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A Distributed Stable Strategy Learning Algorithm
for Multi-User Dynamic Spectrum Access

Tomer Gafni, Kobi Cohen

Abstract— We consider the problem of multi-user dynamic
spectrum access (DSA) in cognitive radio networks. The shared
bandwidth is divided into K orthogonal channels, and M
(secondary) users aim at accessing the spectrum, where K ≥ M .
Each user is allowed to choose a single channel for transmission
at each time slot. The state of each channel is modeled by a
restless unknown Markovian process. By contrast to existing
studies that analyzed a special case of this setting, in which
each channel yields the same expected rate for all users, in
this paper we consider the more general model, where each
channel yields a different expected rate for each user. This
general model adds a significant challenge of how to efficiently
learn a channel allocation in a distributed manner so as to yield
a global system wide objective. We adopt the stable matching
utility as the system objective, which is known to yield strong
performance in multichannel wireless networks, and develop a
novel Distributed Stable Strategy Learning (DSSL) algorithm
to achieve the objective. We prove theoretically that the DSSL
algorithm converges to the stable matching allocation, and the
regret, defined as the loss in total rate with respect to the stable
matching solution, has a logarithmic order with time. Finally, we
present numerical examples that support the theoretical results
and demonstrate strong performance of the DSSL algorithm.

I. INTRODUCTION

Consider the problem of multi-user dynamic spectrum ac-
cess (DSA) in cognitive radio networks. The shared bandwidth
is divided into K orthogonal channels, and M (secondary)
users aim at accessing the spectrum, where K ≥M . We adopt
the stable matching utility as the system objective, which is
known to yield strong performance in multichannel wireless
networks [1].

The stable matching problem for multi-user DSA was first
introduced in [1] under the assumption that the expected rates
are known, and a distributed opportunistic CSMA algorithm
that solves the problem was proposed. The model with un-
known expected rate matrix and rested setting (i.e., the states
of the Markovian process do not change if not observed by
the user) was studied in [2], [3]. A regret (with respect to the
optimal allocation) of near-O(log t) was achieved. However,
the algorithms require an intensive communication between
users in order to apply the auction algorithm [4]. In [5], the
authors reduces the amount of communication requirements,
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but without guarantees on the achievable regret. Recently, it
was shown in [6] that achieving a sum-regret of near- O(log t)
is possible without communication between users, but only for
the case of i.i.d channels. Finally, in this paper we consider
the general restless Markovian channel model, in which both
used and unused channels change states (see details in Section
II), which adds significant challenges in algorithm design and
regret analysis.

There exist a number of studies that developed distributed
learning algorithms for a special case of the restless Markovian
channel model considered in this paper, where each channel
yields the same expected rate for all users [7]–[9]. This special
case significantly simplifies the channel allocation problem
and the analysis (for instance, switching between assigned
users does not affect the resulting regret in this special case). In
this paper, we consider the general model where each channel
yields a different expected rate for each user. This models
the situation of a different channel fading across users and
channels in spatial distributed networks, and adds a significant
challenge of how to learn the desired channel allocation in a
distributed manner to achieve a global system wide objective.

Another set of related work on multi-user channel alloca-
tion was studied from game theoretic and congestion control
( [10]–[19] and references therein), and graph coloring (
[20]–[23] and references therein) perspectives. Game theoretic
aspects of the problem have been investigated from both non-
cooperative (i.e., each user aims at maximizing an individual
utility) [11], [12], [16], [18], [24], and cooperative (i.e., each
user aims at maximizing a system-wide global utility) [10],
[19], [25], [26] settings. Model-free learning strategies were
developed in [27]–[29]. Graph coloring formulations have
concerned with modeling the spectrum access problem as
a graph coloring problem, in which users and channels are
represented by vertices and colors, respectively. Thus, coloring
vertices such that two adjacent vertices do not share the
same color is equivalent to allocating channels such that
interference between neighbors is being avoided (see [20]–[23]
and references therein for related studies). Finally, all these
studies did not consider the problem of achieving provable
stable strategies in the learning context under unknown restless
Markovian dynamics as considered in this paper.

In this paper, we adopt the stable matching utility as the
system objective, which is known to yield strong performance
in multichannel wireless networks [1]. We develop a novel
Distributed Stable Strategy Learning (DSSL) algorithm to
achieve the objective. The DSSL algorithm is very simple
for distributed implementation via carrier sensing technology.
We prove theoretically that the DSSL algorithm converges to
the stable matching allocation, and the regret, defined as the
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loss in total rate with respect to the stable matching solution,
has a logarithmic order with time. Furthermore, the regret
has better scaling with the system parameters as compared to
existing approaches. Finally, we present numerical examples
that support the theoretical results and demonstrate strong
performance of the DSSL algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cognitive radio network consisting of K
orthogonal channels indexed by the set K = {1, 2, ...,K} and
M secondary users indexed by the set M = {1, 2, ...,M},
where K ≥ M . The secondary users aim at accessing the
spectrum to send their data. Each secondary user is allowed
to choose a single channel for transmission at each time slot,
and transmit if the channel is not occupied by a primary
user (which is represented by a channel state with zero rate).
The users are operated in a synchronous time-slotted fashion.
Due to spatial geographic dispersion, each secondary user
can potentially experience different achievable rates over the
channels. When secondary user i transmits on channel k (when
the channel is free) at time slot t, its data rate is given by
ri,k(t). This information is concisely represented by an M×K
rate matrix V (t) = {rik(t)}, i = 1, ...,M, k = 1, ...,K.

We consider the case where the rate process ri,k(t) is
Markovian and has a well-defined steady state distribution.
The transition probabilities associated with the Markov chain
are unknown to the users. The process ri,k(t) evolves in-
dependently of the user actions (i.e., external process). Fur-
thermore, the channel states might change whether or not
being observed (i.e., restless setting). Specifically, the rate
of user i on channel k, ri,k(t), is modeled as a discrete
time, irreducible and aperiodic Markov chain on a finite-state
space X i,k and represented by a transition probability matrix
P i,k , (pi,kx,x′ : x, x′ ∈ X i,k). Let ~πi,k , (πxi,k, x ∈ X i,k) be
the stationary distribution of the Markov chain P i,k.

Let Xi,k(t) be the actual achievable rate for secondary user i
on channel k at time t. If two or more users choose to access
the same channel at the same time slot, a collision occurs.
In this case, Xi,k(t) = 0. Otherwise, if user i has accessed
channel k without colliding with other users, then Xi,k(t) =
ri,k(t). The users implement carrier sensing to observe the
current channel state at each time slot as typically done in
cognitive radio networks [7], [17]. The transmission scheme
for the multi-user DSA model is detailed in Section III.

The expectations µi,k are given by:

µi,k =
∑

x∈X i,k

x · πxi,k,

and we define σi, for i = 1, ...,M , as a permutation of
{1, . . . ,K} such that

µi,σi(1) > µi,σi(2) > . . . > µi,σi(K).

A. A Stable Channel Allocation

Let ai(t) ∈ K be a selection rule, indicating which channel
is chosen by user i at time t, which is a mapping from
the observed history of the process (i.e., all past actions and

observations up to time t − 1) to {1, ...,K}. The expected
aggregated data rate for all users up to time t is given by:

R(t) = E[

t∑
n=1

M∑
i=1

Xi,ai(n)(n)]. (1)

A policy φi is a time series vector of selection rules: φi =
(ai(t), t = 1, 2, ...) for user i.
Definition 1 ( [1]): A bipartite matching between channels and
users is a permutation P : M→ K. The optimal centralized
allocation problem is to find a bipartite matching:

k∗∗ = arg max
k∈P

M∑
i=1

µi,k(i).

Definition 2 ( [1]): A matching S : M→ K is stable if for
every i ∈M and k ∈ K satisfying S(i) 6= k, if µi,S(i) < µi,k
then there exists some user i′ ∈ M such that S(i′) = k and
µi′,k > µi,k.

Achieving the optimal allocation in Definition 1 requires to
implement a centralized solution, or a distributed solution with
heavy complexity and slow convergence [30]. Therefore, we
are interested in developing a distributed algorithm with low
complexity that converges to the stable matching solution in
Definition 2 which is known to yield strong performance and
very fast convergence (when the expected rates are known) by
using distributed opportunistic CSMA (see Section III-B and
[1] for more details on opportunistic CSMA for stable channel
allocation).

We assume that the entries in the matrix U are all different
as in [1], which holds in wireless networks due to continuous-
valued Shannon rates1. Thus, there is a unique stable matching
solution under our assumptions, and the expected aggre-
gated rate under the stable matching solution S is given by:
M∑
m=1

µi,S(i). The channel S(i) (i.e., the channel that user i

selects under the stable matching configuration) is referred to
as the stable channel selection of user i.

B. The Objective
Since the expected rates µi,k are unknown in our setting,

the users must learn this information online effectively so
as to converge to the stable matching solution. A widely
used performance measure of online learning algorithms is the
regret, defined as the reward loss with respect to an algorithm
with a side information on the model. In our setting, we define
the regret for policy φ = (φi, 1 ≤ i ≤ M) as the loss in
the expected aggregated data rate with respect to the stable
matching solution that uses the true expected rates:

rφ(t) , t ·
M∑
i=1

µi,S(i) − Eφ[

t∑
n=1

M∑
i=1

Xi,φi(n)(n)]. (2)

A policy φ that achieves a sublinear scaling rate of the regret
with time (and consequently the time averaged regret tends to
zero) approaches the required stable matching solution. The
essence of the problem is thus to design an algorithm that
learns the unknown expected rates efficiently to achieve the
best sublinear scaling of the regret with time.

1Otherwise, we can add noise to the matrix.
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III. THE DISTRIBUTED STABLE STRATEGY LEARNING
(DSSL) ALGORITHM

To achieve the objective, as detailed in Section II-B, we
divide the time horizon into three phases, namely exploration,
allocation, and exploitation phases. These three phases are
performed repeatedly during the algorithm according to ju-
diciously designed policy rules, as detailed later.

The purpose of the exploration phase is to allow each user
to explore all the channels to identify its M best channels
(i.e., the M channels that yield the highest expected rates
for the user). The users use the sample means as estimators
for the expected rates of the channels to achieve this goal.
This phase results in a regret loss, since users access sub-
optimal channels to explore them, and the stable allocation
is not performed. However, this phase is essential to identify
the M best channels and consequently minimize the regret
scaling with time. The purpose of the exploitation phase is
to use the currently learned information to execute the stable
matching solution. The allocation phase is used to allow users
to allocate the channels among users properly in a distributed
manner using opportunistic carrier sensing [31].

Since the rate process ri,k(t) might evolve even when
channel k is not selected by user i, learning the Markovian rate
statistics requires using channels in a consecutive manner for a
period of time [7], [8]. Moreover, frequent switching between
channels would cause a loss due to the transient effect. The
high-level structure of the DSSL algorithm works as follows.
Each user i computes its required number of samples Ni,k(t)
for each channel k at the end of every exploitation phase t. If
the number of samples is greater than Ni,k(t) for all k, user i
performs another exploitation phase. Otherwise, if the number
of samples is smaller than Ni,k(t) for one or more channel,
user i carries out an exploration phase for those channels.
When no exploration phase is needed, an allocation phase
is being performed. At the end of the allocation phase, each
user identifies its stable channel selection, and an exploitation
phase is carried out. We now discuss the structure of the DSSL
algorithm in details.

A. The Structure of the Exploration Phase:

Let ni,kO (t) be the number of exploration phases in which
channel k was selected by user i up to time t. Each ex-
ploration phase is divided into two sub epochs: a Random
size Epoch (RE), and a Deterministic size Epoch (DE). Let
γi,k(ni,kO (t) − 1) be the last channel state observed at the
(ni,kO (t)−1)th exploration phase. RE starts at the beginning of
the exploration phase until state γi,k(ni,kO (t)− 1) is observed.
This epoch ensures that the generated sample path (after
removing the samples observed in the RE epochs) is equivalent
to a sample path which are generated by continuously sensing
the Markovian channel without switching. This step guarantees
a consistent estimation of the expected rates. Then, DE starts
by sensing the channel for a deterministic period of time
4n

i,k
O (t). The deterministic period of time grows geometrically

with time to ensure a relatively small number of channel
switching.

B. The Structure of the Allocation Phase:

The allocation phase applies opportunistic CSMA among
users. In opportunistic CSMA, the backoff function maps from
an index (i.e., expected rate) to a backoff time [31]. The
backoff function is monotonically decreasing with the rates,
so that the user with the highest rate on a certain channel
waits the minimal time before transmission. All other users
sense that the channel is occupied and do not transmit on
that channel. To obtain the stable matching allocation, this
procedure continues until all M users occupy M channels.
For more details on opportunistic CSMA for stable matching
see [1].

We now describe the structure of the allocation phase. Let
Tk be the set of all users that attempt to transmit on channel
k at a certain stage of the allocation phase. We initialize the
phase by declaring each user to be unassigned. We divide
the time horizon of the allocation phase into two sub-phases.
In the first sub-phase, referred to as S1, we perform oppor-
tunistic CSMA for stable matching as in [1], while replacing
the expected rates by the sample means. Specifically, each
unassigned user attempts to transmit on its best channel, out
of those it has not yet attempted using opportunistic CSMA.
On each channel k, the best user out of Tk in this sub-phase
(S1) is declared to be assigned. All the other users in Tk
store the sample mean of the assigned user (by mapping from
the sensed backoff time to the sample mean). This sub-phase
continues until all M users are assigned to M channels. The
second sub-phase, referred to as S2, is used for gaining a
side information required for efficient learning. Specifically,
the opportunistic CSMA is executed again, but the assigned
users of each channel do not transmit. All other users that
attempted to transmit in S1 transmit again on the same channel
k. The sample mean of the best user in S2 (i.e., the second
best user in Tk for each channel k) is stored by the assigned
user. This sub-phase continues until all M users in S2 were
observed, and the phase ends.

C. The Structure of the Exploitation Phase:

Let nI(t) be the number of exploitation phases up to time
t. In the exploitation phase, each user transmits on the channel
it was assigned according to the last allocation phase (during
S1) for a deterministic period of time 2 · 4nI(t)−1 (for the nthI
exploitation phase). There are no channel switching and no
sample mean updating during the exploitation phase.

D. Parameter Setting for Efficient Learning:

As discussed earlier, exploring the channels increases the
regret since the stable matching allocation is not being used.
On the other hand, it is essential to reduce the estimation error
and consequently reduce the regret scaling order with time. In
this section, we establish the sufficient exploration rate of each
channel for each user to achieve efficient learning of the stable
matching allocation. For the ease of presentation we assume
that σi(k) = k, ∀k ∈ K,∀i ∈ M. We next establish two
parameters used in the learning strategy (a detailed explanation
of the parameter setting can be found in the extended version
of this paper [32]).
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1) Identifying M best channels: We show in the extended
version of this paper [32] that a user (say user i) who is
interested in distinguishing with a sufficiently high accuracy
between two channels k, l that yield expected rates µi,k, µi,l,

respectively, must explore them at least
4L

(µi,k − µi,l)2
· log(t)

times (where L is a constant which depends on the systems
parameters). Let ∆

(i)
k,l , µi,k − µi,l, and let Mi be the set of

the M best channels of user i. For each channel k ∈ Mi we
define the deterministic row2 threshold as

D
(R)
i,k ,

4L

min{(∆(i)
k,k+1)2, (∆

(i)
k,k−1)2}

, (3)

and for channel k 6∈Mi,

D
(R)
i,k ,

4L

(∆k,M )2
. (4)

Since the expected rates are unknown, we develop the esti-
mate D̂(R)

i,k (t) of D(R)
i,k in [32], which guarantees the desired

convergence.
2) CSMA protocol identification: In accordance with the

opportunistic CSMA protocol described above, each user i
needs to distinguish between channels k ∈ Tk (these channels
are inMi as well), and the best channel in Tk (and the second
best channel in Tk if k is the best channel in Tk). Hence, we
define the deterministic column threshold for channels k ∈ Tk
by:

D
(C)
i,k ,

4L

(µi,k −maxj 6=i µj,k)2
, (5)

and its estimate by D̂(C)
i,k (t) (see [32]). The adaptive threshold

rate of user i for channels k ∈Mi ∩ Tk is given by:

D̂i,k = max{D̂(R)
i,k (t), D̂

(C)
i,k (t)}. (6)

E. Choosing between phases types:

At the end of the exploitation phases, the users check the
condition:

T
(O)
i,k (t) > max

{
D̂i,k,

2

I

}
· log(t), (7)

where I can be viewed as the rate function of the estimators
among all channels, required to guarantee the desired conver-
gence rate (see [32]). If the condition holds for user i, the
user enters another exploitation phase by transmitting on the
same channel it has transmitted in the last exploitation phase.
Otherwise, if the condition does not hold, the user enters an
exploration phase by sensing channel k. At the end of the
phase, the user signals the other users that it has finished the
exploration phase. If such an interruption occurred, all the
users check again condition (7). If it holds for all users, they
start an allocation phase. At the end of the allocation phase, an
exploitation phase starts. A detailed pseudocode of the DSSL
algorithm is provided in [32].

In the extended version of this paper, we establish a finite-
sample bound on the regret with time, which results in a
logarithmic scaling of the regret [32].

2This definition is consistent with the definition of the M ×K expected
rate matrix by U = {µik}, i = 1, ...,M, k = 1, ...,K.

F. Numerical Examples:

In this section, we analyze the performance of DSSL
numerically as compared to DSEE [8] and RCA [7]. The
RCA and DSEE algorithms were proposed to solve the special
case of our problem, i.e., when each channel yields the same
expected rate for all users. For the simulation comparison, we
extended the RCA and DSEE algorithms by replacing their
parameters with the corresponding general matrix parameters.
The RCA algorithm performs random regenerative cycles
until catching predefined states in each phase, which results
in oversampling the channels, and therefore is expected to
increase the regret as compared to DSSL. The DSEE algorithm
overcomes this issue by performing deterministic sequencing
for both exploration and exploitation phases. However, the
deterministic sequencing requires the algorithm to explore
all channels using the maximal exploration rate among all
channels, which is expected to increase the regret as compared
to DSLL (that learns the desired exploration rate for each
channel) as well. It can be seen in Fig. 1 that the DSSL
algorithm outperforms both RCA and DSEE in this case.
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Proposed DSSL Algorithm

DSEE Algorithm

RCA Algorithm

Fig. 1. The regret (normalized by log t) under DSSL, extended DSEE,
and extended RCA as a function of time. Parameter setting: 3 users, 6
channels, each with two states: 0, 1. Transition probabilities for all channels
to transit from 0 to 1 and from 1 to 0: [0.2, 0.3, 0.35, 0.38, 0.42, 0.46],
Expected rates for channels at states 1 for users 1,2,3, respectively:
r1,k = [7, 15, 3, 2.6, 2.2, 1.8], r2,k = [5, 7, 13, 2.5, 2.1, 1.7],r3,k =
[11, 1.2, 19, 2.4, 2, 1.6], The expected rate for all channels at states 0 is r = 1
for all users.

IV. CONCLUSION

We considered the problem of multi-user DSA in cognitive
radio networks. The state of each channel is modeled by a
restless unknown Markovian process. By contrast to existing
studies that analyzed a special case of this setting, in which
each channel yields the same expected rate for all users, here
each channel yields a different expected rate for each user.
This general model adds a significant challenge of how to
efficiently learn a channel allocation in a distributed manner
so as to yield a global system wide objective. We developed a
novel Distributed Stable Strategy Learning (DSSL) algorithm
to achieve the objective, and proved theoretically convergence
to the stable matching allocation with a logarithmic regret
order. Numerical examples supported the theoretical findings
and demonstrated strong performance of the DSSL algorithm.
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