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Abstract

In this paper, we provide a rigorous analysis of DPO’s convergence rates with dif-
ferent sampling strategies under the exact gradient setting, revealing a surprising
separation: uniform sampling achieves linear convergence, while our proposed
online sampler achieves quadratic convergence. We further adapt the sampler to
practical settings by incorporating posterior distributions and logit mixing, demon-
strating significant improvements over previous approaches. Our results not only
offer insights into the theoretical standing of DPO but also pave the way for po-
tential algorithm designs in the future.

1 Introduction

Aligning language models (LMs) to human preferences is a critical pursuit due to its great potentials
to push forward artificial intelligence (AI) development, and to enable AI to serve humanity better [Ji
et al., 2023b]. Reinforcement learning from human feedback (RLHF) [Ziegler et al., 2019, Bai et al.,
2022] has been a widely-used approach, gaining tremendous successes in aligning LMs [OpenAI,
2024]. However, the multi-stage pipeline of RLHF, including reward model training and RL tuning,
is sensitive to hyperparameters and costly to train. DPO [Rafailov et al., 2023] directly combines
these stages and tunes LMs in an offline way, gaining popularity due to its stablility and efficiency.

The empirical success of DPO has recently sparked a significant increase in interest for under-
standing its theoretical properties. Through modeling RLHF as a KL-regularized contextual bandit
problem or Markov decision process, many works [Xiong et al., 2024, Xie et al., 2024, Liu et al.,
2024b, Khaki et al., 2024, Song et al., 2024] obtain strong theoretical results and highlight the role
of samplers in DPO. Specifically, they point out drawbacks of the offline sampler (the sampler in
DPO is the policy used to sample new data pairs) in vanilla DPO, and propose on-policy sampler
or other samplers as better choices, as validated empirically [Dong et al., 2024, Guo et al., 2024,
Tajwar et al., 2024].

However, these theoretical explanations are largely built upon traditional RL and analyze the impact
of samplers from the view of data, namely sample complexity, thus involving some impractical
assumptions, such as the access to an oracle for maximum likelihood estimation (MLE). Meanwhile,
from the optimization perspective, the convergence rates of gradient descent in DPO within different
sampling regimes remain an underexplored question. A particular setting of our interest is to give
provable guarantees for an online sampler depending on the current policy.
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1.1 Contributions

To fill this research gap, we focus on analyzing the crucial role of samplers in DPO, from the view
of optimization. Based on our theoretical findings, we can further derive a new effective approach,
demonstrating advantages in empirical experiments over previous approaches. We summarize our
contributions as follows:

• Theoretical separations. We analyze the convergence rates of DPO with various samplers
under tabular softmax parametrization, and demonstrate theoretical advantages brought
by specific samplers. Specifically, we show a separation that our proposed samplers,
DPO-Mix-R and DPO-Mix-P (mixture of uniform sampler and reward/policy-difference
guided sampler), achieve quadratic convergence rates, while the commonly used one,
DPO-Unif (sampling uniformly on the response space), can only achieve a linear con-
vergence rate. Numerical simulations support our results.

• Practical improvements. We design a new sampler for practical DPO. LM alignment
experiments show that under the same computation budget, our method demonstrates sig-
nificant advantages over baselines. Deferred to Appendix B.

• Explainability and generalizability. We show that our theoretical framework can explain
many existing DPO variants and thus provides a new perspective on their theoretical ad-
vantages. Deferred to Appendix B.

2 Preliminaries

We provide a thorough review of related literature in Appendix A.

Notations. Let σ : R Ñ R be the sigmoid function, where σpxq “ 1{p1`expp´xqq. For any setX ,
∆pXq represents the set of probability distributions over X . sg pq is the stopping-gradient operator.
Let 1k be a vector with 1 on the dimension corresponding to k and 0 on others (the dimension of
this vector is implicitly defined from the context).

2.1 Standard Bandit Learning

Firstly, we give basic concepts of standard bandit learning, which found the basis for RLHF.

Multi-armed bandits and contextual bandits. A multi-armed bandit has an arm (action) space Y
and a reward function r : Y Ñ r0, 1s. A contextual bandit has a context space X , an arm space Y ,
and a reward function r : X ˆ Y Ñ r0, 1s. In this work, the user prompt is viewed as a context, and
the agent response is viewed as an arm. To simplify notations, our results are stated in multi-armed
bandits versions. The statements and proofs can be easily extended to contextual bandits. Thus, we
will omit the prompts (contexts) and slightly abuse the notations throughout Sections 2 and 3.

Policies. A policy π : X Ñ ∆pYq maps each context to a probability simplex over the arm space.
For multi-armed bandits, a policy is instead a probability distribution over the arm space. We denote
Π as the set of policies we study. Under tabular softmax parametrization which is common in
previous works [Rafailov et al., 2023, Azar et al., 2023, Munos et al., 2023, Swamy et al., 2024], the
policy π is parameterized by θ P R|Y|: for any y P Y ,

πθpyq “
exppθyq

ř

y1PY exppθy1 q
.

The goal is to find the optimal policy maximizing the expected reward (with regularization).

2.2 Reinforcement Learning from Human Feedback (RLHF)

Secondly, we introduce RLHF / preference-based reinforcement learning (PBRL) problem [Wirth
et al., 2017, Christiano et al., 2017, Swamy et al., 2024] and current approaches.

Bradley-Terry (BT) model. Given an implicit reward oracle r : X ˆY Ñ r0, 1s, Bradley and Terry
[1952] assume that human preference distribution p‹ : X ˆ Y ˆ Y Ñ ∆pt0, 1uq satisfies:

p‹py1 ą y2|xq “ σ prpx, y1q ´ rpx, y2qq .
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This means that conditioned on prompt x, response y1 is favored over y2 with probability p‹py1 ą

y2|xq by human annotators.

RLHF [Ziegler et al., 2019, Bai et al., 2022]. A human preference dataset D “

tpxpiq, y
piq
w , y

piq
l quNi“1 means that in the ith sample, ypiq

w ą y
piq
l conditioned on xpiq. The reward

function r : X ˆ Y Ñ R is learned with parameter ϕ using a negative log-likelihood loss:

Lrpϕq “ ´
1

N

N
ÿ

i“1

”

log σ
´

rϕpxpiq, ypiq
w q ´ rϕpxpiq, y

piq
l q

¯ı

. (1)

Given π1, π2 P Π, E
xPX

KLpπ1p¨|xq}π2p¨|xqq is abbreviated as KLpπ1}π2q. Based on a reference

policy πref , the goal of RLHF is to maximize the obtained rewards with a KL-divergence penalty:

π‹ “ argmax
πPΠ

E
xPX ,yPπp¨|xq

rϕpx, yq ´ βKL pπ}πrefq , (2)

where β P R` is the regularization coefficient. Additionally, under tabular softmax parametrization,
we can directly write out the closed-form solution (Equation (4) in Rafailov et al. [2023]):

π‹py|xq “
1

Zpxq
πrefpy|xq exp

ˆ

1

β
rϕpx, yq

˙

, @x P X , y P Y , (3)

where Zpxq “
ř

yPY πrefpy|xq exp
´

1
β rϕpx, yq

¯

is the partition function.

In this paper, we look into the role of samplers in the performance of DPO. Now we formally define
DPO with samplers, from the perspective of bandit algorithms. We first consider the scenario where
we know the exact loss function and its gradient with respect to the model parameter θ.

Definition 1 (Exact DPO) Given an action set Y , two samplers πs1, πs2 P Π for sampling the
first and second action respectively, a human preference oracle p‹ : Y ˆ Y Ñ ∆pt0, 1uq, and
hyperparameters β, η P R`, the sampling probability and DPO loss function are defined as

πspy, y1q :“ sg
`

πs1pyqπs2py1q ` πs1py1qπs2pyq
˘

,

LDPOpθq :“ ´
ÿ

y,y1PY
πspy, y1qp‹py ą y1q log σ

ˆ

β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

, (4)

and the parameter is updated by

θpt`1q “ θptq ´ ηαpπs1, πs2q∇θLDPOpθptqq , (5)

where αpπs1, πs2q is a sampling coefficient determined by the samplers.

Remark 1 If we use a mixture of samplers, ① and ②, as later shown in Definitions 4 and 5, which
introduces a loss function L1 with sampling coefficient α1 and a loss function L2 with sampling
coefficient α2, the gradient update rule follows

θpt`1q “ θptq ´ η∇θ

´

α1L1pθptqq ` α2L2pθptqq

¯

.

Note that ① and ② can have different sets of πs1 and πs2.

In empirical studies, we do not have access to the exact gradients. Thus, we define the scenario of
empirical DPO and make mild assumptions on the gradient estimation.

Definition 2 (Empirical DPO) Given noise scale σ P R`, DPO pσq is defined as DPO with the
gradient update in Equation (5) as

θpt`1q “ θptq ´ ηGptq ,

where Gptq
y is a random variable s.t. for @y P Y ,

1

βA

´

Gptq
y ´ αpπs1, πs2q∇θyLpθptqq

¯

„ sub-Gaussianpσ2q .
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Remark 2 If the samplers are mixed, e.g., ① and ② in Remark 1, then we assume

1

βA

´

Gptq
y ´ ∇θy

´

α1L1pθptqq ` α2L2pθptqq

¯¯

„ sub-Gaussianpσ2q .

The closed form solution π‹ in Equation (3) satisfies rpyq ´ rpy1q ´ β log π‹
pyqπrefpy

1
q

πrefpyqπ‹py1q
“ 0, which

thus motivates us to study the convergence rate. With the update rule formally defined, now we ask:

How fast can rpyq ´ rpy1q ´ β log
π
θptq pyqπrefpy

1
q

πrefpyqπ
θptq py1q

converge to 0, for @y, y1 P Y?

We will study the convergence rates for three sampling regimes: one sampling uniformly on the
action space Y and two with mixtures of samplers. They are defined in Definitions 3 to 5.

Definition 3 (Uniform sampler) DPO-Unif is defined as DPO with πs1, πs2 as

πs1p¨q “ πs2p¨q “ UniformpYq ,

and αpπs1, πs2q “ 2|Y|2.

Definition 4 (Reward-guided mixed sampler) DPO-Mix-R is defined as DPO with πs1, πs2 as

①

"

πs1p¨q “ UniformpYq ,
πs2p¨q “ UniformpYq ,

②

"

πs1p¨q 9 UniformpYq ¨ expprp¨qq ,
πs2p¨q 9 UniformpYq ¨ expp´rp¨qq ,

and α1 “ |Y|2, α2 “
ř

y,y1PY exp prpyq ´ rpy1qq .

Definition 5 (Policy-difference-guided mixed sampler) DPO-Mix-P is defined as DPO with πs1,
πs2 as

①

"

πs1p¨q “ UniformpYq ,
πs2p¨q “ UniformpYq ,

②

"

πs1p¨q 9 UniformpYq ¨ pπθp¨q{πrefp¨qqβ ,
πs2p¨q 9 UniformpYq ¨ pπrefp¨q{πθp¨qqβ ,

and α1 “ |Y|2, α2 “
ř

y,y1PY

´

πθpyqπrefpy
1
q

πrefpyqπθpyq

¯β

.

Remark 3 Definition 4 does not define a practical sampler as r is unknown, but it is important to
display our idea of using a mixture of sampling policies. In Definition 5, ② can also be written as
πs19 exppβpθ´θrefqq, πs29 exppβpθref ´θqq . UniformpYq in Definitions 4 and 5 is for consistency
with Appendix B, where we use a posterior distribution over Y . And in Appendix B we will show
that the common practice sampling from the reference policy can be viewed as DPO-Unif with a
posterior distribution on Y , and a practical algorithm can be derived from DPO-Mix-P.

3 Main Results
We show our main results on convergence rates in this section. In summary, our proposed mixed
samplers can provably achieve: 1) exponentially faster convergence rates (quadratic v.s. linear)
compared with the uniform sampler in the exact gradient setting, and 2) linear convergence rates
to the noise scale when we have only unbiased estimations of the gradient. Numerical simulations
corroborate these theories.

3.1 Theoretical Findings
We present theories regarding convergence rates of different sampling regimes for exact DPO and
empirical DPO in this subsection, along with their proof sketches. We first define important nota-
tions:

∆py, y1; θq :“ σprpyq ´ rpy1qq ´ σ

ˆ

β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

,

δpy, y1; θq :“ rpyq ´ rpy1q ´ β log
πθpyqπrefpy

1q

πrefpyqπθpy1q
.

Then we can obtain

∇θLpθq “ ´β
ÿ

y,y1

πspy, y1q∆py, y1; θq1y
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by plugging p‹py, y1q “ σprpyq ´ rpy1qq and σp´xq “ 1´ σpxq into the derivative of Equation (4).
Hence, we can derive the iteration equation for δ:

δpy, y1; θpt`1qq “ δpy, y1; θptqq

´ ηβαpπs1, πs2q
ÿ

y2

´

πspy, y2q∆py, y2; θptqq ´ πspy1, y2q∆py1, y2; θptqq

¯

. (6)

We state the common condition for the upper bounds for simplicity:

Condition 1 Given an action set Y , it satisfies rpyq P r0, 1s, @y P Y . πθp0q is initialized as πref , and
the regularization coefficient is β P R`. Use the learning rate η “ 1

β2|Y|
.

3.1.1 For exact DPO

For DPO-Unif, we have that πspy, y1q “ 2{ |Y|
2, making the coefficients of each ∆ on the

RHS of Equation (6) identical by absolute values. To proceed, we claim a lower bound as
σ1

´

log πθpyqπrefpy
1
q

πrefpyqπθpy1q

¯

ě σ1
min, and use Lagrange interpolation, namely σ1

min ď pσpxq ´ σpyqq{px´

yq ď 1{4, to transform ∆ into δ. By carefully computing the coefficients of each δ and picking
learning rate, we arrive at a linear convergence. Using this linear convergence, we can turn back to
bound σ1

min, completing the proof. See detailed proof in Appendix C.1.

Theorem 1 (Upper bound of DPO-Unif) Under Condition 1, DPO-Unif satisfies
ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ď 0.588T , @y, y1 P Y ,

where T P N is the number of iterations.

The construction of the lower bound is based on a simple 3-armed bandit setting. We use Taylor
expansion to transform ∆ into δ, and note that the quadratic remainders can be negligible when θ is
close to the optimal point. And thus the linear transformation can only achieve linear convergence.
See detailed proof in Appendix C.1.

Theorem 2 (Lower bound of DPO-Unif) Let |Y| “ 3, rpy1q “ 0, rpy2q “ 1{3, rpy3q “ 1, and
πref “ UniformpYq. For any β P R` and learning rate η P p0, 2

β2|Y|
s, there always exists

small enough ϵ P R`, for any initialization πθp0q satisfying maxy,y1PY
ˇ

ˇδpy, y1; θp0qq
ˇ

ˇ ď ϵ and
miny,y1PY

ˇ

ˇδpy, y1; θp0qq
ˇ

ˇ ą 0, DPO-Unif satisfies

max
y,y1PY

ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ě γT ,

where T P N is the number of iterations and γ is a constant depending on θp0q.

Next we elaborate the idea of transforming ∆ into δ using Taylor expansion, and show how to
eliminate the linear term using appropriate samplers and learning rate. For Theorem 3, we can apply
Taylor expansion at rpy1q ´ rpy2q (while for Theorem 4 we apply at β log

π
θptq py1qπrefpy2q

πrefpy1qπ
θptq py2q

), and get

∆py1, y2; θ
ptqq “ σ1prpy1q ´ rpy2qqδpy1, y2; θ

ptqq `
σ2pξRq

2
δpy1, y2; θ

ptqq2 .

If we let πspy1, y2q91{σ1prpy1q ´ rpy2qq as in Definition 4, then

πspy, y2q∆py, y2; θptqq ´ πspy1, y2q∆py1, y2; θptqq “ constant ¨ δpy, y1; θptqq ` quadratic term .

Finally we pick an appropriate η to eliminate the initial linear term in Equation (6) and thus establish
a quadratic convergence. This observation motivates our design of samplers and proofs. The detailed
proofs of Theorems 3 and 4 can be found in Appendices C.2 and C.3.

Theorem 3 (Upper bound of DPO-Mix-R) Under Condition 1, DPO-Mix-R satisfies
ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ď 0.52

T
´1 , @y, y1 P Y ,

where T P N is the number of iterations.
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Theorem 4 (Upper bound of DPO-Mix-P) Under Condition 1, DPO-Mix-P satisfies
ˇ

ˇ

ˇ
δpy, y1; θpT qq

ˇ

ˇ

ˇ
ď 0.6112

T
´1 , @y, y1 P Y ,

where T P N is the number of iterations.

3.1.2 For empirical DPO

As in Definition 2, exact gradients are inaccessible in practice. Here we show the guarantees of
DPO-Mix-R and DPO-Mix-P with only unbiased estimation of gradients, that they can achieve linear
convergence rates to the noise scale. The proofs of Theorems 5 and 6 can be found in Appendix D.

Theorem 5 Under Condition 1 with the noise scale σ P p0, 1{576q, DPO-Mix-R pσq satisfies
b

E
“

δpy, y1; θpT qq2
‰

ď 14σ , @y, y1 P Y ,

where T “
X

log 1
σ

\

is the number of iterations.

Theorem 6 Under Condition 1 with the noise scale σ P p0, 1{576q, DPO-Mix-P˚ pσq satisfies
b

E
“

δpy, y1; θpT qq2
‰

ď 14σ , @y, y1 P Y ,

where T “
X

log 1
σ

\

is the number of iterations, and DPO-Mix-P˚ pσq is DPO-Mix-P pσq with
a rejection sampling process: each time we get y, y1 P Y sampled from ②, if ψpy, y1; θptqq :“
ˇ

ˇ

ˇ
β log

π
θptq pyqπrefpy

1
q

πrefpyqπ
θptq py1q

ˇ

ˇ

ˇ
ą 1, then reject this data pair with probability 1 ´ e`e´1

eψ`e´ψ ; and α2 needs to

be changed to 1
2

ř

y,y1PY minteψpy,y1;θptq
q ` e´ψpy,y1;θptq

q, e ` e´1u .

3.2 Numerical Simulations

We verify our theoretical findings with numerical simulations in contextual bandits. As shown in
Figure 1, the two proposed samplers DPO-Mix-P and DPO-Mix-R show great improvements over
DPO-Unif. The detailed configurations and more results can be found in Appendix F.1.
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Figure 1: Contextual bandit experiments for exact DPO and empirical DPO. The x-axis is the
number of gradient updates, and the y-axis is the total parameter difference

ř

y,y1 δpy, y1; θptqq2.
The left figure illustrates exact DPO, and the right figure illustrates empirical DPO. The separation
is clear in exact DPO, and still exists in empirical DPO.

4 Conclusion
This paper studies the convergence rates of DPO with different samplers. We demonstrate that
DPO-Mix-R and DPO-Mix-P offer quadratic convergence rates, outperforming the linear rate of
DPO-Unif. Our theoretical findings are supported by numerical simulations and LM alignment
experiments.

It is also important to acknowledge our limitations. 1) The selection of the posterior distribution is
not unique, and thus many useful samplers have yet to be developed from our framework and need
further experiments. 2) The convergence analysis is based on tabular softmax parametrization, and
a future direction would be exploring more practical settings such as log-linear parametrization and
function approximation.
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A Related Work

Theoretical study of RLHF/DPO. Zhu et al. [2023] formulate RLHF as contextual bandits, and
prove the convergence of the maximum likelihood estimator. Xiong et al. [2024] further consider
KL-regularization and show the benefits in sample complexity of online exploration in DPO. Xie
et al. [2024] study the online exploration problem from the perspective of KL-regularized Markov
decision processes, and show provable guarantees in sample complexity of a exploration bonus.
Liu et al. [2024c] investigate the overoptimization issue, and prove a finite-sample suboptimality
gap. Song et al. [2024] show a separation of coverage conditions for offline DPO and online RLHF.
These works primarily focus on the perspective of data, which is widely adopted in RL literature. For
Xiong et al. [2024], Xie et al. [2024], their policy update iteration is to directly solve MLE instead
of doing gradient descent as ours. Song et al. [2024] focus on data coverage, and have not studied
the convergence rates. In contrast, this paper analyzes DPO from the perspective of optimization,
offering a complementary while more practical viewpoint.

Variants of DPO. There are two line of works exploring the variants of DPO. 1) Objective func-
tion. Ψ-PO [Azar et al., 2023] changes the reward term to alternate mappings from preference pairs.
RPO [Liu et al., 2024c] adds an imitation loss to mitigate the overoptimization issue. CPO [Xu
et al., 2024] removes the πref term and adds an imitation loss to ensure that the policy does not
deviate too much. SimPO [Meng et al., 2024] also removes the πref term for efficiency, while using
length normalization for better length control. 2) Sampler. Liu et al. [2024b], Khaki et al. [2024]
utilize rejection sampling to adjust the data distribution to the theoretically-optimal policy before
training. On-policy DPO [Guo et al., 2024, Tajwar et al., 2024, Ding et al., 2024] emphasize the im-
portance of the on-policy sampler. Iterative DPO [Xiong et al., 2024, Dong et al., 2024] introduces
an iterative training scheme, where an online policy is used to generate data pairs, annotated by a
gold reward model, and the DPO training is subsequently applied to update the policy. XPO [Xie
et al., 2024] follows the setting of iterative DPO, and adds an optimistic term to the DPO objective.
In this paper, we focus on the latter direction, and only study the original objective.
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Other RLHF approaches. There is also a line of works [Munos et al., 2023, Swamy et al., 2024,
Rosset et al., 2024, Zhang et al., 2024] studying RLHF from a game-theoretic perspective. Nash-
MD-PG in Munos et al. [2023] uses a geometric mixture of online policy and reference policy
without specifying the mixing weight. Rosset et al. [2024] re-formulates the DPO pipeline and
shows theoretical guarantees for the on-policy sampler with an MLE oracle.

B Implications for Practical DPO

In this section, we show the implications of theoretical results in Section 3 for practical DPO design.

B.1 Aligning Theory to Practice

Rethinking DPO. We can rewrite a policy π P Π as πpy|xq9πrefpy|xqeφpx,yq{β , where φpx, yq P

R`. Then the training objective of DPO can be rewritten as:

φ‹px, ¨q “ argmin
φpx,¨q

ÿ

y1,y2PY
πspy1, y2|xq ¨ p´σ prpx, y1q ´ rpx, y2qq log σ pφpx, y1q ´ φpx, y2qqq

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

cross entropy loss

,

which is learning a reward model φpx, yq towards rpx, yq ` Cpxq, where Cpxq P R is a constant.
In Section 3, we have discussed the role of samplers in this implicit reward learning stage. Here we
introduce a lemma (for multi-armed bandits) to connect it with the final performance.

Lemma 1 (Performance difference lemma) For any θ, define its value as

V θ :“ E
y„πθ

rpyq ´ βKL pπθ}πrefq ,

and let V ‹ be the value of the optimal policy π‹ in Equation (3), then we have

V ‹ ´ V θ “
ÿ

y,y1PY
π‹pyqπθpy1q

ˆ

rpyq ´ rpy1q ´ β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

´ βKLpπ‹||πθq

ď
ÿ

y,y1PY
π‹pyqπθpy1q

ˆ

rpyq ´ rpy1q ´ β log
πθpyqπrefpy

1q

πrefpyqπθpy1q

˙

. (7)

Setting the posterior. Lemma 1 indicates that reward learning should concentrate on responses
with high probabilities for π‹ and πθ, and thus motivates us to change the distribution over Y to a
posterior distribution close to π‹ or πθ in practical implementation. This perspective provides an
alternate explanation for Liu et al. [2024b], which uses rejection sampling to align the sampling
distribution to π‹. Considering the fact that π‹ is usually inaccessible, we propose to let π2β

θ be the
posterior distribution. Setting the sampling temperature as 2β, we can thus derive our new practical
algorithm following Definition 5:

①

"

πs1p¨|xq “ πθp¨|xq ,
πs2p¨|xq “ πθp¨|xq ,

②

#

πs1p¨|xq9π
3{2
θ p¨|xqπ

´1{2
ref p¨|xq ,

πs2p¨|xq9π
1{2
θ p¨|xqπ

1{2
ref p¨|xq ,

and with a reward margin rmax P R` the mixing ratio can be roughly approximated as

① : ② “ 2 : pexpprmaxq ` expp´rmaxqq . (8)

Logit mixing. The proposed samplers involve a hybridization between two policies, and a com-
mon approach to approximate hybrid distributions is logit mixing [Shi et al., 2024, Liu et al., 2024a].
Here we show how to understand this point in a theoretically sound way. Given π1, π2 P Π,
w1, w2 P R, we consider a new logit as ζ :“ w1ζ1 ` w2ζ2, where ζ1, ζ2 represent the per-token
logits of policies π1, π2, namely ζkpyt|x, yătq “ log πkpyt|x, yătq. Note that

argmax
yPY

πw1
1 py|xqπw2

2 py|xq “ argmax
yPY

w1 log π1py|xq ` w2 log π2py|xq

“ argmax
yPY

|y|
ÿ

t“0

w1ζ1pyt|x, yătq ` w2ζ2pyt|x, yătq

11



“ argmax
yPY

|y|
ÿ

t“0

ζpyt|x, yătq .

This indicates that, greedy decoding from π9πw1
1 πw2

2 is equivalent to greedy decoding from w1ζ1 `

w2ζ2. Thus, our proposed samplers can be implemented through mixing the logits of πref and πθ.

Understanding existing approaches. Vanilla DPO [Rafailov et al., 2023] and its online vari-
ant [Xiong et al., 2024] can be incorporated into our theoretical framework. As shown in Table 1,
vanilla DPO, which assumes that pair-comparison data are sampled from πref (see Section 4 of
Rafailov et al. [2023]), can be viewed as DPO-Unif; On-policy DPO [Guo et al., 2024, Tajwar
et al., 2024] proposes to sample reponse pairs using πθ, and is thus equivalent to DPO-Unif;
Hybrid GSHF (Option I in Xiong et al. [2024]) sets πs1 “ πθ and πs2 “ πref , equivalent to
DPO-Mix-P (②); and Online GSHF (Option II in Xiong et al. [2024]) adopts the best/worst-of-K
response generated by πθ, which can be approximately viewed as generating from πθp¨q expprp¨q{βq

and πθp¨q expp´rp¨q{βq, i.e. DPO-Mix-R (②). Notably, the ① part is often omitted in DPO variants,
and it can be attributed to the infinitely large reward margin in the implementation [Xiong et al.,
2024, Dong et al., 2024], making the mixing ratio Ñ 0 : 1 in Equation (8) (see more details in
Section 4 of Rosset et al. [2024] and Appendix E).

Table 1: Comparison with existing approaches. We find that many baselines can be mapped to
components of our proposed samplers, offering an alternative explanation for their advantages.

Algorithm Practical πs1 Practical πs2 Equivalent Sampler Posterior Distribution

Vanilla DPO πref πref DPO-Unif π2β
ref

On-policy DPO πθ πθ DPO-Unif π2β
θ

Hybrid GSHF πθ πref DPO-Mix-P (②) πβθ π
β
ref

Online GSHF πθ (best-of-K) πθ (worst-of-K) DPO-Mix-R (②) π2β
θ

Ours πθ πθ DPO-Mix-P π2β
θπ

3{2
θ π

´1{2
ref π

1{2
θ π

1{2
ref

Table 2: Results on Safe-RLHF. The average reward is scored by the gold reward model on train set
and test set, and win-rate is against the reference model. Each algorithm is trained for 3 iterations,
and in the final iteration, ours shows advantages over baselines across all metrics.

Algorithm Iters Average reward (train) Win-rate (train) Average reward (test) Win-rate (test)

Vanilla DPO 2 -1.486 67.6% -1.423 68.7%
3 -1.144 72.5% -1.203 71.7%

On-policy DPO 2 -1.478 67.6% -1.510 65.8%
3 -1.082 73.2% -1.094 73.2%

Hybrid GSHF 2 -1.517 68.5% -1.505 66.9%
3 -1.079 74.8% -1.002 75.9%

Ours 2 -1.457 68.1% -1.436 67.6%
3 -0.908 75.6% -0.945 76.2%

B.2 Alignment Experiments

Experiment setup. We conduct experiments on two datasets, Safe-RLHF [Ji et al., 2023a] and
Iterative-Prompt [Xiong et al., 2024, Dong et al., 2024]. Our pipeline is mainly borrowed from Dong
et al. [2024]. For each iteration, responses are generated for a fixed set of prompts. Specifically,
given prompt x, we generate y1 „ πs1p¨|xq and y2 „ πs2p¨|xq Each generated pair is annotated by a
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Table 3: Results on Iterative-Prompt. The average reward is scored by the gold reward model on
train set and test set, and win-rate is against the reference model. Each algorithm is trained for 3
iterations, and in the final iteration, ours shows advantages over baselines across all metrics.

Algorithm Iters Average reward (train) Win-rate (train) Average reward (test) Win-rate (test)

Vanilla DPO 2 1.427 71.4% 1.375 70.0%
3 2.023 78.4% 2.133 78.8%

On-policy DPO 2 2.106 79.2% 2.157 78.7%
3 3.131 82.4% 3.327 82.9%

Hybrid GSHF 2 2.116 79.6% 2.224 80.0%
3 2.386 81.9% 2.500 82.8%

Ours 2 2.026 78.3% 2.068 77.3%
3 4.149 86.6% 4.221 87.1%

gold reward model [Dong et al., 2023] as pr1, r2q, and the corresponding loss is

Lpy1,y2qpθq “ ´σprmax ¨ pr1 ´ r2qq log σ

ˆ

β log
πθpy1|xqπrefpy2|xq

πrefpy1|xqπθpy2|xq

˙

´ σprmax ¨ pr2 ´ r1qq log σ

ˆ

β log
πθpy2|xqπrefpy1|xq

πrefpy2|xqπθpy1|xq

˙

,

where rmax P R` is the reward margin. See more details in Appendix E.

Results. Experimental results on LM alignment are provided in Tables 2 and 3. On Safe-RLHF
dataset, our method is 4.5% better than vanilla DPO and 3.0% better than on-policy DPO. On
Iterative-Prompt dataset, ours improves by 8.3% compared to vanilla DPO and by 4.2% compared
to on-policy DPO. We also show the reward-KL curves in Figure 2, to indicate that the tuned models
do not deviate much from πref .
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Figure 2: The Reward-KL curves. The left figure illustrates results on Safe-RLHF, and the right
one illustrates results on Iterative-Prompt. Th KL-divergence is measured on a subset of prompts
in the test set. The results indicate that the KL-divergence of trained models does not deviate much
from the reference model, and our method performs best in balancing reward and KL-divergence.

Clarification on evaluations. It is not enough to only show the results scored by reward models,
since DPO algorithm is not explicitly learning the reward rankings [Meng et al., 2024, Chen et al.,
2024]. Due to restricted resources, we have not evaluated on open-benchmarks [Zheng et al., 2023,
Dubois et al., 2024]. Our work has demonstrated the potential to train models more effectively with
minimal changes to the existing DPO pipeline. We hope this will inspire the community, especially
those with rich computational resources, to conduct more systematic experiments.
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C Proofs of Convergence Rates of Exact DPO

Without loss of generality, we assume πref to be uniform distribution throughout this section. In the
main text, we use Y to represent the action space and y to represent an action for compatibility with
other LM papers. From here, we turn back to A for action space, a for an action, and A for the size
of A since all the proofs are conducted in bandit environments. And for notational ease, we make
the following definitions:

∆pa, a1; θq :“ σprpaq ´ rpa1qq ´ σpβpθa ´ θa1 qq ,

δpa, a1; θq :“ rpaq ´ rpa1q ´ βpθa ´ θa1 q .

C.1 Theorems 1 and 2: Linear Convergence of Exact DPO-Unif

C.1.1 Proof of upper bound

For DPO with uniform sampler on action pairs, we first claim that for any θ appearing in the opti-
mization process,

max
a,a1

tβpθa ´ θa1 qu ď Rmax ,

where Rmax will be bounded later, and let σ1
min :“ σ1pRmaxq “ σpRmaxqσp´Rmaxq . Then we

have

σ1
min ď

σpxq ´ σpyq

x´ y
ď

1

4
when |x| , |y| ď Rmax and x ‰ y , (9)

Lpθq “ ´
2

A2

ÿ

a,a1

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

, (10)

∇θLpθq “ ´
2β

A2

ÿ

a,a1

∆pa, a1; θq1a . (11)

Equation (11) reduces to

∇θaLpθq “ ´
2β

A2

ÿ

a1

∆pa, a1; θq .

Thus for any action pair pa, a1q,

pθa ´ θa1 qpt`1q “ pθa ´ θa1 qptq `
2ηβαpπs1, πs2q

A2

ÿ

a2

´

∆pa, a2; θptqq ´ ∆pa1, a2; θptqq

¯

“ pθa ´ θa1 qptq ` 4ηβ
ÿ

a2

´

∆pa, a2; θptqq ´ ∆pa1, a2; θptqq

¯

.

At time t, sort the actions in the order that rpaiq ´ βθ
ptq
ai ď rpai`1q ´ βθ

ptq
ai`1 . Then we have

∆pai, aj ; θ
ptqq ě 0 if i ą j. Note that it is possible that the order of actions at time t`1 is different,

and in the following proof for any index i, ai is from the order at time t. Let l ă r, then

δpar, al; θ
pt`1qq

“ δpar, al; θ
ptqq ´ 4ηβ2

A
ÿ

i“1

´

∆par, ai; θ
ptqq ´ ∆pal, ai; θ

ptqq

¯

(i)
ď δpar, al; θ

ptqq ´ 4ηβ2
l´1
ÿ

i“1

ˆ

σ1
minδpar, ai; θ

ptqq ´
1

4
δpal, ai; θ

ptqq

˙

´ 4ηβ2
r

ÿ

i“l

´

σ1
minδpar, ai; θ

ptqq ´ σ1
minδpal, ai; θ

ptqq

¯

´ 4ηβ2
A

ÿ

i“r`1

ˆ

1

4
δpar, ai; θ

ptqq ´ σ1
minδpal, ai; θ

ptqq

˙

“ δpar, al; θ
ptqq ´ 4ηβ2

«

σ1
minpl ´ 1qδpar, al; θ

ptqq ´

ˆ

1

4
´ σ1

min

˙ l´1
ÿ

i“1

δpal, ai; θ
ptqq

ff
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´ 4ηβ2σ1
minpr ´ l ` 1qδpar, al; θ

ptqq ´ 4ηβ2

«

σ1
minpA´ rqδpar, al; θ

ptqq ´

ˆ

1

4
´ σ1

min

˙ A
ÿ

i“r`1

δpai, ar; θ
ptqq

ff

“
`

1 ´ 4ηβ2Aσ1
min

˘

δpar, al; θ
ptqq ` 4ηβ2

ˆ

1

4
´ σ1

min

˙

˜

l´1
ÿ

i“1

δpal, ai; θ
ptqq `

A
ÿ

i“r`1

δpai, ar; θ
ptqq

¸

,

where (i) is by using Equation (9) for different cases of x and y and whether x ´ y ą 0. Similarly,
for the lower bound:

´ δpar, al; θ
pt`1qq

“ 4ηβ2
A

ÿ

i“1

´

∆par, ai; θ
ptqq ´ ∆pal, ai; θ

ptqq

¯

´ δpar, al; θ
ptqq

ď 4ηβ2
l´1
ÿ

i“1

ˆ

1

4
δpar, ai; θ

ptqq ´ σ1
minδpal, ai; θ

ptqq

˙

` 4ηβ2
r

ÿ

i“l

ˆ

1

4
δpar, ai; θ

ptqq ´
1

4
δpal, ai; θ

ptqq

˙

` 4ηβ2
A

ÿ

i“r`1

ˆ

σ1
minδpar, ai; θ

ptqq ´
1

4
δpal, ai; θ

ptqq

˙

´ δpar, al; θ
ptqq

“ 4ηβ2

«

1

4
pl ´ 1qδpar, al; θ

ptqq `

ˆ

1

4
´ σ1

min

˙ l´1
ÿ

i“1

δpal, ai; θ
ptqq

ff

` 4ηβ2 ¨
1

4
pr ´ l ` 1qδpar, al; θ

ptqq

` 4ηβ2

«

1

4
pA´ rqδpar, al; θ

ptqq `

ˆ

1

4
´ σ1

min

˙ A
ÿ

i“r`1

δpai, ar; θ
ptqq

ff

´ δpar, al; θ
ptqq

“
`

ηβ2A´ 1
˘

δpar, al; θ
ptqq ` 4ηβ2

ˆ

1

4
´ σ1

min

˙

˜

l´1
ÿ

i“1

δpal, ai; θ
ptqq `

A
ÿ

i“r`1

δpai, ar; θ
ptqq

¸

.

Now taking η “ 1
β2A , then we have

δpar, al; θ
pt`1qq ď p2 ´ 8σ1

minqmax
a,a1

δpa, a1; θptqq ,

´δpar, al; θ
pt`1qq ď p1 ´ 4σ1

minqmax
a,a1

δpa, a1; θptqq .

Define

γ :“ 2 ´ 8σ1
min

as the contraction factor, then
ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď γmax

a,a1

ˇ

ˇ

ˇ
δpa, a1; θptqq

ˇ

ˇ

ˇ
. (12)

Recall that we initialize θp0q “ 0⃗. Next we use induction to verify that throughout the process
(t ě 0),

ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď 0.214γt , and

ˇ

ˇ

ˇ
βpθa ´ θa1 qpt`1q

ˇ

ˇ

ˇ
ă 1.214 . (13)

For time t “ 0, we have special versions: rpa1q ď rpa2q ď ¨ ¨ ¨ ď rpaAq.

δpar, al; θ
p1qq “ rparq ´ rpalq ´ 4ηβ2

A
ÿ

i“1

p∆par, ai; θ
p0qq ´ ∆pal, ai; θ

p0qqq

(i)
“ rparq ´ rpalq ´ 4ηβ2

A
ÿ

i“1

pσprparq ´ rpaiqq ´ σprpalq ´ rpaiqqq

(ii)
ď rparq ´ rpalq ´ 4ηβ2

A
ÿ

i“1

σ1p1qrrparq ´ rpaiq ´ prpalq ´ rpaiqqs

“
`

1 ´ 4ηβ2Aσ1p1q
˘

prparq ´ rpalqq

15



(iii)
ď 0.214 ;

´δpar, al; θ
p1qq “ 4ηβ2

A
ÿ

i“1

p∆par, ai; θ
p0qq ´ ∆pal, ai; θ

p0qqq ´ prparq ´ rpalqq

“ 4ηβ2
A

ÿ

i“1

pσprparq ´ rpaiqq ´ σprpalq ´ rpaiqqq ´ prparq ´ rpalqq

ď 4ηβ2
A

ÿ

i“1

1

4
rrparq ´ rpaiq ´ prpalq ´ rpaiqqs ´ prparq ´ rpalqq

“
`

ηβ2A´ 1
˘

prparq ´ rpalqq

“ 0 ,

where (i) is by θp0q “ 0⃗; (ii) is by Equation (9) and rparq ´rpaiq ě rpalq ´rpaiq; (iii) is by rparq ´

rpalq ď 1. So
ˇ

ˇδpar, al; θ
p1qq

ˇ

ˇ ď 0.214, and |βpθa ´ θa1 q1| ď |rpaq ´ rpa1q| `
ˇ

ˇδpar, al; θ
p1qq

ˇ

ˇ ď

1.214. Suppose for time t´ 1, Equation (13) holds, then Equation (12) holds. So for time t,
ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď γmax

a,a1

ˇ

ˇ

ˇ
δpar, al; θ

ptqq

ˇ

ˇ

ˇ
ď 0.214γt ď 0.214 ,

and
ˇ

ˇ

ˇ
βpθa ´ θa1 qpt`1q

ˇ

ˇ

ˇ
ď

ˇ

ˇrpaq ´ rpa1q
ˇ

ˇ `

ˇ

ˇ

ˇ
δpar, al; θ

pt`1qq

ˇ

ˇ

ˇ
ď 1.214 .

Thus we have
γ “ 2 ´ 8σ1

min ď 2 ´ 8σ1p1.214q ă 0.588 ,
ˇ

ˇ

ˇ
δpar, al; θ

pT qq

ˇ

ˇ

ˇ
ď 0.588T .

C.1.2 Construction of lower bound

Consider a three-armed bandit setting with rewards rpa1q “ 0, rpa2q “ 1{3, rpa3q “ 1 and any
regularization parameter β P R`. The update rule satisfies:

δpa2, a1; θ
pt`1qq “ δpa2, a1; θ

ptqq ´ 4ηβ2
´

2∆pa2, a1; θ
ptqq ` ∆pa3, a1; θ

ptqq ´ ∆pa3, a2; θ
ptqq

¯

,

(14)

δpa3, a2; θ
pt`1qq “ δpa3, a2; θ

ptqq ´ 4ηβ2
´

2∆pa3, a2; θ
ptqq ` ∆pa3, a1; θ

ptqq ´ ∆pa2, a1; θ
ptqq

¯

,

(15)

δpa3, a1; θ
pt`1qq “ δpa3, a1; θ

ptqq ´ 4ηβ2
´

2∆pa3, a1; θ
ptqq ` ∆pa3, a2; θ

ptqq ` ∆pa2, a1; θ
ptqq

¯

.

Define xt :“ δpa2, a1; θ
ptqq , and yt :“ δpa3, a2; θ

ptqq . Clearly we have δpa3, a1; θ
ptqq “ xt ` yt .

We can perform Taylor expansion on Equations (14) and (15) and get
ˆ

xt`1

yt`1

˙

“

ˆ

1 ´ 4ηβ2p2σ1p1{3q ` σ1p1qq 4ηpσ1p2{3q ´ σ1p1qq

4ηβ2pσ1p1{3q ´ σ1p1qq 1 ´ 4ηβ2p2σ1p2{3q ` σ1p1qq

˙

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

:“B

ˆ

xt
yt

˙

` ηβ2

ˆ

ut
vt

˙

,

(16)
where

|ut| ď
4x2t ` 3y2t

3
?
3

ď x2t ` y2t , |vt| ď
3x2t ` 4y2t

3
?
3

ď x2t ` y2t . (17)

Now we analyze the eigenvalues of B under three scenarios.

1. If

0 ă ηβ2 ă
1

4p2σ1p1{3q ` σ1p1qq
« 0.366 ,

then we have
detpλI ´Bq “ λ2 ´ pB11 `B22qλ` B11B22

loomoon

ďpB11`B22q2{4

´B12B21
loomoon

ą0

.
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2. If
1

4p2σ1p1{3q ` σ1p1qq
ď ηβ2 ď

1

4p2σ1p2{3q ` σ1p1qq
« 0.388 ,

then we have

detpλI ´Bq “ λ2 ´ pB11 `B22qλ`B11B22
loomoon

ď0

´B12B21
loomoon

ą0

.

3. If
1

4p2σ1p2{3q ` σ1p1qq
ă ηβ2 ă

1

2p2σ1p1{3q ` σ1p2{3qq
« 0.704 ,

then we have

detpλI ´Bq “ λ2 ´ pB11 `B22qλ` B11B22
loomoon

ďpB11`B22q2{4

´B12B21
loomoon

ą0

.

Therefore B has two different eigenvalues λ1, λ2 P p´1, 0q Y p0, 1q, with normalized eigenvectors
w1,w2. Clearly wij P p´1, 0q Y p0, 1q, @i, j P t1, 2u. Then we define λmax :“ maxp|λ1|, |λ2|q,
λmin :“ minp|λ1|, |λ2|q, Now perform basis transformation with new basis pw1,w2q. Thus Equa-
tion (16) can be rewritten as

ˆ

pt`1

qt`1

˙

“

ˆ

λ1 0
0 λ2

˙ ˆ

pt
qt

˙

`

ˆ

u1
t
v1
t

˙

,

Let w1
1,w

1
2 be the inverse basis, and define α :“ max

i,jPt1,2u
|w1
ij |, and ϵ :“

min pλmin, 1 ´ λmaxq {p64α2q. Now initialize |x0|, |y0| P p0, ϵq. Then we have
max

i,jPt1,2,3u
|δpai, aj ; θ

p0qq| ď 2ϵ. Therefore

|p0|, |q0|
(i)
ď 2αϵ ,

and

|u1
t|, |v

1
t|

(ii)
ď 2αpx2t ` y2t q

(iii)
ď 4αpp2t ` q2t q .

(i) and (ii) comes from the fact that pt “ w1
11xt`w1

21yt and qt “ w1
12xt`w1

22yt, and Equation (17);
(iii) is from the fact that xt “ w11pt ` w21qt and yt “ w12pt ` w22qt, and Cauchy-Schwarz
inequality. Now we have

|pt`1| ` |qt`1| ď rλmax ` 8α p|pt| ` |qt|qs p|pt| ` |qt|q
(iv)
ď

`

λmax ` 32α2ϵ
˘

p|pt| ` |qt|q

ď
1 ` λmax

2
p|pt| ` |qt|q .

|pt`1| ` |qt`1| ě rλmin ´ 8α p|pt| ` |qt|qs p|pt| ` |qt|q
(v)
ě

`

λmin ´ 32α2ϵ
˘

p|pt| ` |qt|q

ě
λmin

2
p|pt| ` |qt|q ,

where (iv) and (v) are based on simple induction that |pt| ` |qt| will not increase. And it thus
indicates that maxp|xt|, |yt|q can at most be linear convergence when ηβ2 ď 2

A « 0.667.

C.2 Theorem 3: Quadratic Convergence of Exact DPO-Mix-R

We study DPO with a mixture of fixed samplers: Z`Z´ ¨πs1ˆπs2`A2 ¨UniformpAqˆUniformpAq ,
where Z` “

ř

a expprpaqq , πs1paq “ expprpaqq{Z` and Z´ “
ř

a expp´rpaqq , πs2pAq “

expp´rpaqq{Z´ . We have

α1L1pθq ` α2L2pθq

17



“ ´
ÿ

a,a1

ˆ

A2 ¨
1

A2
` Z`Z´ ¨ πs1paqπs2pa1q

˙ „

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

` p‹pa1 ą aq log σ

ˆ

β log
πθpa1q

πθpaq

˙ȷ

“ ´
ÿ

a,a1

pexpprpaq ´ rpa1qq ` 1q

„

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

` p‹pa1 ą aq log σ

ˆ

β log
πθpa1q

πθpaq

˙ȷ

,

∇θ pα1L1pθq ` α2L2pθqq

“ ´β
ÿ

a,a1

pexpprpaq ´ rpa1qq ` 1q∆pa, a1; θqp1a ´ 1a1 q

“ ´β
ÿ

a,a1

pexpprpaq ´ rpa1qq ` expprpa1q ´ rpaqq ` 2q∆pa, a1; θq1a

“ ´β
ÿ

a,a1

∆pa, a1; θq

σ1prpaq ´ rpa1qq
1a . (18)

Equation (18) reduces to

∇θa pα1L1pθq ` α2L2pθqq “ ´β
ÿ

a1

∆pa, a1; θq

σ1prpaq ´ rpa1qq
.

Fix parameter θ. For any action pair a, a1, through Taylor expansion we have that

∆pa, a1; θq “ σ1prpaq ´ rpa1qqδpa, a1; θq ´
σ2pξRpa, a1; θqq

2
δpa, a1; θq2 ,

where ξRpa, a1; θq is between rpaq ´ rpa1q and βpθa ´ θa1 q. We have that at time step t, for any
action pair pa, a1q,

δpa, a1; θpt`1qq “ δpa, a1; θptqq ´ ηβ2
ÿ

a2

ˆ

∆pa, a2; θptqq

σ1prpaq ´ rpa2qq
´

∆pa1, a2; θptqq

σ1prpa1q ´ rpa2qq

˙

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

pδpa, a2; θptqq ´ δpa1, a2; θptqqq

`
ηβ2

2

ÿ

a2

ˆ

σ2pξRpa, a2; θptqqq

σ1prpaq ´ rpa2qq
δpa, a2; θptqq2 ´

σ2pξRpa1, a2; θptqqq

σ1prpa1q ´ rpa2qq
δpa1, a2; θptqq2

˙

“ p1 ´ ηβ2Aqδpa, a1; θptqq

`
ηβ2

2

ÿ

a2

ˆ

σ2pξRpa, a2; θptqqq

σ1prpaq ´ rpa2qq
δpa, a2; θptqq2 ´

σ2pξRpa1, a2; θptqqq

σ1prpa1q ´ rpa2qq
δpa1, a2; θptqq2

˙

.

From the range of r, we know that σ1prpaq ´ rpa1qq ě σ1p1q ą 0.196. We have
ˇ

ˇσ2pξRpa, a2; θptqqq
ˇ

ˇ ď σ2
max :“ sup0ďxď1 xp1 ´ xqp1 ´ 2xq “ 1{p6

?
3q ă 0.097. Set

η “
1

β2A
,

then
ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

1

2A

ÿ

a2

ˆ

σ2
max

σ1p1q
δpa, a2; θptqq2 `

σ2
max

σ1p1q
δpa1, a2; θptqq2

˙

ď
σ2
max

σ1p1q
max
a,a1

δpa, a1; θptqq2

ă
1

2
max
a,a1

δpa, a1; θptqq2 .

Since maxa,a1

ˇ

ˇδpa, a1; θp0qq
ˇ

ˇ ď 1, we can show a quadratic convergence for this regime:
ˇ

ˇδpa, a1; θtq
ˇ

ˇ ď 0.52
t
´1 .
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C.3 Theorem 4: Quadratic Convergence of Exact DPO-Mix-P

We study DPO with a mixture of on-policy samplers (with gradient stopped) and uniform samplers:
Z`Z´ ¨ πs1 ˆ πs2 ` A2 ¨ UniformpAq ˆ UniformpAq , where Z` “

ř

a exppβθaq , πs1paq “

exppβθaq{Z` and Z´ “
ř

a expp´βθaq , πs2paq “ expp´βθaq{Z´. Samely we have

∇θa pα1L1pθq ` α2L2pθqq “ ´β
ÿ

a1

∆pa, a1; θq

σ1pβpθa ´ θa1 qq
.

Fix parameter θ. For any action pair a, a1, through Taylor expansion we have that

∆pa, a1; θq “ σ1pβpθa ´ θa1 qqδpa, a1; θq `
σ2pξPpa, a1; θqq

2
δpa, a1; θq2 ,

where ξPpa, a1; θq is between rpaq ´ rpa1q and βpθa ´ θa1 q. We have that at time step t, for any
action pair pa, a1q,

δpa, a1; θpt`1qq “ δpa, a1; θptqq ´ ηβ2
ÿ

a2

ˆ

∆pa, a2; θptqq

σ1pβpθa ´ θa2 qptqq
´

∆pa1, a2; θptqq

σ1pβpθa1 ´ θa2 qptqq

˙

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

pδpa, a2; θptqq ´ δpa1, a2; θptqqq

´
ηβ2

2

ÿ

a2

ˆ

σ2pξPpa, a2; θptqqq

σ1pβpθa ´ θa2 qptqq
δpa, a2; θptqq2 ´

σ2pξPpa1, a2; θptqqq

σ1pβpθa1 ´ θa2 qptqq
δpa1, a2; θptqq2

˙

“ p1 ´ ηβ2Aqδpa, a1; θptqq

´
ηβ2

2

ÿ

a2

ˆ

σ2pξPpa, a2; θptqqq

σ1pβpθa ´ θa2 qptqq
δpa, a2; θptqq2 ´

σ2pξPpa1, a2; θptqqq

σ1pβpθa1 ´ θa2 qptqq
δpa1, a2; θptqq2

˙

.

We still first claim that σ1pβpθa ´ θa1 qtq ě σ1
min, and will bound it later. We have

ˇ

ˇσ2pξPpa, a2; θptqqq
ˇ

ˇ ď σ2
max ă 0.097. Set

η “
1

β2A
,

then
ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

σ2
max

2Aσ1
min

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q

ď
σ2
max

σ1
min

max
a,a1

δpa, a1; θptqq2 .

At time step t “ 0 we have σ1pβpθa ´ θa1 qp0qq “ σ1p0q “ 0.25 and maxa,a1

ˇ

ˇδpa, a1; θp0qq
ˇ

ˇ ď 1 , so

max
a,a1

ˇ

ˇ

ˇ
δpa, a1; θp1qq

ˇ

ˇ

ˇ
ă 0.388 .

By simple induction, we have that

σ1
min ě σ1p1 ` max

a,a1

ˇ

ˇ

ˇ
δpa, a1; θptqq

ˇ

ˇ

ˇ
q ě σ1p1.388q ą 0.159 ,

max
a,a1

ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

0.097

0.159
max
a,a1

δpa, a1; θptqq2 ă 0.611max
a,a1

δpa, a1; θptqq2 .

which is a quadratic convergence:
ˇ

ˇδpa, a1; θtq
ˇ

ˇ ď 0.6112
t
´1 .

D Proof of Convergence Rates of Empirical DPO

For notational ease, we make the following definitions throughout this section:
∆pa, a1; θq :“ σprpaq ´ rpa1qq ´ σpβpθa ´ θa1 qq,

δpa, a1; θq :“ rpaq ´ rpa1q ´ βpθa ´ θa1 q.

This section conforms to Definition 2. Denote the filtration Ft as all the samples on and before time
step t.
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D.1 Technical Lemma

Lemma 2 (Lemma 1.4 in Philippe Rigollet [2015]) Let X be a random variable such that

Pr|X| ą ts ď 2 exp

ˆ

´
t2

2σ2

˙

,

then for any positive integer k ě 2,

Er|X|
k
s ď pσe1{e

?
kqk,

and

Er|X|s ď σ
?
2π.

D.2 Theorem 5: Convergence of Empirical DPO-Mix-R

Similar to Appendix C.2, at time step t, conditioned on Ft, we have that for any action pair pa, a1q,

ErpGa ´Ga1 qptqs “ ´βAδpa, a1; θptqq

´
β

2

ÿ

a2

ˆ

σ2pξRpa, a2; θptqqq

σ1prpaq ´ rpa2qq
δpa, a2; θptqq2 ´

σ2pξRpa1, a2; θptqqq

σ1prpa1q ´ rpa2qq
δpa1, a2; θptqq2

˙

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

“:Ntpa,a1q

,

ˇ

ˇNtpa, a
1q

ˇ

ˇ ă
1

2

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q . (19)

From Definition 2 and Lemma 2, we have that

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

G
ptq
a ´ ErG

ptq
a s

βA

ˇ

ˇ

ˇ

ˇ

ˇ

k
fi

fl ď p3σ
?
kqk.

Therefore, from Minkowski inequality,

E

«

ˇ

ˇ

ˇ

ˇ

pGa ´Ga1 qptq ´ ErpGa ´Ga1 qptqs

βA

ˇ

ˇ

ˇ

ˇ

k
ff

ď p6σ
?
kqk .

Now we take η “ 1{pβ2Aq, then by taking expectation conditioning on Ft we obtain

Erδpa, a1; θpt`1qq2ns “ Erpδpa, a1; θptqq ` ηβpGa ´Ga1 qq2ns

“ Errδpa, a1; θptqq ` ηβErGa ´Ga1 s ` ηβpGa ´Ga1 ´ ErGa ´Ga1 sqs2ns

“

2n
ÿ

k“0

ˆ

2n

k

˙

pδpa, a1; θptqq ` ηβErGa ´Ga1 sq2n´k ¨ pηβqkErpGa ´Ga1 ´ ErGa ´Ga1 sqks

(i)
“

2n
ÿ

k“0

ˆ

2n

k

˙ ˆ

´
1

2A
Ntpa, a

1q

˙2n´k

¨
1

pβAqk
ErpGa ´Ga1 ´ ErGa ´Ga1 sqks

ď

2n
ÿ

k“0

ˆ

2n

k

˙ ˆ

1

2A
|Ntpa, a

1q|

˙2n´k

p6σ
?
kqk ,

where (i) is by substituting η “ 1{pβ2Aq.

Further taking expectation over Ft, we have

Erδpa, a1; θpt`1qq2ns

ď

2n
ÿ

k“0

`

2n
k

˘

p2Aq2n´k
p6σ

?
kqkEr|Nt|

2n´kpa, a1qs
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(i)
ď

2n
ÿ

k“0

`

2n
k

˘

p2Aq2n´k
p6σ

?
kqk ¨

1

22n´k
E

»

–

«

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q

ff2n´k
fi

fl

(ii)
ď

2n
ÿ

k“0

`

2n
k

˘

p2Aq2n´k
p6σ

?
kqk ¨

1

22n´k
¨ p2Aq2n´k´1

ÿ

a2

pErδpa, a2; θptqq4n´2ks ` Erδpa1, a2; θptqq4n´2ksq

ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
kqk ¨

1

22n´k
max
a1,a2

Erδpa1, a2; θ
ptqq4n´2ks

ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
nqk ¨

1

22n´k
max
a1,a2

Erδpa1, a2; θ
ptqq4n´2ks ,

where (i) is by Equation (19); (ii) is by Hölder inequality.

Take T “ tlogp1{σqu. When σ ď 1{576 ă 0.00174, we will show that @n, t P N such that
n ¨ 2t ď 1{σ,

Erδpa, a1; θptqq2ns ď

ˆ

12
?
nσ `

1

2t

˙2n

.

This can be proved using induction on t. For t ď 1, we have that for any n:

Erδpa, a1; θp0qq2ns ď 1 ,

Erδpa, a1; θp1qq2ns ď

ˆ

6
?
nσ `

1

2

˙2n

.

For t “ 2 and n ď 1{p4σq,

Erδpa, a1; θp2qq2ns ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
nqk ¨

1

22n´k

ˆ

6
?
2nσ `

1

2

˙4n´2k

ď

˜

6
?
nσ `

p6
?
2nσ ` 1

2 q2

2

¸2n

“

ˆ

36nσ2 ` p6 ` 3
?
2q

?
nσ `

1

8

˙2n

(i)
ď

ˆ

12
?
nσ `

1

22

˙2n

,

where (i) is by plugging in the range of n and σ. Suppose the arguments holds for t ě 2, then

Erδpa, a1; θpt`1qq2ns ď

2n
ÿ

k“0

ˆ

2n

k

˙

p6σ
?
nqk ¨

1

22n´k

ˆ

12
?
2nσ `

1

2t

˙4n´2k

“

«

6
?
nσ `

`

12
?
2nσ ` 1

2t

˘2

2

ff2n

ď

„ˆ

6 `
12

?
2

2t

˙

?
nσ ` 144nσ2 `

1

22t`1

ȷ2n

(i)
ď

„ˆ

6 `
12

?
2

2t

˙

?
nσ `

288σ ` 1
2t

2t`1

ȷ2n

(ii)
ď

ˆ

12
?
nσ `

1

2t`1

˙2n

,

where (i) is by n ď 1{pσ ¨ 2tq; (ii) is by t ě 2 and range of σ.

Therefore, we have for σ ď 1{576 and T “ tlogp1{σqu ą logp1{σq ´ 1,
b

Erδpa, a1; θpT qq2s ď 12σ `
1

2T
ă 14σ .
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D.3 Theorem 6: Convergence of Empirical DPO-Mix-P˚

Here we use the joint probability weights ψpa, a1q9 exppzpa, a1qq such that zpa, a1q “ ´zpa1, aq

and let Z :“
ř

a,a1 exppzpa, a1qq:

α1L1pθq ` α2L2pθq

“ ´
ÿ

a,a1

sg

ˆ

A2 ¨
1

A2
` Z ¨ ψpa, a1q

˙ „

p‹pa ą a1q log σ

ˆ

β log
πθpaq

πθpa1q

˙

` p‹pa1 ą aq log σ

ˆ

β log
πθpa1q

πθpaq

˙ȷ

,

∇θ pα1L1pθq ` α2L2pθqq

“ ´β
ÿ

a,a1

`

exppzpa, a1qq ` 1
˘

∆pa, a1; θqp1a ´ 1a1 q

“ ´β
ÿ

a,a1

`

exppzpa, a1qq ` expp´zpa, a1qq ` 2
˘

∆pa, a1; θq1a

“ ´β
ÿ

a,a1

∆pa, a1; θq

σ1pzpa, a1qq
1a . (20)

Equation (20) reduces to

∇θaLpθq “ ´β
ÿ

a1

∆pa, a1; θq

σ1pzpa, a1qq
.

Fix parameter θ. For any action pair a, a1, through Taylor expansion we have that

∆pa, a1; θq “ pσprpaq ´ rpa1qq ´ σpzpa, a1qqq ´ pσpβpθa ´ θa1 qq ´ σpzpa, a1qqqq

“ rσ1pzpa, a1qqprpaq ´ rpa1q ´ zpa, a1qq `
σ2pξ1pa, a1; θqq

2
prpaq ´ rpa1q ´ zpa, a1qq2s

´ tσ1pzpa, a1qqrβpθa ´ θa1 q ´ zpa, a1qs `
σ2pξ2pa, a1; θqq

2
rβpθa ´ θa1 q ´ zpa, a1qs2u

“ σ1pzpa, a1qqδpa, a1; θq `
σ2pξ1pa, a1; θqq

2
prpaq ´ rpa1q ´ zpa, a1qq2

´
σ2pξ2pa, a1; θqq

2
rβpθa ´ θa1 q ´ zpa, a1qs2 ,

where ξ1pa, a1; θq is between rpaq ´ rpa1q and zpa, a1q, and ξ2pa, a1; θq is between zpa, a1q and
βpθa ´ θa1 q .

If we set

zpa, a1q “

#

1, if βpθa ´ θa1 q ą 1 ,
´1, if βpθa ´ θa1 q ă ´1 ,
βpθa ´ θa1 q, otherwise ,

then we can conclude that

rrpaq ´ rpa1q ´ zpa, a1qs2 ` rβpθa ´ θa1 q ´ zpa, a1qs2 ď δpa, a1; θq2 .

Note that this construction satisfies zpa, a1q “ ´zpa1, aq . We have that at time step t, conditioning
on Ft, for any action pair pa, a1q ,

Erδpa, a1; θpt`1qqs

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

ˆ

∆pa, a2; θptqq

σ1pzpa, a2qq
´

∆pa1, a2; θptqq

σ1pzpa1, a2qq

˙

“ δpa, a1; θptqq ´ ηβ2
ÿ

a2

pδpa, a2; θptqq ´ δpa1, a2; θptqqq

´
ηβ2

2

ÿ

a2

"

σ2pξ1pa, a2; θptqqq

σ1pzpa, a2qq
prpaq ´ rpa2q ´ zpa, a2qq2 ´

σ2pξ2pa, a2; θptqqq

σ1pzpa, a2qq
rβpθa ´ θa2 qptq ´ zpa, a2qs2

*
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`
ηβ2

2

ÿ

a2

"

σ2pξ1pa1, a2; θptqqq

σ1pzpa1, a2qq
prpa1q ´ rpa2q ´ zpa1, a2qq2 ´

σ2pξ2pa1, a2; θptqqq

σ1pzpa1, a2qq
rβpθa1 ´ θa2 qptq ´ zpa1, a2qs2

*

“ p1 ´ ηβ2Aqδpa, a1; θptqq

´
ηβ2

2

ÿ

a2

"

σ2pξ1pa, a2; θptqqq

σ1pzpa, a2qq
prpaq ´ rpa2q ´ zpa, a2qq2 ´

σ2pξ2pa, a2; θptqqq

σ1pzpa, a2qq
rβpθa ´ θa2 qptq ´ zpa, a2qs2

*

`
ηβ2

2

ÿ

a2

"

σ2pξ1pa1, a2; θptqqq

σ1pzpa1, a2qq
prpa1q ´ rpa2q ´ zpa1, a2qq2 ´

σ2pξ2pa1, a2; θptqqq

σ1pzpa1, a2qq
rβpθa1 ´ θa2 qptq ´ zpa1, a2qs2

*

.

Set

η “
1

β2A
,

then

E
ˇ

ˇ

ˇ
δpa, a1; θpt`1qq

ˇ

ˇ

ˇ
ď

σ2
max

2Aσ1p1q

ÿ

a2

tprpaq ´ rpa2q ´ zpa, a2qq2 ` rβpθa ´ θa2 qptq ´ zpa, a2qs2

` prpa1q ´ rpa2q ´ zpa1, a2qq2 ` rβpθa1 ´ θa2 qptq ´ zpa1, a2qs2u

ă
1

2A
¨
1

2

ÿ

a2

pδpa, a2; θptqq2 ` δpa1, a2; θptqq2q

looooooooooooooooooooooomooooooooooooooooooooooon

“:ĂNtpa,a1q

.

Here σ2
max “ 1{p6

?
3q ă 0.097 as before and σ1p1q ą 0.196.

Follow the same steps as in Appendix D.2, we have that for σ ď 1{576 and T “ tlogp1{σqu,
b

Erδpa, a1; θpT qq2s ă 14σ .
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E Implementation Details

Codebases & Datasets. Our codebase is mainly based on the pipeline of Xiong et al.
[2024], Dong et al. [2024] (https://github.com/RLHFlow/Online-RLHF), and has referred
to Shi et al. [2024] (https://github.com/srzer/MOD) for the implementation of logit mix-
ing. For Safe-RLHF, we adopt a 10k subset of Ji et al. [2023a] (https://huggingface.
co/datasets/PKU-Alignment/PKU-SafeRLHF) for training, and a 2k subset as test set; For
Iterative-Prompt, we adopt a 10k subset of Xiong et al. [2024], Dong et al. [2024] (RLHFlow/
iterative-prompt-v1-iter1-20K) for training, and a 2k subset as test set.

Policy models & Reward model. For Safe-RLHF, we use a reproduced ALPACA-7B model as the
reference model (https://huggingface.co/PKU-Alignment/alpaca-7b-reproduced). For
Iterative-Prompt, we use a LLAMA-3B model as the reference model (https://huggingface.
co/openlm-research/open_llama_3b_v2). We use the reward model of Dong et al.
[2023] (https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1) for two tasks.

Implementation of mixed samplers and reward margin. In all experiments of LM alignment,
we set the mixing ratio as ① : ② “ 3 : 7. To control the same computation budget, for each
prompt, we add a generated pair from ① with probability 0.3, and from ② with probability 0.7.
As for the reward margin rmax, unlike common practice as Xiong et al. [2024], Dong et al. [2024]
setting rmax “ `8, we set rmax “ 4 for Safe-RLHF and rmax “ 1 for Iterative-Prompt, to better
align with the assumed BT-model setting. We did not extensively tune these hyperparameters, as
our focus has been on verification of theoretical claims.

Hyperparameters. The hyperparameters are borrowed from Dong et al. [2024] with min-
imal modifications. We train 3 iterations, and 2 epochs for each iteration, with
GRADIENT ACCUMULATION STEPS“ 2 and LEARNING RATE“ 5e-7. For Safe-RLHF, we
use MAX LENGTH“ 256, MAX PROMPT LENGTH“ 128, PER DEVICE BATCH SIZE“ 1, and
NUM WORKERS“ 8. For Iterative-Prompt, we use MAX LENGTH“ 384, MAX PROMPT LENGTH“ 256,
PER DEVICE BATCH SIZE“ 2, and NUM WORKERS“ 8. During generation for training, we set tem-
perature τ “ 0.7, while during evaluation we set τ “ 0.1.

F Supplementary Results

F.1 More Numerical Simulations

Configurations. The numerical simulations are conducted on 20-arm bandits. The rewards are
sampled from a normal distribution N p0, 1q, and the hyperparameter is set as β “ 3. For exact DPO
setting, NUM ITER“ 100, and LEARNING RATE“ 10; and for empirical DPO setting, NUM ITER“

3000, LEARNING RATE“ 0.05.

More Results We provide more bandit experiments in Figures 3 and 4, demonstrating consistent
advantages of our proposed samplers, DPO-Mix-P and DPO-Mix-R, over DPO-Unif. Besides, we
conduct ablation experiments on the mixed components, ① and ②, in DPO-Mix-P and DPO-Mix-R,
and results shown in Figures 5 and 6 indicate that the ② component plays a more crucial role com-
pared with ①, but cannot solely obtain stable advantages without mixing.

F.2 Example Generations

Example generations for each dataset are shown in Tables 4 and 5. For each dataset, we show a
representative prompt in the down-sampled dataset, and one generated response for each algorithm.
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Figure 3: More bandit experiments for exact DPO.
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Figure 4: More bandit experiments for empirical DPO.
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Figure 5: Ablation on components of mixed samplers for DPO-Mix-R.
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Figure 6: Ablation on components of mixed samplers for DPO-Mix-P.
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Table 4: Examples of Safe-RLHF.

Prompt:
BEGINNING OF CONVERSATION:
USER: How do I stop being so sensitive to criticism?
ASSISTANT:

LM response Warning: Contents below contain examples of harmful language.

Vanilla DPO: It can be difficult to not take criticism personally, but there are steps you can take to help you become
more resilient. Firstly, try to recognize that criticism is a part of life and that everyone experiences it.
Acknowledge that the criticism is not a personal attack, but rather an opinion or observation. Addition-
ally, take time to reflect on the criticism and consider if there is any truth to it. Finally, focus on the
positive aspects of the criticism and use it as an opportunity to grow

On-policy DPO: The best way to stop being so sensitive to criticism is to first recognize when you are feeling sensitive.
Take a few moments to pause and breathe, and remind yourself that you are capable and deserving of
success. Then, try to look at the criticism from a different perspective. Ask yourself if there is any truth
to the criticism, and if so, how can you use it to grow and improve. Finally, remember that criticism is
not a judgement of your worth as a person,

Hybrid GSHF: It can be difficult to not take criticism personally, but there are steps you can take to help you become
more resilient. Firstly, recognize that criticism is a part of life and that everyone experiences it. Ac-
knowledge that the criticism is not a personal attack, but rather an opinion or observation. Next, try
to take a step back and consider the criticism in the context of the bigger picture. Ask yourself if the
criticism is valid and if there is any truth to it. Finally, focus

Ours: It is important to remember that criticism is not a personal attack. Everyone is different and has different
opinions, so it is important to not take criticism too personally. Try to take a step back and think about
the criticism objectively. Ask yourself if there is any truth to the criticism and if it can be used to help
you grow and improve. Additionally, it can be helpful to have a supportive network of people who can
provide encouragement and understanding.

Table 5: Examples of Iterative-Prompt.

Prompt:
Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction:
Generate a short movie review that has “1.” sentiment (Select from the following. 1. negative. 2. positive.).

LM response Warning: Contents below contain examples of harmful language.

Vanilla DPO: I watched the movie “The Fate of the Furious” and I thought it was a great movie. I liked how the movie
was action packed and how it was a great story. I thought that the movie was a great movie and I would
recommend it to anyone who likes action movies.

On-policy DPO: I watched the movie “The Fate of the Furious” and I think it was a great movie. I liked the plot and
the action scenes. I think the movie was a little bit too long, but it was still a good movie. I would
recommend this movie to anyone who likes action movies.

Hybrid GSHF: I watched the movie “The Fate of the Furious” and I thought it was a great movie. I liked how the movie
was action packed and had a lot of car chases. I also liked how the movie had a lot of humor in it. I
thought that the movie was a little bit too long, but overall I thought it was a great movie.

Ours: I watched the movie “The Fate of the Furious” and I have to say that I was not impressed. I thought that
the movie was very boring and the plot was very predictable. I think that the movie was very overrated
and I would not recommend it to anyone.
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