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Abstract

The ability to model interactions among agents is crucial for effective coordination
and understanding their cooperation mechanisms in multi-agent reinforcement
learning (MARL). However, previous efforts to model high-order interactions have
been primarily hindered by the combinatorial explosion or the opaque nature of
their black-box network structures. In this paper, we propose a novel value de-
composition framework, called Continued Fraction Q-Learning (QCoFr), which
can flexibly capture arbitrary-order agent interactions with only linear complexity
O (n) in the number of agents, thus avoiding the combinatorial explosion when
modeling rich cooperation. Furthermore, we introduce the variational information
bottleneck to extract latent information for estimating credits. This latent informa-
tion helps agents filter out noisy interactions, thereby significantly enhancing both
cooperation and interpretability. Extensive experiments demonstrate that QCoFr
not only consistently achieves better performance but also provides interpretability
that aligns with our theoretical analysis.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has recently drawn much attention [1], such
as autonomous vehicles [2, 3, 4], robotics [5, 6], and autonomous warehouses [7, 8]. Success in
these domains generally depends on a tapestry of local interactions: agents influence one another
not only through explicit pairwise effects but also through higher-order dependencies that shape
emergent behaviour [9, 10], which is a key factor to make coordination efficient. How to model those
interactions among agents and to do so in a way humans can understand remains a challenge.

Value decomposition MARL has emerged as a powerful framework with the large capacity of deep
neural networks and the centralized training and decentralized execution (CTDE) paradigm, which
factorises a team return into individual utilities. Leading value decomposition models—such as
the monotonic mixer in QMIX [11]—capture interaction structure only implicitly, leaving their
decisions opaque. Post-hoc explainers (e.g., Shapley value attribution [12] and masked-attention
visualisation [13]) offer limited insight and could not recover the underlying temporal or relational
dynamics. Another inherent interpretable technique, like decision tree [14, 15, 16] or Shapley-
based [12], handles only low-order interactions; higher-order terms still explode combinatorially.
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Here, we argue that modeling high-order collaboration patterns among agents is still crucial for
promoting coordination, which is still missing. Continued fractions [17, 18] provide a natural remedy:
their recursive form captures interactions of any order, and a simple truncation yields a finite and
interpretable approximation without combinatorial blow-up.

Building on these ideas, we propose Continued Fraction Q-Learning (QCoFr), a novel framework
that combines expressive value decomposition with intrinsic interpretability. QCoFr represents the
joint action-value function as a weighted sum of continued fraction modules—recursive structures
that explicitly approximate arbitrary-order interactions among agents with linear complexity O(n) in
the number of agents. To strengthen credit assignment, QCoFr incorporates a variational information
bottleneck (VIB) [19] to capture task-relevant latent information to bridge local histories to the
optimal joint action u. The assistive information will be used to estimate the credits together with
global state s for assisted value factorization, which relieves the spurious correlation between state s
and Qtot. We also give a rigorous proof that QCoFr takes a linear combination of continued fractions
and has the property of universal approximation, even each with finite depth and linear layers. We
demonstrate through extensive experiments on LBF, SMAC, and SMACv2 benchmarks that QCoFr
not only generally achieves better performances on solving all tasks but also provides interpretability
lacking in the state-of-the-art baselines.

2 Background

Dec-POMDP. A fully cooperative multi-agent task can be modeled as a Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) [20]. A Dec-POMDP can be defined as
a tuple ⟨N,S, U, P, r, Z,O, n, γ⟩, where N denotes a set of n agents and s ∈ S is the global
state of the environment. At each time step, agent i selects an action ui ∈ U , forming a joint
action ut ∈ U ≡ Un. This results in a the next state s′ according to the state transition function
P (s′ | s,u) : S×U×S → [0, 1]. All agents obtain the same joint reward r(s,u) : S×Un → R and
γ ∈ (0, 1] is the discount factor. Due to partial observability, each agent i ∈ N receives individual
observation zi ∈ Z from observation function oi ∈ O(s, i). Each agent maintains an action-
observation history τi ∈ T , conditioned by its policy πi. The overall objective is to find an optimal
joint policy π = ⟨π1, . . . , πn⟩ to maximize the joint value function Qπ (st,ut) = E [Rt | st,ut].

Value Decomposition. Value decomposition has emerged as a dominant paradigm in multi-agent
reinforcement learning (MARL) under the centralized training and decentralized execution (CTDE)
paradigm. It seeks to approximate the joint action-value function Qtot by decomposing it into
individual utility functions Qi, where each utility depends solely on the agent’s local trajectory τi. To
ensure that decentralized action selection remains consistent with the globally optimal joint action,
the decomposition must satisfy the Individual-Global-Max (IGM) principle [11]:

argmaxu Qtot(τ ,u) = {argmaxu1
Q1 (τ1, u1) , · · · , argmaxun

Qn (τn, un)} . (1)
Among representative methods, VDN [21] implements a simple additive decomposition, treating all
agents’ contributions equally by summing their utilities. To capture more complex coordination while
preserving IGM, QMIX [11] introduces a mixing network that combines utilities into the joint value
through a monotonic function. During training, the mixing network and agent networks are jointly
optimized by minimizing the temporal-difference (TD) loss of Qtot, while during execution, agents
act independently using their local policies derived from the learned utility functions. The introduction
of representative related works for the above formulation can be referred to in Appendix A.

3 High-order Interactions Modeling for Decomposition

In a large multi-agent task, agents are usually decomposed into several coalitions, each consisting of
multiple agents that cooperate to accomplish the common goal. Besides, each agent could belong to
different coalitions at different time steps. This coalition organization is general and can characterize
most coordination patterns among agents. Thus, it is essential to model complex interactions among
agents and estimate their credits for understanding their coordination patterns. In this section, we
provide an informal comparative analysis of using the continued fraction network (CFN) architecture
against widely adopted value decomposition methods: VDN [21], QMIX [11], and NA2Q [22].

From the view of value factorization, VDN provides a simple yet highly interpretable approach
by representing the joint Q-value simply as the sum of individual agent Q-values, Qtot(τ ,u) =
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∑
i∈N Qi (τi, ui). VDN inherently models only first-order interactions, which could limit its ability

to capture richer and group-level coordination. QMIX enriches the functional class of factori-
sation than that of VDN by introducing a state-conditioned monotonic mixer Qtot(s, τ ,u) =
fQMIX (s, [Q1 (τ1, u1) , . . . , Qn (τn, un)]), where fQMIX is constrained to be monotonic in each
argument. This implicit higher-order modeling increases representational capacity, but at the expense
of interpretability—fQMIX behaves as a black box, obscuring which interactions drive performance.
NA2Q tries to expand the joint value via a Taylor-like decomposition across all agents up to order n:

Qtot = f0 +
∑n

i=1 αi fi (Qi)︸ ︷︷ ︸
order-1

+ · · ·+
∑

k∈Dh
αk fk (Qk)︸ ︷︷ ︸

order-h

+ · · ·+ α1...n f1...n (Q1, . . . , Qn)︸ ︷︷ ︸
order-n

,

(2)
where fk ∈ {f1, · · · , f1...n}m is modeled with neural additive model [23] and Dh is the set of all
non-empty subsets of h ∈ {1, ..., n} with order-h interactions. While this yields interpretability,
low-order interaction terms (e.g., 2-order), the number of terms grows exponentially, O(2n), making
full expansion impractical for large teams.

… …

…

…

…

…

Figure 1: A diagram of CFN
composed of different depth
ladders that take individual
values Q as inputs and out-
put temporal values Q̂ with d-
order interactions.

To overcome the limitations of existing value decomposition meth-
ods discussed above, we enrich with the value factorization via a
continued fraction neural network (CFN) inspired by CoFrNets [18],
whose recursive structure and linear composition form a function
class with universal approximation capability [24]. Following the
terminology of CoFrNets, we call the function depicted in Fig. 1
a “ladder”, as its pictorial representation resembles a rail-and-rung
structure that sequentially propagates inputs through the nodes. The
joint action-value function can be established as a weighted summa-
tion of individual values:

Qtot =
∑l

k=1 αk · f̃k (Q) , (3)

where f̃k denotes a continued fraction structure 1
wk1Q+

1
wk2Q+···

with linear functions wk of the input Q = {Q1, . . . , Qn} given l
ladders, and αk are learnable weights used to estimate the contri-
bution of individual agents and coalitions of agents. With a power
series expansion, such a recursive structure can be rewritten as

1
w1Q+

1
w2Q+··· =

∑∞
p1,...,pn=0 cp1,...,pn

∏n
i=1 Q

pi

i , (4)

where the coefficients cp1,...,pn
and the weight parameters wk are in one-to-one correspondence [17,

18], and each cp1,...,pn
used to derive interactions among agents.

CFN generally approximates interactions up to a finite depth d, which constitutes a rational approx-
imation Rd(Q) of the joint utility function up to d-order interactions among agents. It shows that
truncating the continued fraction provides a practical rational approximation that explicitly models
agent interactions up to order d:

Q̂k = 1
w1Q+

1
w2Q+···

1
wdQ

=
∑d

p1,...,pn=0 cp1,...,pn

∏n
i=1 Q

pi

i . (5)

Definition 1 (Padé Approximant [25, 26]). Let C(z) =
∑∞

k=0 ckz
k be a formal power series in the

variable z, then the Padé approximant of order [L/M ] is a rational function of the form:

RL,M (z) = [AL,M (z)]/[BL,M (z)], (6)

where AL,M (z) and BL,M (z) are polynomials of degrees at most L and M , respectively, chosen
such that

BL,M (z)C(z)−AL,M (z) = O(zL+M+1), (7)

where notation O(zk) denotes some power series of the form
∑∞

n=k c̃nz
n. This approximation

minimizes the difference between the rational function and the power series up to the order L+M .

We give a formal proof that such truncation naturally satisfies the Padé approximation condition
as defined in Definition 1, i.e., f(Q) − Rd(Q) = O(Qd+1), where f(Q) denotes the complete
representation of agent interactions based on their individual value functions. This implies that the
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Figure 2: The overall architecture of QCoFr. A CFN-based mixing network models high-order
interactions among agents by expressing Qtot as a linear combination of l ladders over individual
values Q. The VIB module encodes the hidden state h into assistive information m, which is used to
deduce the credits of each agent of coalitions together with the global state s.

depth-d truncation of the continued fraction yields an exact approximation of f(Q) up to the d-th
order of Q. The detailed proof is provided in Appendix B.2.

Moreover, we can easily control the capacity of the interaction order among agents with the acceptable
complexity O(n) by adjusting the depth of CFN. Since linear combinations of CF modules constitute
a function class with universal approximation power [24], they can approximate any continuous
mapping between finite-dimensional spaces. Its recursive and interpretable structure reveals the
contributions of individual agents and coalitions of agents, enabling precise credit assignment while
faithfully modeling high-order interactions among agents. We also study two CFN variants, CFN-C
and CFN-D (see Fig. 10 and Appendix C.6). CFN-C combines single-feature and full-input CF
ladders, trading higher expressivity for additional computational cost. CFN-D retains only single-
feature ladders, yielding a purely additive mixer that cannot represent higher-order interactions.
Empirical comparisons are provided in Section 5.2.

4 Methods

We next present an interpretable value decomposition framework that explicitly models arbitrary-order
agent interactions without incurring a combinatorial explosion. The overall architecture of QCoFr is
illustrated in Fig. 2, which consists of three components as follows: (1) an individual action-value
function for each agent, (2) an assistive information generation module that encodes the hidden state
h via a variational information bottleneck (VIB) [19] to produce the assistive information m to
promote the credit assignment, and (3) a joint action-value function Qtot that composes individual
action-value functions into a joint action-value function using a CFN architecture, where the assistive
information m and the global state s are fed into the mixing network to estimate credits. During the
centralized training, the whole network is learned in an end-to-end fashion to minimize the sum of TD
and VIB loss, and each agent selects actions using its Q-function based on local action-observation
history in a decentralized fashion.

Individual Action-value Function is computed by a recurrent Q-network with gated recurrent
unit (GRU) for each agent i, which takes the local observation oti, historical information ht−1

i , and
previous action ut−1

i as inputs and outputs local Qi(τi, ui).

Assistive Information Generation Module. Previous works usually use all available information
for estimating the credit assignment αk, which could be quite inefficient [27]. The global state s
is an unobserved confounder as the common cause factor of the global state and the joint value
function [28, 22]. Thus, it will be necessary to introduce additive information to cut off the confounder.
To this end, we generate an assistive latent representation m from the hidden state h of agents to
predict the optimal action selection u∗, which forms the Markov dependency h→m→ u∗. Here,
we utilize VIB to capture the task-relevant information that can provide a more accurate estimation of
the optimal joint action selection from the hidden state h, which can promote the credit assignment.
The goal is to learn an encoding that contains as little redundant information as possible while
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providing maximal information about the prediction u∗ that affects environmental information or its
private properties, which can be written as

JIB(ϕ) = I(m,u∗;ϕ)− βI(m,h;ϕ), (8)

where the Lagrange multiplier β ≥ 0 controls the tradeoff. Here, we adopt variational approximations
to simplify the computation of the mutual information I in Eq. 8. The following theorems provide
tractable bounds for each term.
Theorem 1 (Lower Bound for I(m,u∗;ϕ)). Let the representation mi be reparameterized as a
random variable drawn from a multivariate Gaussian distribution mi ∼ N (fm(hi;ϕm), I), where
fm is an encoder parameterized by ϕm, hi denotes the hidden state of agent i, and I is the identity
covariance matrix. Then, the mutual information between the assistive information m and the
optimal joint action u∗ is lower-bounded as:

I(m,u∗;ϕ) ≥ 1
N

∑N
i=1 Eϵ∼p(ϵ) [− log q(u∗

i | f(hi, ϵ))] , (9)

where q(u∗
i | mi) is a variational distribution approximating the true posterior p(u∗

i | mi), and
mi = f(hi, ϵ) denotes a deterministic function of hi and the Gaussian random variable ϵ.

Proof sketch: This bound follows from the variational representation of mutual information. By
introducing a variational approximation q(u∗

i | mi) and applying the reparameterization trick [29] to
write p(mi | hi)dmi = p(ϵ)dϵ, the intractable posterior is replaced with a more manageable form,
enabling efficient optimization via gradient-based methods.
Theorem 2 (Upper Bound for I(m,h;ϕ)). Let q̃(m) denote a variational approximation of the
marginal distribution p(m). Then, the mutual information between the representation m and the
hidden state h admits the following upper bound:

I(m,h;ϕ) ≤ KL(p(m | hi) ∥ q̃(m)). (10)

Proof sketch: This result exploits the non-negativity of the KL divergence. By approximating the
marginal distribution p(m) with a variational approximation q̃(m), the mutual information can be
bounded from above via the definition of the KL divergence.

Combining the above conclusions, we can arrive at the following variational objective function:

LV IB =
1

N

N∑
i=1

Eϵ∼p(ϵ) [− log q (u∗
i | f(hi, ϵ))] + βKL [p(m | hi), q̃(m)] . (11)

The detailed derivation and rigorous proofs for these bounds are provided in Appendix B.1.

Mixing Network. We introduce the CFN-based mixing network consisting of l ladders (Fig. 2) with
a maximum depth d, which are designed to model d-order interactions among agents. Each ladder k
takes the local value functions Q as input and produces an output Q̂k as defined in Eq. 5. To satisfy
the IGM principle [30], each CFN layer adopts a strictly non-negative activation function of the form

1
max(|z|,δ) , where z denotes the sum of the current weighted input and the reciprocal of the previous
layer’s output, and δ is a small positive constant to prevent poles caused by near-zero denominators.
Since the universal approximation theorem applies to any linear combination of continued fractions
and does not rely on non-negative weights, an extension to non-IGM mixers is possible, with details
discussed in the Appendix E.2.

Effective coordination hinges on precisely deducing the contributions of each individual agent or
coalition to the overall success. To this end, we leverage assistive information m together with the
global state s to estimate the credits. Specifically, the credit αk for each ladder k is computed as

αk =
exp

(
(wmm)

⊤
ReLU (wss)

)
∑l

k=1 exp
(
(wmm)

⊤
ReLU (wss)

) , (12)

where the weights wm and ws are the learnable parameters, and ReLU is the activation function.
When the credits αk are then used to aggregate the outputs Q̂k of the ladders, the joint action-value
function Qtot can be represented as

Qtot =
∑l

k=1 αkQ̂k =
∑l

k=1 αk

∑d
p1,...pn=0 cp1...,...pn

∏n
i=1 Q

pi

i =
∑d

p1...pn=0 c
′
p1...,...pn

∏n
i=1 Q

pi

i ,

(13)
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where c′p1,...,pn
denotes the final coefficient of each interaction term. For notational simplicity when

discussing interaction patterns, we denote the coefficient of a specific agent interaction (e.g., agent i
and j) as βij , where the subscript indicates the agent indices involved.

Overall Learning Objective. To sum up, we train QCoFr end-to-end with two terms of loss
functions. The first one is naturally the original mean-squared temporal-difference (TD) error, which
enables each agent to learn its individual agent policy by optimizing the joint-action value of the
mixing network module. The last one is the VIB loss LV IB that is encouraged to produce assistive
information. Thus, the overall loss function is formulated as follows:

L(θ) =
∑
i

(Qtot(s, τ ,u)− yi)
2
+ LV IB , (14)

where yi = r + γQ̂tot (s
′, τ ′, argmaxu′∈Un Qtot (s

′, τ ′,u′)) with θ denotes the parameters of the
target network. We summarize the full pseudo-code of QCoFr in Appendix C.1.

5 Experiments

In this section, we conduct experiments to evaluate QCoFr on three challenging benchmarks over
the Level Based foraging (LBF) [31], the StarCraft Multi-Agent Challenge (SMAC) [32] and
SMACv2 [33]. The details of the environment can be found in Appendix C. We compare our method
against nine prominent baselines, including VDN [21], QMIX [11], QPLEX [34], Centrally-Weighted
QMIX (CW-QMIX) [35], CDS [36], SHAQ [37], GoMARL [38], ReBorn [39], and NA2Q [22]. We
carry out experiments with 5 random seeds, and all performance results are plotted using mean ± std.
Furthermore, we perform interpretability analyses of QCoFr to provide empirical evidence for the
contributions of individual agents and coalitions of agents.

5.1 Performance Comparison
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Figure 3: Performance results on LBF benchmark.

Performance on LBF. We first
evaluate QCoFr on two con-
structed LBF tasks: 3 agents
with 3 food items (lbf-3-3) and
4 agents with 2 food items (lbf-
4-2). LBF is a grid-based multi-
agent benchmark that supports
configurable levels of coopera-
tion and observability [40]. Each
agent navigates a 10 × 10 grid
world and observes a 2 × 2 sub-
grid centered around it, where a
group of adjacent agents can suc-
cessfully collect a food item if
the sum of their levels is greater than or equal to the item’s level. As shown in Fig. 3, QCoFr achieves
competitive performance compared to state-of-the-art methods. However, the simplified task design
inherently constrains the model’s capacity to fully leverage higher-order interaction mechanisms,
whose potential advantages may emerge in complex multi-agent coordination scenarios. The failure
of the CDS may be due to an overemphasis on behavioral diversity without considering effective
coordination among agents. QMIX has a slow convergence speed due to its inability to exploit latent
information, which restricts its representational capacity. GoMARL and ReBorn also require more
steps to discover effective agent groupings and allocate neuron weights. While CW-QMIX, NA2Q,
and SHAQ demonstrate competitive performance by introducing additional modules to enhance value
decomposition, their inability to model higher-order interactions or reliance on complex computation
may hinder scalability in complex multi-agent coordination tasks.

Performance on SMAC. We next compare QCoFr with baselines on the more challenging SMAC
benchmark, where agents make decisions based on local observations while cooperating to defeat
AI-controlled enemies. We show the performance comparison on six different scenarios, including
one easy map: 2s3z, three hard maps: 2c_vs_64zg, 3s_vs_5z, 5m_vs_6m, and two super-hard maps:
3s5z_vs_3s6z, 6h_vs_8z. As shown in Fig. 4, QCoFr achieves superior performance across almost all
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Figure 4: Performance results on SMAC benchmark.
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Figure 5: Performance results on SMACv2 benchmark.

scenarios, especially on the super hard tasks. CW-QMIX and QPLEX do not achieve satisfactory
performance, which may be due to excessive approximation and the relaxed constraints introduced
during training. CDS exhibits slower convergence rates, which may be due to requiring more training
steps to capture diverse individualized behaviors. Although GoMARL and NA2Q can model high-
order interactions to yield notable performance on complex scenarios by leveraging grouping and
enumeration, GoMARL requires extended training durations to learn effective groupings, and NA2Q
considers low-order interaction terms to avoid combinatorial explosion.

Performance on SMACv2. We evaluate QCoFr performance on three scenarios from SMACv2,
including zerg_5_vs_5, protoss_5_vs_5, and terran_5_vs_5. SMACv2 introduces randomly generated
and positioned for unit, increasing environmental stochasticity compared to SMAC. The performance
of QCoFr is significantly better than other algorithms across all scenarios. In contrast, GoMARL
performs the worst, which is due to its dynamic grouping structure, leading to slow convergence.
While SHAQ demonstrates marginally superior performance, its inability to model higher-order
agent interactions limits its adaptability to all maps. Compared to NA2Q, QMIX, and CDS, QCoFr
achieves better performance, which should benefit from the assistive information for estimating credit
assignment, especially for the high-order interaction patterns among agents.

5.2 Ablation Studies

To discuss the influence of each component, we conduct ablation studies about (a) the number of
interaction orders among agents, (b) the CFN structure, and assistive information on performance.
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Figure 6: Comparison of different numbers of interaction orders.
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Figure 7: Performance with and without VIB and comparison of different CFN structures.

The Number of Interaction Orders. We conduct ablation experiments by varying the depth d
of CFN, which governs the highest order of inter-agent interactions modeled by the framework.
On 2c_vs_64zg and 3s_vs_5z maps, QCoFr (d = 2) yields significant performance improvements
compared to QCoFr (d = 1), which underscores the importance of explicitly modeling higher-order
inter-agent effects as shown in Fig. 6. However, beyond the optimum, performance could degrade,
likely due to overfitting to spurious higher-order correlations. The same trend emerges in the 6h_vs_8z
scenario, where the model achieves its best performance with depth d = 6 before degrading with
further depth increases. These findings demonstrate that modeling higher-order interactions yields
performance improvements for complex coordination tasks, but only within a bounded regime that
aligns with the task’s intrinsic interaction complexity. Notably, our method using a single-layer CFN
still outperforms QMIX, which confirms that the assistive information can better help deduce the
contribution of agents for their team.

Impact of CFN Structure and Assistive Information Module. To validate the effectiveness of
the CFN structure, we compare QCoFr w/o VIB against two CFN-based variants—QCoFr-C w/o
VIB and QCoFr-D w/o VIB, under a unified setting without the VIB module. As shown in Fig. 7,
QCoFr w/o VIB achieves comparable performance to QCoFr-C w/o VIB, while offering a simpler
structure and lower computational cost. In contrast, QCoFr-D w/o VIB exhibits significantly degraded
performance, especially on the 6h_vs_8z scenario, which underscores the necessity of explicit inter-
agent interaction modeling for complex tasks. To summarize, we adopt CFN as the backbone for
its ability to capture higher-order interactions with a simple, efficient design. By integrating a
VIB-based assistive information generation module, QCoFr achieves significant improvements in
both convergence speed and final performance, demonstrating its efficacy and practical utility. More
additional ablations in Appendix E.1 detail the respective contributions of the VIB and CFN modules.

5.3 Interpretability

To intuitively demonstrate the interpretability of QCoFr, we demonstrate QCoFr (d = 2) and QCoFr (d
= 4) and display some key frames on 5m_vs_6m scenario. As shown in Fig. 8(b), the pairwise
coalitions (agent 3, agent 4) and (agent 3, agent 5) emerge as coordinated coalitions that focus fire
on the same enemy unit. Here, we find that they have higher coalition contributions of 3.884 and
3.339 than the others. In contrast, agent 1 disengages from combat when it has low health value
to avoid early elimination, which indicates that it does not contribute to the team and obtains a
lower contribution of 0.552. These observations highlight QCoFr’s ability to facilitate diverse role
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Figure 8: Visualization of evaluation results for QCoFr and baselines on 5m_vs_6m map. (b) and (e)
illustrate the behaviors of QCoFr with CFN depths of 2 and 4 at a specific time step. (c) visualizes
the weights of individual agents and pairwise coalitions corresponding to the behavior shown in (b),
while (f) presents the top five highest-weighted coalitions extracted from (e), due to the increased
number of possible interactions. (a) and (d) show the behaviors of VDN and QMIX for comparison.
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Figure 9: Visualization of agent diversity via QCoFr and baselines. Cosine similarities of agent
Q-values under the same observation indicate that QCoFr yields more diverse agent behaviors.

specializations and demonstrate the advantage of modeling agent interactions, which helps deduce
the contribution of individual agents and coalitions within their team.

Further, we show the behavior of the agents when d = 4 for QCoFr to demonstrate that the model
captures complex agent cooperation as shown in Fig. 8(e). As shown in Fig. 8(c), the weights are
predominantly concentrated on agent 3 and agent 4, as well as their interactions with other agents,
consistent with their coordinated attacks. While in deeper QCoFr, top-ranked terms are predominantly
higher-order, such as interactions among agents 1, 3, and 4, which yield the highest contributions,
demonstrating the model’s capacity to encode intricate cooperative dynamics. In contrast, QMIX
and VDN produce less differentiated policies, with individual Q-values remaining close, making
their decision logic harder to interpret. Furthermore, as shown in Fig. 8(a) and Fig. 8(d), agents
under VDN and QMIX frequently attack multiple enemy units simultaneously, leading to prolonged
numerical disadvantage and increased failure risk.

To evaluate whether QCoFr facilitates more diverse agent behaviors during training, we compute
the cosine similarity of individual Q-values under the same observation across different methods, as
shown in Fig. 9. QCoFr yields consistently lower similarity, which indicates more diverse and thus
more specialized agent preferences, in line with the qualitative findings in Fig. 8. In contrast, VDN
and QMIX maintain similarity close to 1, which reflects homogenized preferences that hinder the
emergence of complex cooperative strategies and obscure individual decision-making.

6 Conclusion

In this paper, we introduce QCoFr, an interpretable value-based MARL framework grounded in the
expressive and compact structure of continued fractions. By leveraging continued fraction neural
networks and a variational information bottleneck over agent histories, QCoFr explicitly models agent
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interactions of arbitrary order while maintaining low model complexity and inherent interpretability.
Extensive experiments show that QCoFr matches or surpasses strong value-decomposition baselines
and yields clearer attributions to individuals and coalitions. We believe QCoFr presents a promising
direction for designing MARL algorithms with mathematically grounded, interpretable structures and
highlights the importance of modeling higher-order coordination. Future work will explore adaptive
mechanisms to dynamically adjust the depth of interaction modeling in response to task complexity.

Limitations. In the current implementation, the CFN depth is fixed per task, which may be suboptimal
or wasteful. A promising direction is to adapt depth during training (or per state) to balance
computation with representational power.
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A Related Work

Value Decomposition. Centralized training with decentralized execution (CTDE) has emerged as a
powerful paradigm in MARL [41, 42], where global information can be accessed during centralized
training and learned policies are executed with only local information in a decentralized way. Under
the CTDE paradigm, value decomposition methods show their strength in expressing the joint value
function conditioned on individual value functions. VDN [21] introduces a linear decomposition,
representing the joint Q-value as a sum of agent-wise Q-values. However, its additive nature ignores
inter-agent interactions, limiting its scalability to complex coordination tasks. QMIX [11] improves
representational capacity by employing a nonlinear monotonic mixing network parameterized via
hypernetworks, but the imposed monotonicity constraint hinders its flexibility. To overcome this,
QTRAN [30] introduces a relaxed transformation-based decomposition to bypass monotonicity, while
WQMIX [35] incorporates a weighted projection to enhance approximation quality. QPLEX [34]
further refines the decomposition by adopting a duplex dueling architecture that satisfies the Individual-
Global-Max (IGM) principle via an advantage-based formulation. Despite their improvements in
expressiveness, these methods primarily focus on functional accuracy and provide little insight into the
underlying coordination structure. This lack of interpretability becomes particularly problematic in
partially observable and interaction-intensive environments, where understanding agent dependencies
is crucial for robust credit assignment. To address this, we propose a novel interpretable value
decomposition framework that explicitly encodes high-order interactions, offering both performance
and transparency.

Interpretable MARL. Recent advances in interpretable MARL can be broadly categorized into two
paradigms, focusing either on (i) intrinsic interpretability or (ii) post-hoc explanation [43]. Intrinsic
interpretability requires the learned model to be self-understandable by nature, which is achieved by
using a transparent class of models, whereas post-hoc explanation entails learning a second model to
explain an already-trained black-box model. Post-hoc methods provide auxiliary insights without
modifying the underlying learning process. For instance, SQDDPG [12] estimates individual agent
contributions via Shapley Q-values, while Goto et al. [13] use masked-attention to identify salient
observation regions in multi-vehicle coordination tasks. Although informative, these techniques
lack robustness guarantees and struggle to recover the relational or temporal structure intrinsic to
multi-agent cooperation. In contrast, intrinsically interpretable approaches seek to construct models
whose decision logic is understandable by design. Tree-based architectures such as MIXRT [15]
and MAVIPER [14] represent agent policies using soft or symbolic decision trees, providing explicit
reasoning paths. DTPO [16] advances this line by directly optimizing tree structures via policy
gradients, combining transparency with performance. Attention-based models, such as MAAC [44],
further enhance interpretability by dynamically identifying inter-agent dependencies, while other
methods promote explainability through latent skill inference [45] or constrained policy spaces that
encode global objectives [46].

Within the value decomposition framework, central to cooperative MARL, several works also
try to understand how agents cooperate via agent-level contributions. VDN [21] factorizes the
team reward additively, assuming agent independence. SHAQ [37] adopts Shapley value theory
to quantify marginal contributions across coalitions. More recently, NA2Q [22] expands the joint
value function via a Taylor-like decomposition to capture high-order interactions. However, such
expansions scale exponentially with the number of agents, leading to substantial computational
and interpretability challenges. These limitations highlight the need for a more principled and
scalable formulation that can compactly model high-order agent interactions without sacrificing
transparency. To this end, we propose a novel approach that integrates continued fraction networks
into the value decomposition framework. By leveraging the recursive structure of continued fractions,
our method enables compact and interpretable representations of arbitrary-order interactions while
maintaining linear complexity with respect to the number of agents. This formulation provides a
powerful alternative to polynomial expansion-based methods, offering both expressive capacity and
interpretability in large-scale cooperative MARL settings.
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B Proof

B.1 Objective Functions for Variational Information Bottlenecks

Considering the Markov chain u∗ ↔ h↔m , which means the assistive information cannot depend
directly on the u∗. So we have p(m | h,u∗) = p(m | h).
As in the IB, the objective can be written as:

JIB(ϕ) = I(m,u∗;ϕ)− βI(m,h;ϕ). (15)

The β is to realize the trade-off between a succinct representation and inferencing ability.

Theorem 1 (Lower Bound for I(m,u∗;ϕ)). Let the representation mi be reparameterized as a
random variable drawn from a multivariate Gaussian distribution mi ∼ N (fm(hi;ϕm), I), where
fm is an encoder parameterized by ϕm, hi denotes the hidden state of agent i, and I is the identity
covariance matrix. Then, the mutual information between the assistive information m and the
optimal joint action u∗ is lower-bounded as:

I(m,u∗;ϕ) ≥ 1
N

∑N
i=1 Eϵ∼p(ϵ) [− log q(u∗

i | f(hi, ϵ))] , (16)

where q(u∗
i | mi) is a variational distribution approximating the true posterior p(u∗

i | mi), and
mi = f(hi, ϵ) denotes a deterministic function of hi and the Gaussian random variable ϵ.

Proof.

I(m,u∗;ϕ) =

∫
dmidu

∗
i p (mi, u

∗
i ) log

p (mi, u
∗
i )

p (mi) p (u∗
i )

=

∫
dmidu

∗
i p (mi, u

∗
i ) log

p (u∗
i | mi)

p (u∗
i )

,

where p (u∗
i | mi) is fully defined by our encoder and Markov Chain as follows:

p(u∗
i | mi) =

∫
dhip(hi, u

∗
i | mi)

=

∫
dhip(u

∗
i | hi)p(hi | mi)

=

∫
dhi

p(u∗
i | hi)p(mi | hi)p(hi)

p(mi)
.

Since this is intractable in our case, let q(u∗
i | mi) be a variational approximation to p(u∗

i | mi),
where this is our decoder which we will take to another neural network with its own set of parameters.
Using the fact that Kullback Leibler divergence is always positive, we have

KL[p(u∗
i | mi), q(u

∗
i | mi)] ≥ 0

=⇒
∫

du∗
i p(u

∗
i | mi) log p(u

∗
i | mi) ≥

∫
du∗

i p(u
∗
i | mi) log q(u

∗
i | mi),

and hence

I(m,u∗;ϕ) ≥
∫

du∗
i dmip(u

∗
i ,mi) log

q(u∗
i | mi)

p(u∗
i )

=

∫
du∗

i dmip(u
∗
i ,mi) log q(u

∗
i | mi)−

∫
du∗

i p(u
∗
i ) log p(u

∗
i )

=

∫
du∗

i dmip(u
∗
i ,mi) log q(u

∗
i | mi) +H(u∗

i )

=

∫
dhidu

∗
i dmip(hi)p(u

∗
i | hi)p(mi | hi) log q(u

∗
i | mi) +H(u∗

i )

=
1

N

N∑
i=1

[∫
dmip (mi | τi) log q (u∗

i | mi)

]
+H(u∗

i ).
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Notice that the entropy of our labels H(u∗
i ) is independent of our optimization procedure and so can

be ignored. And as we can rewrite p(mi | hi)dmi = p(ϵ)dϵ, mi = f(hi, ϵ). So we have

I(m,u∗;ϕ) ≥ 1

N

N∑
i=1

Eϵ∼p(ϵ) [− log q(u∗
i | f(hi, ϵ))] .

Theorem 2 (Upper Bound for I(m,h;ϕ)). Let q̃(m) denote a variational approximation of the
marginal distribution p(m). Then, the mutual information between the representation m and the
hidden state h admits the following upper bound:

I(m,h;ϕ) ≤ KL(p(m | hi) ∥ q̃(m)). (17)

Proof.

I(m,h;ϕ) =

∫
dmidhip(hi,mi) log

p(mi | hi)

p(mi)

=

∫
dmidhip(hi,mi) log p(mi | hi)−

∫
dmip(mi) log p(mi).

Let q̃(mi) be the variational approximation to the marginal distribution p(mi) =
∫
dhip(mi |

hi)p(hi). Since KL[p(mi), q̃(mi)] ≥ 0 =⇒
∫
dmip(mi) log p(mi) ≥

∫
dmip(mi) log q̃(mi), we

have

I(m,h;ϕ) ≤
∫

dhidmip(hi)p(mi | hi) log
p(mi | hi)

q̃(mi)

=
1

N

N∑
i=1

[
p (mi | hi) log

p(mi | hi)

q̃(mi)

]
= KL [p (m | hi) , q̃(m)] .

Combining Theorem 1 and Theorem 2, we have the objective functions for variational information
bottlenecks, which is to minimize

LV IB =
1

N

N∑
i=1

Eϵ∼p(ϵ) [− log q (u∗
i | f (hi, ϵ))] + βKL [p (m | hi) , q̃(m)] . (18)

B.2 Correspondence between Continued Fraction Depth and the Order of Agent Interactions

In this section, we establish a one-to-one correspondence between the depth d of the continued
fraction network and the order of agent interactions. This property allows the d-th order continued
fraction to accurately represent the d-th order approximation of the agent’s behavior.

Specifically, a continued fraction network of depth d, 1
w1Q+

1
w2Q+ · · ·

1
wdQ

can be reformulated as
f(Q) = Td(Q) +Od+1(Q), where Tn(Q) is a degree-d polynomial of Q, and Od+1(Q) denotes
terms of order d+ 1 or higher in Q.

By setting z = 1
Q , the continued fraction 1

w1Q+
1

w2Q+
1

w3Q+ · · · can be transformed into

K(z) =
z

w1

z

w2

z

w3 + · · ·
, (19)

since these approximants are arranged along the "staircase diagonals" of the Padé table.

Theorem 3. For the d-th order truncation of the continued fraction Rk(z) =
Ak(z)
Bk(z)

, the following
holds:

pd =

⌊
d+ 1

2

⌋
, qd =

⌊
d

2

⌋
, (20)

where pd = deg(Ad), qd = deg(Bd).
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Proof. The k-th order asymptotic function Ak(z)
Bk(z)

satisfies the recursive relations:{
Ak(z) = wkAk−1(z) + zAk−2(z)
Bk(z) = wkBk−1(z) + zBk−2(z)

,

with [
A−1 A0

B−1 B0

]
=

[
1 0
0 1

]
.

Assume that for all k ≤ n, the following holds:

deg(Ak) =

⌊
k + 1

2

⌋
, deg(Bk) =

⌊
k

2

⌋
.

Base Cases:

n = 1:

A1(z) = w1A0(z) + zA−1(z) = z ⇒ deg(A1) = 1,

⌊
1 + 1

2

⌋
= 1.

B1(z) = w1B0(z) + zB−1(z) = w1 ⇒ deg(B1) = 0,

⌊
1

2

⌋
= 0.

n = 2:

A2(z) = w2A1(z) + zA0(z) = w2z ⇒ deg(A2) = 1,

⌊
3

2

⌋
= 1.

B2(z) = w2B1(z) + zB0(z) = w1w2 + z ⇒ deg(B2) = 1,

⌊
2

2

⌋
= 1.

Hence, the base cases hold.

Then assume the statements hold for k = n − 1 and k = n − 2, and prove that they also hold for
k = n.

Degree of the Numerator An(z):

From the recurrence:
An(z) = wnAn−1(z) + zAn−2(z),

and by the induction hypothesis:

deg(An−1) =
⌊n
2

⌋
, deg(An−2) =

⌊
n− 1

2

⌋
.

Then:

deg(wnAn−1) =
⌊n
2

⌋
, deg(zAn−2) = 1 +

⌊
n− 1

2

⌋
.

Case 1: n even, let n = 2m: ⌊n
2

⌋
= m,

∣∣∣∣n− 1

2

∣∣∣∣ = m− 1.

Then

deg(wnAn−1) = m, deg(zAn−2) = 1 + (m− 1) = m⇒ deg(An) = m =

⌊
n+ 1

2

⌋
.

Case 2: n odd, let n = 2m+ 1: ⌊n
2

⌋
= m,

∣∣∣∣n− 1

2

∣∣∣∣ = m.

Then

deg(wnAn−1) = m, deg(zAn−2) = 1 +m = m+ 1⇒ deg(An) = m+ 1 =

⌊
n+ 1

2

⌋
.
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Degree of the Denominator Bn(z):

From the recurrence:
Bn(z) = wnBn−1(z) + zBn−2(z),

and using the induction hypothesis:

deg(Bn−1) =

⌊
n− 1

2

⌋
, deg(Bn−2) =

⌊
n− 2

2

⌋
.

Then:

deg(wnBn−1) =

⌊
n− 1

2

⌋
, deg(zBn−2) = 1 +

⌊
n− 2

2

⌋
.

Case 1: n = 2m (even): ⌊
n− 1

2

⌋
= m− 1,

⌊
n− 2

2

⌋
= m− 1.

Then
deg(wnBn−1) = m− 1, deg(zBn−2) = m⇒ deg(Bn) = m =

⌊n
2

⌋
.

Case 2: n = 2m+ 1 (odd): ⌊
n− 1

2

⌋
= m,

⌊
n− 2

2

⌋
= m− 1.

Then
deg(wnBn−1) = m, deg(zBn−2) = m⇒ deg(Bn) = m =

⌊n
2

⌋
.

By mathematical induction, we conclude that:

deg(An) =

⌊
n+ 1

2

⌋
, deg(Bn) =

⌊n
2

⌋
.

Therefore, when the truncation order is n = d, we have

pd =

⌊
d+ 1

2

⌋
, qd =

⌊
d

2

⌋
.

Theorem 4. The d-th order truncation of the continued fraction Rd(z) =
Ad(z)
Bd(z)

naturally satisfies
the conditions for a Padé approximant, specifically:

f(z)−Rd(z) = O(zpd+qd+1), (21)

which means that its Taylor expansion coincides with the first d terms of the original function f(z).

Proof.

Definition 1 (Padé Approximant [25, 26]). Let C(z) =
∑∞

k=0 ckz
k be a formal power series in the

variable z, then the Padé approximant of order [L/M ] is a rational function of the form:

RL,M (z) = [AL,M (z)]/[BL,M (z)], (22)

where AL,M (z) and BL,M (z) are polynomials of degrees at most L and M , respectively, chosen
such that

BL,M (z)C(z)−AL,M (z) = O(zL+M+1), (23)
where notation O(zk) denotes some power series of the form

∑∞
n=k c̃nz

n. This approximation
minimizes the difference between the rational function and the power series up to the order L+M .

Since Rd(z) =
Ad(z)
Bd(z)

, we have

f(z)− Ad(z)

Bd(z)
= O(zpd+qd+1), (24)

which implies

f(z)Bd(z)−Ad(z) = O
(
zpd+qd+1

)
Bd(z) = O

(
zpd+qd+1

)
. (25)
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Lemma 1. For all k ≥ 0, there exists a polynomial Sk(z) such that:

f(z)Bk(z)−Ak(z) = (−1)kzk+1Sk(z), (26)

and the constant term Sk(0) ̸= 0 .

Proof. We can prove this lemma by mathematical induction.

Base Case:

k = 0:
f(z)B0(z)−A0(z) = f(z) · 1− 0 = f(z).

By the definition of continued fractions, f(z) = z
a1+··· , so:

f(z) = z · (analytic function) = zS0(z), S0(0) =
1

a1
̸= 0.

Inductive Hypothesis (k − 1 and k − 2 hold):

f(z)Bk−1(z)−Ak−1(z) = (−1)k−1zkSk−1(z)

f(z)Bk−2(z)−Ak−2(z) = (−1)k−2zk−1Sk−2(z)
.

for k:

Substituting the recurrence relations:

f(z)Bk(z)−Ak(z) = f(z) (wkBk−1(z) + zBk−2(z))− (wkAk−1(z) + zAk−2(z))

= wk (f(z)Bk−1(z)−Ak−1(z)) + z (f(z)Bk−2(z)−Ak−2(z))

= wk(−1)k−1zkSk−1(z) + z(−1)k−2zk−1Sk−2(z)

= (−1)kzk (−wkSk−1(z) + Sk−2(z))

= (−1)kzk+1Sk(z),

where Sk(z) is the polynomial obtained from −wkSk−1(z) + Sk−2(z), divided by z.

From the lemma, we have:

f(z)− Ad(z)

Bd(z)
=

f(z)Bd(z)−Ad(z)

Bd(z)
=

(−1)dzd+1Sd(z)

Bd(z)
.

Since Bd(0) = w1w2 · · ·wd ̸= 0 (assuming wk ̸= 0) and Sd(0) ̸= 0, it follows that:

f(z)−Rd(z) = O(zd+1).

According to Theorem 3, the degree of the numerator Ad(z) is pd =
⌊
d+1
2

⌋
, and the degree of the

denominator Bd(z) is qd =
⌊
d
2

⌋
. When d is odd, we have pd = qd = d

2 ; when d is even, pd = d+1
2 ,

qd = d−1
2 . In both cases, it follows that pd + qd = d. Therefore,

f(z)−Rd(z) = O
(
zd+1

)
= O

(
zpd+qd+1

)
,

which satisfies the condition of a Padé approximant.

In conclusion, the depth-d continued fraction network represents the d-th order truncation of the
continued fraction:

1

w1Q+

1

w2Q+
· · · 1

wdQ
,

which forms a [pd, qd]-Padé approximant with pd + qd = d. This enables accurate representation of
the first d-th order interactions among agents.
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C Experimental Details

C.1 Algorithmic Description

Algorithm 1 Continued Fraction Q-Learning

1: Initialize environment, agent network Qi (τi, ui; θ), target network Qi

(
τ ′i , u

′
i; θ̂

)
, mixing net-

work Qtot, and VIB module Gϕ(Eϕ1 , Dϕ2)
2: Initialize replay buffer D
3: repeat
4: Obtain the initial global state s0

5: for t = 0 to T − 1 do
6: For each agent i, get action-observation history τ ti
7: Calculate individual value function Qi

8: Get the hidden state ht
i

9: Select action ut
i via value function with probability ϵ exploration

10: Execute joint action ut, receive reward rt, next state st+1

11: end for
12: Store the episode trajectory in D
13: Sample a mini-batch B of size b from D
14: for t = 0 to T − 1 do
15: Calculate µ, σ=Eϕ1(h

t
i)

16: Generate assistive information m
17: Get the attention weight αk by the intervention function in Eq. 12
18: Calculate the joint value function Qtot

19: end for
20: Calculate loss L(θ) = LQtot

+ LV IB via Eq. 11 and Eq. 14.
21: Update ϕ and θ by minimizing the above loss
22: Periodically update θ̂ ← θ
23: until Qi (τi, ui; θ) converges or maximum steps reached

C.2 LBF Description and Hyperparameters Settings

Table 1: The configurations of LBF.
Hyperparameter Value

Max Episode Length 50
Batch Size 32

Test Interval 10000
Test Episodes 32

Replay Batch Size 5000
Discount Factor 0.99

Start Exploration Rate 1.0
End Exploration Rate 0.05

Anneal Steps 50000
Steps 1M

Target Update Interval 200

Level-Based Foraging (LBF) [31] is a mixed cooperative-
competitive MARL benchmark, where each agent navi-
gates a 10 × 10 grid world. Agents and food items are
randomly placed in a 2D grid, and each one is assigned
a level. A food item can only be collected when the com-
bined levels of all participating agents equal or exceed
its level. The environment induces a spectrum of col-
laborative behaviors through its level-dependent reward
structure: while low-level food items permit independent
collection, higher-level resources necessitate coalition for-
mation. Furthermore, we set the penalty reward for move-
ment to −0.002, and the detailed hyperparameter settings
of LBF are shown in Table 1.

Observation Space. Each agent observes a 2× 2 square
grid centered on its own position. Within this range, the
agent receives a structured array containing the (x, y) coordinates and levels of all visible food items
and other agents. This observation provides both spatial and attribute-level information to support
localized decision-making.

Action Space. The discrete action space for each agent consists of none, move [direction], and load
food. Each agent only moves into one unoccupied grid. If multiple agents attempt to move into the
same grid, collisions are resolved by canceling the conflicting moves, leaving the agents in their
original positions.
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Rewards. This reward depends on the food’s level, which is distributed among the participating
agents in proportion based on their levels. The rewards are normalized to maintain a unit sum across
all agents. This design ensures contribution-based fairness in reward distribution while enhancing
cooperative efficiency among agents.

C.3 StarCraft II Description and Hyperparameters Settings

Table 2: The configurations of SMAC.
Hyperparameter Value

Difficulty 7
Batch Size 32

Test Interval 10000
Test Episodes 32

Replay Batch Size 5000
Discount Factor 0.99

Start Exploration Rate 1.0
End Exploration Rate 0.05
Target Update Interval 200

Optimizer RMSprop
Learning Rate 0.0005

All implementations of algorithms are conducted on Star-
Craft II unit micro-management tasks (SC2.4.10). We
evaluate performance in combat scenarios where enemy
units are controlled by the built-in AI with the difficulty=7
setting, and each allied unit is controlled by the decen-
tralized agents with reinforcement learning algorithms.
During battles, the agents seek to maximize the damage
dealt to enemy units while minimizing damage received,
requiring the coordination of diverse tactical skills. We
assess our method across a variety of challenging scenar-
ios that differ in terms of symmetry, agent composition,
and unit count (as shown in Table 3). For clarity, we also
outline the core settings of the StarCraft Multi-Agent Chal-
lenge (SMAC) [32], including observation, state, action,
and reward configurations. The detailed hyperparameter
settings of SMAC are shown in Table 2.

Observations and States. At each time step, each agent receives a local observation of units within
its field of view. The observation includes the following features for both allied and enemy units:
distance, relative X and Y positions, health, shield, and unit type. Note that the agents can only
observe the others if they are alive and within their line of sight range, which is set to 9. When
a unit (ally or enemy) becomes invisible or is eliminated, its feature vector is reset to all zeros,
indicating either death or being outside the field of view. The global state is only available during
centralized training, which contains information about all units on the map. Finally, all features,
including the global state and the observation of the agent, are normalized by their maximum values.

Action Space. Each unit takes an action from the discrete action set: no-op, stop, move [direction],
and attack [enemy id]. Agents are allowed to move with a fixed movement amount in four directions:
north, south, east, and west, where the unit is allowed to take the attack [enemy id] action only when
the enemy is within its shooting range.

Rewards. The target goal is to maximize the win rate for each battle scenario. At each time step, the
agents receive a shaped reward based on the hit-point damage dealt and enemy units killed, as well as
a special bonus for winning the battle. Additionally, agents obtain a 10 positive bonus after killing
each enemy and a 200 bonus when killing all enemies, which is consistent with the default reward
function of the SMAC.

Table 3: The StarCraft Multi-Agent Challenge benchmark.

Map Ally Units Enemy Units Difficulty Steps Anneal Steps d

2s3z 2 Stalkers, 3 Zealots 2 Stalkers, 3 Zealots Eazy 1.5M 50000 2
2c_vs_64zg 2 Colossus 64 Zerglings Hard 2M 50000 2

3s_vs_5z 3 Stalkers 5 Zealots Hard 2M 50000 2
5m_vs_6m 5 Marines 6 Marines Hard 2M 50000 4

3s5z_vs_3s6z 3 Stalkers, 5 Zealots 3 Stalkers, 6 Zealots Super Hard 5M 200000 6
6h_vs_8z 6 Hydralisks 8 Zealots Super Hard 5M 200000 6
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C.4 SMACv2 Description and Hyperparameters Settings

SMACv2 [33] is an enhanced benchmark for cooperative multi-agent reinforcement learning built on
top of StarCraft II. It preserves the original SMAC API while introducing three procedural innovations
to increase scenario diversity and challenge contemporary MARL algorithms: randomising start
positions, randomising unit types, and changing the unit sight and attack ranges.

Table 4: The configurations of SMACv2.
Race Unit probability

Stalker 0.45
Protoss Zealot 0.45

Colossus 0.1
Marine 0.45

Terran Marauder 0.45
Medivac 0.1
Zergling 0.45

Zerg Hydralisk 0.45
Baneling 0.1

Randomized Start Positions. Allied and enemy units
are spawned either in a "surround" configuration, where
enemies encircle the allies, or via a "reflect" scheme that
mirrors allied positions across the map center. This ensures
that agents cannot overfit to fixed spawn patterns.

Randomized Unit Types. Each battle can feature mixed
unit compositions rather than uniform rosters. For Terran,
Protoss, and Zerg, three unit types are sampled with config-
urable probabilities through the team_gen distribution (as
shown in Table 4), promoting adaptable strategies under
varied team makeups.

Unit Sight and Attack Ranges. Unit vision cones and
attack radii are aligned with their true in-game values,
increasing realism and preventing agents from exploiting
the simplified ranges used in SMAC.

C.5 Implementation Details

We compare our method against nine value-based baselines, including VDN [21], QMIX [11],
QPLEX [34], Centrally-Weighted QMIX (CW-QMIX) [35], CDS [36], SHAQ [37], GoMARL [38],
ReBorn [39], and NA2Q [22]. To ensure fairness, we implement all experiments within the PyMARL
framework 2. All hyperparameters of baselines are set identically to our method to compare algorithms
fairly. Please refer to PyMARL’s open-source implementation for further training details and fair
comparison settings. The depth d of CFN is determined based on the scale of agents and the
complexity of each task.

All scenarios are trained on a system equipped with an NVIDIA RTX 3080TI GPU and an Intel
i9-12900k CPU, with training time ranging from 1 to 16 hours per scenario, depending on the task
complexity and episode length.

2The source code of implementations is from https://github.com/oxwhirl/pymarl.
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Figure 10: Three variants of the CFN architecture. (a) CFN-C integrates both single-feature ladders,
where each ladder processes a single input dimension Qi, and full ladders, which take the complete
set of individual values Q as input. (b) CFN-D utilizes only the single-feature ladders. (c) CFN
employs only the full ladders with increasing depth.

C.6 Detailed Description of CFN Structure

As illustrated in Fig.10, the CFN framework includes two structural variants in addition to the main
architecture. Fig. 10(a) presents CFN-C, a composite architecture inspired by CoFrNet [18], which
combines two types of ladders: single-feature ladders, each processing an individual agent utility Qi,
and full-input ladders, which receive the complete utility vector Q at every layer. Each ladder yields
a partial joint value Q̂k, and the aggregation of all ladders constitutes the final joint Q-value.

The number of single-feature ladders equals the number of agents, enabling additive modeling of
individual effects. In contrast, full-input ladders are deeper and designed to capture complex joint
dependencies among agents by recursively combining all inputs, thereby facilitating high-order
interaction modeling.

Fig. 10(b) and Fig. 10(c) depict two simplified variants: 1) CFN-D, which retains only the single-
feature ladders, thereby modeling additive effects with strong transparency [47] but lacking the
capacity to express inter-agent interactions; 2) CFN, which retains only the full-input ladders, striking
a balance between modeling power and computational efficiency.

In our QCoFr algorithm, we adopt the CFN structure with full-input ladders as the default architecture.
Compared to CFN-C, this version significantly reduces parameter overhead while preserving the
ability to capture arbitrary-order interactions. We further include CFN-D as an ablation baseline to
isolate the contribution of high-order modeling: while CFN-D offers interpretability due to its decom-
posable additive form, its inability to encode dependencies across agents limits its expressiveness in
cooperative settings.

Finally, a key advantage of the CFN structure is its linear scalability: the number of parameters grows
as O(n) with the number of agents, making it particularly suited to large-scale MARL scenarios
where modeling expressive joint behavior is critical without incurring prohibitive computational costs.
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(a) Actions of each agent.

(b) t = 25 (c) t = 75

(d) t = 85 (e) t = 100

Figure 11: Visualization of evaluation results for QCoFr on 3s_vs_5z map. Agents demonstrate a
coordinated kite-and-focus-fire strategy: agent 2 initially kites four enemies alone, while agent 1 and
agent 3 eliminate another. Agent 3 then draws away two of the remaining enemies, enabling agent 1
and agent 2 to dispatch the others. Finally, all agents regroup to defeat the last enemies.

D Extended Interpretability Analysis

Fig. 11 illustrates the interpretability of QCoFr on 3s_vs_5z scenario. At the beginning of the episode,
agent 2 independently kites four enemies, creating a numerical advantage that enables agent 1 and
agent 3 to quickly eliminate an isolated opponent. As a result, agent 2 receives the highest individual
contribution score (1.337), while the strongest pairwise contribution is observed between agents 1
and 3 due to their effective coordination. As the engagement progresses, agent 3 draws two enemies
away, allowing agent 1 and agent 2 to jointly take down the remaining targets. During this phase, the
coalition contribution of agents 1 and 2 increases, and agent 3’s individual contribution also rises as
it delays the enemy. After these enemies are defeated, all three agents regroup to focus fire on the
remaining units, resulting in a more balanced distribution of credit across agents. This case study
demonstrates that the agents have learned a kite-and-focus-fire strategy. The alignment between
observed behaviors and quantitative contribution values confirms the interpretability of QCoFr, which
faithfully attributes both individual and coalition-level contributions with high-order interactions in
executing complex cooperative tactics.
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Figure 12: Performance with and without VIB on three extra scenarios of the SMAC benchmark.
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Figure 13: Performance comparison of NA2Q with the VIB module and our method.

E Additional Experiments on SMAC

E.1 Additional Ablation Experiments

The Role of the VIB Module. We ablate the VIB component on three additional SMAC scenarios
(Fig. 12), comparing QCoFr with and without VIB under identical settings. With VIB, QCoFr
consistently accelerates early learning and achieves higher test win rates, confirming that task-relevant
assistive information improves credit assignment and coordination.

The Role of CFN. Since NA2Q struggles to model higher-order interactions, we equip it with the
same VIB module and evaluate on three super-hard SMAC maps, comparing against QCoFr (Fig. 13).
This isolates the effect of interaction modeling from that of assistive information. While NA2Q+VIB
outperforms the original NA2Q, a clear gap remains to QCoFr. The results indicate that, on complex
tasks, explicitly modeling higher-order dependencies enables more refined cooperative strategies,
which highlights the effectiveness of the CFN module beyond what VIB alone can provide.
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Figure 14: Performance comparison of QCoFr with and without IGM constraint.
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E.2 Discussion on the IGM Constraint

To isolate the effect of the continued-fraction mixing paradigm from non-monotonic joint-action
search, we enforce the Individual-Global-Max (IGM) constraint in our framework. Notably, the
universal approximation theorem applies to any linear combination of continued fractions and does
not require non-negative weights [18], suggesting that the approach can be extended to non-IGM
mixers. Integrating CFN with fully IGM-free methods such as DAVE [48] is therefore a natural
direction. DAVE emphasizes that most value decomposition methods operate under IGM, which
couples the optimal joint action with the optimal individual actions. Relaxing this constraint requires
agents to explicitly search for the globally optimal joint action at execution time, often via an auxiliary
network. To probe this possibility, we conduct experiments under relaxed IGM assumptions on
three SMAC scenarios. As shown in Fig. 14, QCoFr achieves comparable or even slightly improved
performance without IGM, indicating that our architecture can still recover high-quality joint actions.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope. The method can be found in Section C.6 and 4.
Experimental results are illustrated in Section 5. The detailed proofs and experimental
settings can be found in the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: We include the limitations in our conclusion. We leave this part as our future
work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided the full set of assumptions and corresponding complete
proofs under each proposed Theorem with detailed derivations included in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: In addition to the description in the paper, we included more detailed hyperpa-
rameters settings in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The model architecture and hyperparameter settings are all included in this
work. We believe we have provided enough details. We will make the code available in the
near future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are included in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For every experiment introduced, we run with multiple random seeds and
reported both mean and std averaged over these multiple random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: As mentioned in Appendix, our model runs on an NVIDIA RTX 3080TI GPU
and an Intel i9-12900k CPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are strictly following NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper proposes a novel method for MARL, and we do not think there
would be any direct social impact of it.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the creators or original owners of assets mentioned in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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