Under review as a conference paper at ICLR 2024

How DOES MESSAGE PASSING IMPROVE
COLLABORATIVE FILTERING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Collaborative filtering (CF) has exhibited prominent results for recommender
systems and is broadly utilized for real-world applications. A branch of research
enhances CF methods with message passing used in graph neural networks, due to
its strong capabilities of extracting knowledge from graph-structured data, like user-
item bipartite graphs that naturally exist in CF. They assume that message passing
helps CF methods in a manner akin to its benefits for graph-based learning tasks
in general (e.g., node classification). However, whether or not this assumption is
correct still needs verification, even though message passing empirically improves
CF. To address this gap, we formally investigate why message passing helps CF
from multiple perspectives (i.e., information passed from neighbors, additional
gradients for neighbors, and individual improvement gains of subgroups w.r.t. the
node degree) and show that many assumptions made by previous works are not
entirely accurate. With our rigorously designed ablation studies and analyses,
we discover that message passing (i) improves the CF performance primarily by
information passed from neighbors instead of their accompanying gradients and (ii)
usually helps low-degree nodes more than high-degree nodes. Utilizing these novel
findings, we present Test-time Aggregation for Collaborative Filtering , namely
TAG-CF, a test-time augmentation framework that only conducts message passing
once at inference time. It can be used as a plug-and-play module and is effective at
enhancing representations trained by different CF supervision signals. Evaluated
on five datasets, TAG-CF performs on par with or better than trending graph-based
CF methods with less than 1% of their total training time. Furthermore, we show
that test-time aggregation in TAG-CF improves recommendation performance in
similar ways as the training-time aggregation does, demonstrating the legitimacy
of our findings on why message passing improves CF.

1 INTRODUCTION

Recommender systems are essential in improving users’ experiences on web services, such as
product recommendations on e-commerce websites (Wang et al., 2021a; Schafer et al., 1999), video
recommendations from streaming services (Gomez-Uribe & Hunt, 2015; Van den Oord et al., 2013),
friend suggestions by social media platforms (Sankar et al., 2021; Ying et al., 2018), etc. In particular,
recommender systems based on collaborative filtering (CF) have shown superior performance (Rendle
et al., 2009; Wang et al., 2022; Koren et al., 2021). CF methods use preferences for items by users to
predict additional topics or products a user might like (Su & Khoshgoftaar, 2009). These methods
typically learn a unique representation for each user/item and an item is recommended to a user
according to the similarity of their representations (He et al., 2017; Wang et al., 2015).

Recently, one popular line of research explores Graph Neural Networks (GNNs) for CF, exhibiting
improved results compared with CF frameworks without the utilization of graphs (He et al., 2020;
Wang et al., 2019; Yu et al., 2022; Cai et al., 2023). The key mechanism behind GNNs is message
passing, where each node iteratively aggregates information from its direct neighbors in the graph,
and information from neighbors that are multiple hops away can be acquired by stacked convolution
layers (Kipf & Welling, 2016; Velickovic et al., 2017; Hamilton et al., 2017). During the model
training, traditional CF methods directly fetch user/item representations of an observed interaction
(e.g., purchase, friending, click, etc.) and enforce their pair-wise similarity (Rendle et al., 2009). GNN-
enhanced CF methods extend the aforementioned scheme by conducting stacked graph convolutions



Under review as a conference paper at ICLR 2024

over the user-item bipartite graph (Wang et al., 2019). They harness the resultant latent user/item
representations after graph convolutions to calculate pair-wise similarity or affinity.

A recent study (He et al., 2020) shows that removing several significant components of the graph
convolution (e.g., learnable transformation parameters and activation functions) greatly enhances
GNNs’ performance for CF. Its proposed method (LightGCN) achieves promising performance
by linearly aggregating neighbor representations without any transformation, and it has been used
as the de facto backbone model for later graph-based CF methods due to its simple and effective
design (Cai et al., 2023; Yu et al., 2022; Wu et al., 2021). However, this observation contradicts GNN
architectures for classic graph learning tasks, where GNN’s performance without these components
could be severely jeopardized (Oloulade et al., 2021; Wang et al., 2021b). Additionally, existing
research (He et al., 2020; Wang et al., 2019) assumes that the contribution of message passing for
CF is similar to that for graph learning tasks in general (e.g., node classification or link prediction
- they posit that node representations are progressively refined by their neighbor information and
the performance gain is positively proportional to the neighborhood density as measured in node
degrees (Tang et al., 2020). However, according to our empirical studies in Section 3.2, message
passing in CF improves low-degree users more than high-degree users, which also contradicts GNNs’
behaviors for classic tasks (Tang et al., 2020; Hu et al., 2022). In light of these inconsistencies
between the behaviors of message passing for CF and classic graph learning tasks, we ask:

What role does message passing really play for collaborative filtering?

In this work, we investigate contributions brought by message passing for CF from two perspectives.
Firstly, we unroll the formulation of message passing and show that its performance improvement
could either come from the beneficial neighbor information or additional gradient updates to neighbor
representations. With rigorously designed ablation studies, we empirically demonstrate that perfor-
mance gains brought by the beneficial neighbor information dominate those brought by additional
gradient updates. Furthermore, we analyze the performance distribution w.r.t. the user degree (i.e.,
the number of interactions per user) with or without message passing and discover that the message
passing in CF improves low-degree users more compared to high-degree users. For the first time, we
connect this phenomenon to Laplacian matrix learning (Zhu et al., 2021; Dong et al., 2019; 2016), and
show that popular supervision signals (Rendle et al., 2009; Wang et al., 2022) for CF inadvertently
conduct graph convolution in the backward step even without treating the input data as a graph.
Hence, when message passing is applied, high-degree users demonstrate limited improvement, as the
benefit of message passage for high degree nodes has already been captured by the supervision signal.

With the above takeaways, we present Test-time Aggregation for Collaborative Filtering , namely
TAG-CF. Specifically, TAG-CF does not require any message passing during training. Instead, it is
a test-time augmentation framework that only conducts a single message-passing step at inference
time, and effectively enhances representations inferred from different CF supervision signals. The
test-time aggregation is inspired by our first perspective that, within total performance gains brought
by message passing, gains from the beneficial neighbor information dominate those brought by
additional gradient updates. Applying message passing only at test time avoids repetitive queries (i.e.,
once per node and epoch) for representations of surrounding neighbors, which grow exponentially as
the number of layers increases. Moreover, following our second perspective that message passing
helps low-degree nodes more in CF, we further offload the cost of TAG-CF by applying the one-time
message passing only to low-degree nodes. In short, we summarize our contributions as:

* This is the first work that formally investigates why message passing helps collaborative filtering
from multiple perspectives (i.e., information passed from neighbors, additional gradients for
neighbors, and individual improvement gains of subgroups w.r.t. the node degree).

» With our rigorously designed ablation studies and analyses, we demonstrate that message passing
in CF improves the recommendation performance primarily by information passed from neighbors
instead of additional gradients, and it usually helps low-degree nodes more than high-degree nodes.

* Given our findings, we propose TAG-CEF, a test-time aggregation framework effective at enhancing
representations inferred by different CF supervision signals such as BPR and DirectAU. TAG-CF
conducts message passing only once at test time and offers ~4x speedup to baselines already
efficient enough. Evaluated on five datasets, TAG-CF performs at par with or better than SoTA
methods with a fraction of computational overhead (i.e., less than 1.0% of the total training time).



Under review as a conference paper at ICLR 2024

2  PRELIMINARY AND RELATED WORK

Collaborative Filtering. Given a set of users, a set of items, and interactions between users and
items, collaborative filtering (CF) methods aim at learning a unique representation for each user and
item, such that user and item representations can reconstruct all observable interactions (Rendle et al.,
2009; Wang et al., 2022; Koren et al., 2009). CF methods based on matrix factorization directly
utilize the inner product between a pair of user and item representations to infer the existence of their
interaction (Koren et al., 2009; Rendle et al., 2009). Whereas CF methods based on neural predictors
use multi-layer feed-forward neural networks that take user and item representations as inputs and
output prediction results (He et al., 2017; Zhang et al., 2019). Let i and Z denote the user set and
item set respectively, with user u; € U associated with an embedding u; € R? and item i; € U

associated with i; € R?, the similarity s;; between user u; and item 7 is formulated as s;; = ﬁiT -ij.

Graph Neural Networks. Graph neural networks (GNNs) are powerful learning frameworks to
extract representative information from graphs (Kipf & Welling, 2016; Velickovi¢ et al., 2017;
Hamilton et al., 2017; Xu et al., 2018b). They aim at mapping each input node into low-dimensional
vectors, which can be utilized to conduct either graph-level (Xu et al., 2018a) or node-level tasks (Kipf
& Welling, 2016). Most GNNs explore layer-wise message passing (Gilmer et al., 2017), where
each node iteratively extracts information from its first-order neighbors, and information from multi-
hop neighbors can be captured by stacked layers. Given a graph G = (V, ) and node features
X e RIVI*? graph convolution (Kipf & Welling, 2016) at k-th layer is formulated as:

Mwm), (1)

1
B = o h!
jej\%;‘)ui INGIVING)

where h{ = x;, /(i) refers to the set of direct neighbors of node i, and W) ¢ RE %4 refers
to parameters at the k-th layer transforming the node representation from d* to d*+1) dimension.

Recent works (Ma et al., 2022; 2021) have shown that GNNs make predictions based on the dis-
tribution of node neighborhoods. And GNN’s performance improvement for high-degree nodes
better than that for low-degree nodes (Tang et al., 2020; Hu et al., 2022). They posit that node
representations are progressively refined by their neighbor information and the performance gain is
positively proportional to the neighborhood density as measured in node degrees.

Message Passing for Collaborative Filtering. Recent research tends to apply the message passing
scheme in GNNs to CF (He et al., 2020; Wang et al., 2019; Pal et al., 2020). In CF, they mostly
conduct message passing between user-item bipartite graphs and utilize the resultant representations
to calculate user-item similarities. For instance, NGCF (Wang et al., 2019) directly migrates the
message passing scheme in GNNs (similar to Equation (1)) and applies it to bipartite graphs in CF.
LightGCN (He et al., 2020) simplifies NGCF (Wang et al., 2019) by removing certain components
(i.e., the self-loop, learning parameters for graph convolution, and activation functions) and further
improves the recommendation performance compared with NGCF. The simplified parameter-less
message passing in LightGCN can be simply formatted as:

(k) 1 (k=1) (k) 1 (k—1)
u;, = E —1, , L= E , u 7, (2
i;EN (uy) |N(u2)| |N<7’J)‘ ! u; EN (i5) |N(’Ll)‘ |N(’U’J)‘ !

where N () refers to the set of items or users that the input interacts with, ugo) = u;, and igo) =i

With K layers, the final user/item representations and their similarities are constructed as:

K

i 1 c 1, R
W= g wt b=y 2 s = 3)
k=0 k=0

According to results reported in LightGCN and NGCF (He et al., 2020; Wang et al., 2019) and
empirical studies we provide in this work (i.e., Table 2 and Table 5), incorporating message passing
to CF methods without graphs (i.e., matrix factorization methods (Rendle et al., 2009; He et al.,
2017)) can improve the recommendation performance by up to 20%. Utilizing LightGCN as the
backbone model, later works try to further improve the performance by incorporating self-supervised
learning signals (Lin et al., 2022; Yu et al., 2022; Cai et al., 2023). Graph-based CF methods assume
that the contribution of message passing for CF is similar to that for graph learning tasks in general



Under review as a conference paper at ICLR 2024

(e.g., node classification or link prediction). However, whether or not this assumption is correct still
needs verification, even though message passing empirically improves CF. There also exists a branch
of research that aims at accelerating or simplifying message passing in CF by adding graph-based
regularization terms during the training (Shen et al., 2021; Mao et al., 2021; Peng et al., 2022). While
promising, they still repetitively query representations of adjacent nodes during the training.

3 How DOES MESSAGE PASSING IMPROVE COLLABORATIVE FILTERING?

In this section, we demonstrate the reason behind why message passing helps collaborative filtering
from two major perspectives. The first one focuses on inductive biases brought by the message
passing explored in LightGCN, the de facto backbone model for graph-based CF methods. Whereas
the second perspective focuses on the performance improvement on different node subgroups w.r.t.
the node degree with and without message passing.

3.1 NEIGHBOR INFORMATION VS. ACCOMPANY GRADIENTS FROM MESSAGE PASSING

Following the definition in Equation (2), given a one-layer Light GCN', we unroll the calculation of
the similarity s;; between any user u; and item 7 as the following:

Sij = (ui +

1 \T (. 1 u
N ) J\Nw,-,)wwun)\‘”) (s > L VINGHIYIN ()] ")

Un €N (%5

T. i 1 ul -u ! ip -
W J+< 2 VINGHVIN ()] ">+( 2 VIN (i) [/IN (in)] " j)+

un €N (i) in €N (u;)

“

1
_ - ir - un>.
;()XN:() VIR N @) IN Gy N )]
With derived similarities between user-item pairs, their corresponding representations can be updated
by objectives (e.g., BPR (Rendle et al., 2009) and DirectAU (Wang et al., 2022)) that enforce the
pair-wise similarity between representations of user-item pairs in the training data.

CF methods without the utilization of graphs directly calculate the similarity between user and item
representations with their own representations (i.e., s;; = u] - i;), which aligns with the first term in
Equation (4). Comparing it with the formulation in Equation (4), three additional similarity terms
are introduced as inductive biases: similarities between users who purchase the same item (i.e.,
uiT - uy,), between items that share the same buyer (i.e., il -i;), and between neighbors of an observed
interaction (i.e., il - u,,). With these three additional terms from message passing, we reason that the
performance improvement brought by message passing to CF methods without graph could come
from (i) additional neighbor information (i.e., three extra terms in Equation (4)) positively correlated
with user/item interactions, or (ii) additional gradient updates to correlated representations.

To investigate the origin of the perfoirmance im- Table 1: Performance of LightGCN variants.
provement brought by message passing, we de-

. ; . Method | Yelp-2018 Gowalla Amazon-book
signed two variants of LightGCN. The first one NDCG@20
(LightGCNy/o neigh. info) shares the same forward LightGCN 636 9.88 8.13
. . wlo grad. 6.16 3.1%))  9.87 (0.1%))  7.80 (4.1%])
and b?lc!(ward procedures as nghtGCN durling wlo neigh. info | 4.71(25.9%])  6.95(29.7%))  6.95 (14.5%])
the training but does not conduct message passing wioboth | 6.09 42%|) 983 (05%l)  7.75 (4.7%)
during the test time. In this variant, additional gra- Recall @20
: : : : LightGCN 11.21 18.53 12.97
dients brought by message passing are mamtan}ed Sogmad. | 1087 (3.0%)) 1851 @1%)) 1281 (12%))
as part of the resulting model, but information w/o neigh. info | 8.44 24.7%|) 13.06 (29.5%) 1125 (133%])
) . foboth | 10.71 (4.5%)) 1842 (0.6%)) 12.57 (3.1%
from neighbors are ablated. In the second variant o @D Q0% GI%D

(LightGCNyyo grad.), the model shares the same forward pass but drops gradients for these three
additional terms during the backward propagation. Besides these two variants, we also experiment on
LightGCN without message passing, denoted as LightGCNy, poth, @ matrix factorization model with
the same supervision signal (i.e., BPR). Implementation details are in Appendix G.

'For the simplicity of the notation, we showcase our observation with only one layer. However, since
LightGCN is fully linear, the phenomenon we show also applies to variants with arbitrary layers.



Under review as a conference paper at ICLR 2024

(a) Gowalla (b) Yelp-2018
- 01 ZZ3# of Users 5000 o 006 ZZ# of Users 5000
& 0095 ——MF 4000 3 N goss —o—MF
) : 4000
® o009 ——LightGCN o ® —a—LightGCN
3000 = 0.05 g ]
O o085 c 00045 3000 2,
2 oos 000 g Q0 2000 &
2 @ A oo @
Z o075 1000 7} Z @
i ; ; y v 0.035 ﬂ E 1000 7}
e ————; 0 00y AUAMEH Aldnealionntbnatnn ,
101112131415161718192021222324252627282932 B
3 8910 314151617181920 32425262728293 3 1617181920212223242526 2728 293031323334 364044
=) =
- ® zz# of Users 5000 4 T 40 £z2# of Users 5000 4
=1 20 —m—Relative Improvement (%) 4000 © (=1 —a—Relative Improvement (%) 4000 ©
15} S © 30 =N
g 15 00 = § 3000
54 z O 2 z
2 10 2000 @ 2 2000 &
—- w —- 10 w2
ST E a E 1000 S E a 1000
= zha = 4]
E AhldnlAnntnnan n o g AhAfanelonnln Am o
8 9101112131415161718192021222324252627282932 16171819202122 23242526 272829303132 3334364044
# of Interactions (User Degree) # of Interactions (User Degree)

Figure 1: Performances of LightGCN and Matrix Factorization w.r.t. the user degree across datasets.
The performance improvement brought by message passing decreases as the user degree goes up.

From Table 1, we observe that the performance of all variants is downgraded compared with Light-
GCN, with a significant degradation on LightGCNyyq neigh. info- This phenomenon indicates that (i)
both neighbor information and additional gradients brought by message passing help the recommenda-
tion performance, and (ii) within total performance gains brought by message passing, gains from the
beneficial neighbor information dominate those brought by additional gradient updates. Comparing
LightGCN with LightGCNyyo graq., We notice that the incorporation of gradient updates brought by
message passing is relatively incremental (i.e., ~2%). However, to facilitate these additional gradient
updates for slightly better performance, LightGCN is required to conduct message passing at each
batch, which brings tremendous additional computational overhead.

3.2 MESSAGE PASSING IN CF HELPS LOW-DEGREE USERS MORE

Recent works (Tang et al., 2020; Hu et al., 2022; Liu et al., 2021) show that the performance
improvement brought by GNNss is positively correlated to the number of neighbors of the nodes in
question. Both empirical and theoretical evidence have demonstrated that GNNs usually perform
satisfactorily on high-degree nodes with rich neighbor information but not as well on low-degree
nodes. While designing graph-based model architectures for CF, most existing methods directly
borrow this line of observations (Wang et al., 2019; He et al., 2020) and assume that the contribution
of message passing for CF is similar to that for graph learning tasks in general. However, whether
or not these observations still transfer to message passing in CF remains questionable, as there
exist architectural and philosophical gaps between message passing for CF and its counterparts for
GNN:gs, as discussed in Section 2. For instance, training signals for node classification usually come
from labels agnostic of the graph structure; whereas the training signal for CF directly utilizes links
between users and items to learn their representations. To validate these hypotheses, we conduct
experiments over representative methods (i.e., LightGCN and matrix factorization (MF) trained with
BPR) and show their performance w.r.t. the node degree in Figure 1.

We observe that, overall both MF and LightGCN perform better on high-degree users than low-degree
users. According to the upper two figures in Figure 1, MF behaves similarly to LightGCN, even
without treating the input data as graphs, where the overall performance for high-degree user is
stronger than that for low-degree users. However, the performance improvement of LightGCN from
MF on low-degree users is larger than that for high-degree users (i.e., lower two figures in Figure 1).
According to literature in general graph learning tasks (Hu et al., 2022; Liu et al., 2021; Tang et al.,
2020), the performance improvement should be positively proportional to the node degree - the gain
for high-degree users should be higher than that for low-degree users. This discrepancy indicates
that it might not be appropriate to accredit contributions of message passing in CF directly through
ideologies designed for classic graph learning tasks (e.g., node classification and link prediction).

To bridge this gap, we connect supervision signals (i.e., BPR and DirectAU) commonly adopted
by CF methods to Laplacian matrix learning. The formulation of BPR (Rendle et al., 2009) and



Under review as a conference paper at ICLR 2024

DirectAU (Wang et al., 2022) without the incorporation of graphs can be written as:

Lepr = — Z Z logo(sij — sik) = — Z Z logo(u] -ij —u] -i) (5

(,5)€D (4,k)¢D (i,5)€D (i,k)¢D
EDireCtAU — Z Huz _ inQ + Z log ef2||u7u’||2 i Z log 672Hi71’H27 (6)
(i,j)€D u,u’ €U i’ €T

where D refers to the set of observed interactions at the training phase and i’ and u’ refers to any
random user/item. According to works on Laplacian matrix learning (Zhu et al., 2021; Dong et al.,
2019; Ma et al., 2021), learning node representations over graphs can be decoupled into Laplacian
quadratic form, a weighted summation of two sub-goals:

min{||Z - X||* + u(ZTLZ)}, @)

where Z refers to the node representation matrix after the message passing, X refers to the input
feature matrix, and L refers to the Laplacian matrix. The first term regularizes the latent representation
such that it does not diverge too much from the input feature; whereas the second term promotes the
similarity between latent representations of adjacent nodes, which can be re-written as: tr(Z7-L-Z) =
>(ijep llw — iy |2 in CF bipartite graphs. Zhu et al. (2021) show that K layers of linear message
passing exactly optimizes the second term in Equation (7). Given this theoretical foundation, we
derive the following theorem w.r.t. relations between BPR, DirectAU, and message passing in CF:

Theorem 1. Assuming that ||w;||> = ||ij||> = 1 for any u; € U and I; € I, objectives of
BPR and DirectAU are strictly upper-bounded by the objective of message passing (i.e., Lgpg <
Y jen | =112 and Lo < 3 jep |l = 1]1%):

Proof of Theorem 1 can be found in Appendix A. According to Theorem 1, both BPR and DirectAU
optimize the objective of message passing (i.e., > ; jep |0 —1j] |2) with some additional regulariza-
tion (i.e., dissimilarity between non-existing user/item pairs for BPR, and representation uniformity
for DirectAU). Hence, directly optimizing these two objectives partially fulfills the effects brought by
message passing during the back-propagation. Combining this theoretical relation with the afore-
mentioned empirical observations, we show that these two supervision signals could inadvertently
conduct message passing in the backward step, even without explicitly treating interaction data as
graphs. Since this inadvertent message passing happens during the back-propagation, its performance
is positively correlated to the amount of training signals a user/item can get. In the case of CF, the
amount of training signals for a user is directly proportional to the node degree. High-degree active
users naturally benefit more from the inadvertent message passing from objective functions, because
they acquire more training signals from the objective function. Hence, when explicit message passing
is applied to CF methods, the performance gain for high-degree users is less significant than that for
low-degree users. Because the contribution of the message passing over high-degree nodes has been
mostly fulfilled by the inadvertent message passing during the training.

To quantitatively prove this line of theory, we incrementally upsample low-degree training examples
and observe the performance improvement that TAG-CF could introduce at each upsampling rate. If
our line of theory is correct, then we should expect less performance improvement on low-degree
users for a larger upsampling rate. The results are shown in Appendix H.1 with supporting evidence.

4 TEST-TIME AGGREGATION FOR COLLABORATIVE FILTERING

In Section 3, we demonstrate why message passing helps CF from two perspectives. Firstly, w.r.t. the
formulation of LightGCN, we observe that the performance gain brought by neighbor information
dominates that brought by additional gradients. Secondly, w.r.t. the improvement on user subgroups,
we learn that message passing helps low-degree users more, compared with high-degree users.

In light of these two takeaways, we present Test-time Aggregation for Collaborative Filtering,
namely TAG-CF, a test-time augmentation framework that only conducts message passing once
at inference time and is effective at enhancing matrix factorization methods trained by different CF
supervision signals. Given a set of well-trained user/item representations, TAG-CF simply aggregates
neighboring item (user) representations for a given user (item) at test time. Despite its simplicity,



Under review as a conference paper at ICLR 2024

we show that our proposal can be used as a plug-and-play module and is effective at enhancing
representations trained by different CF supervision signals.

The test-time aggregation is inspired by our first perspective that, within total performance gains
brought by message passing, gains from the neighbor information dominate those brought by addi-
tional gradient updates. Applying message passing only at test time avoids repetitive training-time
queries (i.e., once per node and epoch) of surrounding neighbors, which grow exponentially as the
number of layers increases by the neighbor explosion phenomenon (Guo et al., 2023; Zhang et al.,
2021; Zeng et al., 2021). Specifically, given a set of well-trained user and item representations
U € RUIxd and T € RIZI*4 TAG-CF augments representations for user u; and item i, as:

wi=wt Y IN)MING)" i = Y NG N )" uy, ()
i;EN(u;) u; EN(i;)

where m and n are two hyper-parameters that control the normalization of message passing. With
m=n= —%, Equation (8) becomes the exact formulation of one-layer LightGCN (i.e., Equation (2)).
Empirically, we observe that the setup withm =n = f% for TAG-CF does not always work for all
datasets. This setup (i.e., m =n = —%) is directly migrated from message passing for homogeneous
graphs (Kipf & Welling, 2016), which might not be applicable for bipartite graphs where all neighbors
are heterogeneous (Dasoulas et al., 2021). Unlike LightGCN which can fill this gap by adaptively
tuning all representations during the training time, TAG-CF cannot update any parameters since it is
applied at test time, and hence requires tune-able normalization hyper-parameters.

Moreover, following our second perspective that message passing helps low-degree nodes more in CF,
we further derive TAG-CF, which reduces the cost of TAG-CF by applying the one-time message
passing only to low-degree nodes with sparse neighborhoods. Focusing on only low-degree nodes has
two benefits: (i) it reduces the number of nodes that TAG-CF™ needs to attend to, and (ii) message
passing for low-degree nodes is naturally cheaper than for high-degree nodes given the surrounding
neighborhoods are sparser (mitigating neighbor explosion). The degree threshold that determines
which nodes to apply TAG-CFT is selected by validation performance, with details in Appendix F.

Leveraging our novel takeaways, TAG-CF can effectively enhance MF methods by conducting
message passing only once at test time. It is extremely flexible, simple to implement, and enjoys the
performance benefits of graph-based CF method while paying the lowest overall scalability.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effectiveness and efficiency of
TAG-CF. Specifically, we aim to answer the following research questions: RQ (1): how effective
is TAG-CF at improving MF methods without using graphs, RQ (2): how much computational
overhead does TAG-CF introduce, RQ (3): can TAG-CF effectively enhance MF methods trained
by different objectives, RQ (4): how effective is TAG-CF™ w.r.t. different degree cutoffs, and RQ
(5): do behaviors of TAG-CF align with our findings in Section 3?

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct comprehensive experiments on four commonly used benchmark datasets,
including Amazon-book, Anime, Gowalla, and Yelp2018. Additionally, we also evaluate on a
large-scale internal production user-item recommendation dataset Internal. These datasets cover
different domains and dimensions to fully evaluate all models.

Baselines. We compare TAG-CF with two branches of methods: (1) CF methods that do not utilize
graphs, including vanilla matrix factorization (MF) methods trained by BPR and DirectAU (Rendle
etal., 2009; Wang et al., 2022), and Efficient Neural Matrix Factorization (Chen et al., 2020) (denoted
as ENMF). (2) Graph-based CF methods, including LightGCN (He et al., 2020) and NGCF (Wang
etal., 2019). Besides, we also compare with other graph-based CF methods that extend Light GCN
by adding additional self-supervised signals for better performance, including LightGCL (Cai et al.,
2023), SimGCL (Yu et al., 2022), and SGL (Wu et al., 2021).

Due to space limits, we include comprehensive discussions about dataset details, evaluation protocols,
hyper-parameters, and other implementation details in Appendices B to E.



Under review as a conference paper at ICLR 2024

Table 2: Performance and running time of all models. The lower percentile indicates the set of nodes
whose degrees are ranked in the lower 30% population. Bold and underline indicate the best and
second best model respectively. LightGCN and MF are trained with DirectAU (Wang et al., 2022).

Method | NGCF LightGCN | ENMF +TAG-CF  Impr. (1) | MF +TAG-CF  Impr. (1%)
NDCG @20 — LOW-DEGREE USERS (LOWER PERCENTILE)
Amazon-Book 5.3240.08 8.0910.10 5.3340.02 5.67+0.03 6.4% 8.0240.07 8.26.0.06 3.0%
Anime 20~13:EO,18 27.7810,21 22.2310_19 22.5810415 1.6% 23.9510407 27. 1510_04 13.4%
Gowalla 8.46i0_06 10.08i0_13 3.87i0_15 4‘0810_11 5.4% 10~00i0.08 10'19i0.04 1.9%
Yelp-2018 4.87+0.06  6.10+0.09 3114007  3.2640.04 4.8% 6.0840.08  6.184+0.05 1.7%
Internal 5491i0,07 8.12i0.03 OOM - - 6479i0404 8-52i0.06 25.5%
NDCG @20 — OVERALL
Amazon-Book 6.97 1011 8.0640.11 6.1310.13 6.54_10.09 6.7% 8.0140.03 8.13. .03 1.5%
Anime 22~54i0.25 27'97i0.21 30. 17i0.09 30.86i0_12 2.3% 24~01i0.06 27-25i0.03 9.8%
Gowalla 8.6510_1() 9.96i0.11 5~23i0.04 5~29i0.05 1.1% 97710.08 9.88i0,04 1.1%
Yelp72018 5‘54i0.06 @i0,0G 3.793:(],(]9 3‘893:0.05 2.6% 6‘25i[)‘[)(; 6.36;{:0‘03 1.8%
Internal 6-94i0,06 S.IOi0.0G OOM - - 7-04i0,02 8.54i0.02 21.3%
RECALL@20 — LOW-DEGREE USERS (LOWER PERCENTILE)
Amazon-Book | 10.7149.14 13.184¢.17 | 10421016 11.0840.11 6.3% 13.0710.09 13.3710.10 2.3%
Anime 25741035 32.743:(]‘21 37141059 38411053 3.4% 29.0840.09 31.94.:0.05 9.8%
Gowalla 17453i0,32 19. 14i0.20 8-73i0.08 9-01i0,06 3.2% 18492i0,1g 19-17i0.13 1.3%
Yelp-2018 10.1540.13 10.7540.14 | 7.17+0.06 7.54410.12 5.2% 10.6310.13 1098 14 3.3%
Internal 10.5410.00 13.8140.02 OOM - - 11.1310.05 1397 10.06 25.5%
RECALL@20 — OVERALL
Amazon-Book | 10304021 12.7640.18 | 10.8940.18 11.3540.09 4.2% 12.67+0.06 12.97+0.06 2.4%
Anime 28-12:(:022 32‘82i0,21 34"10i0.25 34*48:(:023 1.1% 29.15:{:()‘[)9 31.95i0,05 6.9%
Gowalla 17~93:EO,06 18.65:&0.14 9.68*0.05 9.74:&0'09 0.6% 18.30:&0417 18.53i0.11 1.3%

Yelp—2018 10-0210.06 10.98i0_10 6.89i0_09 7~05i0.03 2.3% 10.8110_]0 11.21i0_09 3.7%
Internal 6.9110.04 13.8910.06 OOM - - 11.8310.02 1441008 21.8%

Table 3: The total running time (1 x 103 seconds) for MF methods and TAG-CF. Time % is the
percentage of running time TAG-CF takes w.r.t. the time for corresponding MF methods. Speed?
refers to the ratio of running times between training-time aggregation (i.e., LightGCN) and TAG-CF.
All training steps are timed and terminated by an early stopping strategy (see Appendix E).

Method | Sparsity | ENMF  +TAG-CF  Time % | LightGCN ~ MF  +TAG-CF Time % Speed?
Anime 99.13% 12.31 +0.04 0.3% 138.85 34.12 +0.04 0.3% 4.06x
Yelp-2018 99.87% 2.15 +0.02 0.9% 5.81 3.17 +0.02 0.6% 1.83x
Gowalla 99.91% 4.56 +0.02 0.4% 13.27 7.74 +0.02 0.3% 1.72x
Amazon-Book | 99.94% 11.54 +0.03 0.3% 46.62 29.21 +0.03 0.1% 1.59x%
Internal 99.99% | OOM - - 47.32 32.62 +0.09 0.3% 1.44x

5.2 PERFORMANCE IMPROVEMENT TO MATRIX FACTORIZATION METHODS

For RQ (1), Table 2 shows the performances of MF methods (MF and ENMF) as well as that of the
performances of them with TAG-CF applied on their learned representations. We observe that TAG-
CF unanimously improves the recommendation performance for both of them. Specifically, across
all datasets, TAG-CF on average improves the low-degree NDCG @20 by 4.6% and 9.1% and overall
NDCG by 3.2% and 7.1% for ENMF and MF, respectively. We also observe a similar performance
improvement for Recall@20, where TAG-CF on average improves the low-degree Recall @20 by
4.5% and 8.4% and overall Recall@20 by 2.1% and 7.2% for ENMF and MF, respectively.

By comparing the performance gains brought by TAG-CF on low-degree users with that on all users,
we notice that gains for low-degree users are usually higher. Hence, message passing in CF helps
low-degree users more than for high-degree users. To answer RQ (5), the behavior of TAG-CF
aligns with our second perspective in Section 3.2 that the supervision signal inadvertently conducts
message passing. Consequently, the room for improvement on high-degree users could be limited, as
part of the contributions from message passing has already been claimed by the supervision signal.

5.3 PERFORMANCE COMPARISON AMONG GRAPH-BASED METHODS

Comparing TAG-CF with LightGCN in Table 2, we can notice that TAG-CF mostly performs on
par with and sometimes even outperforms LightGCN, without incorporating message passing during
the training and only conducting test-time aggregation. This phenomenon indicates that conducting
neighbor aggregation at the testing time can recover most of the contributions of training-time



Under review as a conference paper at ICLR 2024

Table 4: The running time and performance of ~ Table 5: Performance of TAG-CF when applied
graph-based CF methods that extend LightGCN.  to models trained with BPR loss.

Method |  SGL SimGCL  LightGCL _ TAG-CF Method | LightGCN  MF TAG-CF _ Impr. (%)
NDCG @20 — OVERALL NDCG @20 — LOW-DEGREE USERS (LOWER PERCENTILE)
Ani 30.02 29.361023 30.56 4.1%
Anime 27.024005 30481012 28341016 272541003 vome 02007 36502 30600 1%
elp -440.07 -05+0.15 -0lt0.18 V7%
Yelp 5671001 5991000 4931006  6.3610.03 Gowalla | 8224003 7561014  7.884015 42%
Gowalla 9.67+0.17 1032006 8.994+0.13 9.8810.04 Book 5191014 419014 4.6810.14 11.7%
Book 6.691002 7024005 5834008  8-13:0.03 - -
Avg. Rank 32 1.7 35 1.2 NDCG@20 — OVERALL
RECALL@20 — OVERALL Anime 30.1440.07  29.514021  30.2340.6 2.4%
Yelp 4.8710.06 3.9640.14 4264017 7.6%
Anime 31.2940.09 34934014 33.641022 31.9510.05 Gowalla | 8324003 7.5li0a2 7994014 6.4%
Yelp 10.0140.08 10564013  8.8310014  11.2140.09 Book 5071015 4151013 43210413 4.1%
Gowalla | 18184021 19224000 16994010 18.5350.00 -
Book 15000 11515000 100610005 12972006 RECALL@20 — LOW-DEGREE USERS (LOWER PERCENTILE)
Avg. Rank 32 1.5 35 1.7 Anime 34231008 34.8lios2 35424035 1.8%
Yelp 8191020 6931026 7.2510.10 4.6%
RUNNING TIME (1 x 10* SECOND) Gowalla | 16175010 14861005 1533109:  32%
Anime 69.48 87.77 97.31 34.15 Book 8811026 7451022  8.0510.15 8.1%
Yelp 3.94 9.72 4.30 3.19 RECALL@20 — OVERALL
Gowalla | 932 2.11 11.10 7.76 Anime | 3421008 3484100 352310s1  L1%
Book 63.21 71.39 38.87 29.24
Avg. Rank 22 38 3.0 1.0 Yelp 83341030 7271027  7.621022 4.8%
. . . . § Gowalla | 15.694007 144710023 14924095 3.1%
Total Rank ‘ 3.6 2.8 3.9 1.9 Book 8.65+10.24 7.3540.22 7.64.10.20 3.9%

message passing. To answer RQ (5), TAG-CF aligns with our first perspective in Section 3.1 that the
performance gain from beneficial neighbor information dominates their accompanying gradients.

We further compare TAG-CF with state-of-the-art graph-based CF methods, with their performance
and efficiency shown in Table 4. Among these performant baselines, TAG-CF exhibits competitive
performance, with an average rank of 1.2 on NDCG and 1.7 on Recall. Though not always the model
that delivers the best performance, TAG-CF can deliver comparably promising results and introduces
little computational overheads (i.e., ranked 1.0 for running time). Considering efficiency as one factor,
TAG-CF achieves the best performance across all baselines and datasets with an average rank of 1.9.

While performing on par with graph-based CF methods that aggregate neighbor contents at the
training time, TAG-CF enjoys the performance benefits of message passing while paying the lowest
overall scalability. To answer RQ (2), according to Table 3, across all datasets, TAG-CF only
introduces an average additional computational overhead of 0.05 x 10% seconds, which is less
than 0.5% of the total training time for matrix factorization methods. Comparing the running time
of LightGCN with that of TAG-CF, we can observe that the latter can significantly improve the
computational time, and the speedup is proportional to the sparsity of the dataset.

5.4 EFFECTIVENESS FOR DIFFERENT TRAINING SIGNALS

To answer RQ (3), besides DirectAU, we also conduct experiments on BPR loss, as shown in Table 5.
When applied to BPR, TAG-CEF still consistently improves the performance by large margins (i.e.,
6.3% and 5.1% average improvement on low-degree and overall NDCG respectively, and 4.4% and
3.2% on low-degree and overall Recall respectively). We notice that TAG-CF sometimes does not
perform as competitively as LightGCN when both are trained with BPR. We check norms of learned
representations from MF with BPR and discover that they have high variance since BPR does not
explicitly enforce any regularization. This might not favor TAG-CF as a test-time augmentation
method due to its simple design, which cannot adapt representations with high variance.

5.5 PERFORMANCE W.R.T. USER DEGREE &« . Amazon-Book 2, Yelp=2018 7

S w0 0 B
To answer RQ (4), we apply TAG-CF™ to four % 0] ] - L H =e=REImor.(4) 2
public datasets and the performance and the ef- & — e S
ficiency improvement are demonstrated in Fig- lel '050;10;1 i : oo A:;m ew v
ure 2. Overall, the running time improvement & “ ‘;‘Z
brought by TAG-CF™ exponentially increases £ '”} TN S \\ s -1
as the degree decreases, since low-degree users 5 ’ el e o] 50 20 port o 6 B
have sparse neighborhoods and there is hence = " w w w ~ w0 0 e w 0’ E

User Degree User Degree

less information for TAG-CF™ to aggregation.
When the degree cutoff is low (i.e., less than Figure 2: The performance and efficiency improve-
100), the effectiveness of TAG-CF* propor- ment of TAG-CF* w.r.t. different cutoffs.

tional increases as the degree cutoff increases.



Under review as a conference paper at ICLR 2024

When setting the cutoff to a user degree of around 100, on Amazon-Book, Gowalla, and
Yelp-2018, TAG-CF™T can further improve TAG-CF by 125%, 17%, and 11%, respectively,
with efficiency improvement of 7%, 4%, and 8%. In these cases, TAG-CF™ not only significantly
improves the performance but also effectively reduces computational overheads. However, on these
three datasets, after the cutoff bypasses a degree of 100, the performance improvement eventually de-
creases to the performance of TAG-CF (i.e., 100%), indicating that test-time aggregation jeopardizes
the performance on high-degree nodes. On Anime, though no downgrade on high-degree users, the
performance improvement of TAG-CF* to TAG-CF is incremental. These phenomenons not only
demonstrate the effectiveness and efficiency of TAG-CF™, but also verify our findings in Section 3.2
that message passing in CF helps low-degree users more than high-degree users.

6 CONCLUSION

In this study, we investigate how message passing improves collaborative filtering. Through a series
of ablations, we demonstrate that the performance gain from neighbor contents dominates that from
accompanying gradients brought by message passing in CF. Moreover, for the first time, we show
that message passing in CF improves low-degree users more than high-degree users. We theoretically
demonstrate that CF supervision signals inadvertently conduct message passing in the backward step,
even without treating the data as a graph. In light of these novel takeaways, we propose TAG-CF,
a test-time aggregation framework effective at enhancing representations trained by different CF
supervision signals. Evaluated on five datasets, TAG-CF performs at par with SOTA methods with
only a fraction of computational overhead (i.e., less than 1.0% of the total training time).

REFERENCES

Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. Lightgcl: Simple yet effective graph
contrastive learning for recommendation. In Procs. of ICLR, 2023.

Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. Efficient neural matrix
factorization without sampling for recommendation. ACM Transactions on Information Systems
(TOIS), 2020.

Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement in
location-based social networks. In Procs of SIGKDD, 2011.

George Dasoulas, Johannes F Lutzeyer, and Michalis Vazirgiannis. Learning parametrised graph shift
operators. In Procs of ICLR, 2021.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
matrix in smooth graph signal representations. IEEE Transactions on Signal Processing, 2016.

Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard. Learning graphs from data: A
signal representation perspective. IEEE Signal Processing Magazine, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Procs. of ICML, 2017.

Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business value,
and innovation. ACM Transactions on Management Information Systems (TMIS), 2015.

Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and Tong
Zhao. Linkless link prediction via relational distillation. In International Conference on Machine
Learning, pp. 12012-12033. PMLR, 2023.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Procs. of NeurIPS, 2017.

Ruining He and Julian McAuley. Vbpr: visual bayesian personalized ranking from implicit feedback.
In Procs. of AAAI 2016.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Procs. of WWW, 2017.

10



Under review as a conference paper at ICLR 2024

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Procs. of SIGIR,
2020.

Weihua Hu, Kaidi Cao, Kexin Huang, Edward W Huang, Karthik Subbian, and Jure Leskovec.
Tuneup: A training strategy for improving generalization of graph neural networks. arXiv, 2022.

Kaggle. Anime Recommendatiosn Database. https://www.kaggle.com/datasets/
CooperUnion/anime-recommendations—database, 2023. [Online; accessed June-

2023].

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Procs. of ICLR, 2016.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 2009.

Yehuda Koren, Steffen Rendle, and Robert Bell. Advances in collaborative filtering. Recommender
systems handbook, pp. 91-142, 2021.

Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. Improving graph collaborative
filtering with neighborhood-enriched contrastive learning. In Procs of WWW, 2022.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. Tail-gnn: Tail-node graph neural networks. In
Procs. of SIGKDD, 2021.

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on
graph neural networks as graph signal denoising. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1202-1211, 2021.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In Procs. of ICLR, 2022.

Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqgiang He. Ultragcn: ultra
simplification of graph convolutional networks for recommendation. In Procs. of CIKM, 2021.

Julian McAuley and Alex Yang. Addressing complex and subjective product-related queries with
customer reviews. In Procs. of WWW, 2016.

Babatounde Moctard Oloulade, Jianliang Gao, Jiamin Chen, Tengfei Lyu, and Raeed Al-Sabri. Graph
neural architecture search: A survey. Tsinghua Science and Technology, 2021.

Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure Leskovec.
Pinnersage: Multi-modal user embedding framework for recommendations at pinterest. In Procs.
of SIGKDD, 2020.

Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. Svd-gcn: A simplified graph convolution
paradigm for recommendation. In Procs of CIKM, 2022.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In UAZ, 2009.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535-2546, 2021.

J Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems in e-commerce. In Procs. of
ACM conference on Electronic commerce, 1999.

Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, B Khaled Letaief, and Dongsheng Li.
How powerful is graph convolution for recommendation? In Procs. of CIKM, 2021.

Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques. Advances in
artificial intelligence, 2009.

11


https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database
https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database

Under review as a conference paper at ICLR 2024

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional
networks. In Procs. of CIKM, 2020.

Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music
recommendation. In Procs. of NeurIPS, 2013.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Procs. of ICLR, 2017.

Chenyang Wang, Yuanging Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma.
Towards representation alignment and uniformity in collaborative filtering. In Procs. of SIGKDD,
2022.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems.
In Procs. of SIGKDD, 2015.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Procs. of WWW, 2021a.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Procs. of SIGIR, 2019.

Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for
node classification with graph neural networks. arXiv preprint arXiv:2103.13355, 2021b.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie.
Self-supervised graph learning for recommendation. In Procs. of SIGIR, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Procs. of ICLR, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Procs. of ICML,
2018b.

Yelp. Yelp Open Dataset. https://www.yelp.com/dataset, 2023. [Online; accessed
June-2023].

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Procs. of SIGKDD,
2018.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
augmentations necessary? simple graph contrastive learning for recommendation. In Procs. of
SIGIR, 2022.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in Neural Information Processing Systems, 34:19665-19679, 2021.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A survey
and new perspectives. ACM computing surveys (CSUR), 2019.

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li, Yujie
Lu, Hui Wang, Changxin Tian, et al. Recbole: Towards a unified, comprehensive and efficient
framework for recommendation algorithms. In Procs. of CIKM, 2021.

Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin, Jingsen Zhang,
Shuqing Bian, Jiakai Tang, Wenqi Sun, et al. Recbole 2.0: towards a more up-to-date recommen-
dation library. In Procs. of CIKM, 2022.

12


https://www.yelp.com/dataset

Under review as a conference paper at ICLR 2024

Wengqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik Sub-
bian. Cold brew: Distilling graph node representations with incomplete or missing neighborhoods.
In Procs. of ICLR, 2022.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
networks with an optimization framework. In Procs. of WWW, 2021.

13



Under review as a conference paper at ICLR 2024

A PROOF OF THEOREM 1

Here we re-state Theorem 1 before diving into its proof:

Theorem 1. Assuming that ||u;||? = ||i;||> = 1 for any u; € U and I; € Z, objectives of
BPR and DirectAU are strictly upper-bounded by the objective of message passing (i.e., Lgpr <

Z(i,j)eD |lw; — 1;]? and Lopigectav < Z(i,j)eD [lwi — i)

One preliminary theoretical foundation for Theorem 1 to hold is that a K-layer graph convolution
network (GCN) exactly optimizes the second term in Equation (7), which has been proved by Zhu
et al. (2021). For ease of reading, we re-phrase it again as the following:

Theorem 2. The message passing for GCN optimizes the following graph regularization term:
O = ming{tr(Z7LZ))}.

Proof. Set derivative of tr(ZTLZ) with respect to Z to zero:

otr(ZTLZ
Or(ZTLZ) o 17— 07— AZ )
o7Z
With K— oo:
7K = AZE-D (10
which indicates:
ZF) = AZE-D = A2Z(K-2) — ... = AKZ0) = AKXW. (11
O

According to this theoretical foundation, it is straightforward that Theorem 2 is also applicable
for the message passing of LightGCN in the setting of CF if we let A = {0, 1}(XIHZDx(UI+IZ])
X = Iy 4|z} and W = (U][|I), where || refers to the concatenation operation.

With these preliminaries, we can start the proof to Theorem 1 as follows:

Proof. DirectAU optimizes:

s —2||u—u’||? —2|]i—i’|)?
Lpirectay = Z ||111:*1j||2+ Z loge 2 I 4 Z loge 25717, (12)

(i,)€D = ii'€T
Since >_, ey loge~2Iu=vII” <= 0 and Diirer loge 211" <= 0, we directly have
Lpirectay < Z(i,j)e’D ||uz - in2-
BPR optimizes:
ﬁBpR = — Z Z loga(sij — Sik) = — Z Z loga(uiT . ij — uiT . ik) (13)
(,5)€D (i,k)¢D (i,5)€D (i,k)¢D
- Z Z *1083( uT.iefi JuT~ik) - Z Z —ul -i; +log (eu{.ij Jreuz'ik)
(i:1)€D (1K) ED cr e (i.0)€D (i,)¢D

(14)

Since ||u;||? = ||ij||> = 1 foranyu; € Uand I; € Z, ||u;—i;|| = /1 —2u] -i; + 1 = —u] i; =
2|lw; — i;||* — 1. So Equation (14) can be written as:

1 rs ars
Lopr = 5[ui — ij[|> — 1+ log (6“1‘ et k) (15)

The maximum possible value of e i 4 ek is 2, which is less than 10. Hence log (e“iT'iJ' +

e“:'ik) < 1, which leads to the second part of Theorem 1: Lppr < }_(; jyep |[Wi — i[> O

14



Under review as a conference paper at ICLR 2024

B DATASET DESCRIPTION AND STATISTICS

We conduct comprehensive experiments on four commonly used benchmark datasets, that have been
broadly utilized by the recommender system community, including Amazon-book (McAuley &
Yang, 2016), Anime (Kaggle, 2023), Gowalla (Cho et al.,, 2011), and Yelp2018 (Yelp, 2023).
Additionally, we also evaluate our method on a large-scale industrial user-content recommendation
dataset - Internal. The detailed descriptions of these datasets are listed as the following:

* Amazon-book: Itis a widely used product recommendation benchmark that is sub-sampled from
Amazon-review?. In this dataset, a recommender system is asked to recommend books to users. We
directly utilize the sub-sampled version created from the previous literature (Wang et al., 2022; He
et al., 2020; Wang et al., 2019) to ensure a fair comparison and reproducible results. Previous works
apply a 10-core setting (He & McAuley, 2016), where each user/item at least has ten interactions.

+ Anime: It is an anime recommendation benchmark provided my MyAnimeList *, where each user
is able to add anime to their completed list and give it a rating. This dataset is a compilation of
those ratings and a recommender system is asked to recommend anime to users.

* Gowalla: Thisis a check-in dataset obtained from Gowalla, where each user share locations by
checking-in clicks. In this dataset, a recommender system is asked to any location that a user might
be interested in checking in. Similar to Amazon-book, we directly utilize the processed version
created from the previous literature (Wang et al., 2022; He et al., 2020; Wang et al., 2019).

» Yelp-2018: This dataset is adopted from the 2018 edition of the yelp challenge* In this dataset,
a recommender system is asked to recommend businesses like local restaurants and bars to users.
Similar to Amazon-book, we directly utilize the processed version created from the previous
literature (Wang et al., 2022; He et al., 2020; Wang et al., 2019).

* Internal: Itis a user-item interaction dataset collected from an anonymized social network
platform. The dataset contains the user-item interactions from a sampled group of weekly active
users of an anonymized country. The dataset contains roughly 7 million interactions, and it is split
following standard train/val/test splittings.

These datasets cover different domains and dimensions to fully evaluate all models. We download
Amazon-book, Gowalla, and Yelp—-2018 from the official Github repository of NGCF’, and
we acquire Anime from Kaggle °. Their statistics are shown in Table 6 below.

Table 6: Dataset Statistics. Due to privacy constrains, we only report approximated values for
Internal dataset.

Dataset | #Users #1Items # Interactions  Sparsity
Amazon-book | 52,643 40,981 2,984,108 99.94%
Anime 73,515 12,295 7,813,727 99.13%
Gowalla 29,858 40,981 1,027,370 99.91%
Yelp-2018 31,668 38,048 1,561,406 99.87%
Internal ~0.5M ~0.2M ~T™M 99.99%

C EVALUATION PROTOCOL

We evaluate all models using metrics adopted in previous works, including NDCG@20 and Re-
call@20 (He et al., 2020). For the dataset split, we conduct the group-by-user splits and randomly
select 80%, 10%, and 10% of a user’s observed interactions as training, validation, and testing sets
respectively. Besides, the evaluation metrics are computed by the all-ranking protocol, where all

http://jmcauley.ucsd.edu/data/amazon.

https://myanimelist.net.
*https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset.
Shttps://github.com/xiangwangl223/neural_graph_collaborative_filtering.
*https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database

15


http://jmcauley.ucsd.edu/data/amazon
https://myanimelist.net
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://github.com/xiangwang1223/neural_graph_collaborative_filtering
https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database

Under review as a conference paper at ICLR 2024

items are listed as candidates (Rendle et al., 2009). We explore this strategy since we want to evaluate
the representation quality of all users. All experiments are conducted 10 times with different seeds,
and we report both means and standard deviations across independent runs.

D HYPER-PARAMETER TUNING

In this section, we describe hyper-parameters that we tune for all baselines and TAG-CF and report
their optimal setups. We only conduct 25 searches per model for all methods to ensure the comparison
fairness, so that our experiments are not biased to methods with sophisticated hyper-parameter search
spaces. Furthermore, we set the embedding dimensions for all models to 64 (i.e., d = 64) to ensure a
fair comparison, since a larger dimension usually leads to better performance in CF methods. We
utilize Adam optimizer for all models. Hyper-parameter ranges and their optimal selections are
reported as follows:

* MF (BPR): We tune the learning rate from the list of [1e-4, 5e-4, le-3, 5e-3, le-2] and regularization
weight (i.e., a term that regularizes the norm of learned representations) from the list of [1e-5, le-4,
le-3, le-2, 0]. We fix the training batch size to 4096 across all datasets. he optimal selections
for all datasets are listed as: Amazon-book: [learning rate=5e-4, regularization weight=1e-
3], Gowalla: [learning rate=1e-3, regularization weight=0], Yelp-2018: [learning rate=5e-
4 regularization weight=1e-5], Anime: [learning rate=5e-4, regularization weight=1e-4], and
Internal: [learning rate=1e-3, regularization weight=1e-5].

* MF (DirectAU): We tune 7 (i.e., the hyper-parameter that tunes the trade-off between alignment and
uniformity) from the list of [0.1,0.2,0.5,1, 2,5, 10] and tune the weight decay value from the list
of [0, 1e-8, 1e-6, 1e-4]. We fix the training batch size to 4096 and the learning rate to le-3 across
all datasets. The optimal selections for all datasets are listed as: Amazon-book: [y = 5, weight
decay=1le-6], Gowalla: [y = 1, weight decay=1e-6], Yelp-2018: [y = 1, weight decay=1e-6],
Anime: [y = 0.5, weight decay=1e-6], and Internal: [y = 2, weight decay=1e-8].

* LightGCN (BPR): We tune the learning rate from the list of [1e-4, 5e-4, 1e-3, 5e-3, le-2] and
regularization weight (i.e., a term that regularizes the norm of learned representations) from
the list of [le-5, le-4, 1e-3, le-2, 0]. We fix the training batch size to 4096 and the number
of message passing layers to 2 across all datasets. The optimal selections for all datasets are
listed as: Amazon-book: [learning rate=1e-3, regularization weight=1e-4], Gowalla: [learning
rate=1e-3, regularization weight=0], Yelp—-2018: [learning rate=5e-3 regularization weight=1e-
3], Anime: [learning rate=5e-4, regularization weight=1e-5], and Internal: [learning rate=5e-4,
regularization weight=1e-5].

* LightGCN (DirectAU): We tune « (i.e., the hyper-parameter that tunes the trade-off between
alignment and uniformity) from the list of [0.1,0.2,0.5, 1,2, 5, 10] and tune the weight decay value
from the list of [0, 1e-8, le-6, le-4]. We fix the training batch size to 4096, the learning rate to le-3,
and the number of message passing layers to 2 across all datasets. The optimal selections for all
datasets are listed as: Amazon-book: [y = 10, weight decay=1e-8], Gowalla: [y = 5, weight
decay=1le-6], Yelp-2018: [y = 2, weight decay=1e-6], Anime: [y = 0.5, weight decay=1e-8],
and Internal: [y = 2, weight decay=1e-8].

* NGCF: We tune the learning rate from the list of [1e-4, Se-4, 1e-3, Se-3, le-2], regularization weight
(i.e., a term that regularizes the norm of learned representations) from the list of [1e-5, le-4, le-3, le-
2, 0], node dropout rate [0.0, 0.1, 0.2], and message dropout rate in [0.0, 0.1, 0.2]. We fix the training
batch size to 4096, learning rate to 1e-3, and the number of message passing layers to 2 across all
datasets. The optimal selections for all datasets are listed as: Amazon-book: [learning rate=1e-3,
regularization weight=1e-4, node dropout=0, message dropout=0.1], Gowalla: [learning rate=Ie-
3, regularization weight=1e-5, node dropout=0, message dropout=0.1], Yelp—-2018: [learning
rate=5e-3, regularization weight=1e-3, node dropout=0, message dropout=0], Anime: [learning
rate=5e-4, regularization weight=1e-5, node dropout=0.1, message dropout=0.1], and Internal:
[learning rate=5e-4, regularization weight=1e-5, node dropout=0, message dropout=0].

* ENMF: We tune dropout probability from the list of [0.3, 0.5, 0.7], learning rate from the list
of [Se-3, le-2, 5e-2], and negative weight from the list of [0.1, 0.2, 0.5]. We fix the train-
ing batch size to 128 for Gowalla, Yelp2018, and Anime. For Amazon-book, we set
the training batch size to 64. All batch sizes for ENMF is smaller compared to other base-
lines because of the out-of-memory issue. The optimal selections for all datasets are listed as:

16



Under review as a conference paper at ICLR 2024

Amazon-book:[dropout=0.3, learning rate=5e-3, negative weight=0.1], Gowal la:[dropout=0.5,
learning rate=5e-3, negative weight=0.1], Ye1p—2018:[dropout=0.5, learning rate=5e-3, negative
weight=0.1], and Anime:[dropout=0.3, learning rate=5e-3, negative weight=0.5].

* LightGCL: We tune dropout probability from the list of [0.1, 0], lambdal from the list of [0.1,
5e-3, le-4], lambda2 from the list of [le-5, le-7], learning rate from the list of [le-4, le-3,
5e-3], regularization weight from the list of [le-5, le-4, le-3, le-2, 0] and temperature fac-
tor from the list of [0.2, 0.5, 0.8, 2]. We fix the training batch size to 4096 and the number
of message passing layers to 2 across all datasets. The optimal selections for all datasets are
listed as: Amazon-book:[dropout=0, lambdal=0.01, lambda2=1e-7, learning rate=1e-3, regu-
larization weight=0.01, temperature=0.5], Gowalla:[dropout=0, lambdal=1e-4, lambda2=1e-
7, learning rate=1e-3, regularization weight=0.001, temperature=0.5], Ye1p2018:[dropout=0,
lambdal=0.05, lambda2=1e-7, learning rate=5e-3, regularization weight=1e-5, temperature=0.5],
and Anime:[dropout=0.1, lambdal=0.01, lambda2=1e-7, learning rate=1e-3, regularization
weight=1e-5, temperature=2].

* SGL: We tune dropout probability from the list of [0.1, 0.2, 0.4, 0.5], learning rate from the
list of [le-4, le-3, 5e-3], regularization weight from the list of [le-5, le-4, le-3, le-2, 0],
temperature factor from the list of [0.1, 0.2, 0.5], and weight for the contrastive loss from
the list of [0.05, 0.1, 0.5]. We fix the training batch size to 4096 and the number of mes-
sage passing layers to 2 across all datasets. The optimal selections for all datasets are listed
as: Amazon-book:[dropout=0.1, learning rate=1e-3, regularization weight=0, temperature=0.2,
weight=0.5], Gowalla:[dropout=0.5, learning rate=1e-3, regularization weight=0.1, tempera-
ture=0.2, weight=0.5], Ye1p-2018:[dropout=0.5, learning rate=1e-3, regularization weight=1e-
4, temperature=0.2, weight=0.1], and Anime:[dropout=0.2, learning rate=1e-3, regularization
weight=1e-5, temperature=0.5, weight=0.05].

* SimGCL: We tune epsilon from the list of [0.05, 0.1, 0.2], learning rate from the list of
[le-4, le-3, 5e-3], lambda from the list of [0.05, 0.01, 3e-5, le-5, le-6, le-7], regulariza-
tion weight from the list of [le-5, le-4, le-3, le-2, 0] and temperature factor from the list
of [0.1, 0.2, 0.4, 0.5]. We fix the training batch size to 4096 and the number of message
passing layers to 2 across all datasets. The optimal selections for all datasets are listed
as: Amazon-book:[epsilon=0.2, learning rate=1e-3, regularization weight=1e-4, tempera-
ture=0.4, lambda=0.5], Gowalla:[epsilon=0.05, learning rate=1e-3, regularization weight=1e-3,
temperature=0.2, lambda=1e-5], Yelp=2018:[epsilon=0.2, learning rate=5e-3, regularization
weight=0.01, temperature=0.5, lambda=0.01], and Anime:[epsilon=0.05, learning rate=5e-3, regu-
larization weight=1e-4, temperature=0.5, lambda=1e-7].

* TAG-CF (BPR): TAG-CF is a test-time augmentation framework and hence we don’t tune any
hyper-parameters for the model training. We only tune m and n in Equation (8) during test
time from the list of [-2, -1.5, -1, -0.5, 0]. The optimal selections for all datasets are listed as:
Amazon-book:[m=-0.5, n=-1], Gowalla:[m=-1.5, n=-0.5], Yelp-2018:[m=-1.5, n=-0.5],
Anime:[m=-0.5, n=-0.5], and Internal:[m=-0.5, n=-0.5].

* TAG-CF (DirectAU): We only tune m and n in Equation (8) during test time from the list of [-2,
-1.5, -1, -0.5, 0]. The optimal selections for all datasets are listed as: Amazon-book:[m=-0.5,
n=-1], Gowalla:[m=-1.5, n=-0.5], Yelp-2018:[m=-1, n=-0.5], Anime:[m=-0.5, n=-0.5], and
Internal:[m=-0.5, n=-0.5].

Besides, we adopt an early stopping strategy to train all models, where the training for a given model
will be terminated if its corresponding validation NDCG @20 stops increasing for 3 continuous
epochs. We use models with the best validation performance to report the performance.

E IMPLEMENTATION DETAIL

We conduct most of the baseline experiments with RecBole’ (Zhao et al., 2021; 2022) (i.e., imple-
mentations of ENMF, MF, LightGCN, SimGCL, and SGL). For DirectAU, we utilize the code from
its official repository®. We sincerely appreciate the authors of RecBole and baseline models for
open-sourcing their valuable code and reliable implementations of baseline models. TAG-CF is

"https://recbole.io.
$https://github.com/THUwangcy/DirectAU.

17


https://recbole.io
https://github.com/THUwangcy/DirectAU

Under review as a conference paper at ICLR 2024

Amazon-Book Yelp-2018

——RT Impr. (%)
Perf. Imprv. (%)

—8—RT Impr. (%)

Perf. Impr. (%)

RT Impr. (%)
L
»
®

(%) 3dwy J19d (%) 1dwy j1og

10! 102 103 104 10° iO‘ 10% 10% 10* 10°
s Gowalla 100 - Anime

—~ R

o

X - ___-O_ __________________________ 80

~ 10 B U U -l

o 60 -

g‘ 5 —8—RT Impr. (%) 40 A ~o—RT Impr. (%)

: Perf. Impr. (%) 20 Perf. Impr. (%)

T 102 10° 10* 105 o
10! 10% 10% 104 3.5 4 4.5

User Degree User Degree

Figure 3: The performance and efficiency improvement of TAG-CF™ w.r.t. different cutoffs. Yellow
dashed lines indicate the performance of the regular TAG-CF, and black circles refer to the degree
cutoff that TAG-CF™ selects and its corresponding performance.

implemented in PyTorch 1.13 and PyG 2.2.0. As for the hardware we use to train all models, we use
Google Cloud Platform with 12 CPU cores, 64GB RAM, and a single V100 GPU with 16GB VRAM
to run all experiments.

F DEGREE CUTOFF SELECTION FOR TAG-CF™

In this section, we illustrate how TAG-CF™ selects the degree cutoff to improve the recommendation
efficiency and effectiveness. We first sort all users according to their degree and split the sorted list
into 10 user buckets’, where each bucket contains non-overlapped users with similar degrees (e.g.,
the first bucket contains user whose degrees are ranked in the 0 to 10% population). Starting from the
bucket with the lowest user degree, TAG-CF™ keeps applying test-time-aggregation demonstrated
in Equation (8) to all buckets until the validation performance starts to decrease or the performance
improvement is less than 2% compared with TAG-CF. The degree cutoffs circled in Figure 3 are
the ones selected by this strategy and most of them correspond to the most performant configuration.
The performance of TAG-CF™ under the selected degree cutoff is shown in Table 7.

Table 7: Overall Performance and efficiency improvement of TAG-CF™ to TAG-CF™ for different
supervision signals. Degree cutoffs are selected according to circles in Figure 3.

Metric ‘ Yelp-2018 Gowalla Amazon-book Anime
BPR
NDCG@20 27.1% 10.3% 122.4% 0%
Recall@20 31.4% 14.2% 119.2% 0%
Running Time 8% 4% 9% 0%
DIRECTAU

NDCG@20 34.1% 22.5% 98.3% 0%
Recall@20 29.2% 30.1% 104.1% 0%

Running Time 8% 4% 9% 0%

G IMPLEMENTATION DETAILS FOR ABLATIONS IN SECTION 3

All models in Table 1 are trained by DirectAU following the same protocols as mentioned in
Appendices C and D. For LightGCNy/o neigh. info» it shares the same forward and backward procedures
as LightGCN during the training but does not conduct message passing during the test time. For
LightGCNyyo grad.» the model shares the same forward pass but drops gradients for these three
additional terms during the backward propagation.

The number of buckets can be set to arbitrary numbers for finer adjustments. In this study, we pick 10
as a proof of concept and it already effectively helps us verify the performance of TAG-CF™ as well as the
legitimacy of our findings.

18



Under review as a conference paper at ICLR 2024

H ADDITIONAL EXPERIMENTS

H.1 EXPERIMENTS ON UP-SAMPLING LOW-DEGREE NODES

In our manuscript, we connect CF objective functions (i.e., BPR and DirectAU) to message passing
and show that they inadvertently conduct message passing during the back-propagation. Since this
inadvertent message passing happens during the back-propagation, its performance is positively
correlated to the amount of training signals a user/item can get. In the case of CF, the amount of
training signals for a user is directly proportional to the node degree of this user. High-degree active
users naturally benefit more from the inadvertent message passing from objective functions like BPR
and DirectAU, because they acquire more training signals from the objective function. Hence, when
explicit message passing is applied to CF methods, the performance gain for high-degree users is
less significant than that for low-degree users. Because the contribution of the message passing over
high-degree nodes has been mostly fulfilled by the inadvertent message passing during the training.

To quantitatively prove this line of theory, we incrementally upsample low-degree training examples
and observe the performance improvement that TAG-CF could introduce at each upsampling rate. If
our line of theory is correct, then we should expect less performance improvement on low-degree
users for a larger upsampling rate. The results are shown in Table 9.

From this table, though upsampling low-degree users hurts the overall performance, we can observe
that the performance improvement brought by TAG-CF for low-degree users decreases, as the
upsampling rate increases. For instance, when we regard users with a degree less than 40 as low-
degree users, increasing the upsampling rate from 100% to 300% reduces the improvement margin
by 8.1%, with similar trends on other degree cutoffs.

According to this experiment, we can conclude that the more supervision signals a user receives (no
matter for a low-degree or high-degree user), the less performance improvement message passing
can bring. This experiment quantitatively shows why the performance improvement of high-degree
users could be limited more than low-degree users. Because high-degree users naturally receive more
training signals during the training whereas low-degree users receive fewer training signals.

Table 8: The performance improvement (NDCG @20) brought by TAG-CF at different node degree
cutoffs and upsampling rates on Movielens-1M.

Up-sampling Degree/Rate \ 100% 200% 300%
MF
40 20.62 1993 19.30
80 20.10 19.18 18.40
160 1939 1840 17.93
MF+TAG-CF

40 28.87 2690 25.01
80 2743 24.64 2330
160 26.63 2430 23.37
TAG-CF IMPROVEMENT (%)
40 38.84 312 30.3
80 359 28.2 26.8
160 36.6 31.8 29.8

H.2 EXPERIMENTS ON MOVIELENS-1M

According to another recent work that uses realistic e-commerce datasets (Zheng et al., 2022), the
average user degree is usually less than 50, which aligns with the characteristics of the datasets we
use in this work. Nevertheless, to verify that this phenomenon is also observable in dense datasets, we
apply TAG-CF to Movielens-1M. It is a dense dataset where each user has an average number of 165
interactions, as opposed to 50 interactions for other datasets that we utilize in our manuscript. The
results are shown in the table below and we can notice that our observation regarding the performance
improvement brought by message passing still holds.

19



Under review as a conference paper at ICLR 2024

Table 9: The performance comparison between Light GCN and TAG-CF on MovielLens-1M.

Method | MF  +TAG-CF

Improv. over MF (%) LightGCN Improv.

over LightGCN (%)

LOW-DEGREE PERCENTILE

NDCG@20 | 20.98 29.20 39.2% 25.95 12.5%

Recall@20 | 23.64 28.10 18.9% 25.80 8.9%
OVERALL

NDCG@20 | 22.51 29.65 31.7% 26.64 11.3%

Recall@20 | 25.79 28.40 10.1% 26.30 8.0%

H.3 COMPARISON EXPERIMENTS W.R.T. A SIMILAR GRAPH-BASED CF METHOD

While it might not be sensible to apply TAG-CF to graph-based CF methods that leverage message
passing already, in order to fully verify our findings, we also apply TAG-CF to a graph-based method
(i.e., UltraGCN (Mao et al., 2021)) that utilizes graph structures as supervision signals only. The
performance as well as efficiency of UltraGCN and UltraGCN+TAG-CF are shown in Table 10.

From Table Rel, we observe that TAG-CF can further improve UltraGCN, even when the former
utilizes graph structures during the model training. Specifically, TAG-CF can improve the performance
of UltraGCN by 6%, which is significant. This observation indicates that the findings we propose in
this manuscript can be applied to other algorithms. While TAG-CF can improve the performance, as

shown in Table Re2, we can also notice that MF-DirectAU + TAG-CF in total runs a lot faster than

UltraGCN. This is because UltraGCN still requires repetitive querying of the graph structures while
calculating its objective functions.

Table 10: The performance (NDCG@20 and Recall@20) of UltraGCN and TAG-CF.

Method | MF-BPR  +TAG-CF MF-DirectAU +TAG-CF UltraGCN +TAG-CF
OVERALL NDCG @20

Amazon-book 4-15i0.13 4~32i0.13 8.01i0_03 8.13i0,03 5~77i0.25 6.1 1i0.27

Anime 29-51i0.21 30-23i0.26 24-01i0A06 27-25iOA03 30-30:t0.11 30-89i0.11

Gowalla 7.51:|:()_12 7.99;|;0.14 9~77:i:0‘08 9.88i0'04 853:!:0.14 9.02:‘:0,15

Yelp-2018 3964014 4264017 6.2510.06 6.36.10.03 5.0140.11 5.5340.11
OVERALL RECALL@20

Amazon-book 7.35;(;()_22 7.64:&0,20 12.67:&0,06 12‘97:{:0.06 8.01:&0,25 8‘53:{:0_25

Anime 34.84i0'30 35-23i0.34 29~15i0.09 31-95i0.05 35.87i0_39 37-01i0.39

Gowalla 14.47i0.23 14-92i0.25 18.30i0_17 18-53iOA11 15-93i0.21 16.36i0_22

Yelp—2018 7-27j:0.27 7.62;&0_22 ]0.81:&0,10 11.21:‘:0.09 8.4]i0_19 9.89:‘:0.20

20



Under review as a conference paper at ICLR 2024

H.4 LONGITUDINALLY CONVERTED VERSION OF TABLE 2

Below is the longitudinally converted version of Table 2 for easier comparison between the perfor-
mance of low-degree and high-degree users.

ETHICS STATEMENT

We do not observe any ethical concern entailed by our proposal, but we note that both ethical or
unethical applications based on collaborative filtering may benefit from the efficiency and performance
improvement of our proposal. Caution should be taken to ensure socially positive and beneficial
results of representation learning algorithms. We will make sure that we follow the code of conduct
and code of ethics as required by ICLR 2024.

21



Under review as a conference paper at ICLR 2024

Table 11: Performance and running time of all models. The lower percentile indicates the set of nodes
whose degrees are ranked in the lower 30% population. Bold and underline indicate the best and
second best model respectively. LightGCN and MF are trained with DirectAU (Wang et al., 2022).

D ‘ LOW-PERCENTILE OVERALL
ataset
| NGCG@20 RECALL@20 | NGCG@20 RECALL@20
Amazon—-Book
NGCF 53240 08 10714014 6.9710 11 10.3040 91
LightGCN 8.0940.10 13.1840.17 8.0640.11 12.7610.18
ENMF 5.3310.02 10421916 6.1319.13 10.8940.18
+TAG-CF 5.67:‘:()‘()3 11.08:&0,11 6.54:‘:0.09 11.35:&0,09
Impr. (1) 6.4% 6.3% 6.7% 4.2%
MF 8.0210.07 13.07£0.09 8.0110.03 12.67+0.06
+TAG-CF |  8.26.10 05 1337010 8.131.0 03 12.97 0 06
Impr. (1) 3.0% 2.3% 1.5% 2.4%
Anime
NGCF 20134018 25744035 | 22541095  28.1240.99
LightGCN 27.7810.21 32744091 27.97 1901 32.8241 001
ENMF 223,010 37141050 | 30174000  34.1010 05
+TAG-CF | 22581015 38414053 | 30.86:010 3448003
Impr. (1) 1.6% 3.4% 2.3% 1.1%
MF 2395:007 29084000 | 24.0li006  29.15+0.09
+TAG-CF | 27154001 31944005 | 27.25:003  31.95.0.0s
Impr. (1) 13.4% 9.8% 9.8% 6.9%
Gowalla
NGCF 84610 06 17.5340.39 8.650 10 17.9340.06
LightGCN 10.084¢.13 19.14 1.0 9.96.0.11 18.65 (.14
ENMF 3.87 1015 8.7310.03 5232004 9.68+0 06
+TAG-CF 4.08:‘:()‘11 901:&0‘06 5.29:‘:0.05 9.74:|:()‘09
Impr. (1) 5.4% 3.2% 1.1% 0.6%
MF 10.00400s  18.9240 10 97710 08 18.3040.17
+TAG-CF | 101900  19.17.0.13 9.88-.0 04 18.5340 11
Impr. (1) 1.9% 1.3% 1.1% 1.3%
Yelp2018
NGCF 4.87+0.06 10.1540.13 5.5440.06 10.0240.06
LightGCN 6.1040.09 10.7540.14 6.33.10.06 10.98.19.10
ENMF 3.1140.07 717 +0.06 3.79410.09 6.8910.09
+TAG-CF 3.26:‘:0‘04 7.54:‘:0‘12 3.89:‘:0.05 7.05:|:()‘03
Impr. (1) 4.8% 5.2% 2.6% 2.3%
MF 6.08.0 08 10.63 10 13 6.2540.06 10.81 40 10
+TAG-CF | 6.8, 05 10.98 o 14 6.36..0 03 11210, 00
Impr. (1) 1.7% 3.3% 1.8% 3.7%
Internal
NGCF 5911907 10.54+9.09 6.94_¢ 06 6.9110.04
LightGCN 8.1210.03 13.8149.02 8.1040.06 13.8910.06
ENMF OOM
+TAG-CF
Impr. (1)
MF 6.79+0.04 11.1340.05 7.0440 02 11.83 10,02
+TAG-CF | 8.52.0 05 13.97 10,06 8.54..0 0 14.41 0 s
Impr. (1) 25.5% 25.5% 21.3% 21.8%

22



	Introduction
	Preliminary and Related Work
	How Does Message Passing Improve Collaborative Filtering?
	Neighbor Information vs. Accompany Gradients from Message Passing
	Message Passing in CF Helps Low-degree Users More

	Test-time Aggregation for Collaborative Filtering
	Experiments
	Experimental Settings
	Performance Improvement to Matrix Factorization Methods
	Performance Comparison Among Graph-based Methods
	Effectiveness for Different Training Signals
	Performance w.r.t. User Degree

	Conclusion
	Proof of thm:bprdau
	Dataset Description and Statistics
	Evaluation Protocol
	Hyper-parameter Tuning
	Implementation Detail
	Degree Cutoff Selection for TAG-CF+
	Implementation Details for Ablations in sec:howmp
	Additional Experiments
	Experiments on Up-sampling Low-degree Nodes
	Experiments on MovieLens-1M
	Comparison Experiments w.r.t. a Similar Graph-based CF Method
	Longitudinally Converted Version of tab:mftagcf 


