INTERACTIONS EXHIBIT CLUSTERING RHYTHM: A PREVALENT OBSERVATION FOR ADVANCING TEMPORAL LINK PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Temporal link prediction aims to forecast future link existence in temporal graphs, with numerous real-world applications. Existing methods often rely on designing complex model architectures to parameterize the interaction patterns between nodes. Instead, we re-think the interaction dynamics in temporal graphs (which we call "interaction rhythms") by addressing a fundamental research question: Is there a strong yet prevalent latent interaction rhythm pattern across different temporal graphs that can be leveraged for temporal link prediction? Our introduced empirical analyses reveal that there indeed exists temporal clustering in node interaction rhythms, where for a specific node, interactions tend to occur in bursts. Such observation leads to two key insights for predicting future links: (i) recent historical links that carry the latest rhythm pattern information; and (ii) the inter-event times that further illuminate temporal dynamics. Building on these empirical findings, we propose TG-Mixer, a novel method that explicitly captures temporal clustering patterns to advance temporal link prediction. TG-Mixer samples the most recent historical links to extract surrounding neighborhoods, preserving currently invaluable interaction rhythms while avoiding massive computations. Additionally, it integrates a carefully designed silence decay mechanism that penalizes nodes long-term inactivity, effectively incorporating temporal clustering information for future link prediction. Both components ensure concise implementations, leading to a lightweight architecture. Exhaustive experiments on seven benchmarks against nine baselines demonstrate that TG-Mixer achieves state-of-the-art performance with faster convergence, stronger generalization capabilities, and higher efficiency. The experimental results also highlight the importance of explicitly considering temporal clustering for temporal link prediction.

033 034

006

008 009 010

011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

1 INTRODUCTION

037

Temporal graphs can model the dynamic graph-structured data in many real-world scenarios, where objects are represented as nodes and timestamped interactions between them are depicted as temporal links Wang et al. (2021d); Tian et al. (2024a). To effectively capture the dynamic nature of such 040 graphs, researchers have developed Temporal Graph Networks (TGNs) Souza et al. (2022); Chen 041 & Ying (2024). These networks effectively explore the temporal and topological information inside 042 temporal graphs, thereby facilitating representation learning. Various downstream tasks have been 043 studied based on existing TGNs already Li et al. (2023); Su et al. (2024); Zhang et al. (2024b). 044 Among them, temporal link prediction, aiming to forecast the future link existence between potential interaction node pairs Tian et al. (2024b), has extensive applications in various real-world systems, 046 such as forecasting users' purchasing actions of items on recommender systems to enhance user 047 experiences Yin et al. (2023); Zhao et al. (2024), and predicting the potential transaction between two 048 parties on payment platforms to prevent money laundering activities Duan et al. (2024).

Existing TGNs always focus on exploring various model architectures to parameterize the interaction patterns in temporal graphs, like stacking temporal graph convolutions Zhang et al. (2023; 2024a), encoding temporal random walks Wang et al. (2021c); Jin et al. (2022), or applying sequential models Tian et al. (2024b). Although powerful, existing TGNs often invest considerable effort in approximating their parameterized interaction patterns through extensive computations. However, such procedure tends to overlook the potentially heuristic, realistic patterns inherent in the temporal

067

Figure 1: [New Figure] Schematic illustration for temporal clustering patterns. The behaviors of a specific node in temporal graphs exhibit burstiness in temporal dimensions.

correlations between interactions. As a result, they fail to effectively capture the invaluable patterns of interaction dynamics (we name them "interaction rhythms") shown in Figure 1, unconsciously leading the models to depend increasingly on more complex architectures to fit the fragmented details for performance improvement. Different from these existing TGNs, in this paper, we ask: *Is there a strong yet prevalent latent interaction rhythm pattern across different temporal graphs that can be leveraged for temporal link prediction?* We attempt to answer this question through the following two key contributions of our paper:

075 We observe a prevalent and strong pattern of temporal clustering in node interaction rhythms. 076 Intuitively, the interactions of a specific node in temporal graphs present clustered occurrences in 077 temporal dimensions over a relatively long duration. For example, a user may frequently purchase items during sales events or holidays while exhibiting few activities in other periods. Such behaviors cause the interactions of this user to occur concentratedly within specific periods, leading to temporal 079 clustering in the interaction rhythms. To clearly illustrate temporal clustering, we introduce statisticalbased empirical analyses among real-world temporal graphs from different domains. According 081 to both macro-level analyses across the entire timeline and micro-level analyses over individual 082 time steps (to be introduced later), the interactions of nodes tend to consistently occur in bursts. 083 This reveals that strong temporal clustering indeed exists in temporal graphs. Inspired by such an 084 interesting phenomenon, we explore *explicitly* incorporating temporal clustering information into 085 temporal link prediction, achieving both effectiveness and efficiency with an elegant model design.

We propose a novel method that captures temporal clustering for temporal link prediction.

In this paper, we propose **TG-Mixer**, a solu-088 tion that explicitly derives temporal clustering information for prediction using two primary 090 techniques. Firstly, TG-Mixer is designed with 091 a neighbor selection strategy that samples nodes' 092 most recent historical links, preserving the latest invaluable rhythm patterns within the extracted neighborhoods. Secondly, TG-Mixer incorpo-094 rates a temporal mixer, where we propose a si-095 lence decay mechanism to fully explore and en-096 code temporal clustering. Specifically, for each timestamp, we introduce a novel rhythm vec-098 tor that reflects the condensed essence of node interaction rhythms alongside the temporal di-100 mensions. This rhythm vector will be decayed 101 by penalizing the long-term inactivity of nodes, 102 making the model effectively benefit from tem-103 poral clustering with local interaction rhythm 104 proximities. Both components ensure a straight-105 forward implementation and rapid computation. Consequently, as shown in Figure 2, TG-Mixer 106

Figure 2: Comparisons of model performance, training time per epoch, number of model parameters on the Wikipedia Kumar et al. (2019) dataset. The size of each dot is proportional to the number of model parameters. TG-Mixer wins in better performance, shorter training time, and lower computational overheads. For more details, please refer to Section 5.2.

107 achieves outstanding performance through a lightweight model architecture that is both time-efficient and resource-effective, enabling better temporal link prediction.

108 To investigate model performance, we conduct extensive experiments on seven benchmark datasets, 109 comparing against nine baselines for temporal link prediction in both transductive and inductive 110 settings. From the results, we find that: (i) TG-Mixer outperforms existing TGNs across all datasets 111 with exceptionally faster convergence, stronger generalization capabilities, and higher efficiency, 112 demonstrating the effectiveness and superiority of TG-Mixer. (ii) Comprehensive experimental results highlight the significant benefits of explicitly capturing temporal clustering, which motivates future 113 research to re-think its importance for temporal link prediction. We also present an in-depth ablation 114 analysis of model designs, providing a thorough understanding of TG-Mixer. 115

116 117 2 PRELIMINARIES

120

In this section, we first define the temporal link prediction task and then provide the definitions of the key terminologies introduced in this paper.

121 2.1 PROBLEM DEFINITION

¹²² If the interactions (or links) of a graph are associated with timestamps, we name it a temporal graph.

Definition 1. *Temporal Graph.* Given node set \mathcal{V} , a temporal graph defined based on it can be represented as a sequence of chronological temporal links $\mathcal{G} = \{(u_1, v_1, t_1), (u_2, v_2, t_2), ...\}$ where $0 \le t_1 \le t_2 \le ...$ Each link $(u, v, t) \in \mathcal{G}$ corresponds to an interaction between a pair of interaction nodes $u \in \mathcal{V}$ and $v \in \mathcal{V}$ at timestamp t. Each node $u \in \mathcal{V}$ involves node feature $\mathbf{x}_u \in \mathbb{R}^{d_N}$ and each link (u, v, t) attaches link feature $\mathbf{e}_{uv}^t \in \mathbb{R}^{d_L}$, where d_N and d_L are the feature dimensions of the nodes and links, respectively. If the graph is non-attributed, we simply let both of the node and link features to zero vectors, i.e., $\mathbf{x}_* = \mathbf{0}$ and $\mathbf{e}_{**}^t = \mathbf{0}$.

We define temporal link prediction on the batch scale.

Definition 2. *Temporal Link Prediction.* Given a batch size $B \in \mathbb{Z}^+$, a set of interaction nodes { $u_b \in \mathcal{V}$ }^B_{b=1} and { $v_b \in \mathcal{V}$ }^B_{b=1}, and corresponding timestamps { $t_b > 0$ }^B_{b=1}, temporal link prediction aims to predict whether each node pair (u_b, v_b) interacts at timestamp t_b based on the historical links {(u', v', t')| $t' < t_b$ } $\subseteq \mathcal{G}$, i.e., predicting the existence of the future link (u_b, v_b, t_b).

136 137 2.2 Key Terminologies

138 Now, we define the introduced concept of node interaction rhythms among temporal graphs.

Definition 3. Node Interaction Rhythm. Node interaction rhythms indicate the interaction dynamics for a specific node in temporal graphs. Given a temporal graph \mathcal{G} , for node $u \in \mathcal{V}$, we can derive a sequence of u's interaction timestamps $\mathcal{T}_u = \{t'_1, t'_2...\}$ where $0 \le t'_1 \le t'_2 \le ...$ Each $t'_i \in \mathcal{T}_u$ records "when" the node u is involved in an interaction. The distribution patterns among \mathcal{T}_u encapsulate the dynamics of u's interactions, which we refer to as the interaction rhythms of node u.

Temporal clustering investigates the concentration pattern of node interaction rhythms.

Definition 4. Temporal Clustering. Temporal clustering in node interaction rhythms reveals the
 following two interaction patterns among temporal graphs: (i) a specific node's interactions tend
 to occur frequently within certain time periods; and (ii) its interactions at other times are relatively
 few. This results in dense interaction rhythms during specific intervals while remaining sparse at
 other times, leading to a clustered pattern in the temporal dimensions. Therefore, we refer to such
 interaction patterns in temporal graphs as temporal clustering.

152 153

3 EMPIRICAL ANALYSES FOR TEMPORAL CLUSTERING

To provide a straightforward illustration of temporal clustering, we carry out extensive empirical analyses to investigate temporal clustering among various real-world temporal graphs at both the macro-level (across the entire timeline) and the micro-level (over individual time steps). Specifically, we statistically quantify the temporal clustering patterns between truly existing and randomly sampled interaction nodes, analyzing the differences between these real-world and randomly constructed interaction dynamics. Finally, we try to seek some potential insights for temporal link prediction.

Given a temporal graph \mathcal{G} , we define all temporal links $(u_i, v_i, t_i) \in \mathcal{G}$ as positive links (the links truly exist), where the interaction nodes u_i and v_i represent a pair of *truly existing interaction nodes*. On the other hand, for each link $(u_i, v_i, t_i) \in \mathcal{G}$, we construct a negative link (the link that does not

169

170

171 172

173

174

175

176

177 178

179

(a) Macro-level distribution of inter-event times for interaction nodes across the entire timeline: Compared to the randomly sampled interaction nodes, truly existing interaction nodes demonstrate shorter periods of inactivity and interaction bursts.

(b) Micro-level distribution of inter-event times for interaction nodes over individual time steps: Short-term interaction bursts from truly existing interaction nodes consistently occur along the temporal dimensions.

Figure 3: Both complementary empirical analyses confirm that the interactions of nodes in real-world temporal graphs exhibit prevalent and strong temporal clustering patterns. Thus, a lightweight model that explicitly considers temporal clustering information, e.g., TG-Mixer, could achieve exceptional link prediction performance with high efficiency. Analyses for other datasets are presented in Figure 9.

185 occur) by substituting the original interaction nodes with randomly sampled nodes, \hat{u}_i and \hat{v}_i , thus 186 resulting in $(\hat{u}_i, \hat{v}_i, t_i)$. We refer to \hat{u}_i and \hat{v}_i as a pair of *randomly sampled interaction nodes*. To 187 effectively quantify temporal clustering, we follow Karsai et al. (2018) and introduce *inter-event* 188 *times*. Inter-event times is defined as the time elapsed between the current timestamp and the node's 189 last interaction timestamp. Formally, for node u at timestamp t, we compute u's inter-event times 190 by $s_u^t = t - t'_u$ where t'_u represents u's last interaction timestamp prior to t. It is intuitive that the 191 interactions of a node exhibiting strong temporal clustering tend to experience lower inter-event times.

200 As depicted in Figure 3(a), significant differences are evident across various temporal graphs between 201 truly existing and randomly sampled interaction nodes: Most truly existing interaction nodes involve 202 a smaller inter-event times, indicating shorter periods of inactivity and burst-like interaction rhythms. 203 Such characteristics strongly confirm the presence of temporal clustering patterns in temporal graphs. 204 Conversely, the randomly constructed interaction patterns significantly reduce the likelihood of recent burst interactions, resulting in a relatively larger inter-event times. Macro-level analyses capture 205 node interaction rhythms across the entire timeline. However, they do not directly demonstrate the 206 consistency of this phenomenon over individual time steps. Therefore, we conduct: 207

Micro-level analyses. Micro-level analyses are performed on the timestamp scale. For each timestamp t, we obtain a tuple of interaction nodes¹ $\mathcal{V}_t = (u'_1, u'_2, \dots, u'_{N_t})$, where $N_t \in \mathbb{N}^+$ is the total number of interaction nodes at timestamp t. We then compute the inter-event times for each node $u'_i \in \mathcal{V}_t$ at timestamp t by $s^t_{u'_i} = t - t'_{u'_i}$, where $t'_{u'_i}$ denotes the last interaction timestamp of node u'_i prior to t. Finally, we average the inter-event times for all the interaction nodes at timestamp t using $\bar{s}(t) = \frac{1}{N_t} \sum_{u'_i \in \mathcal{V}_t} s^t_{u'_i}$, and show their statistical dynamics over all timestamps in Figure 3(b).

¹For simplicity, we uniformly represent both the source interaction node u/\hat{u} and the target interaction node v/\hat{v} as u'.

Figure 4: Architecture of the proposed TG-Mixer. TG-Mixer explicitly considers temporal clustering by: (i) sampling the most recent historical links to preserve the latest invaluable interaction rhythms; and (ii) employing a silence decay mechanism to penalize nodes' long-term inactivity, effectively capturing temporal clustering signals for temporal link prediction.

231

232

These more fine-grained empirical analyses continue to highlight extreme differences between the two groups of interaction nodes: At most time steps, truly existing interaction nodes consistently exhibit shorter periods of inactivity and short-term interaction bursts, while randomly sampled interaction nodes typically display larger and more variable interaction patterns over time steps. This observation indicates that temporal clustering indeed exists at each time step in temporal graphs, demonstrating the prevalence and strength of temporal clustering along the temporal dimensions.

Implications. Such interesting interaction patterns motivate us to leverage temporal clustering as a
key factor for temporal link prediction, which can be explained as follows: (i) if a given node has
recent interactions, then it is more likely to interact at the current timestamp; and (ii) if the node has
only distant past interactions or even no historical interactions, it is less likely to interact now.

As a result, this leads to two key insights: (i) *recent historical links*, carrying the latest rhythm pattern information, are crucial for predicting future links; and (ii) *the inter-event times*, incorporating the powerful node interaction rhythms, promotes the inclusion of temporal clustering information in predictions. Both insights require straightforward implementation and rapid computation. To this end, we could develop a lightweight model that explicitly considers temporal clustering, facilitating effective and efficient temporal link prediction.

252 253

4 TG-MIXER: A SOLUTION FOR CAPTURING TEMPORAL CLUSTERING

The architecture of the TG-Mixer is depicted in Figure 4. Given node u at timestamp t, we first sample its most recent historical links to preserve fresh interaction rhythm patterns and obtain link sequences S_u^t . Then, we encode and pad the information of those links in S_u^t , resulting in three unified encodings. Furthermore, we concatenate these encodings and feed them into the TG-Mixer encoder, where we introduce a silence decay mechanism for fully capturing temporal clustering information. Finally, our temporal link decoder derives the temporal node representations for temporal link prediction.

260 Sampling the most recent historical links. Most existing TGNs employ neighbor selection strategies 261 to extract nodes' surrounding neighborhoods for representation, such as "sampling multi-hop most 262 recent links" or "extracting all 1-hop links". For example, models like TGN Rossi et al. (2020a) 263 sample the multi-hop most recent historical links while other models like DyGFormer Yu et al. (2023) 264 extract all 1-hop historical links. Although both strategies could help preserve temporal clustering 265 patterns among neighborhoods, they may risk incorporating spurious or noisy information either 266 from high-order connections Rossi et al. (2020b) or long-outdated histories Zhang et al. (2023). 267 Besides, they could suffer from high inefficiency and complexity due to handling a massive number of selected historical neighbors Cong et al. (2023). To address these issues, we exclusively sample 268 the most recent 1-hop historical links, preserving the latest relevant temporal clustering patterns 269 while ensuring a conceptually and technically efficient neighbor selection strategy. Formally, for

node u at timestamp t, we collect the sequences involving its 1-hop historical links before t, which is denoted as $\{(u, u', t')|t' < t\} \cup \{(u', u, t')|t' < t\}$. We only keep the top m most recent historical links to obtain the sampled link sequences and denote it as S_u^t . The number $m \in \mathbb{N}$ is a pre-defined hyper-parameter, which is analyzed in Section 5.4.

274 **Encoding and padding historical link information.** Given the sampled historical links \mathcal{S}_{u}^{t} , we 275 first retrieve the neighbor features and link features, representing them as $X_{u,N}^t \in \mathbb{R}^{|\mathcal{S}_u^t| \times d_N}$ and 276 $X_{u,L}^t \in \mathbb{R}^{|S_u^t| \times d_L}$, respectively. Then, we follow Xu et al. (2020) and encode the time interval 277 $\Delta t' = t - t'$ with a trainable periodic function to provide distinguishable temporal information from 278 historical links, which is denoted as $X_{u,T}^t \in \mathbb{R}^{|S_u^t| \times d_T}$ where d_T is the vector dimension. To capture 279 the neighbor frequency, we apply padding if $|S_u^t| < m$ and result in $P_{u,N}^t \in \mathbb{R}^{m \times d_N}$, $P_{u,L}^t \in \mathbb{R}^{m \times d_L}$, 280 281 and $P_{u,T}^t \in \mathbb{R}^{m \times d_T}$, respectively. Finally, we unify these padded features, mapping them to the same 282 dimension d with projection layers as follows: 283

$$\mathbf{Z}_{u,*}^{t} = \mathbf{P}_{u,*}^{t} \mathbf{W}_{*} + \mathbf{b}_{*} \in \mathbb{R}^{m \times d}, \tag{1}$$

where $W_* \in \mathbb{R}^{d_* \times d}$ and $b_* \in \mathbb{R}^d$ are learnable parameters, and * represents N, L, or T. Finally, we construct the neighborhood information for node u at timestamp t by concatenating the unified encodings as $Z_u^t = Z_{u,N}^t || Z_{u,L}^t || Z_{u,T}^t \in \mathbb{R}^{m \times 3d}$, which serves as the input of TG-Mixer encoder.

TG-Mixer encoder. TG-Mixer is designed with (i) a token mixer that enriches the historical interaction information among the constructed neighborhoods; and (ii) a temporal mixer that explicitly incorporates temporal clustering information for representation generation. Now, we introduce these two components, respectively.

(i) Token Mixer. To summarize the temporal and structural information within neighborhoods, we follow Tolstikhin et al. (2021) and apply a token mixer. Specifically, we utilize a Layer Normalization (LN) layer and a Feed-Forward Network (FFN) with residual connections as follows:

$$\boldsymbol{Z}_{u,\text{token}}^{t} = \boldsymbol{Z}_{u}^{t} + \boldsymbol{W}_{\text{token}}^{(2)} \text{ GeLU} \left(\boldsymbol{W}_{\text{token}}^{(1)} \text{ LayerNorm} \left(\boldsymbol{Z}_{u}^{t} \right) \right),$$
(2)

where $W_{\text{token}}^{(*)} \in \mathbb{R}^{m \times d}$ are learnable parameters. We believe this component is necessary because the token mixer enables TG-Mixer to maintain its performance by obtaining basic information from the historical interactions within neighborhoods. Consequently, even in datasets with low levels of temporal clustering, TG-Mixer could distinguish different historical link information effectively. This is empirically analyzed in Section C.13 of the Appendix.

302 (ii) Temporal Mixer. We propose a temporal mixer that explicitly models temporal clustering 303 patterns for temporal link prediction. Specifically, at timestamp t, we maintain a novel rhythm vector $C_{\text{rhythm}}^t \in \mathbb{R}^{m \times 3d}$ to encapsulate the condensed essence of historical interaction rhythms. This vector 304 305 is shared communally across all nodes and will be updated globally and chronologically. As clearly 306 illustrated in Figure 4, given a node at timestamp t, our temporal mixer fulfills two objectives: (i) 307 updating the rhythm vector for the following timestamp t', and (ii) producing representations that 308 integrate temporal clustering information. Intuitively, the interaction rhythm for the next timestamp 309 is influenced not only by the current rhythm patterns (achieved by the silence decay mechanism) but also by the historical rhythms among recent interactions (achieved by the information mixer). 310

• Silence decay mechanism. Silence decay mechanism aims to update the rhythm vector using the current rhythm information. Motivated by the insights concluded in Section 3, for node u at timestamp t, we extract the current inter-event times, i.e., s_u^t , which indicates periods of inactivity for node u and directly reflects its fresh rhythms. Our silence decay mechanism updates the rhythm vector by penalizing the prolonged inactivity of nodes, thus capturing temporal clustering patterns in a decaying manner. The computations are as follows:

$$\boldsymbol{C}_{\text{temp}}^{t} = \text{Tanh}\left(\boldsymbol{C}_{\text{rhythm}}^{t}\boldsymbol{W}_{\text{decay}} + \boldsymbol{b}_{\text{decay}}\right) \in \mathbb{R}^{m \times 3d},\tag{3}$$

317 318 319

284

296

$$\boldsymbol{C}_{u,\text{decay}}^{t} = \boldsymbol{C}_{\text{rhythm}}^{t} - g\left(\boldsymbol{s}_{u}^{t}\right) \boldsymbol{C}_{\text{temp}}^{t} \in \mathbb{R}^{m \times 3a}.$$
(4)

In this part, the rhythm vector is adjusted according to the inter-event times. We consider that **C**^t_{rhythm} records long-term state because it is frequently updated across timestamps. To capture fresh rhythms, we first generate short-term rhythm state C_{temp}^t by a neural network. The long-term rhythms are then decayed based on the inter-event times, with the decay coefficient $g(s_u^t) = 1 - Exp\{-2 \cdot s_u^t/T_{max}\} \in (0, 1)$. T_{max} represents the maximum value among all inter-event times.

338

339

340

341

346

347 348

349

357

359

360

361

Models	Wikipedia	Reddit	LastFM	UCI	Flights	US Legis.	Contact
JODIE	96.50 ± 0.14	98.31 ± 0.14	70.85 ± 2.13	89.43 ± 1.09	95.60 ± 1.73	75.05 ± 1.52	95.31 ± 1.33
DyRep	94.86 ± 0.06	98.22 ± 0.04	71.92 ± 2.21	65.14 ± 2.30	95.29 ± 0.72	75.34 ± 0.39	95.98 ± 0.15
TGAT	96.94 ± 0.06	98.52 ± 0.02	73.42 ± 0.21	79.63 ± 0.70	94.03 ± 0.18	68.52 ± 3.16	96.28 ± 0.09
TGN	98.45 ± 0.06	98.63 ± 0.06	77.07 ± 3.97	92.34 ± 1.04	97.95 ± 0.14	75.99 ± 0.58	96.89 ± 0.56
CAWN	98.76 ± 0.03	99.11 ± 0.01	86.99 ± 0.06	95.18 ± 0.04	98.51 ± 0.03	70.58 ± 0.48	90.26 ± 0.28
TCL	96.47 ± 0.16	97.53 ± 0.00	67.27 ± 2.16	89.57 ± 1.63	91.23 ± 0.06	69.59 ± 0.48	92.44 ± 0.12
EdgeBank	90.37 ± 0.00	94.86 ± 0.00	79.29 ± 0.00	76.20 ± 0.00	89.35 ± 0.00	58.39 ± 0.00	92.58 ± 0.00
GraphMixer	97.25 ± 0.03	97.31 ± 0.01	75.61 ± 0.20	93.25 ± 0.05	90.99 ± 0.00	70.74 ± 0.46	91.92 ± 0.03
DyGFormer	99.03 ± 0.02	99.22 ± 0.01	93.00 ± 0.12	95.79 ± 0.17	98.91 ± 0.05	71.11 ± 0.59	98.29 ± 0.01
TG-Mixer	99.83 ± 0.04	99.91 ± 0.01	96.78 ± 0.05	96.84 ± 0.85	99.59 ± 0.01	99.21 ± 0.66	99.41 ± 0.30

Table 1: AP (%) results for temporal link prediction in the transductive setting. The best model 324 performance is highlighted as **%d** and the second-best performance is denoted in **%d**. 325

 Information mixer. To update the rhythm vector with historical rhythms and produce representations that fuse temporal clustering information, we conduct the information mixer. This component is tasked with mixing the neighborhood information and temporal clustering information, thereby updating the rhythm vector with historical rhythms among recent interactions meanwhile enabling rhythm-aware representations for link prediction. To this end, we employ an LSTM-based Yu et al. (2019) information mixer. The detailed computations are:

$$\boldsymbol{C}_{\text{rhythm}}^{t'}, \boldsymbol{Z}_{u,\text{temporal}}^{t} = \boldsymbol{Z}_{u,\text{token}}^{t} + \text{LSTM}\left(\boldsymbol{C}_{u,\text{decay}}^{t}, \text{LayerNorm}\left(\boldsymbol{Z}_{u,\text{token}}^{t}\right)\right),$$
(5)

where $C_{\text{rhythm}}^{t'} \in \mathbb{R}^{m \times 3d}$ is the rhythm vector for the following timestamp, and $Z_{u,\text{temporal}}^t \in \mathbb{R}^{m \times 3d}$ is the neighborhood information that is reinforced by temporal clustering.

Temporal link decoder. The temporal link decoder generates temporal node representations and predicts future link existence within potential interaction nodes. For node u at timestamp t, its representation is derived by averaging the $Z_{u,\text{temporal}}^t$ from TG-Mixer encoder with an output layer:

$$\boldsymbol{h}_{u}^{t} = \operatorname{Mean}(\boldsymbol{Z}_{u, \text{temporal}}^{t} \boldsymbol{W}_{\text{out}} + \boldsymbol{b}_{\text{out}}) \in \mathbb{R}^{d_{O}}, \tag{6}$$

where $W_{out} \in \mathbb{R}^{3d \times d_O}$ and $b_{out} \in \mathbb{R}^{d_O}$ are learnable parameters, and d_O is the output dimension. 354 Following Yu et al. (2023), given two interaction nodes u and v at timestamp t, we predict the 355 probability of link existence between them by applying a 2-layer MLP on their concatenated temporal 356 representations, i.e., $p_{uv}^t = \text{MLP}\left([\boldsymbol{h}_u^t \| \boldsymbol{h}_v^t]\right)$. Subsequently, we employ binary cross-entropy as the loss function for model optimization. 358

5 **EXPERIMENTS**

5.1 EXPERIMENT SETTINGS

362 Datasets and Baselines. We evaluate models with seven datasets from different domains that are widely used in temporal link prediction Yu et al. (2023), including Wikipedia, Reddit, LastFM, UCI, 364 Flights, US Legis., and Contact. Due to space limitations, the details of these datasets are illustrated 365 in Section B.1 of the Appendix. For comparisons, we select nine representative and recent existing 366 TGNs as our baselines, including JODIE Kumar et al. (2019), DyRep Trivedi et al. (2019), TGAT Xu et al. (2020), TCL Wang et al. (2021a), CAWN Wang et al. (2021c), TGN Rossi et al. (2020a), 367 EdgeBank Poursafaei et al. (2022), GraphMixer Cong et al. (2023), and DyGFormer Yu et al. (2023). 368 Descriptions of these baselines are provided in Section B.2. For all experiments, we chronologically 369 split each dataset with ratios of 70%, 15%, and 15% for training, validation, and testing, respectively. 370

371 Tasks and Metrics. We conduct the experiments through temporal link prediction in both transductive 372 and inductive settings introduced by the DyGLib benchmark Yu et al. (2023). For comparison, we 373 utilize Average Precision (AP) and Area Under the Receiver Operating Characteristic Curve (AUC-ROC) as our evaluation metrics, and all results are multiplied by 100 for clearer presentation. The 374 detailed descriptions and other experiment settings are presented in Section B.3 of the Appendix. 375

376 Outline. We first discuss the main empirical results by comparing TG-Mixer with baselines in 377 Section 5.2, then highlight the benefits of explicitly considering temporal clustering for temporal link prediction in Section 5.3 and Section 5.4. We finally provide the ablation study in Section 5.5.

Figure 5: Comparisons of the training loss, training AP, and the generalization gap over epochs when training models. TG-Mixer demonstrates faster convergence and stronger generalization capabilities.

394 MAIN EMPIRICAL RESULTS 5.2

379

380

386

387

390

391

392

393

395 We start our discussions by comparing the performance and other critical capabilities between TG-Mixer and baselines, and summarize three main empirical results as follows: 397

398 TG-Mixer achieves outstanding temporal link prediction performance. We compare the performance with baselines in both transductive and inductive temporal link prediction tasks, presenting 399 the AP results in Tables 1 & 8 and AUC-ROC results in Tables 9 & 10, respectively. We observe 400 that TG-Mixer outperforms all baselines in both transductive and inductive temporal link prediction 401 tasks across all datasets and metrics. This can be attributed to: (i) the neighbor selection strategy 402 that samples from nodes' most recent historical links to preserve the recently invaluable interaction 403 rhythms among extracted neighborhoods (See Section 5.4); and (ii) its ability to explicitly consider 404 temporal clustering information to generate representations for predicting future links (See Section 405 5.3). Other details and discussions can be found in Sections C.5 & C.6 of the Appendix. 406

TG-Mixer demonstrates faster convergence and stronger generalization capabilities. To better 407 analyze the model performance, we track the training loss, training AP results, and the generalization 408 gap (the absolute gap between training and evaluation AP results) for each epoch, providing a detailed 409 comparison of these dynamic metrics between models. The results are depicted in Figures 5 & 12. 410 From the first two row figures, we observe that TG-Mixer consistently converges to lower training 411 loss levels and higher training AP results within just a few epochs, demonstrating its exceptionally 412 faster convergence. In contrast, the training curves of baselines often exhibit significant fluctuations, 413 indicating that they could struggle to fit the fragmented interaction data during training. Interestingly, 414 the training curves of TG-Mixer do not demonstrate distinct advantages at the start of training, where 415 it may struggle with trivial information and suffer from the cold start issue Hao et al. (2021); Zheng et al. (2021) for capturing temporal clustering signals. After several epochs, however, it effectively 416 leverages the powerful predictive information derived from explicitly considering temporal clustering, 417 thus achieving enhanced performance. Additionally, the generalization gap from the third-row figures 418 indicates the models' ability to generalize and their stability when performing on new data (the smaller 419 the better). From the results, we find that TG-Mixer has a smaller and smoother generalization gap 420 compared to baselines, indicating its strong generalization capabilities. 421

TG-Mixer requires less training time and fewer computational overheads. To better understand 422 the model efficiency, we compare the training wall-clock time of a single run and the number of 423 model parameters between TG-Mixer and baselines. The results for training time consumption and 424 the number of model parameters are depicted in Table 2 and Table 11, respectively. Notice that the 425 time consumption is recorded under the optimal training hyper-parameters with an early stopping 426 strategy mentioned in Section B.3 of the Appendix. We observe that TG-Mixer requires significantly 427 less training time compared to baselines and achieves the fastest average training speed across all 428 datasets, demonstrating its superior efficiency. More discussions can be found in Section C.8 of the 429 Appendix. Moreover, TG-Mixer also involves a smaller number of model parameters compared to 430 most baselines, indicating a lower demand for computational overheads. TG-Mixer's high efficiency 431 and low complexity demonstrate that considering temporal clustering solely with a lightweight model architecture can achieve excellent performance, validating the effectiveness of temporal clustering.

160 240 Time step

447 448

449

450 451

Models	Wikipedia	Reddit	LastFM	UCI	Flights	US Legis.	Contact	Avg.
JODIE	5.70	19.96	8.66	1.11	77.00	0.64	7.44	2.
DyRep	9.86	26.63	15.20	1.25	81.42	1.86	33.73	4
TGAT	18.98	424.13	121.40	10.17	489.78	4.99	513.14	7
TGN	3.40	24.80	15.26	1.00	42.48	3.83	38.49	3
CAWN	62.76	212.48	893.54	33.74	1258.25	8.31	1088.08	8
TCL	5.79	37.77	22.87	1.46	46.58	2.40	81.61	4
GraphMixer	7.21	38.97	14.76	1.78	55.10	1.01	60.47	4
DyGFormer	9.54	39.28	874.12	3.80	409.68	5.48	291.39	7
TG-Mixer	2.18	10.31	15.76	0.48	20.32	0.71	26.85	1
Wiki	ipedia			LastFM	ſ			UCI
Contraction in the line	ana ha sabara	eient	.990				بحباب والمجتمع المجتمع المعالم والمحالمة والمحالمة والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية	بيثيحهن
	1997 - 20 A. C.	effic 🔁	0.975		a National States	₩ 0.92	•	
		- а	.960	6 6 8 8 8 9 9 4 4		ට 0.8 8		

Table 2: Wall-clock training time $(\times 10^3 s)$ of one single run under the optimal training hyperparameters. The results for the averaged training time of one epoch are displayed in Table 12.

Figure 6: Comparisons of the decay coefficients produced by our silence decay mechanism between positive and negative links. Temporal clustering can offer a highly discriminative training signal.

Time step

80 Time step

5.3 BENEFITS OF TEMPORAL CLUSTERING FROM SILENCE DECAY MECHANISM

452 Now, we validate the benefits of explicitly incorporating temporal clustering by our silence decay
 453 mechanism, and summarize two insightful observations as follows:

454 Temporal clustering can provide a highly discriminative training signal in TG-Mixer. To under-455 stand the effectiveness of temporal clustering, we visualize the complementary decay coefficients in 456 Equation 9, $1 - g(s_u^t)$, from both positive and negative links during binary classification training, as 457 described in Section B.3. A small value indicates a weak temporal clustering, resulting in more severe 458 decay produced by the silence decay mechanism. Similar to the micro-level analyses in Section 3, we visualize the complementary coefficients between positive and negative links over individual time 459 steps in Figures 6 & 10. Our silence decay mechanism provides a highly discriminative training signal 460 between positive and negative links: Compared to positive links, the interaction nodes of negative 461 links exhibit significantly lower coefficients, leading to greater decay and more severe penalties. This 462 is because the interaction nodes of negative links tend to exhibit weaker temporal clustering, thus 463 producing more easily distinguishable interaction rhythm signals compared to positive links. As a 464 result, TG-Mixer can capture these dominant signals from temporal clustering, thus generating more 465 expressive representations for prediction. This capability may be the key reason for its state-of-the-art 466 performance with a lightweight model architecture.

467 Temporal clustering can be easily adopted to boost existing sequential TGNs. Silence decay 468 mechanism is versatile and can be easily integrated into existing sequential TGNs. This is because 469 these methods learn from nodes' 1-hop historical links and we can decay their neighbor information 470 directly. The detailed implementations can be found in Section C.10 of the Appendix. We integrate 471 the silence decay mechanism into TCL Wang et al. (2021a), GraphMixer Cong et al. (2023), and 472 DyGFormer Yu et al. (2023), and present the temporal link prediction results in Tables 3 & 13. We find all three models demonstrate certain performance improvements after considering temporal 473 clustering information in prediction. Additionally, the most significant performance improvements 474 are observed in some datasets with extremely strong temporal clustering patterns revealed in our 475 empirical analyses, such as LastFM and Flights. This observation further validates the effectiveness 476 and importance of temporal clustering. We emphasize that TG-Mixer still outperforms, highlighting 477 the necessity of the well-designed temporal mixer. This module allows TG-Mixer to better extract 478 temporal clustering information compared to directly decaying neighbor information. 479

480 5.4 BENEFITS OF TEMPORAL CLUSTERING FROM NEIGHBOR SELECTION STRATEGY

We evaluate the neighbor selection strategy that preserves the latest invaluable temporal clustering patterns to construct neighbor information. Specifically, we compare the temporal link prediction performance with different neighbor selection strategies (both random sampling and recent sampling) under various sample sizes ($m = \{10, 20, 30, 50\}$), and present the results in Tables 4 & 14.

485 **The latest temporal clustering information can bring significant performance improvements.** TG-Mixer suffers from performance degradation with the random neighbor selection strategy: The

Table 3: Transductive AP (%) results of existing sequential TGNs that are boosted by temporal clustering. Before " \rightarrow " are original results and after " \rightarrow " are the boosting results via silence decay.

Models	Wikipedia	Reddit	LastFM	Flights	US Legis.	Contact
TCL	$96.47 \rightarrow 99.24$	$97.53 \rightarrow \textbf{99.47}$	$67.27 \rightarrow \textbf{87.74}$	$91.23 \rightarrow \textbf{97.20}$	$69.59 \rightarrow \textbf{85.74}$	92.44 ightarrow 95.84
GraphMixer	$97.25 \rightarrow 99.14$	$97.31 \rightarrow \textbf{98.37}$	$75.61 \rightarrow \textbf{95.36}$	$90.99 \rightarrow 92.51$	$70.74 \rightarrow \textbf{96.42}$	$91.92 \rightarrow \textbf{97.74}$
DyGFormer	$99.03 \rightarrow 99.64$	$99.22 \rightarrow 99.52$	$93.00 \rightarrow 94.60$	$98.91 \rightarrow 99.08$	$71.11 \rightarrow 90.42$	$98.29 \rightarrow 99.10$
TG-Mixer	99.83	99.91	96.78	99.59	99.21	99.41

493 best performance is achieved using the most recent selection strategy, which directly reflects the 494 latest temporal clustering patterns among sampled neighborhoods. Conversely, the random neighbor 495 selection strategy fails to protect the complete interaction rhythm patterns, destroying the temporal 496 clustering information from the input neighborhoods and thus leading to performance degradation. 497 Furthermore, we also observe that different datasets show varying sensitivities to the sample size. 498 For example, optimal results under the recent neighbor selection strategy are obtained at m = 30 for 499 Wikipedia and m = 10 for Reddit, respectively. Therefore, it is necessary to tune the sample size m 500 based on specific datasets to find the optimal hyper-parameters for temporal link prediction. We set the optimal m as the default hyper-parameter for each dataset mentioned in Section B.3. 501

Table 4: Transductive AP (%) results of diverse neighbor selection strategies in various sample sizes.

Dataset	# Sample size	Recent sample	Random sample	Dataset	# Sample size	Recent sample	Random sample	Dataset	# Sample size	Recent sample	Random sample
	10	99.26	93.85		10	99.91	98.16		10	96.21	95.46
Wikipadia	20	99.54	94.21	Paddit	20	99.83	98.33	UCI	20	96.84	95.40
wikipeula	30	99.83	94.62	Keuun	30	99.42	98.74	001	30	96.45	95.53
	50	99.79	94.58		50	99.08	98.51		50	96.00	95.20

5.5 ABLATION STUDY

502

510

523 524

531

511 We also conduct an ablation study to validate the effectiveness of each component within the TG-512 Mixer. Detailed implementations of the variants can be found in Section C.12 of the Appendix. From 513 the results of rows 1, 2, and 5, we find that using information mixer achieves optimal performance, 514 while the implementation of attention mechanisms results in performance degradation. Although 515 these complex attention mechanisms could try their best to optimize and balance all trivial information details in nodes' interactions, they fail to adequately focus on high-level temporal clustering patterns 516 among interaction dynamics. Moreover, by comparing the results of rows 3, 4, and 5, we observe that 517 TG-Mixer obtains the best performance when using the temporal mixer, further demonstrating the 518 effectiveness of the temporal mixer that fully captures temporal clustering information for advancing 519 temporal link prediction. Additionally, by comparing the results of rows 5 and 6, removing the silence 520 decay mechanism in TG-Mixer will lead to a significant performance decrease. This demonstrates 521 the importance of capturing temporal clustering information for temporal link prediction. 522

Table 5:	Transductive	AP (%)	results of	of ablation	study.
		· · · ·			~

Techniques	Variants	Wikipedia	Reddit	UCI	Contact
Attention mechanism	Full attention Vaswani et al. (2017)	97.30	97.82	77.45	92.94
Attention mechanism	Temporal attention Xu et al. (2020)	96.94	98.52	79.63	96.28
	MLP-Mixer Cong et al. (2023)	97.25	97.31	93.25	91.92
Information mixor	w/. silence decay mechanism	99.14	98.37	95.73	97.74
Information mixer	w/. temporal mixer (i.e., TG-Mixer)	99.83	99.91	96.84	99.41
	$TG-Mixer_{g(\cdot)=0}$	97.34	96.10	93.91	94.81

6 CONCLUSION

In this paper, we observe a prevalent yet strong pattern of temporal clustering in node interaction rhythms among temporal graphs and utilize this interesting phenomenon for advancing temporal link prediction. We propose TG-Mixer, an effective and efficient method that explicitly considers temporal clustering information by learning from the most recent historical links and penalizing the nodes' long-term inactivity in a decaying manner. Extensive experimental results demonstrate the superiority of TG-Mixer and the benefits of temporal clustering, motivating us to re-think the importance of incorporating interaction dynamics for temporal link prediction. In the future, not limited to temporal link prediction, we will extend our algorithms for different downstream tasks, such as evolving node classification.

540 REFERENCES 541

547

567

571

572

573

577

578

579

- Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz de Arruda, Yamir Moreno, Matjaž 542 Perc, and Vito Latora. Evolutionary dynamics of higher-order interactions in social networks. 543 *Nature Human Behaviour*, 5(5):586–595, 2021. 544
- Albert-Laszlo Barabasi. The origin of bursts and heavy tails in human dynamics. *Nature*, 435(7039): 546 207-211, 2005.
- 548 Pierre Brémaud and Laurent Massoulié. Stability of nonlinear hawkes processes. The Annals of Probability, pp. 1563–1588, 1996. 549
- 550 Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and Yuan Qi. 551 Continuous-time dynamic graph learning via neural interaction processes. In Proceedings of 552 the 29th ACM International Conference on Information & Knowledge Management, pp. 145–154, 553 2020. 554
- Jialin Chen and Rex Ying. Tempme: Towards the explainability of temporal graph neural networks 555 via motif discovery. Advances in Neural Information Processing Systems, 36, 2024. 556
- Yizhou Chen, Anxiang Zeng, Qingtao Yu, Kerui Zhang, Cao Yuanpeng, Kangle Wu, Guangda Huzhang, Han Yu, and Zhiming Zhou. Recurrent temporal revision graph networks. Advances in 559 Neural Information Processing Systems, 36, 2024. 560
- Weilin Cong, Yanhong Wu, Yuandong Tian, Mengting Gu, Yinglong Xia, Mehrdad Mahdavi, and 561 Chun-cheng Jason Chen. Dynamic graph representation learning via graph transformer networks. 562 2021. 563
- 564 Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and 565 Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks? 566 arXiv preprint arXiv:2302.11636, 2023.
- Riley Crane and Didier Sornette. Robust dynamic classes revealed by measuring the response function 568 of a social system. Proceedings of the National Academy of Sciences, 105(41):15649–15653, 2008. 569
- 570 Irem Demirkan, David L Deeds, and Sebahattin Demirkan. Exploring the role of network characteristics, knowledge quality, and inertia on the evolution of scientific networks. *Journal of Management*, 39(6):1462–1489, 2013.
- Yifan Duan, Guibin Zhang, Shilong Wang, Xiaojiang Peng, Wang Ziqi, Junyuan Mao, Hao Wu, 574 Xinke Jiang, and Kun Wang. Cat-gnn: Enhancing credit card fraud detection via causal temporal 575 graph neural networks. arXiv preprint arXiv:2402.14708, 2024. 576
 - Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S Yu. Continuous-time sequential recommendation with temporal graph collaborative transformer. In *Proceedings of the* 30th ACM international conference on information & knowledge management, pp. 433–442, 2021.
- 580 Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph 581 representations. In International Conference on Machine Learning, pp. 7052–7076. PMLR, 2022. 582
- 583 Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network 584 dynamics using dynamic graph representation learning. Knowledge-Based Systems, 187:104816, 585 2020.
- Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, and Hong Chen. Pre-training graph neural net-587 works for cold-start users and items representation. In Proceedings of the 14th ACM International 588 Conference on Web Search and Data Mining, pp. 265–273, 2021. 589
- Jerry L Hintze and Ray D Nelson. Violin plots: a box plot-density trace synergism. The American 591 Statistician, 52(2):181–184, 1998. 592
- Takayuki Hiraoka, Naoki Masuda, Aming Li, and Hang-Hyun Jo. Modeling temporal networks with bursty activity patterns of nodes and links. Physical Review Research, 2(2):023073, 2020.

594 595	Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
596	benchmark for machine learning on temporal graphs Advances in Neural Information Processing
597	Systems, 36, 2024.
598	
599	Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learning
600	on continuous-time dynamic graphs. Advances in Neural Information Processing Systems, 35:
601	19874–19886, 2022.
602	Hang-Hyun Jo. Copula-based analysis of the autocorrelation function for simple temporal networks.
603	Journal of the Korean Physical Society, 82(4):430–435, 2023.
604	
605	Marton Karsai, Mikko Kivela, Raj Kumar Pan, Kimmo Kaski, Janos Kertesz, A-L Barabasi, and Jari
606	<i>Physical Review F—Statistical Nonlinear and Soft Matter Physics</i> 83(2):025102 2011
607	
608 609	Márton Karsai, Hang-Hyun Jo, Kimmo Kaski, et al. Bursty human dynamics. Springer, 2018.
610	Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
611 612	Pascal Poupart. Representation learning for dynamic graphs: A survey. <i>Journal of Machine Learning Research</i> , 21(70):1–73, 2020.
613	
614	Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. <i>arXiv preprint arXiv:1412.6980</i> , 2014.
615	
616	Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
610	temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
610	on knowledge discovery & data mining, pp. 1209–1278, 2019.
620	Renaud Lambiotte, Lionel Tabourier, and Jean-Charles Delvenne. Burstiness and spreading on
621	temporal networks. The European Physical Journal B, 86:1-4, 2013.
622	Jintang Li, Jiawang Dan, Buofan Wu, Jing Zhou, Shang Tian, Yunfai Liu, Baokun Wang, Changhua
623	Meng Weigiang Wang Yuchang Zhu et al Lastol: An industrial framework for large-scale
624	temporal graph learning. arXiv preprint arXiv:2311.16605, 2023.
625	
626	Tianpeng Li, Wenjun Wang, Pengfei Jiao, Yinghui Wang, Ruomeng Ding, Huaming Wu, Lin Pan,
627 628	on Cybernetics, 53(11):7021–7033, 2022.
629	Ke Liang Lingvuan Meng Meng Liu Yue Liu Wenxuan Tu Siwei Wang Sihang Zhou and
630	Xinwang Liu. Learn from relational correlations and periodic events for temporal knowledge
631	graph reasoning. In Proceedings of the 46th international ACM SIGIR conference on research and
632	development in information retrieval, pp. 1559–1568, 2023.
633	Mang Liu Vue Liu Ke Liang Wenyuan Tu Siwai Wang Sihang They and Vinwang Liu Dasa
634	temporal graph clustering, arXiv preprint arXiv:2305 10738 2023
635	
636	Meng Liu, Ke Liang, Yawei Zhao, Wenxuan Tu, Sihang Zhou, Xinbiao Gan, Xinwang Liu, and
639	Kunlun He. Self-supervised temporal graph learning with temporal and structural intensity
630	alignment. IEEE Transactions on Neural Networks and Learning Systems, 2024.
640	Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning. In
641	Learning on Graphs Conference, pp. 1–1. PMLR, 2022.
642	Demosion Min and K I Cale Durational Manual 11 11 11
643	Byungjoon Min and K-I Gon. Burstiness: Measures, models, and dynamic consequences. Temporal networks pp. 41–64, 2013
644	истопо, pp. т1-от, 2015.
645	Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
646	Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
647	for dynamic graphs. In <i>Proceedings of the AAAI conference on artificial intelligence</i> , volume 34, pp. 5363–5370, 2020.

- James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count: Liwc 2001. *Mahway: Lawrence Erlbaum Associates*, 71(2001):2001, 2001.
- Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
 evaluation for dynamic link prediction. *Advances in Neural Information Processing Systems*, 35: 32928–32941, 2022.
- Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
 Bronstein. Temporal graph networks for deep learning on dynamic graphs. *arXiv preprint arXiv:2006.10637*, 2020a.
- Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. Deep inductive graph representation learning. *IEEE Transactions on Knowledge and Data Engineering*, 32(3):438–452, 2020b. doi: 10.1109/ TKDE.2018.2878247.
- Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. In *Proceedings of the 13th international conference on web search and data mining*, pp. 519–527, 2020.
- Anzhi Sheng, Qi Su, Aming Li, Long Wang, and Joshua B Plotkin. Constructing temporal networks
 with bursty activity patterns. *Nature Communications*, 14(1):7311, 2023.
- Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. *Physica D: Nonlinear Phenomena*, 404:132306, 2020.
- Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal graph
 networks. Advances in Neural Information Processing Systems, 35:32257–32269, 2022.
- Junwei Su, Difan Zou, and Chuan Wu. Pres: Toward scalable memory-based dynamic graph neural networks. *arXiv preprint arXiv:2402.04284*, 2024.
- Yuxing Tian, Aiwen Jiang, Qi Huang, Jian Guo, and Yiyan Qi. Latent diffusion-based data augmentation for continuous-time dynamic graph model. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2900–2911, 2024a.
- Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
 model for link prediction. In *The Twelfth International Conference on Learning Representations*,
 2024b.
- Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 24261–24272. Curran Associates, Inc., 2021.

686

687

- Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning representations over dynamic graphs. In *International conference on learning representations*, 2019.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Alexei Vázquez, Joao Gama Oliveira, Zoltán Dezsö, Kwang-Il Goh, Imre Kondor, and Albert-László
 Barabási. Modeling bursts and heavy tails in human dynamics. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 73(3):036127, 2006.
- Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via contrastive learning. *arXiv preprint arXiv:2105.07944*, 2021a.
- Kuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui,
 Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-time
 temporal graph embedding. In *Proceedings of the 2021 international conference on management of data*, pp. 2628–2638, 2021b.

702 703 704	Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation learning in temporal networks via causal anonymous walks. <i>arXiv preprint arXiv:2101.05974</i> , 2021c.
705 706 707 708	Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Siddharth Bhatia, and Bryan Hooi. Adaptive data augmentation on temporal graphs. <i>Advances in Neural Information Processing Systems</i> , 34:1440–1452, 2021d.
709 710 711	Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, and Bryan Hooi. Time-aware neighbor sampling for temporal graph networks. <i>arXiv preprint arXiv:2112.09845</i> , 2021e.
712 713	Zhihao Wen and Yuan Fang. Trend: Temporal event and node dynamics for graph representation learning. In <i>Proceedings of the ACM Web Conference 2022</i> , pp. 1159–1169, 2022.
714 715 716	Sheng Xiang, Mingzhi Zhu, Dawei Cheng, Enxia Li, Ruihui Zhao, Yi Ouyang, Ling Chen, and Yefeng Zheng. Semi-supervised credit card fraud detection via attribute-driven graph representation. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 37, pp. 14557–14565, 2023.
717 718 719	Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representa- tion learning on temporal graphs. <i>arXiv preprint arXiv:2002.07962</i> , 2020.
720 721	Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, and Ruochen Kong. Dynamic network embedding survey. <i>Neurocomputing</i> , 472:212–223, 2022.
722 723 724 725	Yuhang Yao and Carlee Joe-Wong. Interpretable clustering on dynamic graphs with recurrent graph neural networks. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 35, pp. 4608–4616, 2021.
726 727 728	Feiyu Yin, Yong Liu, Zhiqi Shen, Lisi Chen, Shuo Shang, and Peng Han. Next poi recommendation with dynamic graph and explicit dependency. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 37, pp. 4827–4834, 2023.
729 730 731	Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New architecture and unified library. <i>arXiv preprint arXiv:2303.13047</i> , 2023.
732 733	Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks: Lstm cells and network architectures. <i>Neural computation</i> , 31(7):1235–1270, 2019.
734 735 736 737	Siwei Zhang, Xi Chen, Yun Xiong, Xixi Wu, Yao Zhang, Yongrui Fu, Yinglong Zhao, and Jiawei Zhang. Towards adaptive neighborhood for advancing temporal interaction graph modeling. In <i>Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining</i> , pp. 4290–4301, 2024a.
739 740	Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, and Yangyong Zhu. Tiger: Temporal interaction graph embedding with restarts. In <i>ACM Web Conference</i> , 2023.
741 742 743	Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can large language models solve spatial-temporal problems on dynamic graphs? In <i>Conference on Knowledge Discovery and Data Mining (ACM SIGKDD)</i> , 2024b.
745 746 747	Ziwei Zhao, Fake Lin, Xi Zhu, Zhi Zheng, Tong Xu, Shitian Shen, Xueying Li, Zikai Yin, and Enhong Chen. Dynllm: When large language models meet dynamic graph recommendation. <i>arXiv</i> preprint arXiv:2405.07580, 2024.
748 749	Yujia Zheng, Siyi Liu, Zekun Li, and Shu Wu. Cold-start sequential recommendation via meta learner. In <i>Proceedings of the AAAI conference on artificial intelligence</i> , volume 35, pp. 4706–4713, 2021.
750 751 752 753 754	Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. Tgl: A general framework for temporal gnn training on billion-scale graphs. <i>arXiv preprint arXiv:2203.14883</i> , 2022.

756 A THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of our proposed silence decay mechanism using the theory of Hawkes Process. Hawkes Process Brémaud & Massoulié (1996) is a stochastic process that allows the occurrence of an event to increase the probability of future events. The occurrence of an event raises the probability of a new event occurring within a short period afterward. This selfexcitation makes the Hawkes Process particularly suitable for describing sequences of interactions characterized by temporal clustering. We first present the basic definition of the Hawkes Process.

Definition 1. Hawkes Process. For $K \in \mathbb{N}$ and [K] = 1, ..., K, the point process can be desribed as $N = (N_1^t, \dots, N_K^t)$, where N_k^t represents the number of events that have occurred until timestamp t at location k, and $t \in \mathbb{R}^+$. Its dynamics are characterized by a conditional intensity function $\lambda^t = (\lambda_1^t, \dots, \lambda_K^t)$, which is informally the infinitesimal rate of an event conditionally on the past of the process. In the nonlinear Hawkes model, the intensity process has the following form:

$$\lambda_k^t = \mu_k + \sum_{j=1}^K \int_{-\infty}^t \gamma_{kj}(t-s) dN_j^s, \quad t \in \mathbb{R}, \quad k, j \in [K],$$
(7)

where $\mu_k > 0$ denotes the background or spontaneous rate of events. The function $\gamma_{kj} : \mathbb{R}^+ \to \mathbb{R}$ is an exciting function that models the effects of past history on the current event.

In a network system, various factors may lead to an interaction. One of the most important factors describes the cascade of historical influences on the dynamic network system Crane & Sornette (2008). This process captures how previous attention from one individual's history can spread to the present time and become the cause that triggers their future attention. Therefore, if a given entity whose interests make it susceptible to a certain recent interaction, it may trigger action through a cascade of intermediate steps in the temporal dimension Demirkan et al. (2013), leading to temporal clustering effects in dynamic network systems.

Definition 2. Temporal clustering effects. Temporal clustering effects investigate how the distribution of waiting times Vázquez et al. (2006) (i.e., inter-event times in our paper) is modified by the combination of interactions and historical influences in a dynamic network system. Such a pattern can be conveniently modeled by the self-excited Hawkes Process. Specifically, the likelihood of an entity u having an interaction at timestamp t can be quantified by the conditional strength of the interaction:

769

770 771

 $\lambda_u^t = \mu_u^t + \sum_{t' < t} \gamma_u^{t'} \rho(t - t'), \tag{8}$

where μ_u^t is the underlying rate of interactions occurring in u at timestamp t, independent of historical interactions on u. $\gamma_u^{t'}$ denotes the amount of excitation induced by the historical interactions at t'(t' < t) to the current interaction, and $\rho(\cdot)$ is a kernel function capturing the time decay effects.

Interestingly, the scheme of silence decay in this paper hits the formulation of temporal clustering
 effects perfectly, where each node recursively receives decaying information from its inter-event
 times in multiple timestamps. In our paper, this process is written as follows:

$$C_{u,\text{decay}}^{t} = \boldsymbol{C}_{\text{rhythm}}^{t} - g\left(\boldsymbol{s}_{u}^{t}\right)\boldsymbol{C}_{\text{temp}}^{t}.$$
(9)

Remark. In Equation 9, the output of the silence decay for a node is derived by receiving and
 superposing information from the current state of our introduced rhythm vector and the decaying
 information from the temporal clustering, respectively. The self-state is responsible for capturing the
 fundamental intensity while the decaying information captures the excitation caused by historical
 interaction patterns of nodes. Therefore, TG-Mixer can effectively capture the node's persistent influence from temporal clustering effects, achieving superior performance for temporal link prediction.

802 803

804

805

B SUPPLEMENTARY EXPERIMENTAL SETTINGS

B.1 DETAILED DESCRIPTIONS OF DATASETS

We employ seven widely-used datasets² in this paper and summarize their detailed statistics in Table 6 where "# Feature" indicates the number of link feature dimensions. The detailed descriptions of these datasets are presented as follows:

²Download from https://zenodo.org/records/7213796#.Y1cO6y8r30o

810	• Wikingdia is a temporal graph that records the edits made to Wikingdia pages over a month
811	In Wikipedia, nodes correspond to users or pages and temporal links with timestamps
812	represent editing activities. Each of the links includes a 172-dimensional feature based on
813	the Linguistic Inquiry and Word Count (LIWC) Pennebaker et al. (2001).
814	• Reddit is a temporal graph that tracks user posts across subreddits over a month. In Reddit
815	nodes are users or subreddits and timestamped links are posting actions. Additionally, each
816	link is characterized by a 172-dimensional LIWC feature.
817	• LastFM is a temporal graph that records interaction data where users listen to songs over
818	a month In LastFM users and songs are represented as nodes while links between them
819	denote the listening activities of users.
820	
821	• UCI is a temporal graph that captures online communication activities among students from
822	a university. In UCI, the hodes represent students, and the timestamped links between them
823	denote established dialogues.
824	• Flights is a temporal graph that records air traffic conditions during the COVID-19 pandemic
825	period. In Flights, airports are modeled as nodes and the flight routes between airports are
826	modeled as timestamped links. Each link contains a weight, representing the number of
827	inghts on the corresponding route within a day.
828	• US Legis. is a temporal graph that tracks co-sponsorships among legislators from the US
829	Senate. In US Legis., nodes represent the legislators and links with timestamps indicate the
830	social sponsorship interactions between them. Each link carries a weight, representing the
831	frequency where two congresspersons have co-sponsored a bill within the same congress
832	session.
833	• Contact is a temporal graph that describes the physical proximity among university students
834	over four weeks. In Contact, nodes represent students and links with timestamps indicate
835	that two nodes are within close proximity. Each link carries a weight, representing the
836	degree of physical proximity between students.
837	

	Tuble 0. Detailed statistics of datasets.								
Dataset	# Nodes	# Links	# Feature	Duration	Time Steps	Domains	Time Granularity		
Wikipedia	9,227	157,474	172	1 month	152,757	Social	Unix Timestamps		
Reddit	10,984	672,447	172	1 month	669,065	Social	Unix Timestamps		
LastFM	1,980	1,293,103	-	1 month	1,283,614	Interaction	Unix Timestamps		
UCI	1,899	59,835	-	196 days	58,911	Social	Unix Timestamps		
Flights	13,169	1,927,145	1	4 months	122	Transport	days		
US Legis.	255	60,396	1	12 congresses	12	Politics	congresses		
Contact	692	2,426,279	1	1 month	8,064	Proximity	5 minutes		

Table 6: Detailed statistics of datasets.

B.2 DETAILED DESCRIPTIONS OF BASELINES

We select nine representative and recent existing TGNs for performance evaluation and capability discussions. Below are their detailed descriptions:

- **JODIE** Kumar et al. (2019) is designed to handle user-item bipartite temporal interaction graphs. It simply employs a pair of Recurrent Neural Networks Sherstinsky (2020) to update the states of users and items, respectively. Additionally, a projection layer is used to learn the trajectory of node representations, thereby mitigating the issue of outdated representations.
- **DyRep** Trivedi et al. (2019) starts to consider neighborhood information and introduces a temporal-attentive aggregation module to capture the temporally evolving structural information in nodes' neighborhoods among temporal graphs.
- **TGAT** Xu et al. (2020) proposes a temporal attention mechanism to aggregate information from temporal-topological neighbors, generating temporal node representations in temporal

864 graphs. It also introduces a trainable time encoding function to provide basically distin-865 guishable temporal information, which has been widely adopted in the subsequent TGNs' 866 architectures. 867 • **TGN** Rossi et al. (2020a) synthesizes the approaches of the above models and proposes a 868 memory module that maintains a state vector for each node. TGN updates nodes' memory 869 whenever they engage in interactions. It also introduces a message-related module, a memory 870 update module, and a temporal embedding module to generate temporal representations for 871 nodes among temporal graphs. 872 • CAWN Wang et al. (2021c) employs temporal walks to generate node representations. It 873 first extracts multiple anonymous random temporal walks starting from the central node and 874 utilizes a Recurrent Neural Network to encode them. CAWN then aggregates these temporal 875 walks to produce the final temporal node representation for temporal link prediction. 876 • EdgeBank Poursafaei et al. (2022) is an entirely memorization-based method without any 877 trainable parameters for transductive temporal link prediction. It utilizes a memorization 878 module to memorize previously observed links using various strategies. A given link would 879 be predicted as positive if it can be found in current memorization module, and as negative otherwise. 881 • TCL Wang et al. (2021a) employs a breadth-first search algorithm within its constructed 882 temporal dependency interaction sub-graph to extract interaction sequences. It then intro-883 duces a Transformer encoder that considers both topological and temporal information to learn the representations of central nodes. TCL also developed a cross-attention mechanism 885 in Transformer to model the inter-dependencies between two interaction nodes. 886 • GraphMixer Cong et al. (2023) incorporates a link encoder based on the MLP-Mixer 887 Tolstikhin et al. (2021) to generate temporal node representations. It also introduces a fixed 888 time encoding function that outperforms the traditional learnable versions among its design. 889 Additionally, GraphMixer adopts a node encoder with mean-pooling to summarize the link 890 information. 891 892 • **DyGFormer** Yu et al. (2023) leverages 1-hop neighbor information for temporal graph 893 representation learning. It utilizes a Transformer encoder equipped with a patching technique 894 to effectively capture long-term dependencies among nodes in temporal graphs. Additionally, DyGFormer integrates a Neighbor Co-occurrence Feature to retain correlation information 895 between source and target nodes. 896 897 **B.3** IMPLEMENTATION DETAILS Tasks and Metrics. We conduct the experiments through the temporal link prediction task. Following 900 Zhang et al. (2023), we employ two settings: the transductive setting, which predicts future links 901 between nodes that have been observed during the training phase, and the inductive setting, which 902 involves link prediction between unseen nodes. Moreover, we use Average Precision (AP) and Area

903 904 905

906

Training and Evaluation. We follow Yu et al. (2023) and adopt a mini-batch training process. 907 Specifically, we identify the links within each mini-batch as positive and generate an equal number 908 of negative links by randomly sampling node pairs within the training data. In practice, to improve 909 consistency, we fix the source nodes and sample an equal number of the destination nodes to construct 910 negative links. Therefore, the negative edges share the same source nodes as the positive edges. 911 Subsequently, we can utilize our temporal link decoder mentioned in Section 4 for binary classification 912 to predict the link existence among these node pairs. Additionally, recall that we maintain a rhythm 913 vector globally for all nodes and update it along the timestamps. For batch processing, we maintain a 914 rhythm matrix with a size corresponding to the batch size, which is dynamically updated throughout 915 training. We train the models for 100 epochs and employ an early stopping strategy with a patience of 20. For all results, we utilize Adam Kingma & Ba (2014) for model optimization and standardize 916 the learning rate and batch size across all models and datasets to 0.0001 and 200, respectively. To 917 ensure reliability, we run the models five times with seeds ranging from 0 to 4 and report the averaged

table numbers of baselines reported in its publication.

Under the Receiver Operating Characteristic Curve (AUC-ROC) as our evaluation metrics. It is

important to note that we follow the same configures as Yu et al. (2023), and thus, we maintain the

performance to minimize variations. All experiments are conducted on a single server equipped with
 72 cores, 32GB of memory, and an Nvidia Tesla V100 GPU.

Model Configurations. For all the baselines, we follow a recently popular temporal graph representation learning library named DyGLib³ Yu et al. (2023). This library performs an exhaustive grid search to identify the optimal configurations of critical hyper-parameters and rectifies certain technical bugs among the original implementations of existing TGNs, thus typically achieving enhanced performance. As for TG-Mixer, there is only one hyper-parameter mentioned in Section 4, i.e., the sample size for neighbor selection strategy m (analyzed in Section 5.4). In practice, we set m = 30by default for Wikipedia, m = 10 for Reddit and LastFM, and m = 20 for the remaining datasets.

927 928 929

930 931

932

C SUPPLEMENTARY EXPERIMENTAL RESULTS

C.1 ADDITIONAL EXPERIMENTS ON THE TGB BENCHMARK

To fully investigate model performance, we conduct the additional evaluation on the recently introduced Temporal Graph Benchmark, TGB⁴ Huang et al. (2024), which contains more challenging datasets and tasks for model evaluation. We conduct additional experiments on five datasets, including Wikipedia, Review, Coin, Comment, and Flight. For the dynamic link property prediction task, we sample 100 negative edges per positive edge and employ Mean Reciprocal Rank (MRR) as our evaluation metric. We evaluate the performance of seven baselines and keep the same model configurations used in our paper.

940 From the results in Table 7, we find that TG-Mixer still demonstrates outstanding or competitive 941 performance under the MRR metrics and datasets on the TGB benchmark, further proving its effectiveness for dynamic link property prediction. Additionally, TG-Mixer ranks first on the 942 Wikipedia dataset and third on the Coin dataset. We note that the surprise index (the ratio of test 943 links that are not seen during training defined in Poursafaei et al. (2022)) for Wikipedia and Coin 944 are 0.108 and 0.120, respectively, which indicates that more unseen links exist in Coin during 945 testing. This may conflict with the motivation behind our temporal clustering design, leading to a 946 suboptimal performance on the Coin dataset. Moreover, we notice that TG-Mixer also demonstrates a 947 significantly superior performance on the Review, Comment, and Flight datasets, further highlighting 948 its strong capabilities and robustness. Additionally, the most significant performance improvements 949 are observed in the Review and Flight datasets. This can be attributed to their higher interaction 950 density (computed as # node degree / #time steps, as described in Section D.4), which indicates that 951 the nodes in these datasets feature a larger number of simultaneous interactions. Such interaction 952 patterns result in pronounced burstiness and stronger temporal clustering, significantly enhancing the effectiveness of our model. 953

954 955

956

957

958

Table 7: [New Table] MRR (%) results for the dynamic link property prediction task with 100negative edges per each positive edge. The best model performance is highlighted in %d and thesecond-best performance is denoted in %d. "NA" denotes scenarios where a specific method wasnot applied to the dataset due to computational issues.

Models	Wikipedia	Review	Coin	Comment	Flight
DyRep	51.91 ± 1.95	40.06 ± 0.59	45.20 ± 4.6	NA	NA
TGAT	59.94 ± 1.63	19.64 ± 0.23	60.92 ± 0.57	56.20 ± 2.11	NA
TGN	68.93 ± 0.53	37.48 ± 0.23	58.60 ± 3.7	NA	NA
TCL	78.11 ± 0.20	16.51 ± 1.85	68.66 ± 0.30	70.11 ± 0.83	NA
GraphMixer	59.75 ± 0.39	36.89 ± 1.50	75.57 ± 0.27	76.17 ± 0.17	77.66 ± 1.98
EdgeBank	52.50 ± 0.00	2.29 ± 0.00	35.90 ± 0.00	12.85 ± 0.00	16.70 ± 0.00
DyGFormer	79.83 ± 0.42	22.39 ± 1.52	75.17 ± 0.38	67.03 ± 0.14	NA
TG-Mixer	80.80 ± 0.27	49.92 ± 1.01	75.09 ± 0.29	80.17 ± 0.61	84.88 ± 2.1

967 968 969

970 971

³https://github.com/yule-BUAA/DyGLib

⁴https://tgb.complexdatalab.com/

972 C.2 Additional Experiments Under Different Negative Sampling Strategies 973

Inspired by recent studies Poursafaei et al. (2022); Huang et al. (2024) that provide the suggestion of
robust evaluation in temporal link prediction, we adopt more challenging evaluation scenarios with
different negative sampling strategies and rank-based evaluation metrics to carefully assess model
performance. Based on this motivation, we conduct additional experiments to evaluate the models
under random negative sampling, historical negative sampling, inductive negative sampling, and
degree-aware negative sampling using the MRR metric.

980 In addition to the random negative sampling strategy used in the main experiments, we follow 981 Poursafaei et al. (2022) and employ historical negative sampling (sampling negative links that have 982 been observed before but are absent in the current step) and inductive negative sampling (sampling negative links are not observed during training). To further mitigate potential biases from popular 983 nodes during evaluation, we construct negative links by sampling negative destination nodes based on 984 their historical degree distribution. Specifically, we sample a destination node with the probability of 985 d/N, where d is the node's current degree and N denotes the total number of historical interactions. 986 For the evaluation metrics, we follow TGB Huang et al. (2024) and sample 100 negative edges per 987 positive edge and employ Mean Reciprocal Rank (MRR) as our evaluation metric. 988

From the results shown in Figure 7, we find that: (i) TG-Mixer consistently demonstrates strong 989 performance across all negative sampling strategies under the MRR metric, further proving its 990 robustness and effectiveness for temporal link prediction. (ii) All models experience some degree of 991 performance degradation under different negative sampling strategies. Such challenging evaluation 992 scenarios also amplify the differentiation in model performance. (iii) Inductive negative sampling 993 tends to cause the most performance drop. This is likely because this strategy samples unseen nodes 994 to construct negative links, making it more challenging for models to accurately distinguish between 995 positive and negative links. 996

Figure 7: [New Figure] Transductive MRR results under different negative sampling strategies.

C.3 Additional Experiments Under Different Batch Sizes

1007 1008 1009

1010

1011 In this section, we evaluate model performance under different batch sizes. The batch-based training 1012 approach, introduced by Rossi et al. (2020a), has been widely adopted in the temporal graph 1013 community. This method processes interactions in batches following their chronological order. 1014 Specifically, it first sorts all interactions by timestamp and then groups them into batches using 1015 the predefined batch size. In this way, Back Propagation Through Time (BPTT) within each batch 1016 allows the models to update in chronological order. Despite its efficiency, a fundamental issue with 1017 this approach is that all predictions within a given batch share the same model state, which may be outdated for later interactions in the batch. It is particularly problematic for memory-based methods, 1018 as they always explicitly maintain an up-to-date memory component, such as the rhythm vector in 1019 TG-Mixer. While the memory state for the first interaction in the batch is up-to-date (as it incorporates 1020 information from all previous interactions), the memory state for the last interaction in the batch is 1021 out-of-date (as it does not include information from previous interactions within the same batch). 1022

Based on the above motivation, we conduct additional experiments to evaluate model performance
under different batch sizes. From the results in Figure 8, we find that: (i) TG-Mixer continues
to achieve the best performance across various batch sizes, further validating its effectiveness and robustness for temporal link prediction. (ii) Although the performance ranking of models remains

unchanged, memory-based methods (e.g., TG-Mixer and TGN) tend to perform better with smaller
batch sizes. This underscores the limitations of the existing batch training approach when applied to
larger batch sizes. It also highlights the need for a more effective parallel processing method, which
is beyond the scope of this work and we leave this as a future research direction.

Figure 8: [New Figure] Transductive MRR results under different batch sizes.

C.4 SUPPLEMENTARY RESULTS FOR MACRO-LEVEL AND MICRO-LEVEL ANALYSES

We present the supplementary macro-level analyses and micro-level analyses on other datasets in
Figure 9. We find that temporal clustering in node interaction rhythms is a widespread and strong characteristic among various real-world temporal graphs from different domains.

1047 1048

1030 1031

1032

1033 1034

1035 1036

1039

1040 1041

1042

C.5 DETAILS FOR INDUCTIVE TEMPORAL LINK PREDICTION WITH AP METRIC

1049 Inductive temporal link prediction focuses on forecasting future link existence between two unseen 1050 nodes. The inductive setting effectively prevents the model from merely memorizing previously 1051 observed node information, thus evaluating the true predictive capabilities and reliability of models. 1052 Specifically, when preparing the training data, we select 10% of nodes as inductive nodes and remove 1053 them from the training split. Subsequently, inductive temporal link prediction aims to forecast the 1054 future link existence between these inductive nodes during the evaluation and testing phases. We present the AP results for inductive temporal link prediction in Table 8. It's important to note that 1055 EdgeBank directly predicts links between unseen nodes as negative, making it unsuitable for the 1056 inductive setting. We find that TG-Mixer still performs best, demonstrating its effectiveness and 1057 crucial importance in capturing temporal clustering for better temporal link prediction. 1058

1059

Table 8: AP (%) results for temporal link prediction in the inductive setting. The best model performance is highlighted in **%d** and the second-best performance is denoted in **%d**. Note that EdgeBank Poursafaei et al. (2022) directly predicts links between unseen nodes as negative, and therefore, it cannot be applied to the inductive setting.

Models	Wikipedia	Reddit	LastFM	UCI	Flights	US Legis.	Contact
JODIE	94.82 ± 0.20	96.50 ± 0.13	81.61 ± 3.82	79.86 ± 1.48	94.74 ± 0.37	54.93 ± 2.29	94.34 ± 1.45
DyRep	92.43 ± 0.37	96.09 ± 0.11	83.02 ± 1.48	57.48 ± 1.87	92.88 ± 0.73	57.28 ± 0.71	92.18 ± 0.41
TGAT	96.22 ± 0.07	97.09 ± 0.04	78.63 ± 0.31	79.54 ± 0.48	88.73 ± 0.33	51.00 ± 3.11	95.87 ± 0.11
TGN	97.83 ± 0.04	97.50 ± 0.07	81.45 ± 4.29	88.12 ± 2.05	95.03 ± 0.60	58.63 ± 0.37	93.82 ± 0.99
TCL	96.22 ± 0.17	94.09 ± 0.07	73.53 ± 1.66	87.36 ± 2.03	83.41 ± 0.07	52.59 ± 0.97	91.11 ± 0.12
CAWN	98.24 ± 0.03	98.62 ± 0.01	89.42 ± 0.07	92.73 ± 0.06	97.06 ± 0.02	53.17 ± 1.20	89.55 ± 0.30
GraphMixer	96.65 ± 0.02	95.26 ± 0.02	82.11 ± 0.42	91.19 ± 0.42	83.03 ± 0.05	50.71 ± 0.76	90.59 ± 0.05
DyGFormer	98.59 ± 0.03	98.84 ± 0.02	94.23 ± 0.09	94.54 ± 0.12	97.79 ± 0.02	54.28 ± 2.87	98.03 ± 0.02
TG-Mixer	99.83 ± 0.05	99.89 ± 0.01	95.91 ± 0.59	96.56 ± 0.86	99.09 ± 0.01	99.21 ± 0.86	99.58 ± 0.36

1072 1073 1074

1075 C.6 DETAILS FOR TEMPORAL LINK PREDICTION WITH ROC-AUC METRIC

1077 ROC-AUC is also a popular evaluation metric used in temporal graph learning Wang et al. (2021d).
1078 The larger the numbers, the better the model performance. The results under both transductive and inductive settings are depicted in Tables 9 & 10, respectively. We can observe that TG-Mixer still achieves outstanding performance across all datasets in both transductive and inductive temporal link

(a) Macro-level distribution of nodes' inter-event times across the entire timeline: Compared to the randomly sampled interaction nodes, most truly existing interaction nodes exhibit shorter periods of inactivity and short-term interaction bursts.

(b) Micro-level distribution of nodes' inter-event times over time steps: Short-term interaction bursts from truly existing interaction nodes consistently occur at most time steps.

Figure 9: Macro-level and micro-level empirical analyses for illustrating temporal clustering on the Wikipedia, UCI, and Contact datasets, respectively.

prediction tasks. Furthermore, most of baselines perform worse with the ROC-AUC metric than using the AP metric, suggesting that solely relying on the AP metric may not reflect the true prediction abilities of models. We emphasize that TG-Mixer demonstrates consistently strong performance in both AP and ROC-AUC metrics, affirming its effectiveness for temporal link prediction.

Table 9: ROC-AUC (%) results for temporal link prediction in the transductive setting. The best model performance is highlighted in **%d** and the second-best performance is denoted in **%d**

Models	Wikipedia	Reddit	LastFM	UCI	Flights	US Legis.	Conta
JODIE	96.33 ± 0.07	98.31 ± 0.05	70.49 ± 1.66	90.44 ± 0.49	96.21 ± 1.42	82.85 ± 1.07	$96.66 \pm$
DyRep	94.37 ± 0.09	98.17 ± 0.05	71.16 ± 1.89	68.77 ± 2.34	95.95 ± 0.62	82.28 ± 0.32	$96.48 \pm$
TGAT	96.67 ± 0.07	98.47 ± 0.02	71.59 ± 0.18	78.53 ± 0.74	94.13 ± 0.17	75.84 ± 1.99	$96.95 \pm$
TGN	98.37 ± 0.07	98.60 ± 0.06	78.47 ± 2.94	92.03 ± 1.13	98.22 ± 0.13	83.34 ± 0.43	$97.54~\pm$
CAWN	98.54 ± 0.04	99.01 ± 0.01	85.92 ± 0.10	93.87 ± 0.08	98.45 ± 0.01	77.16 ± 0.39	$89.99~\pm$
TCL	95.84 ± 0.18	97.42 ± 0.06	64.06 ± 1.16	87.82 ± 1.03	91.21 ± 0.06	76.27 ± 0.63	$94.15~\pm$
EdgeBank	90.78 ± 0.00	95.37 ± 0.00	83.77 ± 1.16	77.30 ± 0.13	90.23 ± 0.13	62.57 ± 0.18	$94.34~\pm$
GraphMixer	96.92 ± 0.03	97.17 ± 0.02	73.53 ± 0.12	91.81 ± 0.67	91.13 ± 0.06	76.96 ± 0.79	$93.94~\pm$
DyGFormer	98.91 ± 0.02	99.15 ± 0.01	93.05 ± 0.10	94.49 ± 0.26	98.93 ± 0.01	77.90 ± 0.58	$98.53~\pm$
TG-Mixer	99.83 ± 0.04	99.91 ± 0.01	96.72 ± 0.06	97.81 ± 0.26	99.59 ± 0.01	99.31 ± 0.36	$99.64 \pm$

C.7 **RESULTS FOR MODEL CONVERGENCE AND GENERALIZATION CAPABILITIES**

We provide the supplementary results for model convergence and generalization capabilities on other datasets in Figure 12. Our TG-Mixer still demonstrates exceptionally faster convergence and stronger generalization capabilities among various datasets compared to baselines.

Table 10: ROC-AUC (%) results for temporal link prediction in the inductive setting. The best model performance is highlighted in **%d** and the second-best performance is denoted in **%d**. Note that EdgeBank Poursafaei et al. (2022) predicts links between unseen nodes as negative, and therefore, it cannot be applied to the inductive setting.

Models	Wikipedia	Reddit	LastFM	UCI	Flights	US Legis.	Contact
JODIE	94.33 ± 0.27	96.52 ± 0.13	81.13 ± 3.39	78.80 ± 0.94	95.21 ± 0.32	58.12 ± 2.35	95.37 ± 0.92
DyRep	91.49 ± 0.45	96.05 ± 0.12	82.24 ± 1.51	58.08 ± 1.81	93.56 ± 0.70	61.07 ± 0.56	91.89 ± 0.38
TGAT	95.90 ± 0.09	96.98 ± 0.04	76.99 ± 0.29	77.64 ± 0.38	88.64 ± 0.35	48.27 ± 3.50	96.53 ± 0.10
TGN	97.72 ± 0.03	97.39 ± 0.07	82.61 ± 3.15	86.68 ± 2.29	95.92 ± 0.43	62.38 ± 0.48	94.84 ± 0.75
CAWN	98.03 ± 0.04	98.42 ± 0.02	87.82 ± 0.12	90.40 ± 0.11	96.86 ± 0.02	51.49 ± 1.13	89.07 ± 0.34
TCL	95.57 ± 0.20	93.80 ± 0.07	70.84 ± 0.85	84.49 ± 1.82	82.48 ± 0.01	50.43 ± 1.48	93.05 ± 0.09
GraphMixer	96.30 ± 0.04	94.97 ± 0.05	80.37 ± 0.18	89.30 ± 0.57	82.27 ± 0.06	47.20 ± 0.89	92.83 ± 0.05
DyGFormer	98.48 ± 0.03	98.71 ± 0.01	94.08 ± 0.08	92.63 ± 0.13	97.80 ± 0.02	53.21 ± 3.04	98.30 ± 0.02
TG-Mixer	99.82 ± 0.05	99.88 ± 0.01	95.97 ± 0.59	96.81 ± 0.51	99.09 ± 0.01	98.97 ± 0.89	99.68 ± 0.27

1150 C.8 DETAILS FOR MODEL EFFICIENCY

Besides the discussions in Section 5.2, we also provide the averaged training wall-clock time of a single epoch under the optimal training hyper-parameters between the TG-Mixer and the baselines in Table 12. We observe that TG-Mixer requires significantly less time than most baselines and achieves the second lowest time consumption, demonstrating its high efficiency at each epoch. We emphasize that TG-Mixer achieves extremely better task performance than the fastest model (i.e., JODIE) as displayed in Table 1. We also notice that neither JODIE nor TG-Mixer consistently achieves the highest efficiency at each epoch across all datasets. This variability can be attributed to the fact that the dataset-dependent optimal hyper-parameters for these models may affect the training time consumption in practice. For example, a larger neighbor sample size m necessitates longer training times. On the Wikipedia dataset, TG-Mixer achieves its best performance with a neighbor sample size of m = 30 while JODIE requires m = 10, leading to the high efficiency of JODIE. Instead, in the case of the Reddit dataset, TG-Mixer sets m = 10 and JODIE maintains the size (m = 10), where TG-Mixer achieves lower time consumption compared to that of JODIE. More optimal training hyper-parameter configure details of baselines can be found in Yu et al. (2023), and configuration details of TG-Mixer for training and evaluation are put in Section B.3 of the Appendix.

Table 11: Number of model parameters.

Models	JODIE	DyRep	TGAT	TGN	CAWN	TCL	GraphMixer	DyGFormer	TG-Mixer
# Parameters ($\times 10^5$)	1.96	6.92	10.53	9.64	160.91	8.84	6.42	10.87	5.23

Table 12: Wall-clock time (s) for	training one	e epoch u	under the	optimal	training	hyper-parameters
	., .		· · · · · ·		· F · · · ·		

Models	Wikipedia	Reddit	LastFM	UCI	Flights	US Legis.	Contact	Avg. Rank
JODIE	57.0	338.3	173.2	13.4	1040.6	16.0	232.5	1.50
DyRep	114.7	375.1	447.1	31.3	1696.3	18.6	488.9	3.75
TGAT	387.3	4241.3	3194.7	166.8	4897.8	156.0	6257.8	7.63
TGN	66.6	496.1	346.9	22.8	1249.3	38.3	520.2	3.63
CAWN	1082.0	3319.99	18235.5	613.5	18235.5	296.88	24729.2	8.87
TCL	66.6	377.7	476.5	25.1	751.3	36.3	906.8	4.13
GraphMixer	72.1	389.7	476.0	31.8	776.0	38.7	1119.9	5.25
DyGFormer	202.9	982.0	10406.2	94.9	12049.3	171.2	3885.2	7.50
TG-Mixer	60.6	271.2	450.2	21.9	725.7	27.4	725.6	2.63

1185 C.9 RESULTS FOR EXPRESSION ABILITY OF SILENCE DECAY MECHANISM

1187 We visualize the complementary decay coefficients of our silence decay mechanism between positive links and negative links on the supplementary datasets in Figure 10. We can observe that our decay

mechanism provides a highly indiscriminative training signal, indicating the effectiveness of explicitly capturing temporal clustering for better temporal link prediction.

Figure 10: Comparisons of the decay coefficients produced by our silence decay mechanism between positive and negative links. Temporal clustering can offer a highly discriminative training signal.

DETAILS FOR THE VERSATILITY ABILITY OF SILENCE DECAY MECHANISM C 10

Our silence decay mechanism can also be easily adopted to boost existing sequential TGNs. Similar to TG-Mixer, these methods learn from 1-hop historical links and generate temporal representations by aggregating neighbor information with pooling operations, such as mean-pooling in GraphMixer Cong et al. (2023). In practice, we integrate the silence decay mechanism into these models by directly decaying the neighbor information before they perform the corresponding pooling operations. Supplementary results for inductive AP results are presented in Table 13.

From the results, we find that the silence decay mechanism that explicitly captures temporal clustering enables these models to achieve certain performance improvements, demonstrating its widespread applicability. Additionally, the most significant performance improvements are observed in some datasets with stronger temporal clustering, such as LastFM and Flights, validating the effectiveness and importance of temporal clustering.

Table 13: Inductive (%) AP results of existing sequential TGNs that are boosted by temporal clustering. Before " \rightarrow " are the original results and after " \rightarrow " are the boosting results via silence decay.

	U			C		
Models	Wikipedia	Reddit	LastFM	Flights	US Legis.	Contact
TCL	96.22 ightarrow 99.02	$94.09 \rightarrow 96.08$	73.53 ightarrow 93.24	83.41 ightarrow 84.18	52.59 ightarrow 68.47	$91.11 \rightarrow 94.90$
GraphMixer	$96.65 \rightarrow \textbf{98.13}$	$95.26 \rightarrow \textbf{97.00}$	$82.11 \rightarrow \textbf{95.48}$	$83.03 \rightarrow \textbf{85.38}$	$50.71 \rightarrow 66.49$	$90.59 \rightarrow 96.51$
DyGFormer	$98.59 \rightarrow 98.25$	$98.84 \rightarrow \textbf{98.10}$	$94.23 \rightarrow \textbf{95.29}$	$97.79 \rightarrow 98.35$	$54.28 \rightarrow \textbf{73.03}$	$98.03 \rightarrow \textbf{98.87}$
TG-Mixer	99.83	99.89	95.91	99.09	99.21	99.58

C.11 RESULTS FOR EVALUATION OF THE NEIGHBOR SELECTION STRATEGY IN TG-MIXER

We provide the inductive AP results in Table 14 for validating different neighbor selection strategies with diverse neighbor sizes utilized in TG-Mixer. Employing the recent neighbor selection strategy enables TG-Mixer to achieve optimal performance, further indicating the crucial importance of preserving temporal clustering within raw data. Moreover, we find that the optimal sample size varies across different datasets, demonstrating that tuning the sample size is essential when performing temporal link prediction tasks.

Table 14: Inductive AP (%) results of diverse neighbor selection strategies in various sample sizes.

_	Dataset	# Sample size	Recent sample	Random sample	Dataset	# Sample size	Recent sample	Random sample	Dataset	# Sample size	Recent sample	Random sample	
_		10	99.30	94.00		10	99.88	98.00		10	96.23	95.34	
	Wikipadia	20	99.49	94.31	Paddit	20	99.74	97.97	UCI	20	96.81	95.35	
	wikipeula	30	99.82	94.78	Keuun	30	99.27	97.63	001	30	96.56	95.28	
_		50	99.74	94.62		50	98.85	97.82		50	96.10	95.29	

1250 1251

C.12 DETAILS FOR ABLATION STUDY 1252

1253 To better understand TG-Mixer, we conduct an ablation study to evaluate the effectiveness of TG-1254 Mixer's components. Considering that the mainstream existing TGNs are mainly based on attention 1255 mechanisms, we first construct variants by replacing the information mixer introduced in Section 1256 4 with the full/temporal attention mechanisms, where full attention is widely used in Transformers 1257 Vaswani et al. (2017) and temporal attention proposed by TGAT Xu et al. (2020) is widely employed in recent existing TGNs. We refer to these two variants as "Full attention" and "Temporal attention", 1259 respectively. Furthermore, note that MLP-Mixer Tolstikhin et al. (2021) serves as the backbone of 1260 TG-Mixer. Therefore, besides the two variants above, we let **MLP-Mixer** as one of our variants. 1261 Moreover, we integrate our silence decay mechanism and temporal mixer into MLP-Mixer, resulting in two variants: "w/. silence decay mechanism" and "w/. temporal mixer", respectively. Please 1262 notice that "w/. temporal mixer" is what we refer to as the TG-Mixer. Finally, to investigate the 1263 performance brought by the silence decay mechanism, we set the decay coefficient $g(\cdot) = 0$ of the 1264 silence decay mechanism in Equation 9, leading to the variant "TG-Mixer_{g(·)=0}". 1265

1266 Supplementary inductive AP results for the ablation study are presented in Table 15.

Table 15. Inductive AI (70) results of ablation st
--

Techniques	Variants	Wikipedia	Reddit	UCI	Contact
Attention machanism	Full attention Vaswani et al. (2017)	96.87	96.46	77.31	90.85
Attenuoli mechanism	Temporal attention Xu et al. (2020)	96.22	97.09	79.54	95.87
	MLP-Mixer Cong et al. (2023)	96.65	95.26	91.19	90.59
Information mixor	w/. silence decay mechanism	98.13	97.00	97.08	96.51
information mixer	w/. temporal mixer (i.e., TG-Mixer)	99.83	99.89	96.56	99.58
	$TG-Mixer_{g(\cdot)=0}$	97.14	95.93	93.18	93.26

1276 1277 1278

1272

1274

1279 1280

C.13 ADDITIONAL EXPERIMENTS UNDER DIFFERENT LEVELS OF TEMPORAL CLUSTERING

To further validate the robustness of TG-Mixer, we conduct a series of additional experiments 1281 focusing on scenarios characterized by different levels of temporal clustering, evaluating how TG-1282 Mixer performs under disrupted or relatively low levels of temporal clustering. Specifically, we 1283 disrupt the interaction patterns by replacing the original interactions with randomly sampled noisy 1284 interactions at a certain perturbation rate Wang et al. (2021d), resulting in different levels of bursts 1285 among the interaction patterns. A higher perturbation rate corresponds to lower interaction bursts, 1286 indicating a lower level of temporal clustering among the temporal graphs. We employ GraphMixer 1287 Cong et al. (2023) and TCL Wang et al. (2021a) for comparisons due to their similar sequential model design, and the AP results for such an experimental setting are put in Figure 11. 1288

From the results, we find that TG-Mixer can also capture basic temporal and structural information 1290 through the design of the information mixer introduced in Section 4, thus ensuring its performance 1291 even under disrupted or relatively low temporal clustering. Additionally, we also observe that TG-Mixer achieves similar results to GraphMixer at a high perturbation rate. This may be owing to the fact that both of these two models are based on MLP-Mixer architecture, where they have a similar 1293 ability to encode the basic temporal and structural information under low levels of temporal clustering. 1294 Furthermore, TCL suffers from more spurious information from high-order connections, thus leading 1295 to significant performance degradation at high perturbation rates.

Figure 11: AP (%) results under different levels of temporal clustering. Higher perturbation rates indicate a lower level of temporal clustering. TG-Mixer can guarantee its performance even under disrupted or relatively low levels of temporal clustering.

1308 D OTHER DISCUSSIONS

¹³⁰⁹ D.1 RELATED WORK 1310

1303

1304

1305

1306 1307

Temporal Graph Networks (TGNs). According to the granularity of temporal information, dynamic 1311 graphs can be categorized into two primary types: Discrete-Time Dynamic Graphs (DTDGs), also 1312 known as Discrete Graphs, and Continuous-Time Dynamic Graphs (CTDGs), also referred to as 1313 Temporal Graphs Liang et al. (2023). Discrete graphs are characterized by multiple graph snapshots 1314 taken at fixed time intervals, where each snapshot represents a static graph, and all snapshots are 1315 ordered chronologically Xue et al. (2022); Kazemi et al. (2020). Existing methods for handling 1316 discrete graphs typically apply static graph techniques to each snapshot individually, with RNNs 1317 Pareja et al. (2020) or attention mechanisms Sankar et al. (2020); Cong et al. (2021) to capture 1318 temporal dependencies across different snapshots. 1319

In contrast, temporal graphs Wen & Fang (2022); Tian et al. (2024b); Xiang et al. (2023) encapsulate 1320 more granular temporal information, with each edge explicitly annotated with interaction timestamps. 1321 This fine-grained temporal information allows the graph to evolve continuously over time. Conse-1322 quently, temporal graphs present more challenges and opportunities. For capturing the dynamics and 1323 topologies within temporal graphs, Temporal Graph Networks (TGNs⁵) have been widely studied in 1324 recent years Goyal et al. (2020); Fan et al. (2021); Wang et al. (2021e); Rossi et al. (2020b); Gao 1325 & Ribeiro (2022); Chang et al. (2020); Pareja et al. (2020); Zhang et al. (2023); Chen et al. (2024); 1326 Zhang et al. (2024b). Most existing TGNs try to parameterize the time-dependent interaction patterns 1327 via their designed complex architectures, such as temporal graph convolutions Wang et al. (2021d;b); Alvarez-Rodriguez et al. (2021); Zhou et al. (2022); Luo & Li (2022); Zhang et al. (2024a), temporal 1328 random walks Wang et al. (2021c); Souza et al. (2022); Jin et al. (2022), and sequential models Wang 1329 et al. (2021a); Cong et al. (2023); Yu et al. (2023); Tian et al. (2024b). Although powerful, these 1330 methods overlook high-level temporal correlations and rhythm patterns among node interactions in 1331 raw data. In this paper, we introduce some empirical analyses to observe temporal clustering within 1332 node interaction rhythms and leverage this interesting phenomenon for advancing temporal link 1333 prediction. To this end, we propose a novel method to show the necessity of explicitly considering 1334 temporal clustering, which is achieved by two designs: a neighbor selection strategy and a temporal 1335 mixer with a silence decay mechanism. 1336

Existing Studies on Bursty Behavior. We notice that some studies explore the effects of bursty 1337 interaction patterns in temporal networks Karsai et al. (2018); Hiraoka et al. (2020); Jo (2023). 1338 However, these works focus on designing statistical models to analyze the burst events and their 1339 impacts on the distribution characteristics Karsai et al. (2011), correlations Lambiotte et al. (2013); 1340 Min & Goh (2013), and propagation processes of inter-event times Barabasi (2005); Sheng et al. 1341 (2023). Instead, this paper leverages bursty interaction patterns to design a deep learning model that 1342 facilitates representation learning in temporal graphs. Additionally, these works are outside the ML 1343 community and primarily published in the field of physical sciences, which is definitely outside the 1344 scope of our paper.

Difference Discussions. To provide a clearer understanding of the concept of temporal clustering introduced in our paper, we briefly differentiate between "temporal clustering" and "clustering tasks among temporal graphs" Liu et al. (2023).

⁵For consistency, we follow Souza et al. (2022) in using "TGNs" to refer to a family of models for temporal graph representation learning. This term differs from the specific model "TGN" proposed by Rossi et al. (2020a).

1350 Temporal clustering introduced in our paper reflects a distinctive dynamics of interaction patterns 1351 within temporal graphs: node interactions tend to occur in bursts, leading to a concentration or 1352 clustering of occurrence along the temporal dimensions. Different from temporal clustering, clustering 1353 tasks Yao & Joe-Wong (2021) are defined based on the topological or connectivity tendencies of 1354 nodes among graphs. In these tasks, nodes within a cluster are densely connected, while nodes across different clusters exhibit sparse connectivity. Recently, clustering tasks among temporal graphs Li 1355 et al. (2022); Liu et al. (2023; 2024) have emerged as a significant research trend in graph clustering. 1356 These studies often focus on adapting static clustering techniques to temporal graphs. For example, 1357 TGC Liu et al. (2023) investigates and introduces deep temporal graph clustering, which proposes a 1358 clustering method to suit the interaction sequence-based batch-processing of temporal graphs. 1359

In this paper, we incorporate the high-level dynamics of interaction patterns (i.e., temporal clustering)
for the temporal link prediction task, presenting a lightweight solution that achieves both effectiveness
and efficiency. Our work is fundamentally different from the above clustering tasks in temporal
graphs or other tasks that leverage topological connectivity density for performance improvements.
Therefore, the above methods fall outside the scope of our paper, and we do not discuss their details.

1364 1365

D.2 COMPLEXITY ANALYSIS

In addition to the experimental evaluation of model complexity in Section 5.2, we also provide a theoretical complexity analysis of the main components in TG-Mixer and selected baselines. Specifically, we choose three baselines: TGN Rossi et al. (2020a), CAWN Wang et al. (2021c), and DyGFormer Yu et al. (2023), as they represent the most representative method in temporal graph convolution models, temporal walk models, and sequential models, respectively.

1372 Let L represent the number of interaction sequences, D denote the average node degree, K indicate 1373 the number of encoding layers, and m depict the sample size in the neighbor selection strategy. To 1374 simplify the calculations, we assume that the models' input, hidden, and output dimensions are 1375 uniformly set to d. TG-Mixer generates node representations by sampling the most recent historical 1376 links and then using a token mixer and a temporal mixer, leading to a computational complexity of 1377 $\mathcal{O}(mLd + mLd^2)$. TGN samples multi-hop most recent historical links, updates nodes' memory 1378 with RNNs, and employs a temporal attention mechanism to summarize link information, resulting 1379 in an overall complexity of $O(Ld^2 + m^2KLd)$. CAWN encodes temporal walks with RNNs and 1380 aggregates these walks using an attention mechanism, which results in a computational complexity of $\mathcal{O}(nKLd^2 + n^2Ld)$ where n represents the number of temporal walks. DyGFormer extracts all 1381 1-hop historical links and employs a multi-layer Transformer encoder to aggregate link information, 1382 resulting in a complexity of $\mathcal{O}(KLD^2d + KLd)$. 1383

1384

1386

1385 D.3 LIMITATIONS

One potential limitation of TG-Mixer is the cold start issue for learning temporal clustering at the beginning of the training (discussed in Section 5.2). However, after several epochs, TG-Mixer effectively captures and leverages the powerful predictive signals derived from explicitly considering temporal clustering, and achieves outstanding performance compared to the baselines.

Another potential limitation of TG-Mixer is its neighbor selection strategy that samples from 1-hop historical links. It may be suboptimal when handling certain scenarios in which nodes' high-order relationships are crucial. However, simply incorporating multi-hop links into TG-Mixer would significantly increase computational costs and weaken its ability to capture temporal clustering. There is significant potential in designing both efficient and effective methods to capture nodes' high-order relationships for better temporal link prediction.

- 1307
- 1398

D.4 DISCUSSIONS OF MODEL PERFORMANCE ON THE US LEGIS. DATASET

The temporal link prediction results show that TG-Mixer outperforms baselines on the US Legis. dataset with a large margin. In this section, we briefly discuss the potential reasons for it. This superior performance is due to the composite effect of at least two key factors:

Smaller timestamp gap. US Legis. has a significantly smaller timestamp gap (the difference between the maximum and minimum timestamps) compared to other datasets. For example, US

Figure 12: Comparisons of the training loss, training AP, and the generalization gap over epochs when training models. TG-Mixer demonstrates faster convergence and stronger generalization capabilities.

Table 16: Characteristics of timestamp gap and interaction density across datasets used in this paper.

	Wikipedia	Reddit	LastFM	UCI	Flights	US Legis.	Contact
Timestamp Gap	6.78×10^5	2.68×10^6	1.37×10^8	1.67×10^7	120	11	2.41×10^6
Interaction Density	1.12×10^{-4}	9.15×10^{-5}	5.09×10^{-4}	5.35×10^{-5}	1.20	19.74	0.43

1421

1422

1423 1424 1425

1426 1427 1428

Legis. has a timestamp gap of 11 while the dataset with the second smallest timestamp gap, Flights, has a timestamp gap of 120. Other datasets exhibit larger timestamp gaps. Baseline models process interactions separately and rely solely on a time-encoding function to encode temporal information. This function could fail to provide distinguishable encoding under a smaller timestamp gap, leading to the potential over-smoothing issue Yu et al. (2023) and achieving suboptimal performance in the US Legis. dataset. Instead, TG-Mixer captures high-level temporal correlations among interactions by considering temporal clustering information, making it less susceptible to performance degradation caused by a small timestamp gap.

1439 Higher interaction density in temporal dimensions. Node interaction density in temporal dimen-1440 sions refers to the number of node interactions at each time step, which is computed by #Node Degree 1441 / #Time Steps. US Legis. exhibits a significantly higher density compared to other datasets. For 1442 example, US Legis. has a density of 19.74 while the second highest, Flights, has a density of 1.20. 1443 Other datasets show even lower densities. A higher interaction density indicates that nodes have 1444 a large number of interactions occurring simultaneously, resulting in prominent interaction bursts 1445 and stronger temporal clustering. Consequently, baseline models do not benefit from such temporal 1446 clustering whereas TG-Mixer fully capitalizes on it, thus achieving exceptional performance.

The corresponding characteristics of timestamp gap and interaction density in the temporal dimension are summarized in Table 16.

- 1450
- 1451
- 1452
- 1453
- 1454
- 1455
- 1456
- 1457