How Good is a Single Basin?
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Abstract

The multi-modal nature of neural loss landscapes is often considered to be the main
driver behind the empirical success of deep ensembles. In this work, we probe this
belief by constructing various "connected" ensembles which are restricted to lie in
the same basin. Through our experiments, we demonstrate that increased connec-
tivity indeed negatively impacts performance. However, when incorporating the
knowledge from other basins implicitly through distillation, we show that the gap
in performance can be mitigated by re-discovering (multi-basin) deep ensembles in
a single basin. Thus, we conjecture that while the extra-basin knowledge is at least
partially present in any given basin, it cannot be easily harnessed without learning
it from other basins.

1 Introduction

Deep neural networks coupled with first order stochastic optimizers give rise to many intriguing
charateristics. For instance, two training runs based on different random initializations and batch
orderings end up in vastly different "basins" in the landscape, i.e. regions of low loss that are separated
by a high barrier (Choromanska et al., 2015). Such minimizers not only differ in location but also
in terms of the function they represent; ensembling multiple minimisers strictly improves over the
individual performances (Lakshminarayanan et al., 2017). The success of such deep ensembles is
widely attributed to the described multi-modal nature of the landscape, where functions from different
basins exhibit high predictive diversity which in turn leads to better performance.

We challenge this notion by constructing variants of deep ensembles that are constrained to a single
basin. We design several variants of varying degrees of connectivity and observe the following: (1)
Ensemble performance indeed decreases as the degree of connectivity of the models increases. (2)
Leveraging knowledge from other basins through distillation (Hinton et al., 2015) can break this
trend, leading to the discovery of very performant single-basin ensembles that almost match the
performance of standard deep ensembles. A single basin hence does contain very diverse models;
however, they might be difficult to find without additional knowledge. In summary, we make the
following contribution:

* We design a rich set of connected ensembles and characterize a trade-off between diversity
and connectivity.

* We show that implicitly incorporating knowledge from other basins allows us to design strong
connected ensembles that significantly close the gap in performance to deep ensembles. We
thus demonstrate that a single basin could suffice for the construction of diverse ensembles.
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2  Setting

We consider image classification problems with a training dataset D = {(x1,%1),..., (Tn,yn)}
consisting of 7 i.i.d tuples of labelled examples x; € R% and y; € {1, ..., K}. We study the class of
neural network functions fg : R¢ — RX parameterized by @ € RP where 0 denotes the concatenation
of all the parameters. We learn 6 through empirical risk minimization mingee Y., (fo(x:),y:)
with ¢ : RE x {1,..., K} — R* denoting the loss function. To approximately minimize this
objective, we use some form of stochastic gradient descent and refer to a minimizer 0 as a mode.
Such a mode is located in a loss basin, referring to the approximately convex region of low loss
around it.

Deep Ensembles. We consider M € N runs of SGD under different initializations and batch
orderings, resulting in a set of minimizers {61,...,03/}. Due to the non-convexity of neural
landscapes, simple convex combinations 6 = Zfil Aif@; with vail A; = 1 do not constitute
minimizers of the test loss. In the literature this is often referred to as lack of (joint) linear mode-
connectivity (Garipov et al., 2018). While averaging parameters proves detrimental, averaging
the predictions (i.e. ensembling) leads to a substantially more powerful model, i.e. f(x) :=

i Zf\il fo, (x) outperforms any individual model 8;.

3 Exploring a Single Basin o Yz
Q~ =

Connected Ensembles We now explore techniques to repli- o 0;0 ',.rP '

cate the success of deep ensembles, intentionally restricting - (@

ourselves to a single basin. In other words, we aim to con- S ,

struct a connected ensemble {61, ...,0,} that matches the T

performance of the original ensemble while at the same time
guaranteeing linear mode-connectivity. We provide a visual-
ization of the idea in Fig. 1. We focus on Residual Networks
(ResNets) (He et al., 2016) in the main text, but also evaluate
our more competitive methods on Vision Transformers (ViTs)
(Dosovitskiy et al., 2021) in the Appendix.

Figure 1: Illustration of a deep
ensemble {6,605,605} and a con-

nected ensemble {61, 02, 605}.

Connectivity. In order to assess connectivity of a given set of models {61, ..., 0, }, we measure

M M
Q(A) = Acc (Z )\102> — Z i ACC(QZ‘), A~ DiI‘(l)

where Acc : © — [0, 1] maps a configuration 0 to its generalization accuracy Acc(6). W randomly
sample convex combination weights A € [0, 1]* from a Dirichlet distribution. We then average
multiple draws of A to obtain 7 and say that {0y, ..., 0,} are jointly linearly-connected if g does
not decrease significantly below zero.

Stochastic Weight Ensembling (SWE) As a very simple first baseline, we consider a variant of
stochastic weight averaging (SWA) (Izmailov et al., 2018), where instead of averaging the obtained
iterates, we average the predictions, effectively forming an ensemble. More precisely, we train a
ResNet20 for T' epochs with a decaying learning rate, producing the first sample 8; and then continue
training with a constant learning rate, saving a checkpoint 8; every 1" epochs until we collected M
samples. This ensures the same computational budget as the deep ensemble. We report the resulting
test performance and joint connectivity values in Table 1. We also display the corresponding values
for deep ensembles as a reference. We observe that SWE is surprisingly effective, matching the
performance of the deep ensemble on CIFAR10 while maintaining a high degree of connectivity. On
the more challenging task of CIFAR100 however, we find a significant gap of roughly 3% in test
accuracy.

Constrained Ensembles (Con. Ens.) We leverage the insights of Frankle et al. (2020) about
the stability of SGD; Along the training trajectory {@*) : t < T} of SGD, there exists a point
0(*) after which any subsequently started SGD run with a different batch ordering ends up in the



Deep Ens. Con. Ens. SW Ens. Perm. Ens. Dist. Ens.  Dist. Deep Ens.
Acc 94.4340.12 94.17+0.05 94.010.18 94.43+10.12 94.46+0.20 94.4510.02

C-10
q —T1.744238 —0.10+0.10 1.4810.04 —25.8414.20 —0.1410.07 —55.7+1.711
C-100 Acc 78.1540.10 75.9240.20 74.9540.49 78.15+0.10 77.5640.18 78.4240.20
q —68.16+1.72  0.86+0.18 3.30+0.10  —44.8940.01 0.39+0.11 —48.3240.15
TIN Acc 62.8510.12 59.8i0.1 58.36i0_6 62.8510.12 62.61i0_43 63.29i0_33

q  —53.78+08  0.75x0.10 2.80+0.14  —46.30+2.0s8 —1.35+048  —35.79+0.77

Table 1: Comparison of ResNet20 ensemble accuracy (Acc) and connectivity ¢ (in percent) for all
ensemble variants on CIFAR10 (C-10), CIFAR100 (C-100), and Tiny ImageNet (T-IN).

same loss basin. Surprisingly, this time point ¢ can be as early as a few epochs in training. This
offers a recipe for the following family of connected ensembles; (1) Train a model up to time ¢, (2)
use 0" as a starting point for M runs of SGD, and (3) continue training for 7' — ¢ epochs with
different batch orderings, leading to a constrained ensemble {01 (t),...,0,;(t)}. Again, we use
the same computational budget as a deep ensemble. We notice that the time parameter ¢ intuitively
balances diversity and connectivity; a smaller ¢ yields more diverse but less connected solutions,
while conversely, a larger ¢ leads to greater connectivity at the expense of lower diversity. We display
the resulting performance and connectivity results in Table 1. We obtain a very similar picture as for
SWE, i.e. constrained ensembles also match the performance on CIFARI10, offer strong connectivity,
but fall short on CIFAR100, albeit with a significant improvement.

4 Re-discovering Deep Ensembles in a Single Basin

Our preliminary results lead us to conclude that discovering a connected deep ensemble with matching
performance is a challenging endeavour. We thus take a step back and revisit our research question
from a slightly different angle:

If access to a deep ensemble was granted, could one re-discover it in a single basin?

This is conceptually a simplified goal as knowledge of other basins can now be leveraged to guide the
search within a single basin. A positive answer however would still be very impactful as it proves
the existence of a connected deep ensemble, motivating further research into efficient exploration
of a single basin. In the following approaches, we will thus assume that we have access to a deep
ensemble {61,...,60,}.

Permuted Ensembles (Perm. Ens.) We first investigate the PERMUTATIONCOORDINATEDES-
CENT (PCD) algorithm from Ainsworth et al. (2023). We choose the first member 6, as a reference
model and we aim to apply permutations 7r; to each remaining member 8; such that 8, and 7;(6;)
live in the same basin. Such a permutation is discovered by aligning the weights of each member
with the reference model, we refer to Ainsworth et al. (2023) for more details. Since permutations
constitute a symmetry of neural networks, the performance of the new members 7r;(6;) remains
unchanged, and we thus have a mathematical guarantee to achieve the same accuracy as the original
ensemble. But this guarantee comes at a cost; the degree of pairwise connectivity between two
permuted members 7r;(0;) and 7, (6;) can vary significantly, as illustrated by the wide confidence
intervals in Fig. 2a and 2b. Similarly, joint connectivity is also violated as shown in Table 1. This is
not surprising as the objective only optimizes for pairwise alignment. We further show in Appendix A
that optimising for "joint" alignment of models does not achieve joint connectivity either.

Distilled Ensembles. (Dist. Ens.) In this approach, we combine our insights from constrained
ensembles with the mechanism of model distillation, as introduced by Hinton et al. (2015). Again
denote by GY) the stability point of SGD for the reference model 8;. We aim to re-discover the
j-th member 6; in the same basin as 8, by minimizing a distillation objective towards 8, i.e. we
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where § and 7 are additional hyperparameters and o is the softmax function. We then start the
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(a) CIFAR100 (b) Tiny ImageNet (c) Connectivity vs test accuracy

Figure 2: Pairwise connectivity for ResNet20 ensembles in (a) and (b). Averaged over five randomly
selected pairs and repeated for three random seeds, totalling 15 pairs. Connectivity vs test accuracy
in (c). The dashed horizontal line shows the accuracy of a deep ensemble, while the dotted horizontal
line shows the mean member accuracy.

optimization from Ogt) to encourage connectivity of solutions and denote the minimizers of Eq. 1 by

01 ., ;. [ trades-off the optimization towards matching the ground truth and functional similarity to the
j-th member. Note that for 5 = 1, the approach essentially reduces to constrained ensembles. 7 > 1
is a temperature scaling parameter used to facilitate the knowledge transfer to the student model.
Table 1 illustrates that our distillation strategy with 5 = 0.2 produces very competitive ensembles
for residual models, significantly closing the gap to standard deep ensembles across all datasets.
Moreover, such a distilled ensemble exhibits a surprisingly strong degree of connectivity, not only
fulfilling pairwise connectivity (see Fig. 2), but also the more challenging joint linear connectivity
property ¢, as shown in Table 1.

Connectivity vs accuracy. In Fig. 2c we show test accuracy as a function of connectivity g. Without
distillation (represented by the red markers), we see that increased connectivity negatively impacts
performance. However, as soon as we employ distillation (blue markers), we manage to significantly
mitigate the drop in performance without compromising connectivity. We provide further experiments
on the impact of connectivity on performance and diversity in Appendix A.

Regularizing effect of distillation. Zhang et al. (2019) demonstrated that distillation can enhance
student performance beyond that of its teacher. Thus, the improvement of distilled ensembles over
constrained ensembles observed in Table 1 might be due by this regularizing effect of distillation.
To isolate this effect, we consider the baseline of deep ensembles trained with the same distillation
objective from Eq. 1. If the gain in ensemble performance observed for distilled ensembles would be
primarily due to the regularizing effect of distillation rather than the incorporation of out-of-basin
knowledge, then it is reasonable to expect similar improvements in ensemble performance when
adding the distillation term to deep ensembles. As illustrated in Table 4 in Appendix A, distillation
does not significantly improve ensemble performance for ordinary deep ensembles, highlighting that
the gains are unlikely to be caused by the regularizing effect of distillation.

5 Discussion

In this work, we explored various approaches to construct ensembles constrained to lie in a single
basin. We observe that constructing such a connected ensemble without any knowledge from
other basins proves to be difficult and a significant gap to deep ensembles remains. Moreover, we
observe a pronounced trade-off between (joint) linear mode-connectivity and the resulting ensemble
performance. However, when incorporating other basins implicitly through a distillation procedure
we manage to break this trade-off and strongly reduce this gap, producing connected ensembles
that are (almost) on-par with deep ensembles. While relying on other basins renders our approach



very inefficient, it nevertheless demonstrates the existence of very performant ensembles in a single
basin, requiring us to rethink the characteristics of loss landscapes. The existence of strong connected
ensembles illustrates that, in principle, the functional diversity within a single basin is sufficient to
achieve predictive performance that is comparable to an ensemble sampled from different modes. In
other words, our results illustrate that escaping the basin is not a prerequisite for attaining competitive
prediction accuracy. We hope that our insights can guide future work towards designing algorithms
that more thoroughly and efficiently explore a single basin.

References

Abe, T., Buchanan, E. K., Pleiss, G., and Cunningham, J. P. (2023). Pathologies of Predictive
Diversity in Deep Ensembles. arXiv:2302.00704 [cs, stat].

Ainsworth, S., Hayase, J., and Srinivasa, S. (2023). Git Re-Basin: Merging Models modulo
Permutation Symmetries. In The Eleventh International Conference on Learning Representations.

Ba, L. J., Kiros, J. R., and Hinton, G. E. (2016). Layer Normalization. CoRR, abs/1607.06450. arXiv:
1607.06450.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123-140.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015). The Loss Surfaces
of Multilayer Networks. In Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Statistics, pages 192-204. PMLR. ISSN: 1938-7228.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In International Conference
on Learning Representations.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht, F. (2018). Essentially No Barriers in
Neural Network Energy Landscape. In Proceedings of the 35th International Conference on
Machine Learning, pages 1309—1318. PMLR. ISSN: 2640-3498.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. (2020). Linear Mode Connectivity and the
Lottery Ticket Hypothesis. In Proceedings of the 37th International Conference on Machine
Learning, pages 3259-3269. PMLR. ISSN: 2640-3498.

Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. (2018). Loss Surfaces,
Mode Connectivity, and Fast Ensembling of DNNs. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Goodfellow, 1., Vinyals, O., and Saxe, A. (2015). Qualitatively Characterizing Neural Network
Optimization Problems. In International Conference on Learning Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778.
ISSN: 1063-6919.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural Network.
arXiv:1503.02531 [cs, stat].

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and Weinberger, K. Q. (2017). Snapshot
Ensembles: Train 1, Get M for Free. In International Conference on Learning Representations.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on
Machine Learning, pages 448—-456. PMLR. ISSN: 1938-7228.



Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. P., and Wilson, A. G. (2018). Averaging
Weights Leads to Wider Optima and Better Generalization. In Globerson, A. and Silva, R., editors,
Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018,
Monterey, California, USA, August 6-10, 2018, pages 876-885.

Juneja, J., Bansal, R., Cho, K., Sedoc, J., and Saphra, N. (2023). Linear Connectivity Reveals
Generalization Strategies. arXiv:2205.12411 [cs].

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In Bengio, Y. and
LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. University of
Toronto.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and Scalable Predictive Uncer-
tainty Estimation using Deep Ensembles. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Le, Y. and Yang, X. (2015). Tiny imagenet visual recognition challenge. CS 231N, 7(7):3.
Lippe, P. (2022). UvA Deep Learning Tutorials.

Lucas, J. R., Bae, J., Zhang, M. R, Fort, S., Zemel, R., and Grosse, R. B. (2021). On Monotonic
Linear Interpolation of Neural Network Parameters. In Proceedings of the 38th International
Conference on Machine Learning, pages 7168-7179. PMLR. ISSN: 2640-3498.

Neyshabur, B., Sedghi, H., and Zhang, C. (2020). What is being transferred in transfer learning?
In Advances in Neural Information Processing Systems, volume 33, pages 512-523. Curran
Associates, Inc.

Singh, S. P. and Jaggi, M. (2020). Model Fusion via Optimal Transport. In Advances in Neural
Information Processing Systems, volume 33, pages 22045-22055. Curran Associates, Inc.

Wortsman, M., Horton, M. C., Guestrin, C., Farhadi, A., and Rastegari, M. (2021). Learning Neural
Network Subspaces. In Proceedings of the 38th International Conference on Machine Learning,
pages 11217-11227. PMLR. ISSN: 2640-3498.

Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., and Ma, K. (2019). Be Your Own Teacher: Improve
the Performance of Convolutional Neural Networks via Self Distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3713-3722.



A Additional Experiments

Does it also work for ViTs?

In Table 2, we evaluate our distillation method on ViTs. As is

the case for ResNets, the inclusion of the distillation term boosts ensemble performance without
compromising connectivity.

B=1.0 B =02
Gjoint  Mean Acc Ens. Acc Gjoint ~ Mean Acc Ens. Acc
C[FAR]O ResNetZO _0~14i0.07 93.15:&0‘03 94~17i0.05 —0.64i0'11 93.67i0412 94.46i0'20
ViT —1.3710.41 82.6019.02 84.28.10.23 —1.491025 83.1410.13 84.5510.40
CIFAR100 ResNet20  0.8610.18  73.5310.23 75.9210.20 0.3940.11 75331012 77.5640.18
ViT —0.1440.08 54.90+0.26 57.81+0.29 —0.291033 56.1210.10 58.7010.15
. , ResNet20 0-75i0.10 55.80i0419 59.83i0.13 —1.35i0.4g 58.69i0417 62.61i0.43
Tiny ImageNet vy 1761012 35361030 3950021 1572008 38461007 42311009

Table 2: Comparison of joint connectivity and ensemble performance for constrained (8 = 1.0) and
distilled ensembles (5 = 0.2). Averaged over 3 seeds.

Jointly permuted ensembles. We now eval-
uate whether the lack of joint connectivity ob-

df d bl Table 1 Deep Ens. PCD Multi-PCD
served for permuted ensembles (see Table 1) can e ~TL.744058 —25.844400 —14.6413.66
be.dm'nmshed by extending the optimization  cipaR100 68165175 448010091 —41.021; 55
objective used in PCD. More specifically, we  Tiny ImageNet —53.781085 —46.301208 —44.541265

change the objective function used in Ainsworth
et al. (2023) to account for the joint alignment
with respect to all other models and not just the
reference model. Thus, when optimizing 7r;(6;)
we account for the alignment with respect to all
other models 7r;(6;) with j # 7 in the ensemble.
Using this modified objective and wrapping the pairwise procedure with another layer iterating over
ensemble members, we obtain an algorithm that optimizes for joint alignment and to which we refer
to as Multi-PCD. While joint connectivity does improve, the resulting ensemble is still far from being
connected as measured by Gjoin; in Table 3. We thus conclude that permutations can not be leveraged
to re-discover an ordinary multi-basin ensemble in a single loss basin.

Table 3: Joint connectivity Gioine Of deep ensembles
and permuted ensembles optimizing for pairwise
(PCD) and joint alignment (Multi-PCD). Averaged
over 3 seeds.

Diversity-Connectivity trade-off. In Fig. 3, we plot two measures of predictive diversity used
in Abe et al. (2023) and connectivity as a function of ¢ for a grid of 3 values. In Fig. 3a, we show
the one-vs-all Jensen-Shannon divergence of predictions and in Fig. 3b we show the variance of the
ensemble members’ true-class predictions. For more detailed information, we refer to Abe et al.
(2023). Notably, we observe a diversity-connectivity trade-off, as diversity decreases with higher
connectivity.

Regularizing effect of distillation. As described in the main text, we also consider a baseline of
deep ensembles trained with an additional distillation loss. We report the results in Table 4 and note
that we do not observe any significant improvements through the inclusion of a distillation objective,
corroborating the findings from the main text.

Deep Ens. Deep Ens. + 5 = 0.2
Qo Mean Acc Ens. Acc Qo Mean Acc Ens. Acc
CIFAR10 ResNet20  —71.741233 93.014008 94.4340.12 —71.3043.01 93.5440014 94.4510.02
ViT —55.8141.99 82.4310.33 85.10+0.27 —55.70+1.71  82.9710.20 84.87+0.31
CIFAR100 ResNet20 768.16i1472 73~44i0.12 78.15i0‘10 769.03i2.19 75-20i0.15 78.42i0.20
ViT —47.2840.19 54914010 59.884+0.12 —48.3210.15 56.2040.08 59.9210.26
. ResNet20 —53.78i0_35 55.36i0_33 62.85i0_20 —56.54i0_70 58.65i0_23 63.29i0_33
Tiny ImageNet vy 33045070 35.5750as 440510 19 35790077 38.37Ti0a1 4420102

Table 4: Isolating the additional regularizing effect of distillation. Averaged over 3 seeds.
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Figure 3: Predictive variance, Jensen-Shannon divergence, and joint connectivity as a function of
time parameter ¢ for ResNet20 ensembles on CIFAR100. The dashed vertical lines mark the ¢ used in
Table 1.

B Related Works

Ensembling techniques. There is a plethora of previous work that studies novel ensembling
techniques, often with a focus on reduced cost or better weight averaging properties. Fast Geometric
Ensembling (FGE) from Garipov et al. (2018) and Snapshot Ensembles (SSE) from Huang et al. (2017)
both adapt a similar strategy as the SWE approach but use a cyclical learning rate to intentionally
break connectivity and produce more efficient ensembles. Instead of ensembling models, Izmailov
et al. (2018) average weights along the SGD trajectory using a cyclical or constant learning rate.
Wortsman et al. (2021) on the other hand directly learn lines and curves whose endpoints they leverage
for ensembling. They also report improved performance when using the midpoint as a summary of
the ensemble. Another related line of work studies fusion of several independent models. Singh and
Jaggi (2020) leverage optimal transport to align the weights of multiple models and produce a fused
endpoint. Ainsworth et al. (2023) take a similar approach and fuse different networks by finding
fitting permutations to maximize similarity.

Combining SSE, FGE, and SWA. We decided to use a procedure that combines elements from
SSE, FGE, and SWA as a baseline. We argue that this approach is most effective at training an
ensemble while ensuring linear mode connectivity and computational comparability, at training
and inference time, with deep ensembles. As outlined in the main text, we refer to this method as
Stochastic Weight Ensembling (SWE). More specifically, SWE is ensembling models in function
space, acquiring them using a sequential procedure. We first decay the learning rate to a level that
enables exploration of the basin without leaving it, and keep the learning rate constant thereafter. We
sample a model every T" epochs where T is on the order of epochs required to train a single model.
The difference to SSE is that we specifically do not encourage exploration of different basins and
thus refrain from cyclically increasing the learning rate. The procedure is also different from SWA,
as we do not average in weight space, but in function space. Lastly, it is also different from FGE, as
the cycle length is comparable to that of SSE, ruling out the fast in FGE.

Mode Connectivity. An intellectual ancestor to linear mode connectivity can be seen in the work
of (Goodfellow et al., 2015). They consider the 1D subspace spanned by the initial and fully trained
parameter vectors and find that the loss is monotonically decreasing the closer we get to the final
parameter vector. (Lucas et al., 2021) confirmed these results and coined the phenomenon monotonic
linear interpolation. In the context of our work, we interpret this monotonic linear interpolation
phenomenon as a descent into a loss basin whose functional diversity we aim to explore. Frankle
et al. (2020) demonstrated that there is a point in training 0*) after which SGD runs sharing 8(*)
as initialization remain linearly mode connected. Neyshabur et al. (2020) observed linear mode
connectivity in a transfer learning setup, where models pre-trained on a source task remain linearly
mode connected after training on the downstream task. Juneja et al. (2023) provide counterexamples
to mode connectivity outside of image classification tasks. Draxler et al. (2018); Garipov et al. (2018)
found non-linear paths of low loss between independently trained models, questioning the idea that
the loss landscape is composed of isolated minima.



Diversity. As mentioned in the introduction, it is commonly believed that encouraging predictive
diversity is a prerequisite for improving ensemble performance. This belief is derived from classical
results in statistics on bagging and boosting weak learners (Freund et al., 1999; Breiman, 1996).
While it is true that disagreement among members is a necessary condition for an ensemble to
outperform any single member, recent work has shown that encouraging predictive diversity can be
detrimental to the performance of deep ensembles with high-capacity members (Abe et al., 2023). In
other words, the intuition from those classical results might not be applicable. The counter-intuitive
observation of Abe et al. (2023) is explained by the fact that diversity encouraging penalties affect
all predictions irrespective of their correctness. As a result, these penalties can adversely affect the
performance of individual members, which in turn can undermine the performance of the ensemble.

C Implementation Details

Computational Cost If not stated otherwise, we consider ensembles of size M = 5. The table
below illustrates the computational cost on a per model basis.

Deep Ens. SWE Distilled Ens. Constrained Ens.
T T 8 T t  Dist. Epochs 5 T t  Dist. Epochs

ResNet20 110 110 0.2 110 10 100 1.0 110 10 100

CIFARIO ViT 165 — 02 165 15 150 10 165 15 150
ResNet20 190 190 0.2 190 40 150 1.0 190 40 150

CIFAR100 VAT 165 — 02 165 15 150 10 165 15 150
Tinv ImageNer  RESNE20 130 130 0.2 130 30 100 1.0 130 30 100
y Imag ViT 140 — 0.2 140 15 125 1.0 140 15 125

Table 5: Comparison of computational cost for different experiments in the main text. For deep
ensembles 7T refers to the number of epochs per sample. Similarly, for SWE, T is the cycle length
in-between taking a sample. For constrained and distilled ensembles, ¢ is the epoch after which we
split the runs and starting distilling for Dist. Epochs.

Optimizers With the exception of experiments conducted with ViTs, we use SGD as an optimizer
with a peak learning rate of 0.1. We use a cosine decay schedule with linear warmup for the first
10% of training. Momentum is set to 0.9. For ViTs, we use Adam (Kingma and Ba, 2015) with
B1 = 0.9 and B2 = 0.999. The batch size is at 128 and we set the temperature in the distillation
experiments to 7 = 3. For SWE, we apply the same linear warmup cosine decay schedule as for the
other ensemble methods, but stop decaying the learning rate at 0.01 and hold it constant thereafter to
enable exploration of the basin.

Datasets We experiment with the classic image classification baselines CIFAR (Krizhevsky, 2009)
and Tiny ImageNet (Le and Yang, 2015). For all experiments, we make use of data augmentation.
More specifically, we use horizontal flips, random crops, and color jittering.

Architectures We use the ResNet20 implementation from Ainsworth et al. (2023) with three
blocks of 64, 128, and 256 channels, respectively. We note that this implementation uses LayerNorm
(Ba et al., 2016) instead of BatchNorm (Ioffe and Szegedy, 2015), as it eliminates the burden of
recalibrating the BatchNorm statistics when interpolating between networks. Our Vision Transformer
implementation is based on Lippe (2022) and composed of six attention layers with eight heads, latent
vector size of 256 and hidden dimensionality of 512. We apply it to flattened 4 x 4 image patches.

Permuted Ensembles We use the PERMUTATIONCOORDINATEDESCENT implementation from
Ainsworth et al. (2023) to bring deep ensemble models into alignment. The implementation of
the PERMUTATIONCOORDINATEDESCENT algorithm can be found at https://github.com/
samuela/git-re-basin.

Joint Connectivity As mentioned in the main text, we draw samples A1, ..., Ay ~ Dir(1) to
approximately assess the joint connectivity of ensemble members. For each seed, we evaluate N = 50

_ N
samples and compute Gioine = % > ic1 Gioint(Ai)


https://github.com/samuela/git-re-basin
https://github.com/samuela/git-re-basin

Hardware We ran experiments on a cluster with NVIDIA GeForce RTX 2080 Ti and NVIDIA
GeForce RTX 3090 GPUs.
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