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ABSTRACT

Spiking Neural Networks (SNNs) offer an energy—efficient route to 3D spatio—
temporal perception, yet they lag behind Artificial Neural Networks (ANNs) due
to weak pretraining and heavy inference stacks, limiting generalization and mul-
timodal reasoning (e.g., zero—shot 3D classification and open—world QA). We
present a universal Spike-based Vision—Language pretraining framework (SVL)
that equips SNNs with open—world 3D understanding while preserving end—to—
end spike efficiency. SVL comprises two core components: (i) Multi—scale Triple
Alignment (MTA), a label-free triplet contrastive objective aligning 3D, image, and
text; and (ii) Re—parameterizable Vision—Language Integration (Rep—VLI), which
converts offline text embeddings into lightweight weights for text—-encoder—free
inference. Moreover, we present the first fully spike—driven point Transformer,
Spike-driven PointFormer, whose 3D spike—driven self-attention (3D-SDSA) re-
duces interactions to sparse additions, enabling faster, more efficient training.
Extensive experiments show that SVL attains strong zero—shot 3D classification
(85.4% top—1) and consistently outperforms prior SNNs on downstream tasks (e.g.,
+6.1% 3D cls, +2.1% DVS actions, +1.1% detection, +2.1% segmentation) while
enabling open—world 3D question answering, sometimes outperforming ANNs. To
the best of our knowledge, SVL represents the first scalable, generalizable, and
hardware-friendly paradigm for 3D open-world understanding, effectively bridging
the gap between SNNs and ANNSs in complex open-world understanding tasks.

1 INTRODUCTION

Bio-inspired Spiking Neural Networks (SNNs) offer an efficient approach to learning superior
representations from sparse 3D geometric data (e.g., event streams and point clouds) (Roy et al.,
2019), owing to their distinctive spike-driven nature (Pei et al., 2019) and spatio-temporal processing
capabilities (Maass, 1997). For instance, the Speck (Yao et al., 2024) chip uses event-by-event sparse
processing to handle 3D input data, with operational power consumption as low as 0.7 mW. However,
existing SNNs (Qiu et al., 2025a; Yao et al., 2025; Zhou et al., 2024) exhibit a significant performance
gap compared to ANNs, and remain task-dependent, lacking both generalizable representations and
the ability to achieve multimodal understanding in 3D open-world scenarios.

For instance, when deploying SNNs in real-world scenarios (Yao et al., 2024), they may struggle to
generalize to input data from unseen categories not present in the training set. This highlights the
critical need to develop robust pretraining strategies to enhance the visual representation capabilities
and adaptability of SNNs. Existing methods, such as STDP-based initialization (Lee et al., 2018)
and knowledge distillation in SpikeBert and SpikeCLIP (Lv et al., 2023; Bal & Sengupta, 2024; Lv
et al., 2025), refine spike-based representations, while SpikformerV2 and Spike-driven Transformer
V3 (Yao et al., 2025; Zhou et al., 2024) employ masked image modeling to improve scalability.
However, these approaches (Lee et al., 2018) either lose effectiveness as dataset complexity increases,
demand substantial computational resources (Zhou et al., 2024), which limits their feasibility for
neuromorphic hardware deployment, or lack multimodal integration (Lv et al., 2023). Moreover, pre-
trained models often exhibit inadequate visual representation capabilities and limited transferability,
restricting unified applicability to downstream tasks (Yao et al., 2025).

Another challenge is the limited availability of annotated 3D datasets, as the creation of such datasets
is both labor-intensive and error-prone, rendering it often impractical for large-scale, real-world
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Figure 1: Overall architecture and applications of our SVL. (a) In pretraining, we proposed Multi-
scale Triple Alignment (MTA) that jointly optimizes correlation alignment across text, image, and
3D inputs. (b) For downstream tasks, we propose Re-parameterizable Vision-Language Integration
(Rep-VLI) to reparameterize the text embeddings generated by the text encoder into lightweight
weights, enabling efficient spike-driven inference.

applications (Xu et al., 2024). In response, Vision-Language Models (VLMs) (Radford et al., 2021)
have been employed to explore the transfer of knowledge gleaned from extensive 2D datasets to
facilitate open-world 3D understanding. However, most VLMs (Xue et al., 2023; 2024; Liu et al.,
2023b) depend heavily on large-scale text encoders during inference, which imposes substantial
limitations on the practicality of hardware deployment.

In this paper, we introduce a universal Spike-based Vision-Language pretraining framework (SVL)
that enhances SNNs’ capability for open-world multimodal 3D understanding while maintaining
efficient spike-driven inference. As shown in Fig. 1, SVL incorporates two key innovations: (i)
Multi-scale Triple Alignment (MTA), which enables label-free triplet representation learning to
capture the geometric properties of 3D data, and (ii) Re-parameterizable Vision—Language Integration
(Rep—VLI), which converts offline text embeddings into lightweight weights for text-encoder—free
deployment. We leverage CLIP for its strong generalization: during pretraining, CLIP is frozen
and a spike-driven 3D encoder is aligned to CLIP’s image/text spaces via contrastive learning; the
pre-trained 3D model is then fine-tuned for downstream tasks. In addition to SVL , we present
the first fully spike—driven point Transformer, Spike-driven PointFormer, whose 3D spike—driven
self—attention (3D-SDSA) reduces interactions to sparse additions, enabling faster, more efficient
training that supports large—scale pretraining and generalizes broadly across 3D tasks. Our main
contribution can be summarized as:

* We propose two key innovations about SVL: (i) Multi-scale Triple Alignment (MTA), a
label-free triplet learning mechanism for capturing geometric properties of 3D data across
different scales, and (ii) Re-parameterizable Vision-language Integration (Rep-VLI), which
achieves lightweight inference by reducing the computational overhead of text encoder.

* We present the first fully spike—driven point Transformer. Its 3D spike—driven self—attention
(3D-SDSA) reduces interactions to sparse additions, enabling faster, more efficient training
that supports large—scale pretraining and generalizes broadly across 3D tasks.

» Extensive experiments on multiple benchmarks demonstrate the effectiveness of SVL,
achieving state-of-the-art (SOTA) performance in both 3D open-world understanding and
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downstream tasks, as well as generative applications such as 3D object captioning and
open-world question answering.

2 RELATED WORKS

Pretraining Algorithms of SNNs Numerous pretraining methods are proposed for spike-based
representation learning. (Lee et al., 2018) utilized spike-timing-dependent plasticity (Bliss &
Collingridge, 1993) to initialize SNNs, enhancing the model’s robustness and training speed. While
this approach has been successful on simple datasets with shallow networks, its effectiveness dimin-
ishes as the complexity of the datasets and networks increases. To address these issues, SpikeBert and
SpikeCLIP (Lv et al., 2023; Bal & Sengupta, 2024; Lv et al., 2025) employ a two-stage knowledge
distillation process from ANNs to enhance spike-based representations for complex downstream
tasks. However, these methods rely on ANN weight initialization, limiting structural flexibility. Addi-
tionally, they use LayerNorm, which hinders neuromorphic hardware deployment. SpikformerV2
and Spike-driven Transformer V3 (Yao et al., 2025; Zhou et al., 2024; 2023) apply a masked image
modeling approach to address the performance degradation in SNNs as the model scales up. However,
they require substantial storage and computational resources, and the lack of multimodal integration,
particularly language guidance, limits their effectiveness in open-world understanding tasks.

Vision-language Models (VLMs) aim to align image and text embeddings for cross-modal transfer,
with CLIP (Radford et al., 2021) being a seminal work that uses contrastive learning for zero-shot
classification. Building on this foundation, subsequent methods have expanded cross-modal alignment
to include other modalities. These approaches typically fall into two categories: dual-encoder and
triple-encoder frameworks. Dual-encoder fine-tune both visual and textual encoders (Lv et al., 2025;
Zhang et al., 2021; Zhu et al., 2022). Triple-encoder frameworks incorporate additional modality-
specific encoders (Xue et al., 2023; 2024; Zeng et al., 2023), which combine triple models to achieve
open-world understanding. This architecture is highly flexible, making it suitable for a variety of
downstream tasks (Xu et al., 2024; Liu et al., 2023b). However, triple-encoder frameworks still rely
on large text encoders during inference, hindering hardware deployment.

Efficient 3D recognition from sparse, irregular data (events, point clouds) follows two main
directions: point-based pipelines that operate on raw points to extract geometric features (Qi et al.,
2017; Wang et al., 2019), and voxel-based pipelines that discretize into regular grids and apply sparse
3D convolutions (Wu et al., 2015). While deeper voxel/backbone designs can improve accuracy, the
gains often come with substantial compute and memory costs, hindering deployment. To reduce cost,
the SNN community has integrated spiking neurons with point-based models for low-power edge
computing (Ren et al., 2024; Wu et al., 2024; Zhou et al., 2025); early designs, however, tend to
be task-specific and capacity-limited. E-3DSNN (Qiu et al., 2025a) advances this line with spike
sparse convolutions, delivering strong results across multiple 3D tasks while preserving spike-driven
operation. Orthogonal to encoder choice, SVL pretraining enhances representation quality and
enables open-world multimodal understanding while retaining spike efficiency.

Transformer-style spiking architectures are emerging. Spike Point Transformer (Wu et al., 2025)
introduces a Transformer-based SNN but still uses non-spiking operators and applies temporal
encoding to point clouds, which degrades energy efficiency and slows training. Spike PointNet (Zhou
et al., 2025) and E-3DSNN (Qiu et al., 2025a) rely on point-wise or sparse-convolutional inductive
biases that may limit expressiveness and scalability. In contrast, we propose Spike PointFormer,
the first fully spike-driven point Transformer: its 3D spike-driven self-attention (SDSA) performs
addition-only interactions on spike tensors, enabling energy-efficient large-scale pretraining and
broad generalization, and serving as a complementary architecture to SVL pretraining.

3 PRELIMINARIES

Spiking Neurons are inspired by the dynamics of biological neurons (Maass, 1997; Li et al.,
2023), which are the fundamental units of Spiking Neural Networks (SNNs). Among these, the
Leaky Integrate-and-Fire (LIF) neuron is the most widely used due to its balance between biological
plausibility and computational efficiency (Maass, 1997). We begin by translating the LIF spiking
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neuron into an iterative expression using the Euler method (Wu et al., 2018), which is described as
follows:

W[t +1] = n{0 ] + f(w®, 20 1), M
sO11 = 0@t + 1] - 0), @
ROl + 1) = Bui e+ 1](1 - sV[t]), @

Here, (3 is the time constant ¢ and ¢ represents the time step and the neuron index in the /-th layer,
respectively. The weight matrix w defines the synaptic connections between adjacent layers, while
f(+) is a function that denotes operations such as convolution (Conv) or fully connected (FC). The
input is represented by x, and O(-) denotes the Heaviside step function. When the membrane potential
u exceeds the firing threshold ¥, the LIF neuron generates a spike, s. Additionally, h represents the
membrane potential after the spike event, which is scaled by a constant factor 3.

Directly training the above LIF-based SNNs requires the use of backpropagation through time (BPTT)
(Wu et al., 2018), resulting in a time complexity of O(LT'), where L and T are the number of layers
and time steps. This significantly increases both the training time and memory requirements. To
mitigate this issue, we use the Integer LIF Spiking Neuron.

Integer LIF Spiking Neuron is incorporated into our SVL to reduce the quantization error, training
time, and memory (Yao et al., 2025; Luo et al., 2024; Qiu et al., 2025b), which allows us to rewrite
Eq. equation 2 as:

sO11) = [clip{u[t],0, D'}, @

where |-] denotes the rounding operator, clip{x, a,b} confines = within range [a, )], and D' is a
hyperparameter indicating the maximum emitted integer value by I-LIF. Moreover, I-LIF will emit
integer values while pretraining and convert them into binary spikes by expanding the virtual timestep
to ensure that the inference is spike-driven with only sparse addition.

4 METHOD

Our primary goal is to develop a spike-based encoder that accurately captures the geometric
properties of 3D input data and efficiently achieves a unified representation for open-world
3D understanding with the spike-driven nature. To this end, we construct our triplet dataset
{(DY, I, T}), (DS, I, T%), - - -, (D%, It Tt)}, which consists of a 3D input D, an image I;, and a
text description T at ¢ time step.

4.1 3D INPUT REPRESENTATION

In this part, we present the 3D input representation, such as point clouds and event streams. Event
streams, in particular, require special handling. We define them as E; = (z;,y;,t;,p;). Using a
sliding window technique (Wang et al., 2019; Ren et al., 2024), we convert event streams into an
event cloud, formulated as:
E; = (i, i, %) where  z; = m?
tmax - tmin

By doing so, we treat event streams as a distinct kind of spatio-temporal point cloud. This allows us to
consider both point clouds and event streams as collections of points, denoted by D* = {P, F}. This
includes voxel sets D}, = {P!, Fi}, where P} € R? represents the 3D coordinates and F} € R”
indicate the features across d channels at the time step ¢. Following this, we utilize our I-LIF spiking
neuron to encode these 3D inputs into spatio-temporal spike trains, which are then transmitted to the
spike encoder.

4.2 MULTI-SCALE TRIPLE ALIGNMENT

To develop a unified representation for open-world 3D understanding, we introduce a multi-scale
triple alignment (MTA) framework that jointly optimizes correlation alignment across text, image,
and 3D inputs. This framework integrates both semantic spike-text alignment and fine-grained
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spike-image alignment. Specifically, the overall architecture of SVL, illustrated in Fig. 1, comprises
three encoders: (i) Text Encoder (£ ): embeds text into text features 77 € RY; (ii) Spike-based
Encoder (£3): transforms spike inputs into spike trains 7 € RT*C. (iii) Image Encoder (£}):
encodes images into image features 7/ € RC. Here, C represents the embedding dimension. These
encoders collaboratively embed the triplet texts, spikes, and images into their respective feature
spaces, facilitating comprehensive and fine-grained alignment across different modalities.

Semantic Spike-Text Alignment To leverage the open-world recognition capabilities of the pre-
trained CLIP model (Radford et al., 2021), we align the spike firing rate 7 /T with the text
embeddings 71 obtained from CLIP, using a spike-text tuple B; = {17}, D!} as input. The core idea
is to bring the feature centroids of 3D instances and their corresponding text prompts closer together
in the embedding space. To achieve this, we compute the InfoNCE loss (van den Oord et al., 2018)
between the mean spike trains and the text features, as follows:

|B‘ TX:'Yi TX:;'Y:
NCE eTXi'Yi eTXi i
= +log —— 5
S 2|B| Z IR p— SIBl ey, 8 SIB e ®
S
where x; = % andy; = W represent the normalized spike and text features, respectively.

The indices ¢ and j are used for sampling, the dot product (-) denotes cosine similarity between
vectors, and T is a learnable temperature parameter.

Fine-grained Spike-Image Alignment A singular spike-text alignment fails to fully capture the
semantic information embedded within both images and 3D data. To achieve a more comprehensive
multimodal understanding, we further introduce an alignment between image and spike features.
Specifically, we first employ the InfoNCE loss to align the image features, denoted as F/, with the
average pulse signals, represented as 7 /7. This alignment can be expressed as follows:

IC]

NCE TaL bl erai‘bi
Ly = 2\c| Z 98 NIl _rar by |C\ erai-b +log le era; b ©®
where C; = {I}, D!} a spike-image tuple, a; = Hf:% and b; = ]_—1” represent the normalized

spike and text features, respectively. However, this approach resulted in overly coarse alignment
granularity, failing to account for the fine-grained and tightly coupled alignment between spikes and
images. To address this, we incorporate the MSE loss on the basis of the InfoNCE loss to enhance the
alignment granularity. The alignment objective between spike trains and images, which is formulated

as follows:
[C]

£isT) = Z 17 = AP, %
where || - HQ is the ¢ norm. Finally, we obtam the resultant total learning objective Ly, as the
combination of Ls 1) and L(s 1), where both alignments of semantic spike-text and fine-grained
spike-image alignment are injected as:

Lo = ML) + AL + ALiSr 8)

where A1, A2, and A3 are hyperparameters that balance the influence of image features, text features,
and spike trains. For our main experiments, we set all three to 1, with a detailed ablation study on
their impact presented in Tab 6.

4.3 RE-PARAMETERIZABLE VISION-LANGUAGE INTEGRATION

While pretrained vision-language models excel at zero-shot transfer, their inference phase typically
requires a large, computationally expensive text encoder. This presents a significant bottleneck
for SNNs, undermining their inherent efficiency and complicating deployment on neuromorphic
hardware.

To overcome this, we introduce the Re-parameterizable Vision-Language Integration (Rep-VLI)
module. Rep-VLI’s core innovation is to pre-compute and embed textual information directly into the
weights of a lightweight classification layer, completely discarding the text encoder during inference.
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Specifically, for a set of K candidate text prompts {77, T5, ..., Tk }, we use the text encoder & to
generate a corresponding weight matrix W5 € RE*C:
Wl =18 (Ty), )

where WjL is the re-parameterized weight vector for the j-th text prompt.

During inference, we adopt a hardware-friendly spike-count decision rule instead of a conventional
softmax. For an input 3D data point D;, our spike-based encoder 595 produces spike features
s[t] € {0,1}€ over T timesteps. The predicted class, §;, is the one whose corresponding weight
vector aligns best with the accumulated spike activity:

T
1

logits, = arg ma —E wk.&g5(DY), 10

g1ts,; g jXthl J 0( z) (10)

This process selects the class with the highest firing rate, preserving a fully spike-driven and hardware-
compatible inference path. Ultimately, Rep-VLI elegantly sidesteps the need for a persistent text
encoder at inference time. By re-parameterizing textual knowledge into a compact weight matrix,
it ensures our model remains lightweight and perfectly aligned with the operational principles of
spike-based neuromorphic systems.

4.4 SPIKE-DRIVEN 3D ENCODER

Backbone Suite We instantiate SVL with three spike-driven 3D backbones: (i) Spike PointNet (Wu
et al., 2024) for lightweight point-cloud processing; (ii) E-3DSNN (Qiu et al., 2025a), a sparse
spike-convolutional backbone suited to edge deployment; and (iii) Spike-driven PointFormer, our
fully spike-driven Transformer for high-capacity cloud settings.

Spike-driven PointFormer As shown in Fig. 2, given a point set P;, € R7*N*3 we form local
neighborhoods by farthest-point sampling and k-NN grouping:

X =KNN(FPS(P)), X e RT*N™3,

A learnable add-only pointwise embedding (addition only since inputs are spikes), followed by an
I-LIF neuron SN (-), produces spike features:

S =SN(MLP(X)), §eRT*N*D
We then perform local-to-global feature extraction with L Spike-driven PointFormer layers (SDF):
fo=EMP(S),  fe=SDF(fe—1)+ fe-1, (=1,...,L, (11)
where EMP denotes element-wise max pooling over the neighborhood axis and all f, € RT>*¥ xD.
Spike-driven self-attention inside SDf. From f,_;, three add-only linear maps yield @, K,V &

RT*N'%D which are converted to spikes:
Qs =SN(Q), Kg=S8SN(K), Vs=SN(V),
A matrix-multiplication variant (3D-SDSA) used in Spike-driven PointFormer is
SDSA3p(Qs, Ks. Vs) = SM(Qs (K Vs)) = SM(QsK) Vs), (12)

Here all products are spike-driven matmuls that reduce to sparse additions via address-event accumu-
lation algorithms (Horowitz, 2014), preserving end-to-end spike computation.

5 EXPERIMENTS

To validate that our spike-based 3D encoder learns robust visual representations via SVL, we evaluate
it on diverse 3D open-world tasks, including zero-shot classification and visual question answering.
The pretrained encoder is also fine-tunable for downstream tasks like 3D classification, segmentation,
detection, and action recognition. This section details the experimental setup, including backbones,
datasets, and implementation, followed by quantitative results and ablation studies on modality count,
time steps, and loss functions. For additional speed and accuracy comparisons between our Spike-
driven PointFormer and other spike-based 3D encoders—as well as temporal scene understanding
results and CLIP encoder sizes—see Appendix A. Implementation details and dataset descriptions
are provided in Appendix D and Appendix F, respectively.
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. Pre-train Point+Text Energy .

Architecture Model Method Input T xD Param (M) (m)) Obj. M40.
PointCLIP (Zhang et al., 2021) N/A Image N/A 25.5+57.3  24.9+420.3 1.9 20.2

PointNet (Qi et al., 2017) Point N/A 3.47+202.5 20.1+71.7 244 749

Point-Bert (Yu et al., 2022) Openshape (Liu et al., 2023b) Point N/A 21942025 83.2+71.7 432 828

ANN Sparsocon (Graham et al., 2017) penshape (Liu CLal, SU290) - yoxel  N/A 5342025 0.61471.7 317 7838
P srapametat, 2 Voxel  N/A  41.3+4202.5 2.13471.7 434 834

Point-Bert (Yu et al., 2022) Ulip (Xue et al., 2023) Point N/A 21.9+227.8 81.2+80.6 349 69.6

Point-Bert (Yu et al., 2022) Ulip2 (Xue et al., 2024) Point N/A 21.94202.5 83.7+71.7 50.6 84.7

SpikeCLIP* (Lv et al., 2025) N/A Image 4x1 9.5+22.8 10.6+40.41 0.5 5.1

Spike PointNet (Ren et al., 2024) Point 1x4 3.57 0.27 249 763

SNN Spike-driven PointFormer-S (Ours) Point 1x4 7.69 5.1 40.1  82.1
Spike-driven PointFormer-L (Ours) Point 1 x4 22.1 9.4 434  83.1
E-3DSNN-T (Qiu et al., 2025a) SVL (Ours) Voxel 1x4 210 0.04 33.6 79.6

E-3DSNN-S (Qiu et al., 2025a) Voxel 1x4 3.51 0.09 364 813

E-3DSNN-L (Qiu et al., 2025a) Voxel 1x4 17.7 0.64 439 84.6

E-3DSNN-H (Qiu et al., 20252) Voxel 1x4 46.7 0.79 47.0 854

Table 1: 3D Zero-shot classification results on the large-scale Objaverse-LVIS (Obj.) (Deitke et al.,
2023) and ModelNet40 (M40.) (Wu et al., 2015) datasets. ”*” denotes self-implementation results
with open-source code. “Energy” denotes the estimated energy consumption, following (Qiu et al.,
2025a; Yao et al., 2023); further details are provided in Appendix C. “Point+Text” denotes the
parameters of the point encoder and the text encoder.

Vision

Method LLM Input S.-BERT SimCSE  B-1. R-L. MET.

Encoder
InstructBLIP-13B (Dai et al., 2023) - . . Hiano e N Image 45.90 48.86 4.65 8.85 13.23
LLaVA-13B (Liu et al., 2023a) ViT (Dosovitskiy, 2020) Vicua (Chiang et al., 2023) Image 46.37 45.90 4.02 8.15 12.58
PointLLM-13B (Xu et al., 2024) PointBert (Yu et al., 2022) Point 4791 49.12 3.83 7.23 12.26
PointLLM-13B* (Xu et al., 2024) PointBert (Yu et al., 2022) Vicua (Chiang et al., 2023) Point 50.15 50.83 17.09 20.99 16.45
SVL-13B (Ours) Spike-driven PointFormer-L ang et ak, =0z Point 44.87 4591 3.77 6.85 12.25
SVL-13B (Ours)* Spike-driven PointFormer-L Point 47.80 47.08 11.45 14.69 16.40
SVL-13B (Ours)* Spike-driven PointFormer-L ~ SpikeLLM (Xing et al., 2025)  Point 51.21 50.18 18.45 21.32 18.40
Human N/A N/A N/A 100.00 100.00  100.00 100.00  100.00

Table 2: 3D object captioning results on Objaverse-LVIS. ”*” indicates SVL-13B is prompted for
shorter captions with no more than 20 words. The evaluation utilizes a range of metrics, including
Sentence-BERT, SimCSE, BLEU-1, ROUGE-L, and METEOR.

5.1 3D OPEN-WORLD UNDERSTANDING

Zero-shot classification We evaluate the zero-shot classification performance of our models
on the widely-used ModelNet40 (Wu et al., 2015) and the larger, more challenging Objaverse-
LVIS (Deitke et al., 2023). Compared to other benchmarks, Objaverse-LVIS offers broader class
coverage and a long-tailed distribution, providing a more realistic evaluation of open-world 3D
understanding (Liu et al., 2023b). As shown in Tab. 1, our SVL-based E-3DSNN achieves 85.4%
accuracy on ModelNet40 with only 17.7M parameters, outperforming both ANN and SNN baselines.
This demonstrates SVL’s effectiveness in enhancing both accuracy and efficiency.

Specifically, compared to OpenShape and ULIP, our model achieves 85.4% accuracy (vs. 83.4% and
69.6%), consumes only 0.79 mJ of energy (vs. 161.8 mJ and 73.8 mJ), and uses fewer parameters
(17.7M vs. 41.3M and 21.9M). It also delivers a 15.8% accuracy gain over ULIP-based Point-
BERT (Xue et al., 2023) while consuming just 11.4% of the energy. On Objaverse-LVIS, our model
performs comparably to ULIP-2 (Xue et al., 2024) but with a 204 x energy efficiency advantage.
This is enabled by our Rep-VLI module, which reparameterizes text embeddings into compact,
spike-compatible weights for zero-shot inference, preserving the spike-driven nature of the encoder.
Compared to prior SNN approaches such as SpikeCLIP (Lv et al., 2025), SVL substantially improves
the visual representation capacity of spike-based encoders in zero-shot 3D tasks.

Generative 3D Object Captioning and Open-world Question Answering We combine the SVL-
trained Spike PointFormer with a language model (Chiang et al., 2023) via the LLaVA framework (Liu
et al., 2023a) for multimodal pre-training and fine-tuning (see Appendix H). On the 3D object
captioning benchmark, prompted with “Describe this 3D model in detail,” our SVL-13B achieves
performance comparable to state-of-the-art ANN methods (Tab. 2). Semantic metrics (Sentence-
BERT, SimCSE) confirm strong alignment with human references. Notably, as the first SNN-based
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Param  Energy

Architecture Model Input M) (mJ) T x D ModelNet40  ScanObjectNN

PointNet (Qi et al., 2017) Point  3.27 2.02 N/A 89.2 68.2
ANN PointNet + ULIP (Xue et al., 2023) Point 3.47 2.34 N/A 92.1 72.1
Pointformer (Zhao et al., 2021) Point 491 30.1 N/A 92.8 81.3
Spike Point TransFormer (Wu et al., 2025) Point 9.6 21.1 4 x1 88.5 80.1
P2SResLNet (Wu et al., 2024) Point 14.3 - 4x1 88.7 81.2
SpikingPointNet (Lan et al., 2023) Point  3.47 0.91 16 x 1 88.6 66.6
Spike PointNet (Ren et al., 2024) Point  3.47 0.24 1x4 88.2 70.0

SNN Spike PointNet + SVL Point  3.47 0.27 1x4 901119 76.1 (1 6.1)
E-3DSNN-S (Qiu et al., 2025a) Voxel 3.27 0.02 1x4 91.7 78.7

E-3DSNN-S + SVL Voxel  3.27 0.02 1x4 927110 80.9 (1 2.2)
E-3DSNN-L (Qiu et al., 2025a) Voxel 17.7 0.26 1x4 91.2 80.2

E-3DSNN-L + SVL Voxel 17.7 0.31 1x4 93.7 (1 2.5) 83.0 (1 2.8)
Spike-driven PointFormer-S (Ours) Point  7.69 5.1 1 x4 92.6 82.1
Spike-driven PointFormer-L (Ours) Point  22.1 9.4 1 x4 92.1 81.7

Spike-driven PointFormer-L (ours) +SVL  Point  22.1 9.8 1 x4 93.9 (1 1.8) 83.4 (1 1.7)

Table 3: 3D Downstream Tasks: 3D classification results on ModelNet40 (M-40) (Wu et al., 2015)
and ScanObjectNN (Scan-O) (Uy et al., 2019).

method in 3D captioning, SVL-13B achieves comparable annotation quality compared to PointLLM.
We also evaluate on 3D question answering. As shown in Fig. 3, the model effectively interprets
shape, material, function, and context, including visual and functional cues, while demonstrating
commonsense reasoning. Despite lacking dense textures, SVL-13B achieves strong perception-
language alignment, comparable to ANN models across diverse object types.

5.2 3D DOWNSTREAM TASKS

3D Classification, Segmentation, and Detection We first fine-tuned our models on 3D classifica-
tion datasets such as ModelNet40 (Wu et al., 2015) and ScanObjectNN (Uy et al., 2019) to evaluate
the 3D visual representation capabilities acquired through SVL pretraining. As shown in Tab. 7,
the SVL pretraining significantly enhances performance, with the E-3DSNN (Qiu et al., 2025a)
and the Spike PointNet (Ren et al., 2024) architecture achieving improvements of 1.9% and 1.0%,
respectively, on ModelNet40. On the more challenging ScanObjectNN dataset, the Spike PointNet
architecture demonstrates a substantial accuracy increase, rising from 70.0% to 76.1%. Subsequently,
we extended our fine-tuning experiments to datasets such as Semantic KITTI (Behley et al., 2019)
and KITTI (Geiger et al., 2012a). As illustrated in Tab. 2, our SVL pretraining delivers marked
improvements in both 3D segmentation and detection tasks, with the E-3DSNN (Qiu et al., 2025a)
exhibiting performance gains of 1.1% and 1.2%, respectively.

Human Action Recognition We further fine-tune our SVL-pretrained spike-based encoder on
DVS datasets, including DVS128 Gesture (Amir et al., 2017) and DVS Action (Miao et al., 2019),
to assess spatiotemporal feature extraction. During pretraining, the I-LIF time step was set to 1 for
efficiency, then increased to 6 during evaluation to better capture temporal dynamics. We adopt the
point-based method from (Wang et al., 2019) for efficient DVS data processing (see Section 4.1). As
shown in Tab. 4, SVL-pretrained E-3DSNN and Spike Point improve by 2.1% and 1.6% on DVS
Action and DVS128 Gesture, respectively, indicating strong scalability and temporal modeling ability
of SVL-trained SNNs.

5.3 ABLATION STUDY

The Effectiveness of Our MTA  An ablation study was conducted to examine the impact of
different loss function combinations during our multi-scale triple alignment (MTA). Specifically,
we compared performance with and without the semantic spike-text alignment (e.g., llI(‘ISCIZ:r)) and

fine-grained spike-image alignment (e.g., £y, L{€Y)). As shown in Tab. 6, the ablation study
highlights the importance of combining loss functions for optimal performance. In the absence of
any loss functions, the model only gets 0.5% accuracy on the large-scale Objaverse-LVIS and 5.1%

on ModelNet40. Introducing spike-image alignment yields a significant improvement, while the
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Architecture Method TxD KITTI Semantic KITTI DVS Action DVSI128 Gesture

AP-E (%) mloU (%) Acc. (%) Acc. (%)
ANN E-3DANN (Qiu et al., 20252) N/A 89.4 69.4 - -
PointNet (Qi et al., 2017) N/A - 14.6 75.1 95.3
E-3DSNN (Qiu et al., 2025a) 1x4 89.6 68.5
SNN E-3DSNN + SVL 1x4 90.7 (1 1.1) 69.7 (1 1.2) -
Spike PointNet (Ren et al., 2024) 1x4/6 x4 - 12.1 78.4 96.9
Spike PointNet + SVL 1x4/6x4 - 15.6 (1 2.1) 80.5 (1 2.1) 98.5 (1 1.6)

Table 4: 3D Downstream Tasks: 3D segmentation, detection, and human action recognition results on
KITTI (Geiger et al., 2012a), Semantic KITTI (Behley et al., 2019), DVS Action (Miao et al., 2019),
and DVS128 Gesture (Amir et al., 2017). Moreover, for the DVS dataset, we adopt a pre-training
timestep of 1 x 4, consistent with other datasets, and a fine-tuning timestep of 6 x 4.

Power Obj. M40.
(m) (%) (%) LNE - LNE LMSET Obj. M4,
ANN* N/A 0.13 341 813

Method T x D

X X X 0.5 5.1

1x2 0.02 329 785 X 4 X 248 73.1

2x1 0.03 327 780 4 X X 219 70.1

SNN 2x2 0.08 339 805 4 v X 31.7 778
1x4 004 336 796 4 4 v 33.6 79.6

4x1 0.10 329 78.6

Table 6: Ablation study of MTA.
Table 5: Ablation study of the pretrain timesteps.

inclusion of semantic spike-text alignment alone demonstrates limited effectiveness. The highest
performance is attained when all three loss functions, including the MSE-based fine-grained alignment,
are employed, achieving 33.6% accuracy on the large Objaverse-LVIS (Deitke et al., 2023) and 79.6%
on ModelNet40 (Wu et al., 2015). These findings underscore the synergistic relationship between
semantic and fine-grained alignment in enhancing the model’s representational capabilities, showing
the effectiveness of our MTA module.

Different Time Steps and Firing Bits We systematically study time steps (1) and firing bits (D)
for SVL pretraining and downstream fine-tuning (Tab. 5). During pretraining, enlarging 7" offers
negligible accuracy gains yet degrades efficiency: for example, with D=1, increasing 7" from 2 to
4 improves Objaverse-LVIS zero-shot accuracy by only 0.2% while roughly doubling power and
worsening latency. In contrast, scaling D at a fixed 7" consistently improves accuracy and can even
reduce power by concentrating information into fewer, stronger spikes. For fine-tuning, higher 7" can
help recognition quality, but the benefit comes with longer inference and higher energy. In practice,
we recommend small 7" (often 7'=1) with moderate D for pretraining to minimize compute, then
using modest T (e.g., 2—4) and tuning D for downstream tasks to balance accuracy against latency
and power.

6 CONCLUSION

In this work, we introduce SVL, a spike-based vision—language pretraining framework that equips
SNNs with open-world 3D understanding while preserving their inherent energy efficiency. By
integrating Multi-scale Triple Alignment (MTA) and a Reparameterizable Vision—Language Inte-
gration (Rep-VLI) module, SVL bridges the gap between the low-power advantages of SNNs and
the strong generalization capabilities of vision—language models. Comprehensive evaluations across
zero-shot 3D classification, semantic segmentation, and human action recognition demonstrate that
SVL consistently outperforms prior SNN-based approaches and even rivals state-of-the-art ANNSs,
all with significantly lower computational cost. Notably, SVL enables SNNs to perform open-world
3D question answering, marking a milestone in multimodal representation learning for spike-based
systems. Finally, we present Spike-driven PointFormer—the first fully spike-driven point Trans-
former—whose 3D spike-driven self-attention (3D-SDSA) reduces interactions to sparse additions,
delivering faster and more energy-efficient training while maintaining strong accuracy.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study does not involve human subjects or sensitive personal information. All experiments rely
on publicly available datasets used strictly under their original licenses; details and licenses are
summarized in Appendix F, and no unauthorized redistribution has occurred. The authors declare no
commercial or financial conflicts of interest related to this work. All experiments were conducted on
an institutional compute cluster in accordance with local energy-use and carbon-emission regulations.
The research followed our institution’s code of academic integrity; there has been no fabrication,
falsification, or selective reporting of results.

REPRODUCIBILITY STATEMENT

To facilitate reproduction, we provide the complete source code in the supplementary material and
full experimental details in Appendix F, Appendix C, and Appendix B.

REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7243-7252, 2017.

Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models
using implicit differentiation. In Proceedings of the AAAI conference on artificial intelligence
(AAAI), volume 38, pp. 10998-11006, 2024.

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen
Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9297-9307, 2019.

Tim VP Bliss and Graham L Collingridge. A synaptic model of memory: long-term potentiation in
the hippocampus. Nature, 361(6407):31-39, 1993.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. Imsys. org (accessed 14 April
2023),2(3):6, 2023.

Christopher Choy, JunYoung Gwak, Silvio Savarese, and zhu ruijie. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Rattern Recognition (CVPR), pp. 3075-3084, 2019.

Pointcept Contributors. Pointcept: A codebase for point cloud perception research, 2023.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
NieBner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (ICCV), pp. 5828-5839, 2017.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Albert Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning. arXiv preprint arXiv:2305.06500, 2023.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. /EEE Micro, 38(1):82-99, 2018.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 13142-13153, 2023.

10



Under review as a conference paper at ICLR 2026

Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li. Voxel
r-cnn: Towards high performance voxel-based 3d object detection. In Proceedings of the AAAI
conference on artificial intelligence (AAAI), volume 35, pp. 1201-1209, 2021.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Chaoming Fang, Ziyang Shen, Zongsheng Wang, Chuanqing Wang, Shiqi Zhao, Fengshi Tian, Jie
Yang, and Mohamad Sawan. An energy-efficient unstructured sparsity-aware deep snn accelerator
with 3-d computation array. /IEEE Journal of Solid-State Circuits, 2024.

Andreas Geiger, Philip Lenz, Raquel Urtasun, and ruijie zhu. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3354-3361, 2012a.

Andreas Geiger, Philip Lenz, Raquel Urtasun, and ruijie zhu. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3354-3361, 2012b.

Benjamin Graham, Laurens Van der Maaten, Zhu Ruijie, and Li Guoqgi. Submanifold sparse
convolutional networks. arXiv preprint arXiv:1706.01307, 2017.

Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen,
Peng Gao, Xianzhi Li, Hongsheng Li, et al. Point-bind & point-llm: Aligning point cloud
with multi-modality for 3d understanding, generation, and instruction following. arXiv preprint
arXiv:2309.00615, 2023.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-1lm: Injecting the 3d world into large language models. In Advances in Neural Information
Processing Systems (NeurIPS), volume 36, pp. 44860-44879, 2023.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10-14.
IEEE, 2014.

JiaKui Hu, Man Yao, Xuerui Qiu, Yuhong Chou, Yuxuan Cai, Ning Qiao, Yonghong Tian, Bo Xu,
and Guoqi Li. High-performance temporal reversible spiking neural networks with o(!) training
memory and o(1) inference cost. arXiv preprint arXiv:2405.16466, 2024.

Yuxiang Lan, Yachao Zhang, Xu Ma, Yanyun Qu, and Yun Fu. Efficient converted spiking neural
network for 3d and 2d classification. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 9211-9220, 2023.

Chankyu Lee, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy. Training deep
spiking convolutional neural networks with stdp-based unsupervised pre-training followed by
supervised fine-tuning. Frontiers in Neuroscience, 12:435, 2018.

Guoqi Li, Lei Deng, Huajing Tang, Gang Pan, Yonghong Tian, Kaushik Roy, and Wolfgang Maass.
Brain inspired computing: A systematic survey and future trends. Authorea Preprints, 2023.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International conference on machine
learning (ICML), pp. 6316-6325. PMLR, 2021.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Advances
in Neural Information Processing Systems (NeurIPS), volume 36, pp. 34892-34916, 2023a.

Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cali,
Fatih Porikli, and Hao Su. Openshape: Scaling up 3d shape representation towards open-world
understanding. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, pp.
44860-44879, 2023b.

11



Under review as a conference paper at ICLR 2026

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guogqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. arXiv
preprint arXiv:2407.20708, 2024.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer trained with two-stage knowledge
distillation from bert. arXiv preprint arXiv:2308.15122, 2023.

Changze Lv, Tianlong Li, Wenhao Liu, Yufei Gu, Jianhan Xu, Cenyuan Zhang, Muling Wu, Xiaoqing
Zheng, and Xuanjing Huang. Spikeclip: A contrastive language-image pretrained spiking neural
network. Neural Networks, pp. 107475, 2025. ISSN 0893-6080.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659-1671, 1997.

Shu Miao, Guang Chen, Xiangyu Ning, Yang Zi, Kejia Ren, Zhenshan Bing, and Alois Knoll.
Neuromorphic vision datasets for pedestrian detection, action recognition, and fall detection.
Frontiers in Neurorobotics, 13:38, 2019.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106-111, 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 652-660, 2017.

Xue-Rui Qiu, Zhao-Rui Wang, Zheng Luan, Rui-Jie Zhu, Xiao Wu, Ma-Lu Zhang, and Liang-Jian
Deng. Vtsnn: a virtual temporal spiking neural network. Frontiers in Neuroscience, 17:1091097,
2023.

Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-jian Deng, and Guoqi Li. Gated atten-
tion coding for training high-performance and efficient spiking neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), volume 38, pp. 601-610, 2024.

Xuerui Qiu, Man Yao, Jieyuan Zhang, Yuhong Chou, Ning Qiao, Shibo Zhou, Bo Xu, and Guoqi Li.
Efficient 3d recognition with event-driven spike sparse convolution. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), volume 39, pp. 2008620094, 2025a.

Xuerui Qiu, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu, Yimeng Shan,
Yang Yang, Malu Zhang, and Haizhou Li. Quantized spike-driven transformer. In The Thirteenth
International Conference on Learning Representations (ICLR), 2025b.

A. Radford, J. W. Kim, C. Hallacy, and et al. Learning transferable visual models from natural
language supervision. In Proceedings of the International Conference on Machine Learning
(ICML), pp. 8748-8763. PMLR, 2021.

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, 34(6):3174-3182, 2021.

Dayong Ren, Zhe Ma, Yuanpei Chen, Weihang Peng, Xiaode Liu, Yuhan Zhang, and Yufei Guo.
Spiking pointnet: Spiking neural networks for point clouds. Advances in Neural Information
Processing Systems (NeurIPS), 36:41797—41808, 2024.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3234-3243, 2016.

Kaushik Roy, Akhilesh Jaiswal, Priyadarshini Panda, and ruijie zhu. Towards spike-based machine
intelligence with neuromorphic computing. Nature, 575(7784):607-617, 2019.

12



Under review as a conference paper at ICLR 2026

OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection from
point clouds, 2020.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Frangois Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6411—
6420, 2019.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung.
Revisiting point cloud classification: A new benchmark dataset and classification model on real-
world data. In IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1588-1597,
2019.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. ArXiv, abs/1807.03748, 2018.

Qinyi Wang, Yexin Zhang, Junsong Yuan, and Yilong Lu. Space-time event clouds for gesture
recognition: From rgb cameras to event cameras. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 1826—1835. IEEE, 2019.

Peixi Wu, Bosong Chai, Hebei Li, Menghua Zheng, Yansong Peng, Zeyu Wang, Xuan Nie, Yueyi
Zhang, and Xiaoyan Sun. Spiking point transformer for point cloud classification. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 21563-21571, 2025.

Qiaoyun Wu, Quanxiao Zhang, Chunyu Tan, Yun Zhou, and Changyin Sun. Point-to-spike residual
learning for energy-efficient 3d point cloud classification. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), volume 38, pp. 6092-6099, 2024.

Xiaoyang Wu, Xin Wen, Xihui Liu, and Hengshuang Zhao. Masked scene contrast: A scalable frame-
work for unsupervised 3d representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Rattern Recognition (CVPR), pp. 9415-9424, 2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial intelligence
(AAAI), volume 33, pp. 1311-1318, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912—-1920, 2015.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through
time for spiking neural networks. Advances in Neural Information Processing Systems (NeurIPS),
35:20717-20730, 2022.

Xingrun Xing, Boyan Gao, Zheng Liu, David A Clifton, Shitao Xiao, Wanpeng Zhang, Li Du, Zheng
Zhang, Guoqi Li, and Jiajun Zhang. Spikellm: Scaling up spiking neural network to large language
models via saliency-based spiking. In The Thirteenth International Conference on Learning
Representations (ICLR), 2025.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models toA understand point clouds. In European Conference on
Computer Vision (ECCV), pp. 131-147, 2024.

Le Xue, Mingfei Gao, Chen Xing, Roberto Mart’in-Mart’in, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
images, and point clouds for 3d understanding. IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1179-1189, 2023.

13



Under review as a conference paper at ICLR 2026

Le Xue, Ning Yu, Shu Zhang, Artemis Panagopoulou, Junnan Li, Roberto Martin-Martin, Jiajun
Wu, Caiming Xiong, Ran Xu, Juan Carlos Niebles, et al. Ulip-2: Towards scalable multimodal
pre-training for 3d understanding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 27091-27101, 2024.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(8):9393-9410, 2023.

Man Yao, Ole Richter, Guangshe Zhao, Ning Qiao, Yannan Xing, Dingheng Wang, Tianxiang Hu,
Wei Fang, Tugba Demirci, Michele De Marchi, et al. Spike-based dynamic computing with
asynchronous sensing-computing neuromorphic chip. Nature Communications, 15(1):4464, 2024.

Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luziwei
Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing approx-
imation training. IEEE Transactions on Pattern Analysis and Machine Intelligence, (01):1-18,
2025.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-
training 3d point cloud transformers with masked point modeling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (ICCV), pp. 19313-19322, 2022.

Yi Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chao Ye, Qingqiu Huang, Dit-Yan Yeung, Zhen
Yang, Xiaodan Liang, and Hang Xu. Clip2: Contrastive language-image-point pretraining from
real-world point cloud data. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1524415253, 2023.

Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Jiao Qiao, Peng
Gao, and Hongsheng Li. Pointclip: Point cloud understanding by clip. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 85428552, 2021.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16259—
16268, 2021.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In The Eleventh Interna-
tional Conference on Learning Representations (ICLR), 2023.

Zhaokun Zhou, Kaiwei Che, Wei Fang, Keyu Tian, Yuesheng Zhu, Shuicheng Yan, Yonghong Tian,
and Li Yuan. Spikformer v2: Join the high accuracy club on imagenet with an snn ticket. arXiv
preprint arXiv:2401.02020, 2024.

Zhaokun Zhou, Yijie Lu, Jiaqiyu Zhan, Guibo Luo, and Yuesheng Zhu. Spikingpoint: Rethinking
point as spike for efficient 3d point cloud analysis. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2025.

Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin, Shanghang Zhang, and

Peng Gao. Pointclip v2: Prompting clip and gpt for powerful 3d open-world learning. IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 2639-2650, 2022.

14



Under review as a conference paper at ICLR 2026

Appendix

A MORE EXPERIMENTS

This section augments the main results with three complementary studies: comparisons between
different Backbone, dynamic scene segmentation on Synthia 4D (Ros et al., 2016) to assess temporal
generalization, ablations on event/discretization design (voxel size and point density), and the impact
of CLIP image-encoder size used to build vision—language prototypes. For each study, we report
results and provide a concise analysis.

A.1 COMPARISONS BETWEEN DIFFERENT BACKBONE

Param Energy 5y prodelNetd0  ScanObjectNN

Architecture Model Input ™) (m])

PointNet (Qi et al., 2017) Point 3.27 2.02 N/A 89.2 68.2
ANN Pointformer (Zhao et al., 2021) Point 491 30.1 N/A 92.8 81.3
Spike Point TransFormer (Wu et al., 2025)  Point 9.6 21.1 4 x1 88.5 80.1
KPConv (Thomas et al., 2019) Point 14.3 - N/A 92.9 85.3

3DShapeNets (Wu et al., 2015) Voxel  6.97 0.61 N/A 88.2 -
E-3DANN-S (Qiu et al., 20252) Voxel  3.27 0.13 1x4 91.7 79.7
P2SResLNet (Wu et al., 2024) Point 14.3 - 4x1 88.7 81.2
SpikingPointNet (Lan et al., 2023) Point  3.47 0.91 16 x 1 88.6 66.6
Spike PointNet (Ren et al., 2024) Point  3.47 0.24 1x4 88.2 70.0
SNN E-3DSNN-S (Qiu et al., 2025a) Voxel 3.27 0.02 1x4 91.7 78.7
E-3DSNN-L (Qiu et al., 2025a) Voxel 17.7 0.26 1x4 91.2 80.2
Spike-driven PointFormer (Ours) Point 7.69 5.1 1 x4 92.6 82.1
Spike-driven PointFormer (Ours) Point 22.1 9.4 1 x4 92.1 81.7

Table 7: 3D Downstream Tasks: 3D classification results on ModelNet40 (M-40) (Wu et al., 2015)
and ScanObjectNN (Scan-O) (Uy et al., 2019).

Tab. 7 compares ANN- and SNN-based 3D backbones on ModelNet40 and ScanObjectNN, reporting
input modality, parameter count, measured energy, and the temporal configuration 7'x D. Among
ANN models, Pointformer attains strong accuracy (92.8% on M-40 / 81.3% on Scan-O), while
KPConv remains competitive on Scan-O (85.3%). Voxelized efficient baselines (E-3DANN-S) offer
favorable energy profiles but slightly lower accuracy on Scan-O.

Within SNNs, prior point-based methods (e.g., P2SResLNet, SpikingPointNet, Spike PointNet)
reduce energy but lag in accuracy, and voxel SNNs (E-3DSNN-S,L) strike a different tradeoff with
very low energy but moderate robustness on Scan-O.

Our Spike-driven PointFormer closes the accuracy gap to leading ANN point backbones while
retaining SNN efficiency. The 7.69M-parameter variant achieves 92.6% on M-40 and 82.1% on
Scan-O at 5.1 mJ with a 1 x4 temporal setup, surpassing Pointformer on Scan-O with substantially
lower energy. The larger 22.1M variant yields similar accuracy (92.1% / 81.7%) at 9.4 mJ. These
results indicate that spike-driven transformers can deliver ANN-Ilevel recognition performance on
point clouds while maintaining the energy advantages characteristic of SNNs.

A.2 SPEEDUP ACROSS SPIKE POINT TRANSFORMERS

We compare training/inference efficiency of our Spike-driven PointFormer against prior spike-based
point Transformers (Wu et al., 2025) and an ANN backbone under the same data loader, batch size,
and GPU settings (details in Appendix D). Our design uses a shallow-by-time but deeper-by-layer
configuration (7'x D=1 x4) with 3D-SDSA, whereas prior spike models adopt 4x 1. As shown in Tab.
8, PointFormer-S reaches 100 ms train / 56 ms infer with 3.7 GB / 2.5 GB memory, delivering up to
4.3 x faster training and 4.1 x lower training memory than Spike Point Transformer-1024 (431 ms /
15.2 GB), while also surpassing the ANN Point Transformer-L in both runtime and memory. The
larger PointFormer-L remains efficient (159 ms / 82 ms; 5.5 GB / 3.5 GB), achieving 2.7 x faster
training and 2.8 x lower training memory than the 1024-d spike baseline. These results validate that
shifting temporal depth into learnable layers and replacing heavy interactions with sparse additions
yields substantial speed/memory benefits without sacrificing accuracy.
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Figure 2: Overall architecture of our Spike-driven PointFormer.
Methods TxD Training Inference

Runtime Memory Runtime Memory

Point Transformer-L (Zhao et al., 2021) N/A 150ms 5.1G 79ms 3.2G
Spike Point Transformer-512 (Wu et al., 2025) 4x1 326ms 9.7G 191ms 5.2G
Spike Point Transformer-768 (Wu et al., 2025) 4x1 385ms 12.5G 201ms 7.3G
Spike Point Transformer-1024 (Wu et al., 2025)  4x1 431ms 15.2G 227ms 9.5G

Spike-driven PointFormer-S (Ours) 1x4 100ms 3.7G 56ms 2.5G
Spike-driven PointFormer-L (Ours) 1x4 159ms 5.5G 82ms 3.5G

Table 8: Ablation study of different backbone efficiency on ModelNet40.

A.3 DYNAMIC SCENE SEGMENTATION ON SYNTHIA 4D

We evaluate temporal scene understanding on Synthia 4D using voxelized inputs and multi-step spike
simulation. SVL improves the SNN backbone and matches or surpasses ANN counterparts under
comparable capacity.

Method Input Frames Params (M) mloU (%)
3D MinkNet14 (Ros et al., 2016)  Voxel 1 19.3 76.24
4D MinkNet14 (Ros et al., 2016)  Voxel 3 23.7 77.46
Same-structure ANN Voxel 3 19.1 79.54
E-3DSNN-L (w/o SVL) Voxel 3 x2 19.1 76.41
E-3DSNN-L (SVL, ours) Voxel 1x2 17.7 7891
E-3DSNN-L (SVL, ours) Voxel 3 x2 19.1 80.05

Table 9: Scene segmentation on Synthia 4D (Ros et al.,, 2016). SVL enables strong temporal
understanding for SNNs.

SVL yields a substantial gain over the SNN backbone without pretraining (80.05 vs. 76.41 mIoU)
and slightly surpasses a capacr[y -matched ANN (79.54 mloU), indicating that ahgnlng splke features
to the vision—language space improves scene-level generalization; moreover, increasing temporal
extent from 1 x 2 to 3 x 2 frames further boosts performance (78.91 to 80.05 mloU), suggesting that
spike-driven temporal accumulation is effectively exploited.

A.4 EVENT CONSTRUCTION ABLATIONS

We ablate voxel size and the number of input points on ModelNet40 zero-shot with E-3DSNN-T +
SVL.

Accuracy peaks at a moderate voxel size of 0.02, where overly fine discretization (0.01) fragments
geometry and increases sparsity noise while overly coarse discretization (0.04) washes out structure;
likewise, raising point density from 5k to 10k yields a clear improvement whereas the gain from 10k
to 20k is marginal, indicating diminishing returns and suggesting that a mid-range density strikes the
best balance between fidelity and efficiency.
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Voxel size 0.01 0.02  0.04 #Points Sk 10k 20k
Top-1 Acc. (%) 789 796  79.1 Top-1 Acc. (%) 71.3 79.6 79.8

Table 10: Ablations on discretization. Moderate voxel size (0.02) and sufficient point density
(10k—20k) work best.
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Figure 3: Dialogues between SVL-13B and a human user. The dialogues show SVL’s ability to
understand point clouds’ shapes, appearances, functionalities, etc. Additionally, SVL demonstrates
abilities to respond to human instructions with common sense, avoiding biases.

A.5 CLIP ENCODER SIZE

We study the impact of the image encoder size used to build vision—language prototypes during
pretraining.

Image encoder ModelNet40 Top-1 (%) Objaverse-LVIS Top-1 (%)
OpenCLIP ViT-B 66.8 25.1
OpenCLIP ViT-G 70.6 279
OpenCLIP ViT-bigG 79.6 33.6

Table 11: Larger vision encoders yield stronger zero-shot 3D alignment.

Scaling the vision encoder substantially strengthens zero-shot transfer (e.g., ViT-B to bigG: +12.8 on
ModelNet40 and +8.5 on Objaverse-LVIS), reflecting richer visual semantics that better anchor the
spike encoder in the shared space; notably, because Rep-VLI removes the text encoder at inference,
larger CLIP backbones increase precomputation and training cost but do not affect runtime latency or
energy, making bigG preferable when resources allow.

B OPEN-WORLD MULTIMODEL LEARNING DETAILS

In this section, we present the details of how to perform open-world multimodal learning after
pretraining with the SVL model. Our primary goal is to effectively leverage the capabilities of the
pretrained LLM and the spike-based encoder pretrained with SVL. The network architecture is shown
in Fig. 4. We select vicuna (Chiang et al., 2023) as our LLM Fy(-), parameterized by 6, use the
Spike-driven Pointformer Ség (+) pretrained with SVL as the spiking visual encoder, and the projector

Po(:).

For the input 3D data D, we first utilize the pretrained spike-based encoder 5(;9 (+) to provide 3D
spatiotemporal visual features. Subsequently, a simple linear layer Py(-) is employed to connect the
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Figure 4: Architecture details of open-world multimodel learning.

3D spatiotemporal visual features to the word embedding space. Specifically:
V' =Py (7 (D})), (13)

where V! is the vison tokens at the ¢ time step. Then we concatenate it with the text tokens I°¢
obtained after tokenization and send the combined features to the LLM Fy(-).

R = Fyp(I'; V), (14)

where R! is the output response or logits. Our training is divided into two stages. In the first stage,
we train the projector while freezing the LLM and the spike-based encoder. In the second stage, we
train the LLM and the projector.

Table 12: Qualitative comparisons. We show the qualitative results of models on the ScanNet
(Dai et al., 2017). Our SVL-13B can understand 3D semantics and respond to prompts effectively
comparable to other ANN-based models.

SVL-13B (Ours) (The outputs for ScanNet-Scene0024_02 are shown below.)

This 3D model depicts a traditional-style house with a tasteful
aesthetic. The house features a rich brown color on its exterior
walls, giving it a warm and welcoming appearance. It has a dis-
tinctive architectural design, with a slanted roof that is typical of
traditional homes. The interior reflects a beautiful contrast with
lighter-colored walls, providing a homely and comfortable am-
biance. This model can be used in architectural designing, virtual
reality games, or various design projects.
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Table 13: Qualitative comparisons. We show the qualitative results of models on ModelNet40 (Wu
et al., 2015) and Objaverse (Deitke et al., 2023). Our SVL-13B can understand 3D semantics and

respond to prompts effectively comparable to other ANN-based models.

Samples
Ground Truth Laptop A cartoon black monster like a dragon
Prompt What is this? Briefly caption this 3D model.

InstructBLIP (Dai et al., 2023)
LLaVA (Liu et al., 2023a)

3D-LLM (Hong et al., 2023)

Point-Bind LLM (Guo et al., 2023)

PointLLM (Xu et al., 2024)

symbol letter 1

A small, grainy, black and
white letter j.

This is a laptop computer.

The 3D model represents a
notebook computer, typically
a laptop.

ablack lizard with a sharp tooth in a dark
room
A 3D model of a dark, menacing dragon.

A black and white tiger with long legs,
standing on its hind leg.

The 3D model features a large, ornate
gargoyle with a horned helmet, sitting
on top of a building.

The 3D model depicts a menacing black
dragon, with its mouth opened wide re-
vealing a row of sharp teeth.

SVL-13B (Ours)

This is a 3D model of a lap-
top.

This is a 3D model of a toy dinosaur,
which stands upright on its hind legs.

It has a spiked back, reflecting its dis-
tinctive defense mechanism.

C THEORETICAL ENERGY CONSUMPTION

In our SVL framework, Rep-VLI can transform the text embeddings into tiny weights during inference.
Additionally, the framework can convert matrix multiplication into sparse addition, which can be
implemented as addressable additions on neuromorphic chips. In the first coding layer, convolution
operations act as Multiply-Accumulate (MAC) operations that convert analog inputs into spikes,
similar to direct coding-based SNNs (Wu et al., 2019). Similarly, in the final layer, logit calculations
also perform MAC operations. In contrast, in the SNN architecture, the convolution (Conv) or fully
connected (FC) layers transmit spikes and execute Accumulation (AC) operations to accumulate
weights for postsynaptic neurons. Hence, the inference energy cost for our SVL framework can be
expressed as follows:

N
Brotat = Extac - (FLbyny + FLUE) + Eac - T > FLL,,., - fr", (15)

conv conv conv
n=2

where IV and M represent the total number of sparse spike convolutions, and 'y 4c and E 4¢ are the
energy costs associated with MAC and AC operations, respectively. The variables fr™, fr”, FL? .
and F'L';, denote the firing rate and FLOPs of the n-th sparse spike convolution layer. Previous SNN
studies (Horowitz, 2014; Rathi & Roy, 2021; Qiu et al., 2024; 2023) assume a 32-bit floating-point

implementation in 45nm technology, with Ey;ac =4.6 pJ and E4¢ = 0.9 pJ for various operations.

Additionally, batch normalization (BN) operations can be fused into the convolutional layers, further
reducing computation overhead. Since Rep-VLI eliminates the text encoder during inference, layer
normalization (LN) layers are also unnecessary, simplifying the architecture and lowering energy
consumption. These design choices ensure that our framework is both energy-efficient and optimized
for neuromorphic deployment.

D IMPLEMENTATION DETAILS

The hyperparameters for SVL pretraining are presented in Tab. 17. The hyperparameters for SVL
fine-tuning on 3D point clouds are detailed in Tab. 15, and those for SVL fine-tuning on DVS are
outlined in Tab. 16.
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Table 14: Hyperparameters for SVL pretraining.

Architecture E-3DSNN-T/S/L/H | Spike PointNet | Spike-driven PointFormer
Timestep (Training/Inference) 1x4/4x1 1x4/4x1 1x4/4x1
Epochs 250 250 250
Batch size 4096 1024 1024
Optimizer AdamW AdamW AdamW
Base Learning rate 2e —3 2e —3 3e—3
Learning rate decay Cosine Cosine Cosine
Warmup eopchs 10 10 10
Weight decay le—4 le—4 0.1

Table 15: Hyper-parameters for SVL Finetuning on 3D point cloud.

Hyper-parameter ModelNet40 | ScanObjectNN KITTI SemanticKITTI
Timestep (Training/Inference) | 1 x 4/4 x 1 1x4/4x1 1x4/4x1 1x4/4x1
Epochs 300 250 100 80
Batch size 64 64 96 64
Optimizer AdamW AdamW AdamW AdamW
Base Learning rate S5e —4 5e — 3 le —2 2e—-3
Learning rate decay Onecycle Onecycle Onecycle Onecycle

E LIMITATIONS

This study also has several limitations, which simultaneously highlight promising avenues for further
work. First, our results demonstrate that SVL substantially narrows the gap between SNNs and ANNs
while operating at markedly lower energy cost. Nevertheless, the reported energy efficiency is based
on CMOS-level estimation rather than direct hardware measurement (Horowitz, 2014). Although
this protocol is widely adopted in the SNN community and aligns closely with empirical reports
from neuromorphic accelerators (Fang et al., 2024), validation on platforms such as Loihi or Speck
(Davies et al., 2018; Yao et al., 2024) will be important to fully assess feasibility under realistic
memory and latency constraints. Second, the Rep-VLI module achieves fully spike-driven inference
without invoking a runtime text encoder by reparameterizing text embeddings into model weights,
thereby significantly improving efficiency. At the same time, this design relies on a fixed offline
vocabulary, which reduces flexibility in open-vocabulary tasks. Addressing these trade-offs—through
hardware-level validation, scaling studies, and hybrid designs that balance efficiency with broader
language generalization—remains an important direction for exploration.

F DATASETS

The ModelNet40 (Wu et al., 2015) dataset contains 12,311 CAD models across 40 object categories.
Among them, 9,843 models are for training and 2,468 are for testing. The point clouds are clipped to
ranges of [—0.2m, 0.2m] for all X-, Y-, and Z-axes as the input data followed by voxelization with a
resolution of 0.01m. Classification performance was measured using overall accuracy metrics.

ScanObjectNN (Uy et al., 2019) consists of 11,416 training and 2,882 testing samples of real-
world scanned 3D objects across 15 categories, with different degrees of data missing and noise
contamination. The point clouds are clipped to ranges of [—0.2m, 0.2m] for all X-, Y-, and Z-axes as
the input data followed by voxelization with a resolution of 0.01m.

The Objaverse dataset, which includes Objaverse-LVIS (Deitke et al., 2023) as a subset, is currently
the largest 3D dataset. Objaverse-LVIS is a significant part of the Objaverse dataset, containing
46,832 annotated shapes across 1,156 LVIS categories. This extensive collection of 3D shapes
provides a rich resource for researchers and practitioners in the field of computer vision and 3D
modeling.

The large KITTI dataset (Geiger et al., 2012b) contains 7481 training samples, 3717 of which
constitute trainsets and 3769 of which constitute validation sets. E-3DSNN is evaluated as backbones
equipped with VoxelRCNN Head In detection (Deng et al., 2021). To execute our model, we uses
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Table 16: Hyper-parameters for SVL Finetuning on temporal datasets.

Hyper-parameter Synthia 4D | DVS Action | DVS128 Gesture
Timestep (Training/Inference) | 1 x2/3 x2 | 1 x4/6 x4 1x4/6 x4
Epochs 250 250 250
Batch size 64 64 64
Optimizer AdamW AdamW AdamW
Base Learning rate 2e—3 2e -3 2e -3
Learning rate decay Cosine Cosine Cosine
Weight decay le—4 le—4 le—4

Table 17: Hyper-parameters and training details for Spike-driven PointFormer with SVL on open-
world multimodal learning.

Hyper-parameter Stage-1 (Feature Alignment) | Stage-2 (Instruction Tuning)
Optimizer AdamW AdamW
Learning rate decay Cosine Cosine
Epochs 3 3
Batch size 128 32
Base Learning rate 2 x 1073 2x107°
Weight decay 1x1074 1x1074
Dataset 660K 70K

OpenPCDet (Team, 2020) that is transformed into a spiking version by us. After being divided
into regular voxels, raw point clouds are input to our 3DSNN on KITTI (Geiger et al., 2012a). The
point clouds are clipped to ranges of [—0.7m, 0.4m] for the X-axis, [—40m, 40m] for the Y-axis, and
[—3m, 1m] for the Z-axis followed by voxelization with a resolution of (0.05m, 0.05m, 0.1m). The
Average Precision (AP) calculated by 11 recall positions for the Car class is used as the evaluation
metrics.

The large SemanticKITTI dataset (Behley et al., 2019) contains 22 sequences from the raw KITTI
dataset. About 1,000 lidar scans are included in each sequence, each of which corresponds to
approximately 20,000 individual frames. We first adapted the Pointcept (Contributors, 2023) codebase
into a spiking neural network (SNN) framework and utilized this customized implementation for
model execution. Subsequently, we designed an asymmetric encoder-decoder architecture inspired
by the UNet (Choy et al., 2019; Wu et al., 2023) paradigm, where the E-3DSNN acts as the encoder
to extract hierarchical multi-scale features, while the decoder progressively fuses these features
through skip connections to refine the output. During voxelize implementation, we set the window
size to [120m, 2°, 2°] for (r, 0, ¢). For data preprocessing, the input scene is restricted to the range
[-51.2m, —51.2m, —4m] to [51.2m, 51.2m, 2.4m]|. The voxel size is set to 0.1m.

The DVS Action dataset (Miao et al., 2019) comprises 10 actions performed by 15 subjects within
S5s, which is recorded by DVS camera in an empty office. DVS is a vision sensor (Miao et al., 2019)
that can records a sequence of tuples [t, z, y, p] for each event streams. Among them, ¢ represents the
timestamp of the event, (z, y) represents the event’s pixel coordinates and p represents the polartity
of the event.

The DVS128 Gesture dataset (Amir et al., 2017) contains 1,342 instances across 11 different hand
and arm gestures, which are performed by 29 subjects under 3 distinct lighting conditions in 122
trials. They are captured by DVS128 camera, a DVS with 128 x 128 pixel resolution.

Synthia 4D. We employ the Synthia dataset (Ros et al., 2016) to construct 3D video sequences.
Specifically, we use six driving scenarios across nine different weather conditions. Each scenario
provides four stereo RGB-D images captured from the roof of a moving car. Depth images are
back-projected into 3D space to generate 3D video sequences. For training, we use sequences 1-4,
excluding the sunset, spring, and fog conditions; validation is conducted on sequence 5 under foggy
weather; and testing is performed on sequence 6 under sunset and spring conditions. In total, the
training, validation, and test splits contain 20,000, 815, and 1,886 3D scenes, respectively. Since the
dataset is fully synthetic, we augment it with various types of noise to simulate realistic observations.
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These include elastic distortion, Gaussian noise, and chromatic shifts applied to the input point
clouds.

MLLM training dataset. We further construct a large-scale point—text instruction-following dataset
comprising approximately 730K samples and 60K instruct dataset following (Xu et al., 2024). This
dataset is designed to support effective training by covering a broad spectrum of topics such as color,
shape, usage, and material, thereby enabling robust multimodal instruction-following capabilities.

G BACKPROPAGATION PROCESS OF I-LIF

There exist two primary methods of training high-performance SNNs. One way is to discretize ANN
into spike form through neuron equivalence (Li et al., 2021), i.e., ANN-to-SNN conversion, but
this requires a long simulation time step and boosts the energy consumption. We employ the direct
training method (Wu et al., 2018; Qiu et al., 2024) and apply surrogate gradient training.

Then in this section, we introduce the training process of SNN gradient descent and the parameter
update method of spatio-temporal backpropagation (STBP) (Wu et al., 2018; Xiao et al., 2022; Hu
et al., 2024). SNNs’ parameters can be taught using gradient descent techniques, just like ANNSs,
after determining the derivative of the generation process. Moreover, the accumulated gradients of
loss £ with respect to weights w at layer ¢ can be calculated as:

0L ~~ 0L st (au“l s ll[ (au“l i+1] outti+1] as“l[i}) ou 7]

oWt L= st Tt Out Y] ow* Oult1[i OsH1[i]  Outtl[i] owt
(16)

where s¢[t] and u[t] represent the binary and membrane potential of the neuron in layer /, at time

4
t. Moreover, notice that 22,3[[?] is non-differentiable. To overcome this problem, (Wu et al., 2018)

propose the surrogate function to make only the neurons whose membrane potentials close to the
firing threshold receive nonzero gradients during backpropagation. In this paper, we use the rectangle
function, which has been shown to be effective in gradient descent and may be calculated by:

T<ti=t—1

os'lt] 1 p a
oull] , sien <|u [t] — 9| < 5) , (17)

where a is a defined coefficient for controlling the width of the gradient window, and is set to 1 in our
paper.

H ARCHITECTURE DETAILS

In this section, we present the detailed architectural designs of E-3DSNN, Spike PointNet and
Spike-driven PointFormer, outlining their core components, network configurations, and the specific
adaptations made to enable efficient analysis of 3D point cloud within the spiking neural network
framework.

E-3DSNN (Qiu et al., 2025a) are realized by adjusting the number of blocks and channels across
stages to balance model size and performance. As shown in Tab. 18, the architecture scales from
lightweight (E-3DSNN-T) to high-capacity (E-3DSNN-H) models, with corresponding changes in
parameters and feature dimensions.

Types Blocks Channels Param. (M)
E-3DSNN-T | [1,1,1,1] | [16, 32, 64, 128] 1.8
E-3DSNN-S | [1,1,1,1] | [24, 48,96, 160] 3.2
E-3DSNN-L | [2,2,2,2] | [64, 128, 128, 256] 17.3
E-3DSNN-H | [2,2,2,2] | [96,192,288,384] 46.5

Table 18: Architecture details of E-3DSNN (Qiu et al., 2025a)
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Spike PointNet (Ren et al., 2024) is the first spiking neural network specifically designed for
efficient deep learning on 3D point clouds. It leverages the sparse and event-driven nature to achieve
high accuracy with few parameters and low power consumption. This makes it particularly well-suited
for deployment in energy-constrained or real-time 3D perception scenarios.

Spike-driven PointFormer is our proposed Transformer-based SNN backbone for point cloud
encoding.
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