MR3

T 3/2

)
where z̄T = 1∑T−1

t=0 λ−1
t

∑T−1
t=0 λ−1

t zt+1/2.

The iteration rule of Algorithm 4 can also be interpreted as (8) with high probability. At each

iteration, the algorithm calls QuantumGradient with Õ(1) quantum function evaluation queries to

obtain gt and vt. Every m iterations, the algorithm calls QuantumHessian with Õ(d) quantum
function evaluation queries to obtain Ht. The following theorem provides the query complexity of
Algorithm 4 with a proper choice of m = d.

Theorem 4.5. Under Assumptions 2.1 and 2.2, let R = Ω(‖z0−z∗‖), given desired accuracy ǫ > 0,
we run Algorithm 4 with

m = d, M = dL2/
√
3, T =

⌈
(34561/3M2/3 + 42/3)R2ǫ−2/3

⌉
, ǫ1,t =

R4

150002d2L1T 2
,

ǫH =
R4

15002d8L1L2
2T

2
, ǫ2,t = min

{
λtR

4

150002T 2d2L1(‖zt+1/2 − z0‖+R)2
,
ǫ21,t
4

}
, δ ∈ (0, 1),

then Algorithm 4 finds the ǫ-saddle point of f(·) with Õ(d+ d2/3L
2/3
2 R2ǫ−2/3) queries to Uf with

probability at 1 − δ, where Õ(·) hides the polylogarithm dependency on d, L0, L1, L2, ǫ−1, δ−1,
and R.

4.3 Restarted Hessian-Aware Quantum Algorithm for Strongly-Convex Strongly-Concave
Minimax Optimization

In this section, we generalize our results to solve strongly-convex-strongly-concave minimax prob-
lems. We make the following assumption on f(·), which is stronger than Assumption 2.1.

Assumption 4.6. We assume f(z) = h(x,y) is µ-strongly-convex in x and µ-strongly-concave in
y for some µ > 0.

We apply the restart strategy which is widely used in minimization [17] and minimax optimiza-
tion [22, 30, 12] on our HAQZO+ and propose Restart-HAQZO+ in Algorithm 5. To avoid con-

fusion, we use the superscript (s) to denote the parameters in the HAQZO+ subroutine in the s-th
iteration of Algorithm 5. The following lemma shows that by properly choosing the parameter in

HAQZO+, ‖z(s+1) − z∗‖2 will descend linearly with high probability.
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Lemma 4.7. Under Assumptions 2.2 and 4.6, set the parameter in subroutine HAQZO+ in the s-th
iteration of Algorithm 5 as follows:

M =
mL2√

3
, T =

⌈
(100M + 12)2/3‖z(0) − z∗‖2/3

µ2/3

⌉
, ǫ

(s)
1,t =

‖z(s) − z∗‖4
15002d2L2

1T
2
,

ǫ
(s)
H =

‖z(s) − z∗‖4
15002d8L1L2

2T
2
, ǫ

(s)
2,t = min





(λ
(s)
t )2‖z(s) − z∗‖4

240002T 2d2L1‖z(s)t+1/2 − z∗‖
,
ǫ
(s)
1,t

4



 , δ ∈ (0, 1),

then ‖z(s+1) − z∗‖ ≤ 1
2‖z(s) − z∗‖ holds with probability at least (1− δ/S).

Lemma 4.7 means it is enough to set S = ⌈log(1/ǫ)⌉ to obtain some z(S) such that ‖z(S)−z∗‖2 ≤ ǫ.
Given this, we are ready to present the query complexity of Algorithm 5.

Theorem 4.8. Under Assumptions 2.2 and 4.6, set the parameter in subroutine HAQZO+ in the s
iteration of Algorithm 5 as in Lemma 4.7 with m = d, and set S = ⌈log(‖z(0) − z∗‖2/ǫ)⌉, then

with probability at least 1 − δ, the output of Algorithm 5 satisfies that ‖z(S) − z∗‖2 ≤ ǫ with

Õ(d + d2/3L
2/3
2 µ−2/3) queries to Uf , where Õ(·) hides the polylogarithm dependency on d, L0,

L1, L2, ǫ−1, δ−1.

5 Extension to Non-convex Optimization

In the previous section, we have shown that, using quantum Hessian estimators, it is possible to
design fast quantum algorithms which outperform the classical algorithms in terms of accuracy ǫ−1

and dimension d. We highlight that the quantum estimators designed in Section 3 are not restricted to
convex-concave minimax problems. In this section, we extend the idea of designing Hessian-aware
quantum zeroth-order methods to non-convex problems

min
z∈Rd

f(z), (10)

where f(·) is smooth but possibly not convex. We aim to find the ǫ-stationary point of (10).

Definition 5.1. We say z is an ǫ-stationary point of the nonconvex minimization problem (10) if it
holds that ‖∇f(z)‖ ≤ ǫ.

We present the quantum cubic-regularized Newton methods in Algorithm 6, which replace the classi-
cal gradient and Hessian estimators in the zeroth-order CNM method [13] by the quantum estimators
designed in Section 3. The following theorem gives the query complexity of Algorithm 6 to find the
ǫ-stationary point of f(·).
Theorem 5.2. Under Assumption 2.2 and suppose f∗ , minz∈Rd f(z) > −∞, given desired
accuracy ǫ > 0, we run Algorithm 6 with

m = d, M = 30L2d, T =

⌈
192M1/2(f(x0)− f∗)ǫ−3/2

3

⌉
,

ǫg =
ǫ−2

20004d2L2
1

, ǫH =
ǫ−2

15003d6L1
, and δ ∈ (0, 1),

then with probability at least 1 − δ, the output of Algorithm 6 finds the ǫ-stationary point of prob-

lem 10 with Õ(d+d1/2L
1/2
2 (f(z0)−f∗)ǫ−3/2) queries to Uf , where Õ(·) hides the polylogarithm

dependency on d, L0, L1, L2, ǫ−1, δ−1.

6 Conclusion

In this paper, we have proposed quantum algorithms to speed up training for minimax optimization
problems. Our Hessian-aware quantum zeroth-order method reduces the query complexity of the

function evaluation oracle of the classical methods by a factor of d1/3ǫ−1/3 and d1/3µ−1/3 for
convex-concave and strongly-convex-strongly-concave problems, respectively. Moreover, we find
that the proposed quantum oracles for estimating the Hessian matrix can be used to solve other
important optimization problems, i.e. non-convex optimization. However, the query complexity of
the proposed Hessian-aware quantum zeroth-order methods still depends on the dimension, and the
quantum lower bound for this question is still unknown. We leave this for future work.
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Algorithm 6 QCNM(z0, T, L0, L1, L2,M,m, ǫg, ǫH, δ)

1: δg = 1500dL
1/2
1 ǫ

1/2
g , δH = 15001/2d2L

1/4
1 L

1/2
2 ǫ

1/4
H

2: for t = 0, · · · , T − 1 do
3: if t mod m = 0 do
4: H = QuantumHessian(f, ǫH, L0, L1, L2, zt, δ/(2T ))
5: end if
6: gt = QuantumGradient(f, ǫg, L0, L1, zt, δ/(2T ))
7: Compute the cubic step i.e. find zt+1 that satisfies

zt+1 = argmin
z∈Rd

{
〈gt, z− zt〉+

1

2
〈H · (z− zt), z− zt〉+

M

6
‖z− zt‖3

}

8: end for
9: return zout uniformly from {zi}Ti=1
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focus on the theory of quantum complexities to solve minimax
problem.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Auxiliary Lemmas

Lemma A.1. Given a positive sequence {λt}T−1
t=0 , if

∑T−1
t=0 λ2

t ≤ C, then we have
∑T−1

t=0
1
λt

≥
T 3/2
√
C

.

Proof. By Holder’s inequality, we have that

T =

T−1∑

t=0

(
1

λt

)2/3 (
λ2
t

)1/3 ≤
(

T−1∑

t=0

1

λt

)2/3(T−1∑

t=0

λ2
t

)1/3

.

Therefore,

T−1∑

t=0

1

λt
≥ T 3/2

√
C

. (11)

Lemma A.2 (Lemma 4.2, [12]). For any sequence of positive numbers {rt}t≥0, it holds for any

m ≥ 2 that
∑m−1

t=1

(∑t−1
i=0 ri

)2
≤ m2

2

∑m−1
t=0 r2t .

Lemma A.3 (Lemma 4.2, [14]). For any sequence of positive numbers {rt}t≥0, it holds for any

m ≥ 1 that
∑m−1

t=1

(∑t−1
i=0 ri

)3
≤ m3

3

∑m−1
t=0 r3t .
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B The Proof of Section 3

B.1 The Proof of Lemma 3.2

Proof. Running A(f, ǫg, L0, L1,x) for M times. Let ∇̃(m)f(z) denotes the output estimates for
m-th running. Then for each coordination, take the median of the output estimates, and return the

resulting vector as the output of QuantumGradient(f, ǫg, L0, L1, z, δ), denoted as ∇̃f(z).

For any i ∈ [d],m ∈ [M ], Xi,m denotes the indicator random variable of the event
∣∣∣
[
∇̃(m)f(z)

]

i
− [∇f(z)]i

∣∣∣ < 1500
√

L1dǫg.

By Lemma 3.1, we have Pr(Xm,i) ≥ 2
3 and {Xm,i}Mm=1 are independent random variables. By

Chernoff’s bound,

Pr

(
M∑

m=1

Xi,m ≤ 5

9
M

)
≤ e−

13M
500 .

Let Yi denote the event that
∑M

m=1 Xi,m ≥ 5
9M , then Pr(Yi) ≥ 1 − e−

13M
500 . If Yi happens, we

have

∣∣∣[∇̃f(vz)]i − [∇f(z)]i

∣∣∣ ≤ 1500
√

L1dǫg. By union bound, Pr(∩d
i=1Yi) ≥ 1 − d · e− 13M

500 .

Under event ∩d
i=1Yi, we have ‖∇̃f(z) − ∇f(z)‖2 ≤

√
15002d · L1dǫg = 1500d

√
L1ǫg. Set

M := O(log(dδ )), we have Pr(∩d
i=1Yi) ≥ 1− δ.

Since we have invoked A for M times, the total query complexity is O(log(dδ )) and the total gate

complexity is O(d log L0

dL1ǫg
log d

δ ) by Lemma 3.1.

B.2 The Proof of Lemma 3.3

Proof. Let ∇̃f(x) and ∇̃f(x + ∆) be the quantum gradient estimates with probability at least
(1− δ/2). By Lemma 3.2 and union bound, we have

‖∇̃f(x)−∇f(x)‖2 ≤ 1500d
√

L1ǫhv and ‖∇̃f(x+∆)−∇f(x+∆)‖2 ≤ 1500d
√

L1ǫhv

hold with probability at least 1− δ. Condition on this good event, we have

∥∥hv −∇2f(x)v
∥∥
2
≤
∥∥∥∥
1

∆
(∇f(x+∆v)−∇f(x))−∇2f(x)v

∥∥∥∥
2

+
1

∆
‖∇̃f(x+∆v)−∇f(x+∆v)‖2 +

1

∆
‖∇̃f(x)−∇f(x)‖2

≤ L2∆

2
‖v‖22 +

3000d
√
L1ǫhv

∆
.

Since we have choose ∆ = 20
√
15ǫ

1/4
hv M−1/2L

−1/2
2 L

1/4
1 d1/2, it holds that

Pr
(∥∥hv −∇2f(x)v

∥∥
2
≤ 10

√
15(dL2M)1/2(ǫhvL1)

1/4
)
≥ 1− δ. (12)

B.3 The Proof of Lemma 3.5

Proof. It holds that H[i, :] estimates ∇2f(z)ei with failure probability δ/d, then by Lemma 3.3,
∥∥H[i, :]−∇2f(z)ei

∥∥
2
≤ 10

√
15(dL2)

1/2(ǫL1)
1/4, for all i ∈ [d]

holds with probability 1− δ. Under this event, we have

∥∥H−∇2f(z)
∥∥2
F
≤

d∑

i=1

‖H[i, :]−∇2f(z)ei‖22 ≤ 10
√
15d3/2L

1/2
2 (ǫHL1)

1/4.

Therefore, we have∥∥∥H̃−∇2f(z)
∥∥∥
2
≤
∥∥H−∇2f(z)

∥∥
2
≤

√
d
∥∥H−∇2f(z)

∥∥
F
≤ 10

√
15d2L

1/2
2 (ǫHL1)

1/4

holds with probability at least 1− δ.
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C The Proof of Section 4

C.1 The Proof of Lemma 4.1

Proof. The iteration rule (6) means

gt +Ht(zt+1/2 − zt) + λt(zt+1/2 − zt) = 0. (13)

Thus, we have∥∥∥∥zt+1/2 − (zt −
1

λt
vt)

∥∥∥∥ =

∥∥∥∥zt+1/2 −
(
zt −

1

λt
F(zt+1/2)

)∥∥∥∥+
1

λt

∥∥vt − F(zt+1/2)
∥∥

(7)

≤ δ2,t
λt

+

∥∥∥∥zt+1/2 − zt +
1

λt
(gt +Ht(zt+1/2 − zt))

∥∥∥∥+
∥∥∥∥
1

λt
(F(zt+1/2)− gt −Ht(zt+1/2 − zt))

∥∥∥∥
(13),(2)

≤ δ2,t
λt

+
L2‖zt+1/2 − zt‖2

2λt
+

‖gt − F(zt)‖
λt

+
‖Ht −∇F(zt)‖‖zt+1/2 − zt‖

λt

(7)

≤ 1

λt

(
L2‖zt+1/2 − zt‖2 +

3

2
δ1,t + δH,t‖zt+1/2 − zt‖

)

≤1

6
‖zt+1/2 − zt‖+

1

4

√
δ1,t,

(14)

where the last inequality is due to the choice of λt. We also have that

1

λt
〈vt, zt+1/2 − z〉 = 〈zt − zt+1, zt+1/2 − z〉

= 〈zt − zt+1, zt+1 − z〉+ 〈zt − zt+1/2, zt+1/2 − zt+1〉+ 〈zt+1/2 − zt+1, zt+1/2 − zt+1〉

≤ 1

2

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+

1

2
‖zt+1/2 − zt+1‖2 −

1

2
‖zt − zt+1/2‖2.

(15)

Since ‖zt+1/2 − (zt − 1
λt
vt)‖ = ‖zt+1/2 − zt+1‖, plugging the bound of (14) into (15) and using

the fact that ‖vt − F(zt+1/2)‖ ≤ δ2,t, we have

1

λt
〈F(zt+1/2), zt+1/2 − z〉+ 1

4
‖zt+1/2 − zt‖2

=
1

λt
〈vt, zt+1/2 − z〉+ 1

4
‖zt+1/2 − zt‖2 +

1

λt
〈F(zt+1/2)− vt, zt+1/2 − z〉

(15)

≤ 1

2

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+

1

4
‖zt+1/2 − zt‖2

+
1

2
‖zt+1/2 − zt+1‖2 −

1

2
‖zt − zt+1‖2 + δ2,t

‖zt+1/2 − z‖
λt

(14)

≤ 1

2

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+

1

4
‖zt+1/2 − zt‖2

+
1

2

(
1

18
‖zt+1/2 − zt‖2 +

1

8
δ1,t

)
− 1

2
‖zt − zt+1/2‖2 + δ2,t

‖zt+1/2 − z‖
λt

≤ 1

2

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+ δ1,t + δ2,t

‖zt+1/2 − z‖
λt

.

(16)

We let R ≥ 10‖z0 − z∗‖ and the choice of δ1,t and δ2,t means that we have

δ1,t + δ2,t
‖zt+1/2 − z∗‖

λt
≤ δ1,t + δ2,t(‖zt+1/2 − z0‖+ ‖z0 − z∗‖)

≤ R2

10T
+

R2(R+ ‖zt+1/2 − z0‖)
10T (‖zt+1/2 − z0‖+R)

≤ R2

5T
.

Let z = z∗ in (16) and due to 〈F(zk+1/2), zk+1/2 − z∗〉 ≥ 0 for all k, we have

‖zt − z∗‖2 ≤ ‖z0 − z∗‖2 + 2
t−1∑

k=0

(
δ1,k + δ2,k

‖zk+1/2 − z∗‖
λk

)
≤ R2

2
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and

‖zt+1/2 − zt‖2 ≤ 2‖z0 − z∗‖2 + 2
t−1∑

k=0

(
δ1,k + δ2,k

‖zk+1/2 − z∗‖
λk

)
≤ R2

5
+

2R2

5
=

3R2

5
.

Thus, we have

‖zt+1/2 − z∗‖2 ≤ 2‖zt+1/2 − zt‖2 + 2‖zt − z∗‖2 ≤ 3R2. (17)

Summing up the (16) from t = 0 to t = T − 1, for all z ∈ B√
6R(z

∗), we have

T−1∑

t=0

1

λt
〈F(zt+1/2), zt+1/2 − z〉+

T−1∑

t=0

1

4
‖zt+1/2 − zt‖2

≤ 1

2

(
‖z0 − z‖2 − ‖zT − z‖2

)
+

T−1∑

t=0

(
δ1,t + δ2,t

‖zt+1/2 − z‖
λt

)

≤ R2

20
+

R2

10
+

TR2(‖zt+1/2 − z∗‖+ ‖z− z∗‖)
10T (‖zt+1/2 − z0‖+R)

≤ 2R2.

(18)

We then bound the regularization term
∑T−1

t=0 λ2
t by

T−1∑

t=0

λ2
t ≤

T−1∑

t=0

36(3L2
2‖zt+1/2 − zt‖2 + 3δ2H,t + 3δ1,t)

≤ 864L2
2R

2 +
T−1∑

t=0

(
3R2

T
+

3R2

10T

)
≤ (864L2

2 + 4)R2.

Thus, we have

Gap(z̄T ;
√
3R) ≤ max

‖z−z∗‖≤
√
6R

〈F(z), z̄T − z〉 = max
‖z−z∗‖≤

√
6R

1
∑T−1

t=0 1/λt

T−1∑

t=0

1

λt
〈F(z), zt+1/2 − z〉

∗
≤ max

‖z−z∗‖≤
√
6R

1
∑T−1

t=0 1/λt

T−1∑

t=0

1

λt
〈F(zt+1/2), zt+1/2 − z〉

(18)

≤ 2R2

∑T−1
t=0 1/λt

≤ 2
√
864L2

2 + 4R3

T 3/2
,

where the first inequality is from Proposition 2.3, ∗ is due to the monotone of F(·), and the last

inequality is due to
∑T−1

t=0
1
λt

≥ T 3/2√
(864L2

2+4)R2
according to Lemma A.1.

C.2 The Proof of Theorem 4.3

Proof. According to Lemmas 3.2 and 3.5, we know that gt, Ht, vt can be constructed within Õ(1),

Õ(d), and Õ(1) quantum function evaluation oracle, respectively. The following statements

‖gt − F(zt)‖ ≤ ‖J‖‖g̃t −∇f(zt)‖ ≤ 1500d
√

L1ǫ1,t ≤
R2

10T
,

‖Ht −∇F(zt)‖ ≤ ‖J‖‖H̃t,t −∇2f(zt)‖ ≤ 10
√
15d2L

1/4
1 L

1/2
2 ǫ

1/4
H ≤ R√

T
,

and

‖vt − F(zt+1/2)‖ ≤ ‖J‖‖ṽt −∇f(zt+1/2)‖

≤ 1500d
√

L1ǫ2,t ≤ min

{
λtR

2

10T
(
‖zt+1/2 − z0‖+R

) , R
2

2T

}
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hold with probability at least
(
1− δ

T

)
.

Let δ1,t =
R2

10T , δH,t =
R√
T

, and δ2,t = min

{
λtR

2

10T(‖zt+1/2−z0‖+R)
,
δ1,t
2

}
, we know that the condi-

tion of Lemma 4.1 holds with probability at least (1− δ). Thus, the output z̄T of Algorithm 3 holds
that

Gap(z̄T ;
√
3R) ≤ 2

√
864L2

2 + 4R3

T 3/2
≤ ǫ,

with probability at least (1− δ). The total query of quantum evaluation oracle can be bounded by

#Query =
(
Õ(1) + Õ(1) + Õ(d)

)
· T = Õ(dL

2/3
2 R2ǫ−2/3).

C.3 The Proof of Lemma 4.4

Proof. The iteration of (8) means

gt +Hπ(t)(zt+1/2 − zt) + λt(zt+1/2 − zt) = 0. (19)

Thus, we have∥∥∥∥zt+1/2 −
(
zt −

1

λt
vt

)∥∥∥∥

=

∥∥∥∥zt+1/2 −
(
zt −

1

λt
F(zt+1/2)

)∥∥∥∥+
1

λt

∥∥vt − F(zt+1/2)
∥∥

≤ δ2,t
λt

+

∥∥∥∥zt+1/2 − zt +
1

λt
(gt +Hπ(t)(zt+1/2 − zt))

∥∥∥∥
︸ ︷︷ ︸

=0

+

∥∥∥∥
1

λt
(F(zt+1/2)− gt −Hπ(t)(zt+1/2 − zt))

∥∥∥∥

≤δ2,t
λt

+
1

λt

∥∥F(zt+1/2)− F(zt)−∇F(zt)(zt+1/2 − zt)
∥∥

+
1

λt

(
‖gt − F(zt)‖+ (‖Hπ(t)−∇F(zπ(t))‖+ ‖∇F(zπ(t))−∇F(zt)‖)‖zt+1/2 − zt‖

)

(2)

≤ δ2,t
λt

+
L2‖zt+1/2 − zt‖2

2λt
+

‖gt − F(zt)‖
λt

+
(‖Hπ(t) −∇F(zπ(t))‖+ ‖∇F(zπ(t))−∇F(zt)‖)‖zt+1/2 − zt‖

λt

≤ δ2,t
λt

+
1

λt
(L2‖zt+1/2 − zt‖2 + δ1,t + δH‖zt+1/2 − zt‖) +

L2

λt
(‖zπ(t) − zt‖‖zt+1/2 − zt‖)

≤ L2

6M
‖zt+1/2 − zt‖+

1

4

√
δ1,t +

L2

6M
‖zπ(t) − zt‖,

(20)

where the last inequality is due to the choice of λt. On the other hand, it holds that

1

λt
〈vt, zt+1/2 − z〉

≤ 1

2

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+

1

2
‖zt+1/2 − zt+1‖2
︸ ︷︷ ︸

= 1
2‖zt+1/2−zt+1‖2− 1

4‖zt+1/2−zt‖2

−1

2
‖zt − zt+1/2‖2

(20)

≤ 1

2

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+

3

16
δ1,t +

(
L2
2

12M2
− 1

4

)
‖zt+1/2 − zt‖2

+
L2
2

12M2
‖zπ(t) − zt‖2 −

1

4
‖zt+1/2 − zt+1‖2 −

1

4
‖zt − zt+1/2‖2.

(21)
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We denote rt , ‖zt+1 − zt‖, since r2t ≤ 2‖zt+1/2 − zt‖2 + 2‖zt+1 − zt‖2 and that

‖zπ(t) − zt‖ =

∥∥∥∥∥∥

t−1∑

i=π(t)

(zi+1 − zi)

∥∥∥∥∥∥
≤

t−1∑

i=π(t)

‖zi+1 − zi‖ ≤
t−1∑

i=π(t)

ri, (22)

then it holds that

1

λt
〈vt, zt+1/2 − z〉+

(
1

4
− L2

2

12M2

)
‖zt+1/2 − zt‖2

(21),(22)

≤ 1

2

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+

3δ1,t
16

−



1

8
r2t −

L2
2

(∑t−1
i=π(t) ri

)2

12M2


 .

(23)

Summing up the above inequality from i = π(t) to π(t) + s − 1 where 1 ≤ s ≤ m and take

M ≥ mL2√
3

, we have

t−1∑

i=π(t)

(
1

λi
〈vi, zi+1/2 − z〉+ 1

8
‖zi+1/2 − zi‖2

)

≤ 1

2

(
‖zπ(t) − z‖2 − ‖zπ(t)+s − z‖2

)
+

3

16

t−1∑

i=π(t)

δ1,i,

(24)

where the last inequality is due to Lemma A.2. Combining the error from vt, we have that

t−1∑

i=π(t)

(
1

λi
〈F(zi+1/2), zi+1/2 − z〉+ 1

8
‖zi+1/2 − zi‖2

)

≤
t−1∑

i=π(t)

(
1

λi
〈vi, zi+1/2 − z〉+ 1

8
‖zi+1/2 − zi‖2

)
+

t−1∑

i=π(t)

‖F(zi+1/2)− vi‖‖zi+1/2 − z‖
λi

(24)

≤ 1

2

(
‖zπ(t) − z‖2 − ‖zt − z‖2

)
+

t−1∑

i=π(t)

(
3

16
δ1,i +

δ2,i
λi

‖zi+1/2 − z‖
)
.

(25)

Similar to the proof in Lemma 4.1, we let R ≥ 10‖z0 − z∗‖ and the choice of δ1,t and δ2,t means

δ1,t + δ2,t
‖zt+1/2 − z∗‖

λt
≤ δ1,t + δ2,t(‖zt+1/2 − z0‖+ ‖z0 − z∗‖)

≤ R2

10T
+

R2(R+ ‖zt+1/2 − z0‖)
10T (‖zt+1/2 − z0‖+R)

≤ R2

5T
.

(26)

Let z = z∗ in (25), we have

‖zt − z∗‖2 ≤ ‖zπ(t) − z∗‖2 + 2

t−1∑

k=π(t)

(
δ1,k + δ2,k

‖zk+1/2 − z∗‖
λk

)

≤ ‖z0 − z∗‖2 + 2
t−1∑

k=0

(
δ1,k + δ2,k

‖zk+1/2 − z∗‖
λk

)
(26)

≤ R2

2
.

(27)

and

‖zt+1/2 − zt‖2≤4‖zπ(t) − z∗‖2 + 8
t−1∑

k=π(t)

(
δ1,k + δ2,k

‖zk+1/2 − z∗‖
λk

)
(26)

≤ 2R2 +
8R2

5
≤ 4R2.

Thus, we have

‖zt+1/2 − z∗‖2 ≤ 2‖zt+1/2 − zt‖2 + 2‖zt − z∗‖2 ≤ 9R2. (28)
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Summing up the batch of (25), for all z ∈ B(z∗, 3
√
2R), we have

T−1∑

t=0

1

λt
〈F(zt+1/2), zt+1/2 − z〉+

T−1∑

t=0

1

8
‖zt+1/2 − zt‖2

≤ 1

2
(‖z0 − z‖2 − ‖zT − z‖2) +

T−1∑

t=0

(
δ1,t +

δt,2‖zt+1/2 − z‖
λt

)

≤ R2

20
+

R2

10
+

TR2(‖zt+1/2 − z∗‖+ ‖z− z∗‖)
10T (‖zt+1/2 − z0‖+R)

≤ 2R2.

(29)

We then bound the regularization term
∑T−1

t=0 λ2
t can be bounded by

T−1∑

t=0

λ2
t ≤

T−1∑

t=0

36(3M2‖zt+1/2 − zt‖2 + 3δ2H + 3δ1,t)

≤ 432M2R2 +
T−1∑

t=0

(
3R2

T
+

3R2

10T

)
≤ (432M2 + 4)R2.

Finally, we have

Gap(z̄T ; 3R) ≤ max
‖z−z∗‖≤3

√
2R

〈F(z), z̄T − z〉 = max
‖z−z∗‖≤3

√
2R

1
∑T−1

t=0 1/λt

T−1∑

t=0

1

λt
〈F(z), zt+1/2 − z〉

≤ max
‖z−z∗‖≤3

√
2R

1
∑T−1

t=0 1/λt

T−1∑

t=0

1

λt
〈F(zt+1/2), zt+1/2 − z〉

(29)

≤ 2R2

∑T−1
t=0 1/λt

≤ 2
√
432M2 + 4R3

T 3/2
,

where the last inequality is due to Lemma A.1.

C.4 The Proof of Theorem 4.5

Proof. According to Lemmas 3.2 and 3.5, we know that gt, H, vt can be constructed within Õ(1),

Õ(d), and Õ(1) quantum function evaluation oracle, respectively and

‖gt − F(zt)‖ ≤ ‖J‖‖g̃t −∇f(zt)‖ ≤ 1500d
√

L1ǫ1,t ≤
R2

10T
,

‖H−∇F(zπ(t))‖ ≤ ‖J‖‖H̃−∇2f(zπ(t))‖ ≤ 10
√
15d2L

1/4
1 L

1/2
2 ǫ

1/4
H ≤ R√

T
,

and

‖vt − F(zt+1/2)‖ ≤ ‖J‖‖ṽt −∇f(zt+1/2)‖

≤ 1500d
√

L1ǫ1,t ≤ min

{
λtR

2

10T
(
‖zt+1/2 − z0‖+R

) , R
2

2T

}

hold with probability at least
(
1− δ

T

)
.

Let δ1,t = R2

10T , δH,t = R√
T

, and δ2,t = min

{
λtR

2

10T(‖zt+1/2−z0‖+R)
,
δ1,t
2

}
, we know that the con-

dition of Lemma 4.4 holds with probability at least (1 − δ). Thus, the output z̄T of Algorithm 4
satisfies that

Gap(z̄T ;
√
3R) ≤ 2

√
432M2 + 4R3

T 3/2
≤ ǫ,

with probability at least (1 − δ). The total number of queries to the quantum evaluation oracle can
be bounded by

#Query = T · Õ(1) +

(
T

m
+ 1

)
Õ(d) = Õ

(
d+ L

2/3
2 d2/3ǫ−2/3

)
.
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C.5 The Proof of Lemma 4.7

Proof. We can obtain a good approximation of F(z
(s)
i+1/2), F(z

(s)
i ), and ∇F(z

(s)
π(t)) with probability

at least (1− δ/S) for all i ∈ [T − 1]. Recalling the proof of Lemma 4.4 in Appendix C.3, from (25),
we have

t−1∑

i=π(t)

(
1

λ
(s)
i

〈F(z(s)i+1/2), z
(s)
i+1/2 − z〉+ 1

8
‖z(s)i+1/2 − z

(s)
i ‖2

)

≤ 1

2

(
‖z(s)π(t) − z‖2 − ‖z(s)t − z‖2

)
+

t−1∑

i=π(t)

(
3

16
δ
(s)
1,i +

δ
(s)
2,i

λ
(s)
i

‖z(s)i+1/2 − z‖
) (30)

holds with probability at least (1− δ/S). Assumption 4.6 means that

〈F(z)− F(z′), z− z′〉 ≥ µ‖z− z′‖2. (31)

Let z = z∗ in (30), we have

t−1∑

i=π(t)

(
µ

λ
(s)
i

‖z(s)i+1/2 − z∗‖2 + 1

8
‖z(s)i+1/2 − z

(s)
i ‖2

)

≤ 1

2
(‖z(s)π(t) − z∗‖2 − ‖z(s)t − z‖2) +

t−1∑

i=π(t)

(
3

16
δ
(s)
1,i +

δ
(s)
2,i

λ
(s)
i

‖z(s)i+1/2 − z‖
)

Summing up above inequality from i = 0 to i = T − 1, we have

T−1∑

i=0

(
µ

λ
(s)
i

‖z(s)i+1/2 − z∗‖2 + 1

8
‖z(s)i+1/2 − z

(s)
i ‖2

)
≤ 1

2
‖z(s)0 − z∗‖2 +

T−1∑

i=0

(
3

16
δ
(s)
1,t +

δ
(s)
2,i

λ
(s)
i

‖z(s)i+1/2 − z∗‖
)
.

The choice of δ
(s)
1,t and δ

(s)
2,t guarantees that

T−1∑

i=0

(
3

16
δ
(s)
1,t +

δ
(s)
2,i

λ
(s)
i

‖z(s)i+1/2 − z∗‖
)

≤ 1

4
‖z(s)0 − z∗‖2.

Thus we have
T−1∑

i=0

‖z(s)i+1/2 − z
(s)
i ‖2 ≤ 6‖z(s)0 − z∗‖2.

Since z(s+1) = z̄
(s)
T =

∑T−1
i=0

z
(s)
i

λ
(s)
i∑T−1

i=0
1

λ
(s)
i

and z(s) = z
(s)
0 , using the convexity of ‖ · ‖2 and by Jensen’s

inequality, we have

‖z(s+1) − z∗‖2 ≤ 3

4µ
∑T−1

i=0
1

λ
(s)
i

‖z(s) − z∗‖2. (32)

We then bound the term
∑T−1

i=0 (λ
(s)
i )2 by

T−1∑

t=0

(λ
(s)
t )2 ≤

T−1∑

t=0

36(3M2‖z(s)t+1/2 − z
(s)
t ‖2 + 3(δ

(s)
H )2 + 3δ

(s)
1,t ) ≤

(
648M2 + 6

)
‖z(s) − z∗‖2.

Since

T =

⌈
(100M + 12)2/3‖z(0) − z∗‖2/3

µ2/3

⌉
,

it enough to guarantee the linear decent on ‖z(s) − z∗‖ such that

‖z(s+1) − z∗‖2 ≤ 3

4µ
∑T−1

i=0
1

λ
(s)
i

‖z(s) − z∗‖2 ≤ 3
√
648M2 + 6‖z(s) − z∗‖3

4µT 3/2
≤ 1

2
‖z(s) − z∗‖2.
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C.6 The Proof of Theorem 4.8

Proof. Using Lemma 4.7, we have that ‖z(s+1) − z∗‖2 ≤ 1
2‖z(s) − z∗‖2 holds for all s ∈ [S − 1]

with probability at least 1− δ. Then we have ‖z(S) − z∗‖2 ≤
(
1
2

)S ‖z(0) − z∗‖2 ≤ ǫ. For each call

of the subroutine HAQZO+, the query complexity can be bounded by

T · Õ(1) +
T

m
· Õ(d) = Õ

(
d+

d2/3L
2/3
2

µ2/3

)
.

Thus, the total query complexity can be bounded by

#Query = T · S =

(
T · Õ(1) +

(
T

m
+ 1

)
Õ(d)

)
log(ǫ−1) = Õ

(
d+ L

2/3
2 d2/3µ−2/3

)
.

D The Proof of Section 5

We first present some useful results for one step of lazy CRN [14, 13]:

zt+1 = argmin
z∈Rd

{
〈gt, z− zt〉+

1

2
〈Hπ(t)(z− zt), z− zt〉+

M

6
‖z− zt‖3

}
, (33)

where gt and Hπ(t) are good estimations to ∇f(zt) and ∇2f(zπ(t)), respectively, such that

‖gt −∇f(zt)‖2 ≤ δg and
∥∥Hπ(t) −∇2f(zπ(t))

∥∥ ≤ δH. (34)

Lemma D.1 (Theorem 2.4 [13]). Consider the cubic regularization step in (33) where gt and Hπ(t)

satisfy (34), then it holds that

f(zt)− f(zt+1) ≥
1

192M1/2
‖∇f(zt+1)‖3/2

+

(
M

48
‖zt+1 − zt‖3 −

171L3
2

M2
‖zt − zπ(t)‖3 −

171δ3H
M2

− 3δ
3/2
g

M1/2

)
.

(35)

Then we know that by properly choosing δg, δH, the CRN step can make the gradient small with a

rate of O(T−3/2).

Lemma D.2. Under Assumptions 2.2, let z̄ be uniformly chosen from {zi}Ti=1, generated by (33),
then it holds that

E

[
‖∇f(z̄)‖3/2

]
≤ 192

√
M(f(z0)− f∗)

T
+

(
576δ3/2g +

2002δ3H
M3/2

)
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Proof. Summing up (35) from k = π(t) to t, then it holds that

f(zπ(t))− f(zt)

≥ 1

192M1/2

t−1∑

k=π(t)

‖∇f(zk+1)‖3/2

+

t−1∑

k=π(t)

(
M

48
‖zk+1 − zk‖3 −

171L3
2

M2
‖zk − zπ(t)‖3

)
−

t−1∑

k=π(t)

(
171δ3H
M2

+
3δ

3/2
g

M1/2

)

≥ 1

192M1/2

t−1∑

k=π(t)

‖∇f(zk+1)‖3/2

+
t−1∑

k=π(t)

(
Mr3k
48

−
171L3

2(
∑k−1

j=π(t) rj)
3

M2

)
−

t−1∑

k=π(t)

(
171δ3H
M2

+
3δ

3/2
g

M1/2

)

≥ 1

192M1/2

t−1∑

k=π(t)

‖∇f(zk+1)‖3/2

+

t−1∑

k=π(t)

(
M

48(t− π(t))3
− 171L3

2

M2

)
(

k−1∑

j=π(t)

rj)
3 −

t−1∑

k=π(t)

(
171δ3H
M2

+
3δ

3/2
g

M1/2

)

≥ 1

192M1/2

t−1∑

k=π(t)

‖∇f(zk+1)‖3/2 −
t−1∑

k=π(t)

(
171δ3H
M2

+
3δ

3/2
g

M1/2

)
,

(36)

where the last inequality is due to Lemma A.3 and M = 30mL2

M

48(t− π(t))3
− 171L3

2

M2
≥ M

144m3
− 171L3

2

M2
≥ 0.

Summing up (36) from 0 to T − 1, we have

f(z0)− f∗ ≥ f(z0)− f(zT ) ≥
1

192M1/2

T−1∑

t=0

‖∇f(zt+1)‖3/2 − T

(
171δ3H
M2

+
3δ

3/2
g

M1/2

)
,

and

E

[
‖∇f(z̄)‖3/2

]
=

1

T

T−1∑

t=0

‖∇f(zt+1)‖3/2 ≤ 192
√
M(f(z0)− f∗)

T
+

(
576δ3/2g +

2002δ3H
M3/2

)
.

Now we are ready to prove Theorem 5.2.

D.1 The Proof of Theorem 5.2

Proof. The choice of ǫg and ǫH means that

‖gt −∇f(zt)‖ ≤ ǫ−1

17282/3
:= δg

‖Hπ(t) −∇2f(zπ(t))‖ ≤ M1/2ǫ−1/2

30
:= δH

hold with probability at least (1− δ) for all t ∈ [T ]. Using Lemma D.2, we have

E

[
‖∇f(zout)‖3/2

]
≤ ǫ−3/2,
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due to the convexity of x3/2, we have

E [‖∇f(zout)‖] ≤
(
E

[
‖∇f(zout)‖3/2

])2/3
≤ ǫ−1.

We require using Õ(1) query complexity of function evaluation oracle to construct the gradient

estimator for all T iterations and using Õ(d) query complexity to construct the Hessian estimator

for T
m + 1 iterations at the snapshot point. Thus, the total query complexity of Algorithm 6 can be

bounded by

#Query = T · Õ(1) +

(
T

m
+ d

)
Õ(d) = Õ

(
d+ d1/2L

1/2
2 (f(z0)− f(z∗))ǫ−3/2

)
.
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