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Abstract

The demand for accurate and timely weather predictions continues to rise due to the
ubiquitous role of weather in our day-to-day activities. We present WINDSET - Weather
Insights and Novel Data for Systematic Fvaluation and Testing as a catalog of Al-ready
datasets for validating the capabilities of weather foundation models across multiple down-
stream tasks. The WINDSET datasets are accessible on HuggingFace! and the code to
create the datasets is available on GitHub?.
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1 Weather Insights and Novel Data for Systematic Evaluation and
Testing

The development of foundation models (FM) has completely transformed data-driven re-
search in recent years. These models are equipped with advanced natural language process-
ing and machine learning (ML) capabilities. For instance, a Weather Foundation Model
(Weather FM) not only provides general forecasting skill but also addresses specialized
downstream tasks such as generating forecast discussions or predicting aircraft turbulence.
Al-ready data plays a crucial role in fine-tuning FMs to these tasks. Our contribution,
WINDSET (Weather Insights and Novel Data for Systematic Evaluation and Testing), con-
sists of multiple multi-modal and multi-resolution Al-ready datasets that focus on different
downstream tasks related to numerical weather prediction (NWP) and forecasting. Ta-
ble 1 presents a summary of the WINDSET datasets and their uniqueness in terms of Al
readiness.

Non-Local Gravity Wave Parameterization Atmospheric mesoscales (including grav-
ity waves (GWs), clouds, and precipitation) are often parameterized in NWP and climate

1. https://huggingface.co/datasets/nasa-impact/ WINDSET
2. https://github.com/NASA-IMPACT /WINDSET


https://openreview.net/forum?id=JZDnsKaVGE

Table 1: Description of the datasets and their contribution in terms of Al-readiness.

Dataset (Label modality) Contribution

Non-Local Gravity Wave | Can be used to learn and represent the subgrid-scale GW
Parameterization (4-D Ar- | fluxes and mesoscale processes in coarser climate models using

ray) ML

Weather Forecast Genera- | First of its kind for generating natural language based weather
tion (Text) forecast summaries

Aviation Turbulence Pre- | Can be used for fine-tuning an AI model for predicting turbu-
diction (Binary) lence using PIREP reports

Searching Weather Analogs | Dataset for fast searching weather analogs from an unindexed
(Image) database for a given weather parameter and time

models. These parameterizations are idealized representations of the observed process and
typically assume strict vertical (or single-column) process evolution (Chen et al., 2018;
Plougonven et al., 2020; Gupta et al., 2024), leading to large-scale momentum imbalances
and cold biases in climate models (McLandress et al., 2012). GW observations, however,
show significant horizontal propagation. While the single-column parameterization design
is limited by the discretization of NWP and climate models, ML presents a fresh approach
to learning the full 3D evolution of GW fluxes, and representing them in climate models.

Detection of Aviation Turbulence Turbulence in the lower and middle atmosphere
presents risks for passenger and cargo airliners, especially when it is encountered unexpect-
edly (Ito et al., 2020; Golding, 2000). Turbulence, however, is a finescale feature that defies
direct prediction by even high-resolution NWP models. ML techniques have been explored
for turbulence prediction (Emara et al., 2021; Williams, 2014; Hon et al., 2020) using infor-
mation from NWP or onboard sensors, but deep learning (DL) approaches remain largely
uninvestigated. This dataset supports a DL approach to improve aviation turbulence fore-
casting using pilot reports (PIREPs). (See Figure 1, 2, A.1). Provided inputs are vertical
profiles of wind, temperature, and humidity paired with turbulence observations. This
approach enables near-real time DL predictions using either observations or NWP output.

Searching Weather Parameter Analogs in the Archive Weather analogs are his-
torical events similar to the current atmospheric state. For forecasters, past events provide
insight into current conditions. Weather analogs are also used to initialize large-ensemble
NWP systems and can be leveraged to train deep-learning models. The proposed dataset
enables training an image similarity search model capable of searching over an archive for
similar events based on a weather parameter such as temperature or pressure (See Figure 3,
A.2). Al methods for analog search are rapid due to performing the search in the Als own
encoded vector space, enabling the search of entire re-analysis archives in seconds.

Generating Natural Language Weather Forecast Discussions From the user’s per-
spective, one of the prominent outputs of weather forecasting is to publish forecast reports
in natural language. This dataset comprises a text-based summary of a corresponding
atmospheric state (Refer Figure 4, A.3). To the best of our knowledge, this is a first-
of-its-kind dataset that can be used to benchmark an Al model for generating automated
natural-language-based weather forecast summaries.
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Appendix A. Visualization of data samples from some of the proposed
datasets

A.1 Detection of Aviation Turbulence
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Figure 1: Illustration of bar charts for (a) flight levels, (b) maximum turbulence intensity,
associated with pilot aviation weather reports (PIREPs)
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Figure 2: Spatial distribution of PIREPs binned to 0.5x0.625 over the contiguous U.S.A.

A.2 Searching Weather Parameter Analogs in the Archive
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Figure 3: Illustration of training images for (a) temperature (b) sea-level pressure (slp),
for January 01, 2019. These training images are used for analog search of these

parameters over a database of images.

A.3 Generating Natural Language Weather Forecast Discussions
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Day 1 Convective Outlook AMEND 1
NWS Storm Prediction Center Norman 0K
@243 PM CST Thu Dec 31 2020

Valid 312000Z - 0112002
«+.THERE IS AN ENHANCED RISK OF SEVERE THUNDERSTORMS FROM THE SABINE
RIVER VALLEY AREAS EASTWARD/NORTHEASTWARD ACROSS THE CENTRAL GULF

COAST STATES...

AMENDED TO ADD MRGL RISK AREA TO A PORTION OF THE EASTERN CAROLINAS

-+ .SUMMARY...
Thunderstorms -— a few of which will likely be severe, with
tornadoes and damaging winds as the primary hazards -- will continue

from the Sabine River Valley vicinity across southwest Louisiana
through this afternoon, and then will expand across the rest of
Louisiana into Mississippi and Alabama this evening and tonight.

«..Discussion...

Thunderstorms continue across portions of east Texas at this time,
and will continue spreading into western Louisiana over the next few
hours. While severe risk has remained muted thus far, the
environment downstream from the ongoing storms has become steadily
more supportive of severe/rotating storms —- both thermodynamically
and kinematically -— over the past few hours, as shown by changes in
the LCH RAOBs from 12Z to 18Z.

Thus, the ongoing outlook reasoning and areas appear to remain
representative of the evolving situation, with the only changes
which appear necessary at this time being to trim western fringes of
the areas to account for convective advance.

(b)

Figure 4: Tlustration of training data for (a) temperature (b) corresponding forecast report

for December 31, 2020.
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