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Abstract

Foundation models for materials modeling are advancing quickly, but their train-
ing remains expensive, often placing state-of-the-art methods out of reach for
many research groups. We introduce Nequix, a compact E(3)-equivariant po-
tential that pairs a simplified NequlP design with modern training practices,
including equivariant root-mean-square layer normalization and the Muon op-
timizer, to retain accuracy while substantially reducing compute requirements.
Nequix has 700K parameters and was trained in 100 A100 GPU-hours. On the
Matbench-Discovery and MDR Phonon benchmarks, Nequix ranks third over-
all while requiring a 20 times lower training cost than most other methods, and
it delivers two orders of magnitude faster inference speed than the current top-
ranked model. We release model weights and fully reproducible codebase at
https://github.com/atomicarchitects/nequix.

1 Introduction

Machine learned inter-atomic potentials (MLIPs) are rapidly improving in capability and scope,
with foundation models trained on broad datasets of atomistic materials offering the promise of
augmenting or replacing expensive ab initio density functional theory (DFT) calculations [Batatia
et al., [2023]]. While performance on community benchmarks such as Matbench-Discovery [Riebesell
et al., 2025] is rising, the computational costs of both data generation and curation as well as the
training of MLIP models on these datasets remain prohibitively expensive for many labs.

We pursue an orthogonal goal to scaling: a lower computational cost recipe that preserves strong
downstream accuracy. Concretely, we revisit a simplified E(3)-equivariant architecture based on
NequlP [Batzner et al., 2022]] with modern training practices: root-mean-square layer normalization
for stability, latest custom CUDA kernels [Bharadwaj et al., 2025, and optimizer choices inspired by
“speedrunning” deep learning workflows [Jordan et al.,2024a]]. The resulting model, Nequix, has
700K parameters and can be trained in 100 GPU hours, while remaining competitive with larger and
more costly to train models on Matbench-Discovery and other phonon prediction tasks.

Our contributions are threefold: (1) a simplified NequlP architecture featuring an equivariant layer
normalization and efficient JAX and PyTorch implementations; (2) a budget-conscious training
pipeline leveraging the Muon optimizer [Jordan et al.,|2024b]], achieving fast convergence; and (3)
evaluations on the Matbench-Discovery and MDR phonon [[Loew et al.,[2025]] benchmarks. Compared
to prior MPtrj-trained models [Chen and Ong, 2022, |Deng et al.| |2023| Batatia et al., 2023} Bochkarev
et al., 2024} Neumann et al., |2024, Barroso-Luque et al., 2024} [Fu et al., 2025, Zhang et al., 2025,
Yan et al., [2025]], we rank rhird (as of August 2025) on both benchmarks at 1/20 the training cost of
any other published model and with 100 faster inference than the current top-ranking model.
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Figure 1: (a) Nequix architecture, a simplified version of NequlP [Batzner et al., 2022]], with a
species-independent residual connection and layer normalization. (b) Combined performance scores
of compliant models on the Matbench-Discovery (unique prototypes subset), collected on 2025-08-17.
(c) Available published training times of current compliant models.

2 Methods

Architecture Nequix follows a simplified version of the NequlP [Batzner et al.,|2022] architecture,
as shown in figure [Th. We adopt two modifications suggested by [Park et al.| [2024]: the species-
specific self-connection layer within the interaction block is replaced with a single linear layer, and
unused non-scalar representations are discarded from the final layer. Lastly, we add an equivariant
root-mean-square layer normalization (RMSNorm) |Liao et al.| [2023]], which we find improves
performance in our optimization setting. We document the full architecture hyper-parameters and the
rationale behind each decision in Table[A Tl

Implementation Nequix is implemented in both JAX [Bradbury et al., [2018)} |Kidger and Gar-
cia, 2021]] and PyTorch[Paszke et al.l 2019} |Ansel et al., 2024], taking advantage of just-in-time
compilation and efficient automatic differentiation. Following standard energy-conserving MLIP
practice [Fu et al.l 2025]], forces are obtained as the negative energy gradient with respect to atomic
positions, —V . F, and stresses as the energy derivative with respect to strain, normalized by volume,
o = V1 OF/de, where E is the predicted total energy of the system, r is an atom position, ¢ is the
strain tensor, V' is the simulation cell volume, and o denotes the stress tensor.

Optimization and normalization We compare the widely used Adam optimizer |Kingma and Ba
[2014] with the recently proposed Muon optimizer Jordan et al.|[2024bf], which uses the Newton-
Schulz algorithm to orthogonalize weight updates. Using a smaller version of Nequix on MPtrj
[Jain et al., [2013 |Deng et al.l 2023|] with hidden irreps of 128x0e + 64x10, we sweep learning rates
of {0.03,0.01,0.003,0.001} for Adam and Muon, each with and without RMSNorm. The lowest
validation error runs for each optimizer are shown in Fig. 2] We find that the Muon configuration
achieves comparable energy/force errors to Adam in 60-70% of the epochs, and results in a 7%
reduction in energy MAE. We also find a significant reduction in the variance of stress error, which
we notice in runs that use RMSNorm. Notably, the presence of the RMSNorm layer generally resulted
in lower validation error for Muon-based training configurations, and higher for those using Adam.

GPU kernels There has been recent work [Bharadwaj et al., [2025, NVIDIA| 2024, [Tan et al.}
2025| |Lee et al.l 2025]] on writing custom GPU kernels for the expensive equivariant tensor product
operation [Xie et al.,2025]]. These kernels fuse the tensor product and the outer gather-scatter from the
message passing step into a single GPU kernel. This avoids storing costly edge-based intermediates
in GPU memory, improving both runtime and memory usage.

Training procedure The final Nequix model is trained for 100 epochs on MPtrj [Jain et al., 2013,
Deng et al., 2023]], of which we hold out 5% for validation. More details on the training settings are
provided in Sec. [A.T] The model was trained on 2 NVIDIA A100 80 GB GPUs in 50 hours, for a
total cost of 100 GPU hours.
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Figure 2: Validation metrics during training of a smaller version of Nequix configuration with Adam
and Muon, trying learning rates in {0.03,0.01,0.003,0.001} and with/without RMSNorm. This
model configuration uses the same hyperparameters as the final model, except with hidden irreps of
128x0e + 64x10. The dotted horizontal line shows the best validation performance reached during
the Adam training.

3 Experiments

3.1 Matbench-Discovery benchmark

Matbench-Discovery [Riebesell et al.,2025] provides a standard framework for evaluating interatomic
potentials in a high-throughput materials screening task consisting of geometry optimization and
energy prediction on a set of 257,487 generated structures, and thermal conductivity prediction on a
set of 103 structures. Ground truth is calculated with DFT/PBE level of theory, the same as MPtrj.
The primary metrics include: 1) the F1 for stable/unstable classification after relaxation; 2) root
mean squared displacement (RMSD) between predicted and reference structures after relaxation; and
3) symmetric relative mean error in predicted phonon mode contributions to thermal conductivity
Kk (ksrME). A normalized and weighted combination of these metrics are then used to compute a
combined performance score (CPS-1), which is used for ranking.

Following Riebesell et al.| [2025]], we integrate our interatomic potential as Atomic Simulation
Environment (ASE) calculator, which is then used to perform structure relaxation and phonon
calculations with the default settings of the benchmark. For comparison, we consider only models
in the compliant subset of the benchmark. This consists only of models that are trained on MPtrj
or subsets, which limits data leakage and offers a more fair comparison among methods. TableI]
contains the performance of Nequix along with all current compliant models at the time of writing.
We also include the reported training cost for the models when available, visualized in Fig. [T We
find that Nequix ranks third by CPS-1, outperforming most models at a fraction of the training cost.
It is noteworthy that this high ranking is due to high performance in the thermal conductivity task,
however, the F1 score is still comparable to many of the other methods.

Table 1: Matbench-Discovery vl compliant leaderboard, sorted by combined performance score
(CPS-1). Metrics are shown for the unique prototypes subset. Train cost is measured in A100 hours.
Data as of 2025-08-17.

Model Params Traincost RMSD| ksrmed  F11T  CPS-11
eSEN-30M-MP 30.1M - 0.075 0.340 0.831 0.797
Eqnorm MPtrj 1.31M 2000 0.084 0.408 0.786  0.756
Nequix 708K 100 0.085 0.446 0.750  0.729
DPA-3.1-MPtrj 4.81M - 0.080 0.650 0.803  0.718
SevenNet-13i5 1.17M - 0.085 0.550 0.760  0.714
HIENet 7.51M 2888 0.080 0.642 0.777  0.707
MatRIS v0.5.0 MPtrj  5.83M - 0.077 0.861 0.809  0.681
GRACE-2L-MPtrj 15.3M - 0.090 0.525 0.691 0.681
MACE-MP-0 4.69M 2600 0.092 0.647 0.669  0.644
eqV2 S DeNS 31.2M - 0.076 1.676 0.815 0.522
ORB v2 MPtrj 25.2M - 0.101 1.725 0.765  0.470
M3GNet 228K - 0.112 1.412 0.569  0.428
CHGNet 413K - 0.095 1.717 0.613  0.400




3.2 MDR phonon benchmark

Performance is also evaluated on the MDR phonon benchmark [Loew et al., [2025], a set of 10,000
phonon calculations also done with DFT/PBE level of theory. We follow the identical procedure
to [Loew et al.| [2025]], first performing a geometry relaxation, then phonon calculations using
displacements of supercells. We report the mean absolute error (MAE) of properties derived from
the phonon calculation: maximum phonon frequency wmax, vibrational entropy S, Helmholtz free
energy F, and heat capacity at constant volume C'y . Table [2]demonstrates the performance of Nequix
compared to other MPtrj-trained models. Similarly to Matbench-Discovery, we achieve performance
within the top three of models, with a fraction of the parameter count of other methods.

Table 2: Model performance of MPtrj-trained models on the MDR phonon benchmark, sourced from
Loew et al.|[2025] and |[Fu et al.[[2025]. Metrics are MAE of maximum phonon frequency wax (K),
vibrational entropy S (J/K/mol), Helmholtz free energy F' (kJ/mol) and heat capacity at constant
volume C'y (J/K/mol).

Model MAE(wmax) MAE(S) MAE(F) MAE(Cy)
eSEN-30M 21 13 5 4
SevenNet-13i5 26 28 10 5
Nequix 26 33 12 6
SevenNet-0 40 48 19 9
GRACE-2L (r6) 40 25 9 5
MACE 61 60 24 13
CHGNet 89 114 45 21
M3GNet 98 150 56 22

3.3 Inference speed

Finally, we compare inference speed with existing inter- 10" 4
atomic potentials by using ASE |Larsen et al.| [2017] to
run calculations on diamond across varying unit cell sizes,
timing the calculations for each model{'| We run each
model in the default configuration in which it used within
its ASE calculator, with compilation and kernels wherever
specified in the documentation. See Section [A.2|for more
information on benchmarking setup.
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is about 100x faster than eSEN, offering a new option in
the accuracy vs. speed Pareto frontier at a fraction of the

training cost.

Figure 3: Inference speed of various
models in steps per day.

4 Conclusion

We presented Nequix, an E(3)-equivariant interatomic potential that pairs a simplified NequlP
architecture with modern training practices. Our results show that Nequix achieves competitive
accuracy on Matbench-Discovery and the MDR phonon benchmark at less than one quarter of the
reported training cost of many contemporaries. This resource-efficient recipe provides a practical
alternative to large-scale foundation models and helps broaden access to high-quality atomistic
modeling in settings with more limited compute. We release trained weights and a JAX/PyTorch
codebase to streamline reuse and extension.

Looking ahead, we see several promising directions: scaling training duration and data while
maintaining budget discipline, exploring pretraining and fine-tuning regimes across broader datasets,
and pushing cost even lower through model distillation, pruning, quantization, kernel implementations,
or more data-efficient training. We hope Nequix serves as a strong, efficient baseline for future work
on accessible materials foundation models.

'See https://github. com/mitkotak/matbench- speed for inference speed benchmarking code.
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A Appendix

A.1 Training and model configuration

Table[A.T|shows the hyper-parameters used to train Nequix. The model is trained for 100 epochs,
using an MAE loss function on energy and stress, and /5 loss on forces. We use a linear warmup
with cosine decay learning rate schedule. Figure[A.T|shows the energy, force, and stress MAE on
the validation set throughout training. The final MAEs are 10.05 meV/atom, 32.79 meV/A, and 0.22

meV/A3/atom for energy, forces, and stress respectively.

Table A.1: Hyper-parameters used and rationale behind selection

Hyper-parameter

Value

Notes/Rationale

Radial cutoff

Hidden irreps

6 A

128x0e + 64x10 + 32x2e + 32x30

Most models use 5 or 6 A; 6 performed slightly
better in preliminary validation performance.
From SevenNet-13i5.

Liax 3 Consistent with hidden irreps.
Niayers 4 Balance of performance and efficiency.
Radial basis size 8 From NequlP and analysis from Sec. 5.2 of |Fu
et al.| [2025]]
Radial MLP size 64 From NequlP.
Radial MLP layers 2 From NequlP.
Polynomial cutoff p 6.0 From NequlP.
Radial basis function Bessel From NequlP. Also tried Gaussian, which had
minimal difference on validation performance.
Learning rate 0.01 Selected from {0.03,0.01,0.003,0.001} based
on validation performance early in training.
Warmup epochs 0.1 From eSEN.
Warmup factor 0.2 From eSEN.
Optimizer Muon See Sec.
Weight decay 0.001 From eSEN. Also tried 0.0, which led to worse
validation performance.
Energy weight 20 From eSEN.
Force weight 20 From eSEN.
Stress weight 5 From eSEN.
Batch size 256 (dynamic) See Sec.
Number of epochs 100 Standard training duration.
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Figure A.1: Validation curves for Nequix training on MPtrj.



A.2 Inference Configuration

We summarize all of the inference configurations in[Table A.2] We use MPTrj versions for all of the
models except NequlP where the MPtrj model did not have kernel support, so we instead use the
OMat24 model after confirming that they have the same hyperparams. For compatibility with eSEN,
we use the older fairchem OCP calculator, and expect the latest version to have less overhead.

Table A.2: Inference configuration for the ASE benchmarking setup

Model Compile Kernels
eSEN-30M X X
MACE-MPO torch.compile  cuEquivariance
Nequix torch.compile openEquivariance
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