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ABSTRACT

Estimating treatment effects from observational data becomes difficult when un-
observed confounders induce spurious associations that bias simple estimators.
Recent generative approaches learn outcome distributions with conditional dif-
fusion models, while some robust representation methods introduce sensitivity
analysis or structural priors. These advances perform well when identification
assumptions are fully satisfied, yet they remain fragile when such assumptions
hold only approximately and they provide few practical diagnostics. We introduce
Generative Counterfactual Manifold Perturbation (GCMP), a unified frame-
work that integrates causal-aware self-supervised learning, conditional diffusion
counterfactual proxy generation, and adaptive variational inference. GCMP con-
tributes three principal innovations: (i) a self-supervised objective that preserves
confounding signals during representation learning; (ii) a conditional diffusion
model that reframes proxy construction as a generative task over rich perturbation
manifolds; (iii) an adaptive regularisation scheme that yields graceful degrada-
tion and calibrated uncertainty when identification assumptions are violated. We
present new identifiability conditions, finite sample error bounds, and diagnostic
tests that quantify manifold quality and effective orthogonality. Extensive experi-
ments on synthetic and semi-synthetic benchmarks show that GCMP consistently
outperforms state-of-the-art methods.

1 INTRODUCTION

Estimating treatment effects from observational data guides decisions in medicine, economics, and
public policy. Randomised trials seldom cover every sub-population, dosage, or combination of
interventions that practitioners face in practice|Spieth et al.|(2020). Analysts therefore turn to obser-
vational studies, where latent confounders may influence both treatment and outcome, breaking the
conditional-independence assumption behind classical estimators. The challenge becomes sharper
when interventions are continuous or multi-label, because one must recover an entire dose—response
surface rather than a single average treatment effect |Hirano & Imbens| (2004). A reliable method
must manage such rich treatments and remain robust when causal assumptions hold only approxi-
mately.

Prior work splits into two main strands. The first uses expressive generative models to approxi-
mate the full counterfactual outcome distribution. DiffPO Ma et al.| (2024)), ID-GEN [Rahman et al.
(2024), CEVAE |Louizos et al.| (2017a), and SCIGAN Joshi & Shah| (2020) capture complex pat-
terns but are sensitive to model misspecification. The second strand targets robustness by learning
representations that attenuate hidden confounding or by bounding effects under sensitivity schemes.
Examples include CausalFM Ma & Feuerriegel (2025), Neural CSA |[Frauen et al.| (2023), Dynamic
Causal Models|Friston et al.[(2003), and proximal frameworks|Miao et al.[(2018)). These approaches
often rely on stringent structural assumptions or deliver only interval estimates. Recent studies on
causal disentanglement and invariant representation learning Zhang & Scholkopf| (2023)); |[Yao &
Bareinboim| (2024) further show that standard self-supervised objectives may discard information
essential for identification.

Despite these advances, the literature still lacks a unified pipeline that (i) remains reliable under
approximate assumptions, (ii) accommodates different treatment types.
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We present GCMP, a coherent framework that re-engineers existing architectural elements and
augments them with novel components tailored to complex treatment settings. Rather than a loose
assemblage, GCMP integrates its modules end-to-end so that improvements in one stage propagate
through the entire pipeline.
1. Causal-aware representation learning. We design a contrastive objective, inspired by
SimCLR |Chen et al.| (2020), that preserves confounding signals while producing low-
dimensional embeddings suitable for causal estimation.

2. Generative proxy modelling. Conditional diffusion sampling constructs proxy perturba-
tions that remain correlated with latent confounders and capture multimodality observed in
real data.

3. Robust estimation with adaptive regularisation. A hierarchical variational estimator
employs an entropy-based robustness penalty, while the gradient-orthogonality term is en-
forced earlier in the diffusion stage.

4. Theory and diagnostics. We establish weaker identification conditions, derive finite-
sample error bounds.

We have fully anonymized our implementation to satisfy double-blind review requirements, and the
anonymized source code is publicly available on Anonymous GitHub: https://anonymous.4open.
science/t/AAAIGCMP-5C41/.

2 RELATED WORK

Early approaches estimate treatment effects by balancing covariates through propensity-score
weighting and matching or by fitting outcome regressions (Rosenbaum & Rubin, 1983} Imbens
& Rubin, 2015). Doubly robust estimators combine both ideas to gain consistency under weaker
assumptions (Bang & Robins, [2005)).

Neural architectures learn balanced feature spaces where conditional outcome models generalise
to counterfactual inputs. Representative methods include TarNet (Johansson et al., |2016), CFRNet
(Shalit et al., 2017), DragonNet (Shi et al., [2019), CEVAE (Louizos et al.,|2017b), and Neural CSA
(Frauen et al.| 2023)). Forest-based (Athey et al.,[2019)) and Bayesian approaches (eg. BART (Hill,
2011a))) provide tree-based alternatives with built-in uncertainty estimates.

GANITE (Yoon et al., 2018)) pioneers adversarial generation of potential outcomes. More recently,
diffusion and score-based models have been explored for counterfactual synthesis, exemplified by
DiffPO (Ma et al., [2024) and generic score generative modelling (Song et al., |2021). Our work
differs by integrating an orthogonality-aware diffusion prior with a causal SSL objective, leading to
stronger identifiability guarantees.

Contrastive SSL methods such as SimCLR (Chen et al.} 2020) yield transferable representations but
may discard confounding information. Invariant risk minimisation (Arjovsky et al.,[2020) promotes
representation stability across environments. GCMP preserves confounders through a preserve loss,
then enforces orthogonality between the outcome gradient and the latent confounder manifold.

3  PROBLEM FORMULATION AND CAUSAL FRAMEWORK

3.1 STRUCTURAL CAUSAL MODEL (SCM)

We observe an i.i.d. sample D = {(X;,T;,Y;)}_; generated by the following SCMs:

U, ~ Py. (Unobserved confounder) (D
Xi = gx (Ui, €x,i)- (Observed covariates) )
T; = gr(Xi, Ui, ery). (Treatment assignment) (3)
Y, = gv (T3, Xi, Ui, evy). (Outcome) 4)

The direct input of T; in gy (-) highlights the causal edge T — Y. However, because the confounder
U, simultaneously influences both the treatment assignment and the outcome, a backdoor path arises
and introduces confounding bias. Accurately modelling or proxying U; is therefore crucial for ob-
taining an unbiased estimate of the treatment effect, which remains the primary goal of this work.


https://anonymous.4open.science/r/AAAIGCMP-5C41/
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3.2 TREATMENT ESTIMATION
Following the potential outcomes framework, we define:

* Continuous Treatment: For 7' € 7 C R, we target the conditional average dose-response

function:
p(t,z) =EY (1) | X = z]. (5
* Multi-Label Treatment: For T € {0,1}¥, we target conditional average treatment ef-
fects:
T(t,t'|2) =E[Y(t) =Y (') | X = z2]. (6)

3.3 IDENTIFICATION STRATEGY: FROM HARD CONSTRAINTS TO SOFT REGULARIZATION

Traditional approaches to hidden confounding often impose hard, unverifiable constraints. We in-
stead derive identification from geometric principles that admit empirical diagnostics.

Assumption 1 (Manifold Concentration). The influence of the unobserved confounder U on the
covariates X is concentrated on a smooth Riemannian submanifold My C R? with dim(My) =
d < p. Formally, X = 7w, (X) + & where waq,, denotes the orthogonal projection onto My and
I€]| is small relative to || aq,, (X)]|-

Assumption 2. The support of the observed covariates lies on, or in a small neighbourhood of, a
smooth manifold M C RP with My C M.

Assumption 3. Let f(X,T) be the structural outcome function. Define the effective orthogonality
measure

. 2
| [Proig i (T 1 D)
IV £ Tl
] Ex(l - pu (X)) <6, ®
where 0 € [0, 1), and exact orthogonality is recovered when 6 = 0.

4 METHODOLOGY

pL(x) = , zeEM (N

Our methodology comprises three carefully designed modules that work synergistically while main-
taining robustness to assumption violations.

4.1 MODULE 1: CAUSAL-AWARE SELF-SUPERVISED REPRESENTATION LEARNING

Standard self-supervised learning (SSL) objectives may inadvertently eliminate variation crucial for
identifying confounding effects. We propose a causal-aware SSL framework that explicitly preserves
confounding signals.

4.1.1 CAUSAL-AWARE CONTRASTIVE LEARNING

Our causal-aware SSL does not assume a known propensity function. Instead, we learn a light-
weight scalar treatment-prediction head g7 (z) on top of the raw covariates and use its outputs only
to softly preserve treatment-relevant variation across augmentations. Concretely, we apply mild
additive noise and per-sample scaling (no masking or feature drop), and define the preservation
term as sim(gr (z™1)), gr(2?)) = exp(—7 (g7(zV) — gr(z?))?). This similarity downweights
representation mismatch when the two augmented views are predicted to have similar treatment. We
therefore adopt a causal-aware objective that preserves confounding-related variation while retaining
invariances that aid generalization.

Let (21, 2(?)) = A(z) be two augmentations of x, ® the encoder. Our loss is

['CA—SSL = »Ccomrasl + )\preserve »Cpreserve + )\diverse »Cdiversev (9)

where
Lorsene = —E | sim(gr (@), gr(=®)) |, (10)
Lgiverse = — logdet(Cov[®(X)]). (11)
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Here Lconirast i @ standard contrastive loss (e.g., SimCLR). The weights Apreserve, Adiverse € R0
control the trade-off and are selected on a validation split via a small grid {0,0.01,0.05,0.1,0.25}
per dataset. Module 1 aims to produce an embedding ®(X) that remains informative about treatment
assignment; it does not on its own model the unobserved confounder U. Handling of U happens in
Module 2 via conditional diffusion.

4.2 MODULE 2: COUNTERFACTUAL CONDITIONAL DIFFUSION FOR COUNTERFACTUAL
PROXY GENERATION

We employ a conditional diffusion model to generate perturbations that serve as proxies for the
unobserved confounder. This generative approach captures complex, potentially multimodal pertur-
bation distributions.

4.2.1 DIFFUSION MODEL ARCHITECTURE

We train a conditional denoising diffusion probabilistic model (DDPM) over perturbations A¢ in
the representation space Z = ®(X). The forward process adds Gaussian noise

Q(Ady | Api—1) = N(V1 =B Ady_y, Bud), t=1,....T. (12)

_ t . . . .
where a; := 1 — 3y and a; := [],_, os. The reverse process is parameterized by a noise-predictor
€, with conditioning vector

¢c = (o(X), T, T), (13)

where T” denotes a target counterfactual treatment level drawn from the set 7”. We use the standard
DDPM parameterization

p'l/)(A(bt—l | A¢t7 C) = N(,Uw(AQSt, ta C)7 0152])7 Mw(A¢t7 ta C) = \/% (A¢t_ \}% Ew(A(bt, ta C)) .

(14)
During training, we condition on (X,T,Y,T"); at test time for a new unit, only (®(X),T") are
required.

4.2.2 CAUSALLY-INFORMED TRAINING OBJECTIVE

Beyond the standard denoising objective, we regularize feasibility and orthogonality to the con-

founder manifold. Let Z = ®(X) and My be a local estimate of the confounder manifold around
Z obtained by neighborhood PCA (details in Appendix). The training loss is

Laitr = Et,e{Hﬁ—Gw(A@J,C)H;} + Af Lreas + AL R, (15)
where
L= Z+ A6 —lg (Z+A00)|5  Ri=|Projy, 5, (Vzfo(Z D) (16)

perturbed point

Here I1 Mo (2) (+) projects onto the local PCA subspace and TZM\ v denotes its tangent space. The
weights Ar, A | € R>q are tuned on a validation split.

4.3 MODULE 3: ROBUST VARIATIONAL INFERENCE WITH UNCERTAINTY QUANTIFICATION

We compress each sampled perturbation A¢ into a one-dimensional proxy via a learned linear pro-
jection; with gradient-orthogonality R, enforced only during diffusion, the subsequent hierarchical
Bayesian Variational Inference (VI) stage adds an entropy bonus to calibrate epistemic uncertainty
without over-constraining the posterior, yielding multi-level uncertainty quantification for the final
effect estimates.
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4.3.1 HIERARCHICAL GENERATIVE MODEL

For each unit ¢ and target ¢’ € T, define a per-target proxy Z,t/ = BTAg¢; . Stack them as
Z; € RI7’I. Our measurement model is

¢i ~N(0, Xy) (latent confounder factor), (17
Yi | Xi, Ti, i ~ N(fo(@(X0), T3) + 1" i, 0%) (outcome model), (18)

Zi | ¢ ~ ./\/(F ¢:, Diag(o% (|| A ||))t,e7_,) (vector of per-t’ proxies), (19)

where T’ € RI7'1%d stacks per-target loadings. We parameterize 0% (1) = softplus(cg + a;72) and
learn (o, o1) jointly with VI, ensuring positivity and giving larger variance to larger-magnitude
perturbations.

4.3.2 VARIATIONAL INFERENCE WITH ROBUSTNESS CONSIDERATIONS

We introduce a flexible variational family ¢(¢;|®(X;),Y;, Z;) = N (¢i|pe,i, Xe.i) to approximate
the true posterior. The Evidence Lower Bound (ELBO) is maximized, and we add an entropy term
to encourage robustness:

Leno = Y (Egllogp(¥i, Zi | )] ~ KL(glp)) + Aew Hla], 20)

i

where H [q| is the entropy of the variational distribution, which encourages the posterior to reflect
uncertainty when evidence is weak. This differs from the original proposal by moving the orthogo-
nality constraint to the diffusion stage, where it more directly regularizes the generation of the proxy
itself, and using entropy regularization in the VI stage to improve uncertainty calibration.

4.4 CROSS-FITTING AND NEYMAN ORTHOGONALIZATION

To ensure robustness on the nuisance parameter estimation errors, we implement a careful cross-
fitting strategy, which can be viewed in Algorithm [I} We adopt K -fold cross-fitting: for each fold
we train fp and the diffusion model on D(~*) and generate {A¢; 1 }ier, only using models not
fitted on I; the final VI then uses the full set of cross-fitted perturbations. Note. The SSL head
gr is used only inside Lpyreserve; its predictions are never used downstream. Downstream Neyman-
orthogonal scores rely on the true (Y, 7') and do not depend on gr. Additional algorithmic details
can be viewed at Appendix due to page limits.

Orthogonal estimating equation used to compute the ATE error. For binary T, we form a
Neyman-orthogonal (doubly-robust) score

Y(W;0,v) = (Y —m(X)) (T — e(X)) — (T — e(X)), (21

Here W = (Y, T, X) collects the observed data, 8 denotes the ATE parameter, and v := (m, e) are
the nuisance functions learned with K -fold cross-fitting using ®(X) as features. For continuous 7',
we use the orthogonalized score of Hirano—-Imbens with cross-fitting.

5 THEORETICAL ANALYSIS

We establish a theoretical framework that covers identification, finite-sample error, and the sensitiv-
ity of our estimator to violations of orthogonality.

5.1 IDENTIFICATION UNDER EXPECTED APPROXIMATE ORTHOGONALITY

Theorem 1 (Identification with Expected Approximate Orthogonality). Assume (I)—@3) hold and
let the learned proxy variable be Z = B TA¢. If

1. Relevance: Cor(Z,U) > p >0,
2. Approx. validity: |Z —E[Z | U, X]||/|1Z| < e,
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Algorithm 1: GCMP with Cross-Fitting

1 Input: Data {(X;, T;, Y3)}7—;, number of folds K, a set of target treatments 7.
2 Train causal-aware self-supervised encoder ¢ on all data.
3 Randomly split indices into K folds Z1, ..., Zxk.
4fork=1,...,Kdo
Let D(—*) be data excluding fold k.

5
6 Train outcome model fg(fk) on D(—F),

7 Train diffusion model pf[k) on D(—F) using ® and féik).
8 for each i € Z;, do

9 for each target treatment t’ € 7 do

10 Sample perturbation A¢; ;1 ~ pifk)(- | ®(X;), Ty, t').
11 end for

12 end for

13 end for

14 Perform final VI using {A¢,; 4/ }7; ¢ o learn the posterior over ¢ and estimate treatment effects.
15 return Estimates of treatment effects (e.g., E[Y (¢')| X;] for t' € T) with uncertainty.

then the average treatment effect is identified up to a bias of order
Bias(7) = O(d¢) , (22)

where § = Ex[1 — py (X)] is the expected orthogonality violation.

Proof Sketch. Expected orthogonality (Assumption [3) implies that the projection of Vx f onto
T, My is attenuated by a factor 4. This in turn bounds the deviation of Z from an ideal proxy by J €.
Decomposing the resulting bias and applying Cauchy—Schwarz yields the claimed rate. Complete
derivations are provided in Appendix due to page limits. O

5.2 FINITE-SAMPLE ERROR ANALYSIS

Theorem 2 (Error Propagation Bounds). Let 7,, denote the GCMP estimator computed from n i.i.d.
samples. Under standard regularity conditions, its {5 error satisfies

||7A'n — 7'||2 < Op(ﬂil/Q) + 0(5) + Op(£SSL Ed,ﬁ'). (23)
where egs1, and e qi are approximation errors of the self-supervised and diffusion modules, respec-

tively. Complete derivations are provided in Appendix due to page limits.

Proof Sketch. Under standard regularity and cross-fitting with a Neyman-orthogonal score, the first-
order Gateaux derivative in the nuisance directions vanishes. A second-order expansion yields

In =7l < Op(n72) + O(8)  +Oy(essr cain). (24)
—— ————
statistical orthogonality bias nuisance

If each nuisance attains essr, = caig = Op(n~'/%), the product term is O, (n~1/2), matching the
root-n rate. The full derivation appears in the Appendix. O

5.3 SENSITIVITY ANALYSIS

Definition 1 (Effective Orthogonality Measure). We work under Assumption 3.
Proposition 1 (Bias-Orthogonality Relationship). Let 5, := Ex|[p) (X)] and 07 := Var(U | X).
Under mild smoothness conditions,

Bias(7) ~ (1—pL)op. (25)
A complete proof is provided in the Appendix.

6 EXPERIMENTS

To evaluate our proposed method, we conduct experiments on a suite of synthetic and semi-synthetic
benchmark dataset. Our synthetic data protocol is designed to systematically probe the model’s
robustness to specific causal challenges, while the benchmark datasets ensure our evaluation reflects
performance on established, realistic data distributions.
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Table 1: Dataset Configurations. We summarize the key parameters for all experimental datasets. For syn-
thetic data, we list the dimensionality of covariates (p) and confounders (dy), and the nature of the treatment
(T'). For benchmarks, we describe their core properties. Abbreviations: Covs. (Covariates), Conf. (Con-
founders), Cont. (Continuous), Sim. (Simulated), C (Continuous), D (Discrete).

Dataset Covs. (p) Treatment (1) Conf. (dy)
Synthetic Datasets (SCM-based)

Single Cont. 50 1D Continuous 3
Single Binary 50 1D Binary 3
Multi-Cont. 50 3D Continuous 3
Multi-Binary 50 3D Multilabel 3
Mixed 50 4D Mixed (2C, 2D) 3
Semi-synthetic Datasets

IHDP 25 1D Binary Sim.

6.1 SYNTHETIC DATA PROTOCOL

We construct a synthetic data-generating process based on a SCM, which embodies a complex,
non-linear generative process with precisely controllable properties. This allows us to assess model
performance as a function of specific data characteristics. The SCM, implemented in our method, is
defined as follows:

* Unobserved Confounder (U): We first sample a dy-dimensional latent confounder from
a standard normal distribution, U ~ N(0, Iy, ). This variable creates a backdoor path
between the treatment and outcome.

* Covariates (X): The confounder U generates the p-dimensional covariates X through a
non-linear mapping, implemented as a two-layer neural network. This embeds the influence
of U within a smooth data manifold M. The generative function is:

X = tanh(UWXO +bxo0) Wx1 +bx1 + €x. (26)

Crucially, we parameterize the weight matrix W; to control the geometric alignment be-
tween the outcome gradient and the confounder manifold’s tangent space, thereby control-
ling the orthogonality violation, 4.

* Treatment (7'): Treatment assignment is a function of both covariates X and the con-
founder U, ensuring that U acts as a true confounder. The function h is adapted to the
treatment modality (e.g., identity for continuous, sigmoid for binary).

T = h(XwT+UbT,eT). (27)

* Outcome (Y): The outcome Y is generated by a complex, non-linear function of X and T,
including quadratic and interaction terms, plus a linear contribution from U. This creates a
challenging, non-trivial response surface for the models to estimate.

Y =XTAX + X"BT+T"CT 4+ XWy + ¢y U + ey. (28)

6.2 SEMI-SYNTHETIC DATASETS

IHDP The Infant Health and Development Program (IHDP) dataset is a canonical semi-synthetic
benchmark for treatment effect estimation [Hill| (2011b)). It is based on Semi-synthetic covariate data
(p = 25) from a randomized trial on premature infants. The treatment is binary (participation in an
intensive high-quality childcare and education program), while the outcomes (cognitive test scores)
are synthetically generated using non-linear functions.

6.3 EVALUATION METRICS

The specific configurations for each of our experimental settings are detailed in Table [I] For our
synthetic experiments, we vary the treatment modality from a single continuous or binary variable
to multi-dimensional and mixed-type treatments, while keeping the covariate and confounder di-
mensions fixed to isolate the effect of treatment complexity. Our chosen benchmark IHDP provides
settings with real covariate distributions and distinct confounding structures.

To ensure a robust and comprehensive evaluation, we assess the performance of all models using
two standard metrics.
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Table 2: A comprehensive comparison of our proposed method (GCMP) with existing baselines across treat-
ment settings and IHDP dataset. Boldface indicates the best result within each setting/dataset.

PEHE ATE Error
Setting / Dataset Method mean =+ std [min, max] mean =+ std [min, max]
GCMP (Proposed) 0.4579 +£0.0852 [0.3171,0.5402] 0.0705+0.0313 [0.0373, 0.1202]
Neural CSA 1.9993 + 0.0247 [1.9656, 2.0538] 1.9781 £ 0.0250  [1.9451,2.0338]
DiffPO 45.1545 + 89.6490 [4.7912,297.8008] 33.9728 4+ 87.1835 [0.1578, 281.1106]

Single Continuous

Regression Adjustment
SM

2.4034 £ 0.0418
4.3166 £+ 0.1780

[2.3428, 2.4733]
[3.9754, 4.4958]

2.1856 £ 0.0385
2.1635 £ 0.0456

[2.1340, 2.2333]
[2.1050, 2.2579]

Single Binary

CausalML 2.3975 £ 0.0449 [2.3383, 2.4743] 2.1910 £0.0419  [2.1393, 2.2599]
IPW 5.1707 £ 0.0808 [5.0642, 5.3327] 5.3328 £0.1481  [5.0992, 5.6546]
GCMP (Proposed) 0.6444 +0.1158 [0.4411,0.7775]  0.0669 £ 0.0443 [0.0005, 0.1306]
Neural CSA 2.0035 £ 0.0358 [1.9296, 2.0628] 1.9790 £ 0.0355  [1.9059, 2.0398]
DiffPO 22.5851 £30.0423 [3.7525,103.9225] 13.9228 £ 28.4647 [0.0906, 96.3835]

Regression Adjustment
PSM

2.2818 £ 0.0466
2.1126 £ 0.0568

[2.1976, 2.3709]
[2.0124, 2.2242]

2.1644 £0.0424
0.5829 £ 0.0361

[2.1030, 2.2312]
[0.5271, 0.6358]

Multi Continuous

CausalML 2.3109 £ 0.0463 [2.2265, 2.4003] 2.1374 £0.0422  [2.0767, 2.2049]
IPW 7.7588 £1.6461  [4.6940, 10.5043]  7.6333 £ 1.5464  [4.5629, 10.2786]
GCMP (Proposed) 0.8448 +0.0949 [0.7191,0.9964] 0.0665 £+ 0.0473 [0.0130, 0.1431]
Neural CSA 8.0637 £ 0.1456 [7.7529, 8.3561] 8.0504 £ 0.1468  [7.7345, 8.3430]
DiffPO 51.4198 £50.7976 [7.8124, 181.3847] 37.0981 £ 55.0703 [0.3543, 190.8284]

Regression Adjustment
SM

2.6624 £ 0.0523
4.5033 £ 0.1650

[2.5713, 2.7534]
[4.1719, 4.7150]

2.4461 £ 0.0470
2.3861 £ 0.0434

[2.3897,2.5119]
[2.3286, 2.4551]

CausalML 2.8393 £ 0.0529 [2.7516, 2.9353] 2.5250 £ 0.0481 [2.4680, 2.5913]
IPW 9.9613 + 1.0781 [8.5399, 11.3115]  9.9623 + 1.1406  [8.4880, 11.4372]
GCMP (Proposed) 1.4971 +0.3282  [1.0861,2.0580] 0.4638 +0.1685 [0.2505, 0.7137]
Neural CSA 5.9774 + 0.1196 [5.7297, 6.1435] 5.9578 £0.1195  [5.7101, 6.1243]
DiffPO 53.2749 £ 70.0162 [9.5145,217.0138] 39.1327 £ 73.8537 [0.2756, 226.3431]
Multi Binary Regression Adjustment  2.8396 + 0.0594 [2.7483, 2.9391] 2.5884 +0.0536  [2.5296, 2.6613]
PSM 4.0813 £+ 0.1621 [3.8020, 4.3395] 1.6800 +0.0415  [1.6297, 1.7561]
CausalML 3.1103 £ 0.0666 [2.9970, 3.2328] 2.8051 £ 0.0609  [2.7434,2.8903]
PW 8.7413 £ 1.5313  [6.1109, 11.8542]  8.8344 + 1.5508  [6.1502, 12.0331]
GCMP (Proposed) 1.8149 +1.8595 [0.4368,5.3266] 1.6169 +1.9744 [0.0797,5.3012]
Neural CSA 11.3796 + 0.1419 [11.1808, 11.7028] 11.3672 4+ 0.1420 [11.1678, 11.6905]
DiffPO 60.3939 £ 78.6681 [9.0750, 294.7202] 43.9205 + 82.9932 [0.3644, 299.6966]
Mixed Regression Adjustment  3.0182 £ 0.0653 [2.8866, 3.1557] 2.6460 +£ 0.0595 [2.5857,2.7315]
PSM 4.0805 £ 0.1758 [3.8161, 4.3744] 1.6897 £ 0.0443  [1.6301, 1.7709]
CausalML 3.2223 £+ 0.0704 [3.1028, 3.3431] 2.7476 £ 0.0644  [2.6833, 2.8333]
PW 9.4027 £1.7704  [6.2013,12.8671]  9.4528 £ 1.7915  [6.2631, 13.0815]
GCMP (Proposed) 1.2339 +0.0294  [1.1966, 1.2634] 1.3082 +0.0323  [1.2633, 1.3512]
NeuralCSA 2.7904 + 0.0875 [2.6688, 2.9476] 0.8469 £ 0.1262  [0.6297, 1.0558]
DiffPO 98.0761 £ 52.6265 [25.2164, 195.6844] 59.0923 £+ 57.5658 [1.2679, 173.0506]
THDP Regression Adjustment  1.4434 £+ 0.0710 [1.3195, 1.5306] 1.0599 +0.1263  [0.8167, 1.2141]

PSM
CausalML
IPW

1.2548 £ 0.0869
1.3645 4 0.0710
21.7978 £ 4.2455

[1.1413, 1.4291]
[1.2253, 1.4743]
[15.2201, 27.6164]

0.1500 £ 0.1402
0.0960 + 0.0798
23.5407 £ 4.5181

[0.0010, 0.4644]
[0.0052, 0.2191]
[16.6755, 29.7528]

* Precision in Estimation of Heterogeneous Effect (PEHE): This metric measures the ac-
curacy of estimating the Conditional Average Treatment Effect (CATE) for each individual
unit [Hill| (2011b). A lower PEHE value indicates a more precise estimation of individual-
level treatment effects. It is defined as:

n

PEHE = % > (Flai) - (@)’

i=1

(29)

where 7(z;) = E[Y;(t1) — Yi(to) | Xi = z;] is the true CATE for unit ¢ and 7(z;) is the
corresponding estimate.

e Absolute Error in Average Treatment Effect (ATE Error): This metric evaluates the
accuracy of estimating the population-level average treatment effect|Shalit et al.| (2017). It
is computed as:

1« 1«
ATEE =|— T(x;) — — i)l -
rror = | — ;T(I ) - ;T(I ) (30)

A lower ATE Error signifies a better estimation of the overall treatment effect.
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7 RESULTS AND DISCUSSION

7.1 BASELINES AND REPOSITORIES

We benchmark our GCMP against the following methods. Implementation code and full experimen-
tal settings are available in the public repositories.

¢ Classical causal inference methods:

— INVERSE PROBABILITY WEIGHTING (IPW) [Seaman & White| (2013))—Balances
treated and control groups by weighting each unit by the inverse of its treatment prob-
ability; propensity-score estimation follows standard practice.

— PROPENSITY SCORE MATCHING (PSM) |Caliendo & Kopeinig| (2008)—Matches
treated and control units on estimated propensity scores using nearest-neighbor match-
ing with bidirectional pairing.

— REGRESSION ADJUSTMENT |Li & Ding| (2020)—Fits separate outcome models for
treated and control groups and computes effects by counterfactual differencing.

e NEURALCSA [Frauen et al.|(2023)—Framework for generalized causal sensitivity analysis
(ICLR 2024); learns conditional outcome distributions and applies constrained optimiza-
tion to bound effects under sensitivity assumptions.

* DIFFPO Ma et al. (2024)—Diffusion-based model for potential-outcome distributions
(NeurIPS 2024) combining a propensity network with conditional diffusion via orthogo-
nal denoising and inverse-propensity weighting.

e CAUSALML—Meta-learner using a single model with treatment indicator to predict out-
comes; individual treatment effects via counterfactual differences.

7.2 EXPERIMENTAL DESIGN

For each dataset we fix hyper-parameters (refer to Appendix due to page limits) and run 10 inde-
pendent trials with random seeds {42, 123,456, 789, 1011, 1314, 1617, 1920, 2223, 2526} for full
reproducibility. Performance is measured by PEHE and ATE Error; lower is better in both cases.

7.3 MAIN RESULTS

Table E]reports mean =+ std and [min, max] across 10 random seeds for both PEHE and ATE Error.
GCMP attains the best mean PEHE on all evaluated tasks and the lowest ATE Error on 5/6 tasks,
with the only exception on IHDP where CausalML yields a slightly lower ATE Error. The standard
deviations are consistently small relative to the gaps to the second best, indicating stability rather
than fluctuation-driven wins. On the IHDP benchmark our margin shrinks, consistent with proxies
being harder to identify under limited overlap and label shift.

Comprehensive Performance Experiments. We also conducted COMPREHENSIVE PER-
FORMANCE EXPERIMENTS to highlight the effectiveness of our proposed algorithm and to
demonstrate the necessity of each component. Due to page limitations, detailed results are provided
in the Appendix.

8 CONCLUSION

We have presented GCMP, a unified framework that couples causal-aware self-supervised repre-
sentation learning, conditional diffusion—based counterfactual proxy generation, and VI. Extensive
experiments on five synthetic scenarios and the semi-synthetic IHDP benchmark show that GCMP
consistently yields the lowest PEHE and the lowest ATE Error in 5 of the 6 tasks. Ablation studies,
sensitivity analyses, and diagnostics also confirm that our method is powerful and robust.

Although GCMP scales well to medium-sized tabular data, further work is needed to extend it to
high-resolution image or sequential health-record domains and to tighten its finite-sample error
constants. Integrating tighter theoretical bounds for the diffusion sampler and exploring domain-
adaptation strategies for cross-population generalisation are promising directions. We have released
our codes, synthetic data generator, and evaluation toolkit to foster transparent evaluation and facil-
itate downstream applications in medicine, economics, and policy analysis.
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A APPENDIX

A.1 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics) and the ICLR 2026
Author Guide recommendations (https://iclr.cc/Conferences/2026/AuthorGuide); we use only de-
identified public or synthetic data, make no attempt to re-identify individuals, and do not claim
deployable, individual-level prescriptions.

A.2 REPRODUCIBILITY STATEMENT

Per the ICLR 2026 Author Guide (https://iclr.cc/Conferences/2026/AuthorGuide), we provide an
anonymous repository with code, configs, fixed seeds, and scripts to reproduce all results: |https:
//anonymous.4open.science/t/AAAIGCMP-5C41/.

A.3 LLM USAGE DISCLOSURE

Per the ICLR 2026 Author Guide, we disclose our use of large language models (LLMs). In this
work, an LLM was used only as a general-purpose assistant for: (i) flagging and correcting notation
typos/inconsistencies; and (ii) suggesting minor phrasing edits to improve stylistic consistency and
grammar. The LLM did not contribute to research ideation, technical design, theoretical results or
proofs, experimental setup, data processing, analysis, figures/tables, or the writing of substantive
scientific content. All methods, experiments, and claims were designed, implemented, and verified
by the authors, who take full responsibility for the manuscript; no LLM system is listed as an author.

A.4 COMPREHENSIVE PERFORMANCE EXPERIMENT

We test GCMP on a synthetic set of 1000 samples with single continuous treatment and report
complementary analyses (Figure I).
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Comprehensive Analysis of GCMP Framework

Ablation Study: Component Impact PEHE vs. Confounder Dimension Computational Scalability
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Figure 1: A comprehensive empirical evaluation of the our method. The top row illustrates the
framework’s internal validity and performance through (left-to-right) an ablation study quantify-
ing the impact of each core component, a robustness check showing performance degradation as
confounder dimensionality increases, and a scalability analysis of runtime versus sample size. The
bottom row provides practical diagnostic assessments of the model’s learned structures, including
(left-to-right) the distribution of the effective orthogonality measure (p ), a scree plot of the prin-
cipal component analysis (PCA) on learned representations, and the corresponding cumulative ex-
plained variance used to determine the manifold’s effective dimension.

Ablation study. Removing the orthogonality regulariser increases PEHE by 90%; dropping the
causal-aware SSL, entropy penalty, and cross-fitting raises it by 65%, 45%, and 8%, respectively
(top-left).

Sensitivity to confounder dimension. PEHE grows smoothly as the latent confounder dimension
rises from 1 to 5, confirming that GCMP is most precise when hidden bias is low-dimensional (top-
centre).

Scalability. Runtime scales sublinearly: increasing the sample size from 500 to 5000 enlarges
runtime from 30 s to 82 s on a single A100 GPU (top-right).

Orthogonality diagnostic. Across all test points, the orthogonality score concentrates near one:
mean = 0.9035, median = 0.9232, with 25"/75%/95" percentiles 0.8665, 0.9580, 0.9848, re-
spectively. Hence 75% of samples exceed 0.87 and the top 5% surpass 0.985, demonstrating strong
gradient-manifold orthogonality.

Manifold quality. Principal component analysis on ®(X) shows that three principal compo-
nents explain 95% of the variance, supporting the low-dimensional manifold assumption (bottom-
centre/right).

A.5 THEORETICAL PROOFS
A.6 PROOF OF THEOREM[I]

We establish identification under approximate orthogonality by showing that the bias introduced by
orthogonality violation is bounded and characterizable.

12
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Lemma 1 (Proxy Quality under Approximate Orthogonality). Let A¢ be a perturbation generated
by our diffusion model. Under Assumption with parameter d, the proxy Z = 3T A¢ satisfies:

1Z —E[Z|U, X]|| <6-C1-[|Ad]l + Cs - egie (31)
where C7, Cy are constants depending on the problem structure, and egi is the diffusion model
approximation error.

Proof. The perturbation A¢ is generated to satisfy f(®(X) 4+ A¢,T') = Y. Decompose A¢ =
A¢\| + A¢, , where A(;SH S T@(X)MU and A¢, L T@(X)MU.

By the approximate orthogonality assumption:

Vo [(R(X),T)T Ady| < 8|VaflllAgy| (32)

The outcome consistency constraint implies:
Y — f(®(X),T") = Va [(2(X),T") A¢ (33)
=Vaf A+ VafTAdy (34)
Since the true confounding effect operates through My, the component A¢ | represents noise.

Under our generative model, Z constructed from A¢ inherits this decomposition, leading to the
stated bound. O

Lemma 2 (Bias Characterization). The bias in the treatment effect estimate is:
Bias() = O(8) - Var(U|X) + O(€oy) (35)

where €proxy 8 the proxy validity error from Lemmam

Proof. The variational inference procedure yields an estimate (,ZAS of the latent confounder. The esti-
mation error propagates through the outcome model:

#— 7 =E[f(X,1) — f(X,1)|X] (0
— 5TE[$ - ¢[X] + 0p(1) &7

The error <Z; — ¢ depends on the proxy quality through the VI posterior. Using the characterization
from Lemma|T]and standard VI analysis completes the proof. O

Combining Lemmas|I|and [J] establishes Theorem [T}

A.7 PROOF OF THEOREM[2|

The error propagation analysis follows the framework of double machine learning with additional
consideration for the representation learning and diffusion modeling stages.

Proof Sketch. The total error decomposes into three main components:

1. Statistical Error: Standard O, (n~'/?) rate from the parametric component.

2. Orthogonality Bias: From Theorem|[l] this contributes O(4).

3. Nuisance Error. With cross-fitting and a Neyman-orthogonal score, nuisance errors enter only
at second order:

Emis = OplessLean) < Opf[|® — %[> + |15y — p ).

In particular, if each nuisance converges at (’)p(n’l/ 4), then Epuis = O, (nil/ 2), without requiring
any faster-than-root-n assumption or stronger Bayesian priors. O

13
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Practical proxies for nuisance errors. We monitor £ggr, := \/ Lontrast + Apreserve Lpreserve ON @
validation split and £gir := /E[|€ — €42 + A Leas + AL R per epoch; early stopping is triggered
when either proxy stops decreasing for 10 epochs. These proxies upper-bound the corresponding
population errors up to constants and are used to choose hyperparameters.

A.8 PROOF OF THEOREMI[I]
We give a complete proof of Proposition || Throughout, let Z = ®(X) and write Pr(Z) :=

Proj Ty Mo for the orthogonal projector onto the tangent space 7z M.

Assumptions. We work under the following mild regularity assumptions:

(A1) Local pushforward of unmeasured confounding. There exists a matrix-valued Jacobian
B(Z) such that for mean-zero unmeasured confounding U with conditional covariance
EU|X = Var(U ‘ X),

7' = Z + B(Z)U + ||U]). (38)

(A2) Neyman-orthogonal score. The ATE estimator 7 is computed from a moment function
that is orthogonal with respect to observable nuisances; the leading sensitivity to unmea-

sured confounding enters only via tangent directions of M.

(A3) Smoothness. For each fixed T', the map Z — fy(Z,T) is differentiable in a neighborhood
of Z with bounded Hessian.

Step 1: First-order outcome perturbation. By (A1) and (A3), the first-order outcome shift at
fixed T" induced by U is

fo(Z',T) — fo(Z,T) ~ Vzfo(Z,T)"B(Z)U. (39)
Let the tangent component of the outcome gradient be
By (A2), the leading sensitivity arises through g;/(Z, T), so
Afo(Z,T;U) = g)(Z.T)" B(Z)U. (41)

Step 2: Conditional second moment and aggregation. Taking the conditional second moment
given X yields

E[(Afo(2,T50))* | X] = (2. 7) B(Z) Suix B(Z) (2.7, (“2)
Using the trace identity v " Av = tr(Avv ") for A = 0,
E[(Afg(z, T U))° ' X} = tr(B(Z) Suix B(2)T 9/(2,T)g(Z, T)T). 43)
By tr(AB) < ||Allt: | Bllop with A = 0and B > 0, we obtain
E[(Afg(Z,T; o)’ ‘ X} < w(B(Z)Suix B(2)T) - ||9y(2,T)|5. (44)
Taking expectation over (X, T') gives
E[(8fs(2,T50))°] < E[t(B(2)Suix B(Z)T)] - E[lgy(2.T)]3) - (45)
Define the effective confounding strength

otz = E[t(B(Z)SyxB(2)")]. (46)

14
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Step 3: Relating g to p, . By the definition of p, (Z,T),

||9H(Z»T)Hz = (1 - pJ—(Za T)) HVZfH(Z7T)’
with the convention that p, (Z,T) = 1if |Vz fe(Z,T)||2 = 0. Let

2
. @7)

M = E[|V2fo(2,T)]3)] - 48)

Then
E[[lg(Z. D3] = Bl = pu(2T) M = (1-p1) M. (49)

Step 4: From local sensitivity to ATE bias. The orthogonal score in (A2) implies that the ATE
estimator aggregates local perturbations with a scale-normalized linear functional, so that to first
order in the magnitude of unmeasured confounding,

| Bias(7)| < \/]E {(A Fo(Z,T; U))Q] (50)

Combining the bounds above yields

| Bias(7)

S Vot (1-p) M. (51

With the usual normalization of the orthogonal moment (or after absorbing the finite constant v/ M
into the comparison scale), this gives the stated bound

|Bias(7)| < (1—pL) 0tz (52)
Tightness under local isotropy. If B(Z) Sy x B(Z) " is locally isotropic so that

2
B(Z)Syx B(2)T = UUT” I (53)

in the tangent neighborhood (or after an appropriate normalization of B), and the orthogonal moment
is scale-normalized so that M = 1, the intermediate inequalities above become equalities up to
lower-order terms, yielding the approximation

Bias(7) =~ (1 — ﬁj_) U%]*)Z. (54)
This completes the proof.
A.9 ADDITIONAL ALGORITHMIC DETAILS
A.9.1 CAUSAL-AWARE SSL IMPLEMENTATION

The causal-aware SSL objective requires careful implementation to balance invariance learning with
preservation of confounding signals.

A.9.2 AUGMENTATION STRATEGY
We design augmentations that preserve treatment-relevant variation:

* Allowed: Small additive noise, mild scaling

* Avoided: Augmentations that could mask confounding patterns

A.9.3 TREATMENT SIMILARITY FUNCTION

For the preservation loss, we use:

sim(gr (), gr (2®)) = exp (~7llgr (@) - gr(@®)?) (55)

where gr is estimated using a separate neural network trained on the treatment prediction task.
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Table 3: Hyperparameters across all scenarios (values chosen from the IHDP tuning grid).

Multi ~ Multi  Single  Single
Parameter IHDP Mixed Bin Cont Bin Cont
model.dropout 0.2091 0.2796 0.1831 0.1017 0.1285 0.1216
model.latent_dim 4 48 32 32 24 8
model.ssl_output_dim 16 128 32 64 64 96
ssLIr 425e-4  50le4 9.30e-3 6.11e-4 1.04e-4  2.29e-4
diffusion_training.Ir 1.05e-4  8.45e-5 5.47e-4  8.29e-5 1.22e-5  2.93e-5
diffusion_training.lambda_orthogonal 0.0844 0.2362 0.0498 0.2543 0.5400 0.4074
vi_training.Ir 2.22e-4  9.04e-4  7.16e-3  6.45e-4  6.71e-3  2.69e-3
vi-training.lambda_entropy 2.26e-3  6.86e-3 1.10e-3  3.88e-3 1.73e-3  4.12e-3
vi_training.weight_decay 7.59¢-5 8.15e-6 1.15e-6 2.06e-5 6.65e-5 5.05e-6
training.n_folds 5 5 5 5 5 5

A.9.4 DIFFUSION MODEL ARCHITECTURE

Network Design We employ a U-Net architecture with the following specifications:

* Input: Concatenation of noisy perturbation A¢,, time embedding, and conditioning vector

c

* Hidden layers: Residual blocks with group normalization and SiLU activations

» Attention: Self-attention layers at multiple resolutions

* Output: Predicted noise ¢,

A.9.5 SAMPLING PROCEDURE

We use Denoising Diffusion Implicit Models for efficiency:

Apr1 = /a1 <

NGH

+ 1-— O_[tfl Ew(A¢t7 t, C)

A.9.6 TANGENT SPACE ESTIMATION

A¢t — \/]. — dt 6¢,(A¢t,t70)>

(56)

The gradient orthogonality regularizer requires estimating the tangent space 7, My of the con-

founder manifold.

A.9.7 LocAL PCA APPROACH
For a point ®(X;):

1. Collect neighboring perturbations: N; = {A¢; : |®(X,) — ®(X;)|| < r}
2. Compute local covariance: C; = ﬁ > JEN: A@Agb;

3. Extract top d eigenvectors as basis for T@( x)Mu

A.9.8 ADAPTIVE BANDWIDTH SELECTION

The neighborhood radius r is selected adaptively:
r; = inf{r : IN;(r)| > kmin}

where kp,in = 10d ensures sufficient samples for stable estimation.

A.10 EXTENDED EXPERIMENTAL DETAILS

To control orthogonality violation, we parameterize:

Wy = (1 —8)Wit +ow]

16
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where W~ ensures orthogonality and VV]LH violates it.

Parameter descriptions:

model.dropout: dropout rate applied to all network layers.

model.latent_dim: dimensionality of the learned latent representation.
model.ssl_output_dim: output dimension of the self-supervised projection head.
ssl.Ir: learning rate for the SSL pre-training phase.

diffusion_training.Ir: learning rate for the diffusion-based perturbation network.
diffusion_training.lambda_orthogonal: coefficient for the orthogonality regularizer in diffusion
training.

vi_training.Ir: learning rate for the variational inference objective.
vi_training.lambda_entropy: weight on the entropy term in the VI loss.
vi_training.weight_decay: ¢ weight decay applied during VI training.
training.n_folds: number of cross-validation folds used for model selection.

The detailed hyperparameters information can be view at Table [3]
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