
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Chao Ma 1 Sebastian Tschiatschek 2 Richard Turner 1 2 José Miguel Hernández-Lobato 1 2 Cheng Zhang 2

Abstract
Missing data imputation methods based on deep
generative models often perform poorly in real-
world applications, due to the heterogeneity of
natural data sets. Heterogeneity arises from data
containing different types of features (categori-
cal, ordinal, continuous, etc.) and features of
the same type having different marginal distribu-
tions. We propose an extension of variational au-
toencoders (VAEs) called VAEM to handle such
heterogeneous data. We develop a correspond-
ing efficient inference method, provide extensions
and demonstrate the performance of VAEM in
missing data imputation tasks. Our results show
that VAEM broadens the range of real-world ap-
plications where deep generative models can be
successfully deployed.

1. Introduction
Variational Autoencoders (VAEs) (Kingma & Welling,
2013) are powerful methods for learning low-dimensional
representations in high-dimensional data, making them
promising tools for enabling downstream tasks such as miss-
ing data imputation under uncertainty (Ma et al., 2018; Mat-
tei & Frellsen, 2018; Gong et al., 2019).

However, VAEs are typically applied in standard settings
in which each data dimension has similar type and similar
statistical properties (e.g. consider the pixels of an image).
On the contrary, many real-world datasets contain variables
with different types. For instance, in healthcare applications
a patient record may contain demographic information such
as nationality which is of categorical type, height which
is positive and continuous, and lab test results consists of
images or time series.

Naively applying vanilla VAEs to such mixed type hetero-

*Equal contribution 1Department of Engineering, University
of Cambridge, Cambridge, UK 2Microsoft Research, Cambridge,
UK. Correspondence to: Chao Ma <cm905@cam.ac.uk>, Cheng
Zhang <Cheng.Zhang@microsoft.com>.

Presented at the first Workshop on the Art of Learning with Missing
Values (Artemiss) hosted by the 37 th International Conference on
Machine Learning (ICML). Copyright 2020 by the author(s).

geneous data can lead to unsatisfying results. The reason
for this is that it requires the use of different likelihood func-
tions (e.g. Gaussian likelihoods for real valued variables
and Bernoulli likelihoods for binary variables). In this case,
the contribution that each likelihood makes to the training
objective can be very different, leading to challenging op-
timization problems (Kendall et al., 2018) in which some
data dimensions may be poorly-modeled in favor of others.
Figure 1 (c) shows an example in which a vanilla VAE fits
some of the categorical variables, but performs poorly on
the continuous ones.

In this paper, we present VAEM, a novel deep generative
model for heterogeneous mixed type data which alleviates
the limitations of VAEs discussed above (See Section 2).
We carefully study the data generation and missing data
imputation quality of VAEM comparing with a number
of existing VAE approaches and baselines on 5 different
datasets. Our results show that VAEM can model mixed
type data more successfully than other baselines.

2. VAE for heterogeneous mixed type data
In this section, we describe our proposed method,
Variational Auto-encoder for heterogeneous mixed type
data (VAEM), which is a two stage model developed for
such heterogeneous mixed type data. .

In order to properly handle mixed type data with hetero-
geneous marginals, our proposed method fits the data in a
two-stage process.As shown in Figure 2(b), in the first stage
we fit a different VAE independently to each data dimension
xnd. We call the resulting D models marginal VAEs. Then,
in the second stage, in order to capture the inter-variable
dependencies, a new multi-dimensional VAE, called the
dependency network, is build on top of the latent represen-
tations provided by the first-stage encoders. D denotes the
dimension of the observations and N the number of data
points with xnd being the dth dimension of the nth point.
We present the details below.

Stage one: training individual marginal VAEs to each sin-
gle variable. In the first stage, we focus on modeling the
marginal distributions of each variable by training D in-
dividual VAEs pθd(xnd) = Ep(znd)pθd(xnd|znd), ∀d ∈
{1, 2, ..., D} independently, i.e. each one is trained to fit a

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

(a) Ground Truth (b) VAEM (ours) (c) VAE

(d) VAE-extended (e) VAE-balanced (f) VAE-HI

Figure 1. Pair plots of 3-dimensional data generated using five different models, fitted to the Bank dataset. Those models are defined in
Section 3.1. Within each subfigure, diagonal plots show marginal histograms for each variable. Plots located above the diagonal shows
sample scatter plots for each variable pair. Plots located below the diagonal show heat maps identifying regions of high-probability density
for each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the interval [0, 1]. Unlike
the other baselines, VAEM can correctly capture both continuous and discrete variables correctly.

single dimension xnd from the dataset:

(θ?d, φ
?
d) = arg maxθd,φd∑

n

Eqφd (znd|xnd) log
pθd(xnd, znd)

qφd(znd|xnd)
∀d ∈ {1, 2, ..., D},

(1)

where p(znd) is the standard Gaussian prior and
qφd(znd|xnd) is the encoder of the d-th marginal VAE. To
specify the likelihood terms pθd(xnd|znd), we use Gaussian
likelihoods for continuous data and categorical likelihoods
with one-hot representation for categorical data. The case
of other variable types is discussed in Appendix C.1.

Note that Equation 1 contains D independent objectives.
Each VAE pd(xnd; θd) is trained independently and is only
responsible for modeling the individual statistical proper-
ties of a single dimension xnd from the dataset. Thus, we
assume that znd is a scalar without loss of generality, al-
though it would be trivial to use a multi-dimensional znd

instead. Each marginal VAE can be trained independently
until convergence (Dai & Wipf, 2019), hence avoiding the
optimization issues of vanilla VAEs. We then fix the param-
eters of each marginal VAEs to be θ?d.

Stage two: training a dependency network to connect the
marginal VAEs. In the second stage, we model the inter-
variable statistical dependencies by training a new multi-
dimensional VAE pψ(z) = Ep(h)pψ(z|h), called the depen-
dency network, built on top of the latent representations z
provided by the encoders of the marginal VAEs in the first
stage. Here, h are the latent variables for the dependency
network. Specifically, we train pψ(z) as follows:

xdata ∼ pdata(x), (2)
zd ∼ qφd(zd|xdata,d), ∀d ∈ {1, ..., D}, (3)

∆(ψ, λ) ∝ ∇(ψ,λ)Eqλ(h|z,xdata) log
pψ(z,h)

qλ(h|z,xdata)
. (4)

The above procedure effectively disentangles the heteroge-

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

θφ z

xd

D

N

(a) VAE

θ

ψ

φ

λ h

xd

D

zd

N

(b) VAEM

Figure 2. Graphical representations of the vanilla VAE and our
proposed VAEM. Note that in this graph, solid arrows denote de-
coders, and dashed arrows denote encoders. In the first stage of
training a VAEM, each individual VAE (blue arrows) pθd(xnd) =
Ep(znd)pθd(xnd|znd), ∀d ∈ {1, 2, ..., D} is trained indepen-
dently on each variable xd. Then, the dependency network (red
arrows) pz(zn;ψ) = Ep(hn)p(zn|hn, ψ) is trained on top of the
latent representations zn.

neous marginal properties of mixed type data (modelled by
the marginal VAEs), from the inter-variable dependencies
(modelled by the dependency network). We call our model
VAE for heterogeneous mixed type data (VAEM).

After training the marginal VAEs and dependency network,
our final generative model is given by

pθ(x) = E(z,h)∼p(h)
∏
d pψ(zd|h)

[∏
d

pθd(xd|zd)

]
. (5)

To handle complicated statistical dependencies,we use the
VampPrior (Tomczak & Welling, 2017), which specifies a
mixture of Gaussians (MoGs) as the prior distribution for
the high-level latent variable, i.e., p(h) = 1

K

∑
k qλ(h|uk),

where K � N and the {uk} are a subset of data points.

2.1. Partial dependency network for missing data

The amortized inference network of VAEM (Section 2) can-
not handle partially observed data, since the number of
observed variables xO might vary across different data in-
stances. Inspired by the Partial VAE (Ma et al., 2018), we
apply a PointNet to build a partial inference network in the
dependency VAE that infers h from partial observations.

During the first stage, we estimate each marginal VAE with
only the observed samples for that dimension. For the sec-
ond stage, we need a dependency VAE that can handle
partial observations. Similarly as in the partial-VAE (Ma
et al., 2018), in the presence of missingness, the dependency
VAE specifies pzO (zO;ψ) = Ep(h)

∏
d∈O pψ(zd|h). This

is trained by maximizing the partial ELBO:

Eqλ(h|zO,xO) log

∏
d∈O pψ(zd|h)p(h)

qλ(h|zO,xO)
,

zd ∼ qd(zd|xdata,d, φd) ∀d ∈ O, zO = {zd|d ∈ O} (6)

where h is the latent variable of the dependency network,
qλ(h|zO,xO) is a set-function, the so-called partial infer-
ence net. Essentially, for each feature in xO, the input to the
partial inference net is first modified as sO := {v × ev|v ∈
zO ∪ xO} using element-wise multiplication, and ev is a
feature embedding1. sO is then fed into a feature map (a
neural network) l(·) : RM → RK , where M and K is
the dimension of the feature embedding and the feature
map, respectively. Finally, we apply a permutation invari-
ant aggregation operation g(·), such as summation. In this
way, qλ(h|zO,xO) is invariant to the permutations of the
elements of xO, and xO can have arbitrary length.

Approximate conditional data generation Once the
marginal VAEs and the partial dependency network are
trained, we can generate conditional samples that approxi-
mate pθ(xU |xO) by the following inference procedure: first,
the latent representations zd, d ∈ O for the observed vari-
ables are inferred. With this representation, we use the
partial inference network to infer h, which is the latent code
for the second stage VAE. Given h, we can generate the
zs, s ∈ U which are the latent code for the unobserved
dimensions and then generate the xs.

3. Experiments
3.1. Baselines and datasets

In the experiments, we consider a number of baselines. All
VAE baselines use the partial inference network and the
discriminator specified in Section B. Moreover, all baselines
are equipped with a MoG priors (Section 2). Our baselines
include:

• Heterogeneous-Incomplete VAE (Nazabal et al., 2018).
We match the dimensionality of latent variables to be
the same as our VAEM. We denote this by VAE-HI.

• VAE: A vanilla VAE equipped with a VampPrior (Tom-
czak & Welling, 2017). The number of latent dimen-
sions is the same as in the second stage (h) of VAEM.
We denote this by VAE.
• VAE with extended latent dimension: same as the VAE,

but with the latent dimension increased to be the same
as VAEM (sum of the dimensions of h and z). We
denote this by VAE-extended.

• VAE with balanced likelihoods. This baseline automat-
ically equal the scale of each likelihood term of the
different variable types, by multiplying each likelihood
term with an adaptive constant (Appendix C.1). We
denote this baseline by VAE-balanced.

We use the same pool of mixed-type datasets in all tasks:

1If v is a non-continuous variable such as categorical, the oper-
ation v × ev is performed on the one-hot representation of v, as
detailed in Appendix C.1

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

• Two standard UCI datasets: Boston housing and energy
efficiency (Dheeru & Karra Taniskidou, 2017);

• Two relatively large real-world datasets: Bank market-
ing;(Moro et al., 2011) and Avocado sales prediction.

• A real-world medical dataset: MIMIC III (Johnson
et al., 2016), the largest public medical dataset for
intensive care.

Details including model details, hyperparameters and data
processing can be found in Appendix C.

Table 1. Data generation quality by average test NLL per variable,
with standard errors as error bars
Method Ours VAE VAE-

balanced
VAE-
extended

VAE-HI

Bank -1.15±0.09 2.09±0.04 0.72±0.01 2.06±0.00 -0.72±0.00
Boston -2.16±0.01 -1.69±0.01 0.38±0.01 -1.61±0.02 2.11±0.01
Avocado -0.16±0.00 0.04±0.00 1.32±0.01 0.04±0.00 0.04±0.00
Energy -1.28±0.09 -1.47±0.07 0.69±0.02 -1.46±0.08 0.16±0.00
MIMIC -1.01±0.00 0.08±0.00 0.69±0.00 0.08±0.00 0.08±0.00
Avg. Rank 1.40±0.36 2.60±0.61 4.40±0.36 3.00±0.40 3.00±0.57

3.2. Mixed type data generation

In this task, we evaluate the quality of our generative model
in terms of mixed type data generation. For all datasets,
we first train the models and then quantitatively compare
their performance using a 90%-10% train-test split. All
experiments are repeated 5 times.

Visualization by pair plots In deep generative models,
the data generation quality is indicative of how well the
model describes the data. Thus, we first visualize the data
generated by each model on a representative dataset: Bank
marketing. By comparing the plots in the diagonals of Fig-
ure 1 (a) and Figure 1 (c), we notice that vanilla VAE is
able to describe the marginal distribution of the second cate-
gorical variable. However, it fails to mimic the behaviour
of the third variable. Note that this variable (Figure 1 (a)),
which corresponds to the “duration” feature of the dataset,
has a heavy tail behaviour, which is ignored by vanilla VAE.
On the other hand, although the VAE-balanced model and
VAE-HI (Figure 1 (e) (f)) can partially describe this heavy-
tail behaviour, it fails to model the marginal distribution of
second categorical variable well. Unlike the baselines, our
VAEM model (Figure 1 (b)) is able to accurately describe
the marginals and joint distributions for both categorical and
heavy-tailed continuous distribution.

Quantitative evaluation on all datasets To evaluate the
data generation quality quantitatively, we compute the
marginal negative log-likelihood (NLL) of the models on
the test sets. Note that all NLL numbers are divided by the
number of variables of the dataset. As shown in Table 1,
VAEM can consistently generate realistic samples, and on

Table 2. Conditional data generation quality under random missing
entries. Test NLL per variable, with standard errors as error bars.
Method Ours VAE VAE-

balanced
VAE-
extended

VAE-HI

Bank -1.21±0.12 2.09±0.00 0.68±0.00 2.09±0.00 -0.83±0.01
Boston -2.18±0.03 -1.66±0.02 0.37±0.00 -1.67±0.01 1.58±0.01
Avocado -0.15±0.00 0.04±0.00 1.33±0.00 0.04±0.00 0.04±0.00
Energy -1.30±0.05 -1.50±0.06 0.67±0.01 -1.50±0.06 0.13±0.00
MIMIC -1.10±0.00 0.08±0.00 0.57±0.00 0.08±0.00 0.08±0.00
Avg. Rank 1.40±0.36 2.60±0.61 4.40±0.38 2.30±0.44 3.00±0.57

average significantly outperforms other baselines.

3.3. Mixed type probabilistic missing data imputation

An important aspect of generative models is their ability to
perform probabilistic missing data imputation (conditional
data generation) (Ma et al., 2018; Mattei & Frellsen, 2018;
Gong et al., 2019). That is, given a data instance, to infer
the posterior distribution of unobserved variables xU given
observed xO. For all baselines evaluated in this task, we
train the partial version of them (i.e., generative + partial
inference net (Ma et al., 2018)). To train the partial models,
we randomly sample 90% of the dataset to be the training
set, and assume that a random fraction (uniformly sampled
between 0% and 99%) of feature values are missing each
epoch during training. Then, during test time, we assume
that 50% of the test set is observed, and use generative mod-
els to make inference regarding the rest of unobserved data.
Since all inference are probabilistic, we report the negative
test NLLs on unobserved data, as opposed to imputation
RMSE typically used in the literature.

Results are summarized in Table 2, where all NLL values
have been divided by the number of observed variables. We
repeat our experiments for 5 runs and report standard errors.
Note that the automatic balancing strategy VAE-balanced
almost always deteriorates the performance. By contrast,
Table 2 shows that our proposed method is very robust,
yielding significantly better performance than baselines.

4. Conclusion
We proposed VAEM, a novel two stage deep generative
modelthat can handle mixed type data with heterogeneous
marginals and missing data. VAEM sidesteps the problems
arising from heterogeneous data. Efficient amortized infer-
ence methods and extensions are proposed. Experiments
yield promising results, indicating that VAEM is useful for
real-world applications of deep generative models.

References
Dai, B. and Wipf, D. Diagnosing and enhancing vae models.

arXiv preprint arXiv:1903.05789, 2019.

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Dheeru, D. and Karra Taniskidou, E. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Gong, W., Tschiatschek, S., Turner, R., Nowozin, S., and
Hernández-Lobato, J. M. Icebreaker: Element-wise ac-
tive information acquisition with bayesian deep latent
gaussian model. arXiv preprint arXiv:1908.04537, 2019.

Harutyunyan, H., Khachatrian, H., Kale, D. C., and Gal-
styan, A. Multitask learning and benchmarking with clin-
ical time series data. arXiv preprint arXiv:1703.07771,
2017.

Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L., Feng,
M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A.,
and Mark, R. G. Mimic-iii, a freely accessible critical
care database. Scientific Data, 3:160035, 2016.

Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning
using uncertainty to weigh losses for scene geometry and
semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7482–7491,
2018.

Kingma, D. P. and Ba, J. L. Adam: a method for stochastic
optimization. In International Conference on Learning
Representations, pp. 1–13, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Ma, C., Tschiatschek, S., Palla, K., Lobato, J. M. H.,
Nowozin, S., and Zhang, C. Eddi: Efficient dynamic dis-
covery of high-value information with partial vae. arXiv
preprint arXiv:1809.11142, 2018.

Mattei, P.-A. and Frellsen, J. Miwae: Deep generative mod-
elling and imputation of incomplete data. arXiv preprint
arXiv:1812.02633, 2018.

Moro, S., Laureano, R., and Cortez, P. Using data mining
for bank direct marketing: An application of the crisp-
dm methodology. In Proceedings of European Simula-
tion and Modelling Conference-ESM’2011, pp. 117–121.
EUROSIS-ETI, 2011.

Nazabal, A., Olmos, P. M., Ghahramani, Z., and Valera,
I. Handling incomplete heterogeneous data using vaes.
arXiv preprint arXiv:1807.03653, 2018.

Paquet, U., Thomson, B., and Winther, O. A hierarchical
model for ordinal matrix factorization. Statistics and
Computing, 22(4):945–957, 2012.

Tomczak, J. M. and Welling, M. Vae with a vampprior.
arXiv preprint arXiv:1705.07120, 2017.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

A. Additional Derivations
A.1. Information reward approximation for hierarchical generative models in the present of missing latent variable

We consider the estimation of the following information reward function

RI(xi,xO) = Exi∼p(xi|xO)KL [p(xΦ|xi,xO) ‖ p(xΦ|xO)]

Using our proposed VAEM method (the partial VAEM version in 2.1). The VAEM is a hierarchical generative model trained
by the two-stage procedure described in the paper. Conditional inference of VAEM of missing data follows the following
sampling process:

zd ∼ qd(zd|x,d,Φd) ∀d ∈ O, zO = {zd|d ∈ O}
h ∼ qλ(h|zO)

zs ∼ pψ(zs|h) ∀s ∈ U, zU = {zs|s ∈ U}
xs ∼ pθ(xs|zU , zO) ∀s ∈ U, xU = {xs|s ∈ U}

Note that for compactness, we omitted the notation for input xO and xi to the all partial inference nets qλ. Where zO is the
observed latent variables of marginal VAEs, and zU are unobserved. We will use this VAEM to estimate any probabilistic
quantities in information reward A.1.

Applying the chain rule of KL-divergence on the term KL [p(xΦ|xi,xO) ‖ p(xΦ|xO)], we have:

KL(p(xΦ|xi,xO)||p(xΦ|xO))

= KL(p(xΦ, zi, zO,h|xi,xO)||p(xΦ, zi, zO,h|xO))

− ExΦ∼p(xΦ|xi,xO) [KL(p(zΦ, zi, zO,h|xΦ,xi,xO)||p(zΦ, zi, zO,h|xΦ,xO))] ,

Based on the independencies of marginal VAEs, we have p(xΦ, zi, zO,h|xO)) = p(xΦ, zO,h|xO))p(zi),
p(zΦ, zi, zO,h|xΦ,xO)) = p(zΦ, zi, zO,h|xΦ,xO))p(zi).

Using again the KL-divergence chain rule on KL(p(xΦ, zi, zO,h|xi,xO)||p(xΦ, zi, zO,h|xO)), we have:

KL(p(xΦ, zi, zO,h|xi,xO)||p(xΦ, zi, zO,h|xO))

= KL(p(zi, zO,h|xi,xO)||p(zi, zO,h|xO)) + Ep(zΦ,zi,zO,h|xi,xO))KL(p(xΦ|zi, zO,h,xi,xO)||p(xΦ|zi, zO,h,xO))

= KL(p(zi, zO,h|xi,xO)||p(zi, zO,h|xO)) + Ep(zΦ,zi,zO,h|xi,xO))KL(p(xΦ|zi, zO,h)||p(xΦ|zi, zO,h))

= KL(p(zi, zO,h|xi,xO)||p(zi, zO,h|xO)).

Note that the last two equalities does not hold for the discriminative version of VAEM described in Section B. Fortunately,
Exi∼p(xi|xO)KL(p(xΦ|zi, zO,h,xi,xO)||p(xΦ|zi, zO,h,xO)) = 0 still holds for the discriminative version, hence we
will still arrive at the same result.

The KL-divergence term in the reward formula is now rewritten as follows,

KL(p(xΦ|xi,xO)||p(xΦ|xO))

= KL(p(zi, zO,h|xi,xO)||p(zi, zO,h|xO))

− ExΦ∼p(xΦ|xi,xO) [KL(p(zΦ, zi, zO,h|xΦ,xi,xO)||p(zΦ, zi, zO,h|xΦ,xO))].

For the term in blue, we have:

KL(p(zi, zO,h|xi,xO)||p(zi, zO,h|xO))

= KL(p(zi, zO|xi,xO)||p(zO|xO)p(zi))

+ Ezi,zO∼p(zi,zO|xi,xO)

[
KL

(
p(h|zi, zO)||p(h|zO)

p(zi)

p(zi|xO)

)]
= KL(p(zi|xi)||p(zi)) + Ezi,zO∼p(zi,zO|xi,xO) [KL (p(h|zi, zO)||p(h|zO))]

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Similarly for the term in red, we have:

KL(p(zΦ, zi, zO,h|xΦ,xi,xO)||p(zΦ, zi, zO,h|xΦ,xO))

= KL(p(zΦ, zi, zO|xΦ,xi,xO)||p(zΦ, zO|xΦ,xO)p(zi))

+ EzΦ,zi,zO∼p(zΦ,zi,zO|xΦ,xi,xO)

[
KL

(
p(h|zΦ, zi, zO)||p(h|zΦ, zO)

p(zi)

p(zi|xΦ,xO)

)]
= KL(zi|xi)||p(zi)) + EzΦ,zi,zO∼p(zΦ,zi,zO|xΦ,xi,xO) [KL (p(h|zΦ, zi, zO)||p(h|zΦ, zO))]

Finally, we have:

RI(xi,xO)

=Exi∼p(xi|xO)KL [p(xΦ|xi,xO) ‖ p(xΦ|xO)]

=Exi∼p(xi|xO)KL(p(zi, zO,h|xi,xO)||p(zi, zO,h|xO))

−Exi∼p(xi|xO)ExΦ∼p(xΦ|xi,xO) [KL(p(zΦ, zi, zO,h|xΦ,xi,xO)||p(zΦ, zi, zO,h|xΦ,xO))]

=Exi,zi,zO∼p(xi,zi,zO|xO) {KL [p(h|zi, zO)||p(h|zO)]

− ExΦ,zΦ∼p(xΦ,zΦ,|xO)KL [p(h|zΦ, zi, zO)||p(h|zΦ, zO)]
}
.

We can then plug in the VAEM model distirbutions:

p(xi, zi, zO|xO) = pθ,φ(xi, zi, zO|xO)

p(xΦ, zΦ, |xO) = pθ,φ(xΦ, zΦ, |xO)

p(h|zi, zO) ≈ qλ(h|zi, zO)

p(h|zO) ≈ qλ(h|zO)

p(h|zΦ, zi, zO) ≈ qλ(h|zΦ, zi, zO)

p(h|zΦ, zO) ≈ qλ(h|zΦ, zO)

Finally, the information reward is now approximated as:

RI(xi,xO)

≈Exi,zi,zO∼pθ,φ(xi,zi,zO|xO) {KL [qλ(h|zi, zO)||qλ(h|zO)]

− ExΦ,zΦ∼pθ,φ(xΦ,zΦ,|xO)KL [qλ(h|zΦ, zi, zO)||qλ(h|zΦ, zO)]
}
.

B. Enhancing predictive performance of VAEM: training procedure
In order to enhance the predictive performance of VAEM, the following alternative factorization is proposed:

pθ(xO,xΦ) = ExU\Φ,h∼pθ(xU\Φ,h|xO)pγ(xΦ|xO,xU\Φ,h)pθ(xO)

For compactness, the notation for input xO and xi to the all partial inference nets qλ will be omitted. Note that, to train this
model, we also need data samples of xΦ during training (however xΦ will not be observed during active learning task). This
model is trained using the following procedure:

• Train a partial VAEM on xO (xΦ ∩ xO = ∅) using the two-stage method described in Section 2. Now we have a
graphical model induced by the model pθ(xO).

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

• Expand the graph by adding the node xΦ to the graph. Now the joint distribution is defined as pθ(xO,xΦ) =
ExU\Φ,h∼pθ(xU\Φ,h|xO)pγ(xΦ|xO,xU\Φ,h)pθ(xO). Note that no new parameters need to be introduced for the partial
inference net of the dependency network qλ(h|zO, zΦ), since the partial inference net automatically handles inputs
with different dimensionalities.

• Define the marginal VAE encoder for xΦ as qd(zΦ|xn,Φ, φΦ) = δ(zΦ − xΦ), and the decoder to be pd(xn,Φ|zd, θΦ) =
δ(xΦ − zΦ) (i.e., both are identity deterministic mappings).

• The partial inference net parameters of the dependency network can be updated by the following procedure:

zd ∼ qd(zd|xdata,d, φd) ∀d ∈ O ∪ Φ, zO∪Φ = {zd|d ∈ O ∪ Φ}

∆λ ∝ ∇λEqλ(h|zO∪Φ)

[
log

∏
d∈O pψ(zd|h)p(h)

qλ(h|zO∪Φ)
+ ExU\Φ∼pθ,ψ(xU\Φ|h) log pγ(xΦ|xO,xU\Φ,h)

]

• The the parameters for pγ(xΦ|xO,xU\Φ,h) can be updated by the following procedure:

zd ∼ qd(zd|x,d, φd) ∀d ∈ O, zO = {zd|d ∈ O}
h ∼ qλ(h|zO)

zs ∼ pψ(zs|h) ∀s ∈ U \ Φ, zU\Φ = {zs|s ∈ U \ Φ}
xs ∼ pθ(xs|zU , zO) ∀s ∈ U \ Φ, xU\Φ = {xs|s ∈ U \ Φ}
γ? = arg max

γ
log pγ(xΦ|xO,xU\Φ,h)

C. Additional Experiment Settings
subsectionDatasets details We use the same collection of mixed type datasets in all tasks:

• Two standard UCI benchmark datasets: Boston housing (13 continuous, 1 categorical) and energy efficiency (6
continuous, 3 categorical) (Dheeru & Karra Taniskidou, 2017);

• Two relatively large real-world dataset: Bank marketing (45211 instances, 11 continuous, 8 categorical, 2 discrete);
(Moro et al., 2011) and Avocado sales prediction (18249 instances, 9 continuous, 5 categorical).
• One real-world medical dataset: Medical Information Mart for Intensive Care (MIMIC III) (Johnson et al., 2016), the

largest public medical dataset containing records of 21139 patients (after processing following (Harutyunyan et al.,
2017)). We focus on the mortality prediction task based on 17 medical instruments (13 continuous, 4 categorical).
Since the dataset is imbalanced (over 80 % of the data has mortality = 0), we balance the dataset by down-sampling
the majority class. The time-series observations are averaged to obtain iid data points.

C.1. Additional model specification

C.1.1. BASELINES: GENERAL INFORMATION

We have used the following baselines in our experiments:

• Heterogeneous-Incomplete VAE (HI-VAE) (Nazabal et al., 2018). We adopt the multi-head structure of HI-VAE and
match the dimensionality of latent variables to be the same as our VAEM. HI-VAE is an important baseline, since it is
motivated in a similar way as our VAEM, but all marginal VAEs are trained jointly rather as opposed to our two-stage
method. We denote this by VAE-HI

• VAE: A vanilla VAE equipped with a VampPrior (Tomczak & Welling, 2017). The number of latent dimensions is the
same as in the second stage of VAEM. We denote this by VAE.

• VAE with extended latent dimension: Note that the total number of latent variables of VAEM is D + L, where D and
L are the dimensionalities of the data and the latent space, respectively. This baseline is like the previous one, but with
the latent dimension given by D + L. We denote this baseline by VAE-extended.

• VAE with automatically balanced likelihoods. This baseline tries to automatically equal the scale of each likelihood
term of the different variable types in the ELBO by multiplying each likelihood term with an adaptive constant
(Appendix C.1). We denote this baseline by VAE-balanced.

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

C.1.2. BASELINE: VAE WITH BALANCED LIKELIHOODS

This baseline is a naive strategy that tries to automatically balance the scale of the log-likelihood values of different variable
types in the ELBO, by adaptively multiplying a constant before likelihood terms. More specifically, consider the variational
lower bound (ELBO) of vanilla VAE:

log pθ(x) ≥ Eqφ(z|x) log
pθ(x, z)

qφ(z|x)

=
∑
s∈P

Eqφ(z|x) log
pθ(xs∈P , z)

qφ(z|x)

Where P is the set of variable types (e.g., continuous, categorical), and xs is the set of variables that belong to s-th type. In
VAE with balanced likelihoods, we weight each likelihood terms by {β1, β2, ..., β|P|}:∑

s∈P
βsEqφ(z|x) log

pθ(xs∈P , z)

qφ(z|x)

Where
∑
s βs = 1, such that:

βsEqφ(z|x) log pθ(xs|z) = βtEqφ(z|x) log pθ(xt|z), ∀s, t ∈ P

In practice, at each epoch of training, a mini-batch {xj}1≤j≤J is selected, and βs are estimated such that:

βs
∑
j

Eqφ(zj |xj) log pθ(xj,s|zj) = βt
∑
j

Eqφ(zj |xj) log pθ(xj,t|zj), ∀s, t ∈ P

C.1.3. LIKELIHOOD FUNCTION SPECIFICATION

In this paper, we consider three variable types: continuous, categorical, and discrete. For continuous and categorical
variables, we follow the specification of (Nazabal et al., 2018). In other words, to specify the likelihood function of all
VAE decoders pθd(xnd|znd) in our paper, we use Gaussian likelihood with constant observational noises pθd(xnd|znd) =
N (xnd;µ(znd), σ

2) for continuous data; and for categorical data, we use categorical likelihood with one-hot representation
pθd(xnd|znd) = 〈l(znd),one-hot(xnd)〉, where l(znd) is soft-max output of the decoder.

For discrete variables, we consider two different scenarios: continuous-discrete and ordinal-discrete. Continuous-discrete
means that the variable is continuous by its nature, but only discretized values are recorded. For example, the salary (dollars)
is a continuous variable, but in practice only discretized values (5000 dollars, 6000 dollars, etc.) are recorded. For this type
of variables, we still use Gaussian likelihood, but the decoder output will be rounded to the closest discrete value. On the
other hand, ordinal-discrete variables (such as ratings) are the ones with natural orderings, and the distance between each
value is not known. For ordinal variables, we use ordinal regression likelihood used in (Paquet et al., 2012).

Note that the above settings are used for all models including VAEM and other baselines.

C.1.4. PARTIAL INFERENCE NET WITH NON-CONTINUOUS INPUT

. In section 2.1, the partial inference net qλ(h|zO,xO) is constructed based on the element-wise multiplication operation
sO := {v × ev|v ∈ zO ∪ xO}. How is v × ev defined if v is non-continuous? For categorical and ordinal-discrete variable
for example, the operation v × ev is defined as

v × ev := vec(one-hot(v)⊗ ev)

Where ⊗ is outer-product between vectors, one-hot is the one-hot representation of the categorical/ordinal variables, and
vec(·) is the vectorization operation of a matrix.

C.2. Network structure and hyper parameter settings

Network structures All models (except for the marginal VAEs of VAEM and the decoder of HI-VAE) share the same
network structures with 20 dimensional diagonal Gaussian latent variables: the generator (decoder) is a 20-50-100 fully

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

connected neural network with ReLU activation functions on hidden units (where D is the data dimension). Note that we use
sigmoid activation function for output layer, to reflect our data preprocessing (all data are normalized to between 0 and 1).
One exception is the output layer of dependency network of VAEM, where we did not add any activation functions since the
scales of the latent variables zd from marginal VAEs are unknown. The encoders share the same structure of D-500-200-40
that maps the observed data into distributional parameters of the latent space. Additionally, we use a K =100 dimensional
feature mapping parameterized by a single layer neural network, and M =10 dimensional feature embedding for each
variable. We choose the permutation invariant operator g to be the summation operator. The discriminator described in
section B is a neural network with two layers, each of which has 100 hidden units.

For marginal VAEs of our VAEM, we use 1-dimensional latent variable for each variable.The decoder of marginal VAEs
is a 1-50-V single layer neural network, and the encoder network structure is V-50-2, where V is the dimension of the
corresponding variable, which is defined to be 1 if the variable is continuous. Otherwise, V is the dimension of the one-hot
representation. The same structure is used for the multi-head decoder structure for HI-VAE baseline.

Hyperparameters To train our models, we apply Adam optimization (Kingma & Ba, 2015) with learning rate of 0.001
and a batch size of 100. When the training set is fully observed, We manually generate partially observed version of it
by adding artificially missingness at random in the training dataset during training. This will help the model to learn to
generate conditional data given observations. We first draw a missing rate parameter from a uniform distribution U(0, 1)
and randomly choose variables as unobserved. This step is repeated at each iteration. We train our models for 3000 full
epochs, except for Bank dataset where we used 5000 epochs. For continuous variables, the constant observational noise
variance level for Gaussian likelihood functions of decoders are set to be 0.02 (except for MIMIC dataset where we have
used 0.3). During evaluation, we use importance sampling with 10K samples to estimate the log-likelihoods for conditional
data generation.

C.3. Additional experiment pipeline setup

During training of all models, the range of all variables is scaled to be between 0 and 1. This transformation is removed
when making predictions on the target variables.

In Section 3.3, to train these partial models on data with missing values, we randomly sample 90% of the dataset to be the
training set, and assume that a random fraction (uniformly sampled between 0% and 99%) of feature values are missing
on each epoch during training. Then, during test time, we assume that 50% of the test set is observed, and use generative
models to infer the unobserved data.

D. Additional Plots on Bank dataset

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Figure 3. pair plots of all variables from the real Bank dataset. Diagonal plots show marginal histograms for each variable. The upper-
triangular part shows sample scatter plots for each variable pair. The lower-triangular part shows heat maps identifying regions of
high-probability density for each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the
interval [0, 1].

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Figure 4. pair plots of all variables generated by VAEM. Diagonal plots show marginal histograms for each variable. The upper-triangular
part shows sample scatter plots for each variable pair. The lower-triangular part shows heat maps identifying regions of high-probability
density for each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the interval [0, 1].

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Figure 5. pair plots of all variables generated by VAE-balanced. Diagonal plots show marginal histograms for each variable. The
upper-triangular part shows sample scatter plots for each variable pair. The lower-triangular part shows heat maps identifying regions of
high-probability density for each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the
interval [0, 1].

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Figure 6. pair plots of all variables generated by HI-VAE. Diagonal plots show marginal histograms for each variable. The upper-triangular
part shows sample scatter plots for each variable pair. The lower-triangular part shows heat maps identifying regions of high-probability
density for each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the interval [0, 1].

VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data

Figure 7. pair plots of all variables generated by VAE-extended. Diagonal plots show marginal histograms for each variable. The
upper-triangular part shows sample scatter plots for each variable pair. The lower-triangular part shows heat maps identifying regions of
high-probability density for each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the
interval [0, 1].

