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Abstract
While large pretrained foundation models (FMs)
have shown remarkable zero-shot classification
robustness to dataset-level distribution shifts, their
robustness to group shifts is relatively underex-
plored. We study this problem, and first find that
popular FMs such as CLIP may not be robust to
various group shifts. On prior robustness bench-
marks, they achieve up to an 80.7 percentage point
(pp) gap between average and worst-group accu-
racy. Unfortunately, current methods to improve
robustness require retraining, which can be pro-
hibitively expensive for large FMs. We find ex-
isting ways to efficiently improve large model
inference, e.g, by training adapters (lightweight
MLPs) on top of FM embeddings, can also hurt
group robustness compared to zero-shot. We thus
propose a first adapter training method designed
to improve FM robustness to group shifts. While
prior work only trains adapters with class labels,
we add a contrastive objective to explicitly learn
similar embeddings for initially dissimilar FM
embeddings. Across the same benchmarks, con-
trastive adapting effectively and efficiently im-
proves group robustness, raising worst-group ac-
curacy by 16.0 to 56.0 pp over zero-shot with-
out any FM finetuning. Beyond FM robustness,
contrastive adapting achieves near-state-of-the-art
robustness on Waterbirds and CelebA, while only
training 1% of other methods’ model parameters.

1. Introduction
Foundation models (FMs)—large pretrained models trained
on massive datasets—offer an exciting new deep learning
paradigm. Recent works show that with no finetuning, FMs
can generalize to various tasks (Brown et al., 2020; Radford
et al., 2021) with impressive robustness to certain distribu-
tion shifts (Kumar et al., 2022; Wortsman et al., 2021).
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However, an underexplored question is how robust this no
finetuning, or zero-shot, paradigm is to “group shifts,” distri-
bution shifts between subpopulations or meaningful groups
in data. Prior works have established that group robustness–
i.e performing well on all groups—is a fundamental and
real-world challenge for modern deep learning (Beery et al.,
2018; Buolamwini & Gebru, 2018; Oakden-Rayner et al.,
2020; Koh et al., 2021). Yet most prior foundation model
evaluations focus on overall or average performance; few
works consider their accuracy across groups.

In this work, we thus study FM group robustness. We first
motivate this problem by showing that FMs can have poor
zero-shot group robustness. Evaluating 9 FMs across 7 ro-
bustness benchmarks, we find up to an 80.7 percentage point
(pp) gap between their average and worst group accuracy.

We therefore aim to improve FM group robustness. This
poses several challenges and open questions. First, current
robustness methods often retrain at least one model (Sagawa
et al., 2019; Nam et al., 2020; Creager et al., 2021; Liu et al.,
2021; Ahmed et al., 2021; Zhang et al., 2022). This can be
prohibitively expensive for FMs due to their size and scale,
and it is unclear if we can improve FM robustness without
any retraining or finetuning. Second, many practitioners
may only access FM outputs or embeddings (e.g, via APIs1),
using zero-shot classification for their downstream tasks.
Ideal robustness solutions would then also only require FM
embeddings. However, if these same embeddings lead to
poor zero-shot robustness, then it is unclear if they encode
the information needed to classify all groups correctly.

Motivated by these challenges and questions, we study effec-
tive and efficient solutions for better FM group robustness.
As a baseline, we first find that while efficient methods to
improve FM inference–e.g, training linear probes (Radford
et al., 2021; Kumar et al., 2022) and adapters (Houlsby et al.,
2019; Gao et al., 2021) on top of FM embeddings–can im-
prove robustness over zero-shot (e.g, reducing the accuracy
gap by 20.4 pp on the Waterbirds dataset (Welinder et al.,
2010)), they fail to do so consistently, and can hurt robust-
ness (increasing the gap by up to 74.9 pp on the CelebA
dataset (Liu et al., 2015)). To improve robustness, we note
that while poor zero-shot robustness occurs if FMs embed

1https://beta.openai.com/docs/introduction.,
https://studio.ai21.com/docs/, https://docs.cohere.ai/
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Figure 1. (a) Adapter classification with FM embeddings. Adapters learn transformations to align sample embeddings to class embeddings.
(b) Standard cross-entropy loss only uses class embeddings. (c) Contrastive adapting adds other sample embeddings for greater alignment.

same-class samples in different groups “far apart”, we find
instances where standard adapters fail to close this distance.

To consistently improve group robustness over zero-shot,
we propose contrastive adapting, a simple adapter training
method that places greater emphasis on bringing these ini-
tially “far apart” points together. For each task, we first com-
pute FM embeddings for each training sample and class. We
then train adapters—small bottleneck MLPs—on these em-
beddings. Like prior work (Gao et al., 2021), these adapters
take sample embeddings as inputs, and output transformed
embeddings with greater cosine similarity to their ground-
truth class embeddings. However, the key difference is that
contrastive adapting also applies contrastive learning over
other sample embeddings. We provide a way to “pull to-
gether” far apart sample embeddings in the same class, and
“push apart” nearby sample embeddings in different classes.

In our experiments, we validate that contrastive adapting
effectively and efficiently improves FM group robustness.
First, across all 9 robustness benchmarks, we find con-
trastive adapting consistently improves worst-group accu-
racy over zero-shot (by 16.0 to 56.0 pp), using no training
group labels and adapters with 0.1% to 0.3% of the origi-
nal FM parameters. Then, on the popular Waterbirds and
CelebA robustness datasets, we find contrastive adapting
can substantially outperform other methods that only use
FM embeddings. Finally we find contrastive adapting can
enable effective and efficient group robustness in general.
On CelebA, we achieve +0.2 pp worst-group accuracy over
the prior state-of-the-art with only 1.0% of its parameters.

2. Problem
2.1. Preliminaries: group robustness and task setup
For setup, we follow prior work (Sagawa et al., 2019). For
some task, we have N samples {(xi, yi, gi)}Ni=1, with sam-
ple inputs xi ∈ X , class labels yi ∈ Y , and group labels
gi ∈ G. Let C = |Y| be the number of classes. gi indicates
each sample’s group, but we do not see group labels during
training. Distribution shifts may occur between same-class
samples in different groups. Every sample (xi, yi, gi) is

drawn from some joint distribution P . Let Pg be the specific
distribution conditioned on g for any g ∈ G. For classifica-
tion loss ℓ : Y × Y 7→ R and classifier fθ : X 7→ Y , we
want fθ to be accurate, achieving low average error:

Lavg(fθ) := E(x,y,g)∼P [ℓ(fθ(x), y)] (1)

and group robust, achieving a small gap between average er-
ror and worst-group error (implying low worst-group error):

Lwg(fθ) := max
g∈G

E(x,y,g)∼Pg
[ℓ(fθ(x), y)] (2)

Unlike out-of-distribution (OOD) evaluation, we observe
each group in all data splits. However, standard training via
empirical risk minimization (ERM) can lead to poor group
robustness due to imbalanced groups (Shimodaira, 2000).
Here, FMs are not trained on the training data, but we show
their zero-shot classification may still not be group robust.

2.2. Empirical findings of poor FM group robustness
We now demonstrate the group robustness problem with
foundation models. We first briefly describe zero-shot clas-
sification and baseline methods (linear probes, adapters) to
improve inference over the former. We then show that pop-
ular FMs such as CLIP (Radford et al., 2021) may not be
group robust on various robustness benchmarks from prior
work. We finally use two datasets, Waterbirds (Welinder
et al., 2010; Sagawa et al., 2019) and CelebA (Liu et al.,
2015), to present two outcomes where baselines can help
and hurt robustness. Additional benchmark details and re-
sults for all 9 FMs evaluated are deferred to Appendix A.

Baseline methods. To evaluate foundation model group
robustness, we consider the following baseline methods:

• Zero-shot classification (Radford et al., 2021): Assuming
C classes, we first use a FM to compute sample embed-
dings for each test sample, and C total class embeddings.
We then use the nearest class embedding (via cosine simi-
larity) to each sample embedding for class prediction. For
class embeddings, we convert each class to a text prompt,
e.g, “this is a [class name]”, and use the FM text
encoder output of the tokenized prompt (c.f. Fig. 1).
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• Linear Probe (Radford et al., 2021; Wortsman et al.,
2021): We train a linear classifier on top of training data
sample embeddings to predict their class labels. We then
use the linear probe to classify test sample embeddings.

• Adapter (Gao et al., 2021; Rebuffi et al., 2017): We train
a single 2-layer bottleneck multilayer perception (MLP)
to output transformed sample embeddings most similar to
their ground-truth class embeddings (c.f. Fig. 1). Specifi-
cally, with adapter fθ, sample embedding u, ground-truth
class embedding v, temperature τ , and l2-norm operator
·̂, we update adapter weights θ with a cross-entropy loss:

ℓ(fθ(u), y) = − log
exp(f̂θ(u)

⊤v̂/τ)∑C
c=1 exp(f̂θ(u)

⊤v̂c/τ)
(3)

At test time, we compute a sample embedding for each
test sample, and use these “adapted” embeddings instead
of the FM embeddings in the zero-shot procedure above.

For class embeddings, we tried several templates, choosing
by val. set worst-group acc. App C.6 lists the templates.

Zero-shot classification results. Fig. 2 charts the average
and worst-group accuracies achieved via zero-shot classifi-
cation with a CLIP ResNet-50 (RN-50) FM (Radford et al.,
2021) on the 7 image benchmarks. We find evidence of poor
group robustness (with accuracy gaps up to 80.7 pp). The
larger gaps suggest that while FMs may learn correlations
that apply to many unseen samples on average (e.g, classify-
ing 80+% of samples correctly on Waterbirds and BREEDS
datasets (Santurkar et al., 2020)), such correlations may not
hold for all groups, leading to poor worst-group accuracy
(only 49.8% and 6% for Waterbirds and BREEDS datasets).

Efficient baseline results. In Table 1, we report worst-
group and average accuracy with all baseline methods on the
popular Waterbirds and CelebA benchmarks. This presents
two different outcomes. Perhaps surprisingly, ERM-trained
adapters are sufficient to improve robustness significantly
on Waterbirds (+24.4 pp worst-group accuracy, -20.4 pp
accuracy gap). However, on CelebA, both baseline methods
result in poorer group robustness than zero-shot.

2.3. Motivation for improving robustness over baselines
Towards improving robustness consistently, we expand on
the FM group robustness problem with possible limitations
of ERM adapter training. Note that if zero-shot classification
for a class is accurate on average but not group robust, then
in the FM embedding space there exist groups embedded
“far apart” despite being in the same class. One view of
ERM adapter training is that it trains adapters to learn an
embedding space that brings these groups together. We
can interpret Eq. 3 as a contrastive loss (Oord et al., 2018;
Chen et al., 2020) where u is an anchor, v is a positive,
and the other C − 1 class embeddings are negatives. While
this works for Waterbirds, only using class embeddings as

Figure 2. Zero-shot classification accuracies with CLIP ResNet-50
(RN-50). We consistently find large worst-group versus average
accuracy gaps across many group robustness benchmarks.

Table 1. Worst-group (WG) and average (Avg) accuracies (in %)
of linear probes and adapters compared to zero-shot. Best metrics
in bold. Baselines can hurt robustness vs. zero-shot (in red).

Waterbirds CelebA

Method WG Avg Gap WG Avg Gap

Zero shot 36.6 92.2 55.6 74.0 81.9 7.9
Linear Probe 7.9 93.5 85.6 11.9 94.7 82.8
Adapter 60.8 96.0 35.2 36.1 94.2 58.1

Figure 3. Despite task-specific training, adapter embeddings may
not carry greater intra-class cosine similarity than initial FM em-
beddings and result in poorer worst-group accuracy (c.f. CelebA).

positives and negatives may not always bring desired points
together. We verify this in Fig. 3 by computing the mean
pairwise cosine similarity of intra-class sample embeddings
in the same class but different groups. On adapter-trained
and pretrained embeddings from multiple CLIP models,
poorer robustness tracks lower intra-class cosine similarity.

3. Method: Contrastive Adapting
To improve robustness, we thus aim to more explicitly bring
far away samples together. For an anchor sample, instead of
using only 1 class embedding positive and C − 1 negatives,
we add positives with sample embeddings in the same class
but far away from the anchor (e.g, likely in different groups).
We add negatives with sample embeddings nearest to the
anchor but in different classes (as Ge et al. (2021); Zhang
et al. (2022) show hard negatives benefit contrastive learning
for robustness). As dataset size is often much larger than
number of classes, contrastive adapting is also supported
by Khosla et al. (2020); Robinson et al. (2021) that show
more positives and negatives benefit contrastive learning.
Our method is simple to implement with three components:
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Table 2. On Waterbirds and CelebA, contrastive adapters achieve comparable to state-of-the-art worst-group acc. with 1% of the trainable
parameters. ∆Acc. is pp gap with prior SoTA. 1st / 2nd best metrics bolded / underlined. We report numbers from original works.

Waterbirds CelebA

Model # Trained Params % Params Method WG Acc. (%) ∆Acc. WG Acc. (%) ∆Acc.

ResNet-50 25557032 100

EIIL (Creager et al., 2021) 78.7 -10.3 83.3 -6.5
CIM (Taghanaki et al., 2021) 83.6 -5.4 83.6 -6.2

JTT (Liu et al., 2021) 86.7 -2.3 81.1 -8.7
RWY (Idrissi et al., 2021) 86.1 -2.9 82.9 -6.9
CNC (Zhang et al., 2022) 88.5 -0.5 88.8 -1.0
SSA (Nam et al., 2022) 89.0 0.0 89.8 0.0

Adapter + CLIP RN-50 263424 1.03 Contrastive Adapting 83.7 -5.3 90.0 0.2

Figure 4. On group robustness datasets, contrastive adapting con-
sistently improves worst-group acc. over zero-shot CLIP-RN50.

(1) Foundation model embedding and prediction: We
compute FM embeddings over labeled training data. For (2),
we also compute zero-shot predictions on this data.
(2) Contrastive sampling: For each class, we identify “an-
chor” sample embeddings that zero-shot predicts incorrectly.
For each anchor, we sample P “positive” sample embed-
dings that zero-shot classifies correctly (as a heuristic for
finding “far apart” samples), and M hard “negative” sample
embeddings by computing the nearest neighbors to the an-
chors in different classes by cosine similarity.
(3) Training objective: We update adapters with a con-
trastive sample loss (Khosla et al., 2020) on the 1 + P +M
sample embeddings. To ensure that the adapter learns to
keep sample embeddings close to their ground-truth class
embeddings, we also use a cross-entropy loss over random
minibatches of sample embeddings (c.f. Eq. 3).

4. Experiments
We aim to validate that contrastive adapting improves and
enables efficient and effective group robustness with FM
embeddings. First, across image benchmarks, contrastive
adapting consistently improves group robustness over zero-
shot. Next, on Waterbirds and CelebA, contrastive adapting
is more effective than other strategies to improve inference
with only FM embeddings. Finally, on these datasets, con-
trastive adapting enables state-of-the-art robustness with
greater parameter efficiency. We select models based on val.
set worst-group accuracy as in prior work (Koh et al., 2021).
App C.2 contains method details and hyperparameters.

Table 3. Evaluation of efficient methods for improving group ro-
bustness on CLIP RN-50. Contrastive adapters best improve group
robustness. 1st / 2nd best metrics bolded / underlined.

Waterbirds CelebA

Method / Acc. (%) WG Avg Gap WG Avg Gap

Best Baseline (c.f. Table 1) 60.8 96.0 35.2 74.0 81.9 7.9

WiSE-FT 49.8 91.0 41.2 85.6 88.6 3.0
DFR (Subsample) 63.9 91.8 27.9 76.9 92.5 15.6
DFR (Upsample) 51.3 92.4 41.1 89.6 91.8 2.2
Group Prompt ZS 55.9 87.8 31.9 70.8 82.6 11.8

Contrastive Adapter 83.7 89.4 5.7 90.0 90.7 0.7

Consistent robustness improvements over zero-shot. In
Fig 4, we find that unlike ERM adapters, contrastive adapt-
ing consistently improves group robustness on the 7 image
robustness benchmarks and CLIP RN-50 over zero-shot,
achieving 16.0 to 56.0 pp higher worst-group accuracy.

Robustness improvements over efficient FM methods. In
Table 3, we find contrastive adapting improves group ro-
bustness over prior baselines and other strategies to improve
FM inference with training sample FM embeddings: WiSE-
FT (Wortsman et al., 2021), which ensembles linear probe
and zero-shot weights; DFR (Kirichenko et al., 2022) which
trains linear probes on resampled data; and group prompt
zero-shot, where we use group-informed prompts for class
embeddings. On average, contrastive adapting improves
worst-group accuracy over the next best method by 16.4 pp.

Efficiency improvements over recent robust methods. In
Table 2, we find that contrastive adapting with CLIP RN-50
embeddings achieves comparable worst-group accuracy to
recent state-of-the-art robustness methods on Waterbirds
and CelebA, despite only training 1% of their parameters.
Notably, compared to the state-of-the-art Spread Spurious
Attribute (SSA) (Nam et al., 2022), contrastive adapting
achieves +0.2 pp worst-group accuracy on CelebA.

5. Conclusion
We find that FM zero-shot classification may not be group-
robust, and present a simple first-step approach to signifi-
cantly improve robustness without any finetuning.
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A. Expanded zero-shot evaluation for group robustness
In this section, we expand on the zero-shot evaluation of various foundation models on group robustness benchmarks
discussed in Section 2. We first describe the datasets and models used in Appendix A.1. We then include results in
Appendix A.2. We also describe and evaluate on two additional text group robustness datasets with two natural language
foundation models. We find consistent trends of poor group robustness with zero-shot classification, marked by poor
worst-group accuracy and large gaps between average and worst-group accuracy.

A.1. Additional details on robustness datasets and foundation models

Datasets. To benchmark zero-shot group robustness, we use a diverse set of datasets with group shifts from prior robustness
literature. We describe them below and include details on size of groups and type of group shift in Table 4:

• Waterbirds (Welinder et al., 2010; Sagawa et al., 2019). We classify images by bird type. Each class ∈
{waterbird,landbird} carries two groups: birds on water backgrounds, and birds on land backgrounds.

• CelebA (Liu et al., 2015; Sagawa et al., 2019). We classify images by celebrity hair color. Each class ∈
{not blond,blond} carries two groups: celebrities labeled as male, and celebrities labeled as female.

• BREEDS (Living-17, Nonliving-26) (Santurkar et al., 2020). For the Living-17 and Nonliving-26
datasets in the BREEDS benchmark sourced from ImageNet (Santurkar et al., 2020), we classify images by one of several
categories. Each class is a coarse category consisting of multiple fine-grained groups. Groups in the same class may be
visually distinct (e.g, the ape class includes images of gibbons and gorillas). While the original benchmark evaluates how
classifiers trained on seen source groups generalize to unseen target groups, we adapt the datasets for our group
robustness setting by adding 5% of the images in each target group to the source groups, and evaluating worst-group
accuracy over all source and target groups.

• CIFAR-10.001, CIFAR-10.02 (Krizhevsky, 2009; Recht et al., 2018; Lu et al., 2020). We classify images by one of 10
categories. We combine CIFAR-10 (Krizhevsky, 2009) and either CIFAR-10.1 (Recht et al., 2018) or CIFAR-10.2 (Lu
et al., 2020), which are collected from different sources. The new datasets’ classes carry two groups determined by the
source dataset.

• FMoW-WILDS (Christie et al., 2018; Koh et al., 2021). We classify satellite images into one of 62 building or land-use
categories (e.g, airport, zoo). Each images belongs to one of five groups based on continental region. To test group
robustness, we compare the accuracies over all samples in each group as in the WILDS benchmark (Koh et al., 2021). We
also evaluate only over test images from the same time period as training images (the “IID” split in the original WILDS
benchmark (Koh et al., 2021)).

• CivilComments-WILDS (Borkan et al., 2019; Koh et al., 2021). We classify if a text comment is toxic or not. Samples
are organized into 8 groups based on mention of a demographic identity (e.g, “female”, “LGBTQ”).

• Amazon-WILDS (Ni et al., 2019; Koh et al., 2021). We classify if an online text review is positive or negative. Reviews
are organized into different groups based on the product category (e.g, books, electronics). We adapt this dataset
from the official Amazon-WILDS split by using the category subpopulation split. We also map the original class
labels, which are star-ratings from 1 to 5, to positive or negative reviews by discarding samples with a 3-star rating, and
re-labeling 1- and 2-star ratings as negative and 4- and 5-start ratings as positive.

Foundation models. For image datasets, we evaluate pretrained CLIP (Radford et al., 2021) and CLOOB (Fürst et al.,
2021) vision-language models using publicly available weights23. We evaluate 7 available CLIP models: 3 ResNet image
encoder backbones (RN-50, RN-101, RN-50x4), and 5 Vision Transformer image encoder backbones: (ViT-B/32,
ViT-B/16, ViT-L/14, ViT-L/14@336px) and 2 CLOOB models (all available: RN-50, RN-50x4). For text datasets,
we evaluate 2 pretrained GPT-Neo (Black et al., 2021) text models trained on the Pile (Gao et al., 2020) (GPT-Neo-125M,
GPT-Neo-1.3B) available on HuggingFace45.

2CLIP: https://github.com/openai/CLIP/blob/main/clip/clip.py
3CLOOB: https://ml.jku.at/research/CLOOB/downloads/checkpoints/
4GPT-Neo 125M: https://huggingface.co/EleutherAI/gpt-neo-125M
5GPT-Neo 1.3B: https://huggingface.co/EleutherAI/gpt-neo-1.3B

https://github.com/openai/CLIP/blob/main/clip/clip.py
https://ml.jku.at/research/CLOOB/downloads/checkpoints/
https://huggingface.co/EleutherAI/gpt-neo-125M
https://huggingface.co/EleutherAI/gpt-neo-1.3B
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Table 4. Group robustness datasets, source of group shift, and group sizes.

(Class-wise) Group Size

Dataset Group Shift Largest Smallest Class-Wise?

Waterbirds Confounder 1057 56 Yes
CelebA Confounder 22880 1387 Yes
BREEDS Living-17 Subclass 1076 1009 Yes
BREEDS Nonliving-26 Subclass 1043 712 Yes
CIFAR-10.001 Data source 1000 114 Yes
CIFAR-10.02 Data source 4039 431 Yes
FMoW-WILDS Subclass 34816 1582 No
Amazon-WILDS Subclass 496127 110 No
CivilComments-WILDS Confounder 4962 1003 Yes

A.2. Group robustness results

In Figure 5, we chart worst-group and average accuracies achieved by various zero-shot foundation models across the group
robustness datasets. Larger gaps between accuracies, i.e high average accuracy yet low worst-group accuracy, indicate poor
group robustness. In aggregate, on all datasets except FMoW-WILDS and Amazon-WILDS, we observe a shared pattern of
noticeable gaps between average and worst-group accuracy, suggesting that zero-shot classification with popular foundation
models may not be group robust. We perform zero-shot classification as described in Section 2. As recommended by
Radford et al. (2021), for each dataset we consider several prompt templates. We engineer prompts by using the single best
template based on validation worst-group accuracy. In Appendix C.6 we include a full list of prompts used.

B. Contrastive adapter implementation details
We provide further details on the adapter architecture and training sampling.

B.1. Adapter architecture

Linear down-projection

ReLU 

Batch Norm

Linear up-projection

Figure 6. Adapter architecture

Similar to prior works (Houlsby et al., 2019; Gao et al., 2021), the adapters we use
are bottleneck 2-layer multilayer perceptrons (MLPs). We set the input dimension
and output dimensions as the same as the pretrained foundation model embedding
dimension, and pick a smaller dimension for the hidden layer (frequently 128,
although this was chosen as a heuristic and not tuned). We also experimented
with using a single residual connection (He et al., 2016) and batch normalization
layer (Ioffe & Szegedy, 2015) between the input and output layers, but only found
the latter to be helpful. Pytorch-like pseudocode is given below. The adapter is
visualized in Figure 6.

1 import torch.nn as nn
2

3 class Adapter(nn.Module):
4 def __init__(self, input_dim, hidden_dim):
5 super().__init__()
6 self.arch = nn.Sequential(
7 nn.Linear(input_dim, hidden_dim),
8 nn.BatchNorm1d(hidden_dim),
9 nn.ReLU(),

10 nn.Linear(hidden_dim, input_dim)
11 )
12 def __forward__(self, x):
13 return self.arch(x)
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Figure 5. Foundation model zero-shot classification accuracies. We find poor zero-shot group robustness across datasets and models via
large gaps between average and worst-group accuracies.

B.2. Adapter training sampling

Recall that we train the adapter with both a supervised contrastive loss over specifically sampled “contrastive batches”,
and a cross-entropy loss over resampled batches, both over the fixed pretrained foundation model embeddings. We use the
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foundation model’s zero-shot classification predictions to guide sampling for both.

We outline the algorithms for sampling training batches in Algorithm 1 and Algorithm 2. We then train an adapter by
applying the sample-wise supervised contrastive loss (sample-wise SupCon) (Khosla et al., 2020) and the cross-entropy loss
(Eq. 3) over these batches in Algorithm 3.

Algorithm 1 Contrastive batch sampling
input Training dataset sample embeddings U = {un}Nn=1. Ground-truth class labels Y = {yn}Nn=1. Foundation model

zero-shot predictions Ŷ = {ŷn}Nn=1.
Require: Number of positives P per anchor. Number of negatives M per anchor. Number of nearest neighbors M∗ per

anchor to sample negatives from.
0: Initialize set of contrastive batches B = {}
0: for anchor ua ∈ {ui ∈ U : ŷi ̸= yi} do

(Positive sampling)
0: Sample P positives {up}Pp=1 uniform-randomly from U where ŷp = yp (and ŷp ̸= ŷa)

(Negative sampling)
0: Sample M negatives {um}Mm=1 by computing the M∗ sample embeddings with the highest

cosine similarity to ua where ym ̸= ya, then randomly sampling M of these embeddings
0: Update contrastive batch sets B ← B ∪

(
ua, {up}Pp=1, {um}Mm=1

)
0: end for=0

Algorithm 2 Resampled training set sampling
input Training dataset sample embeddings U = {un}Nn=1. Ground-truth class labels Y = {yn}Nn=1. Foundation model

zero-shot predictions Ŷ = {ŷn}Nn=1. All unique classes C.
0: Initialize resampled training samples U∗ = {}
0: for class c ∈ C do
0: Identify incorrect samples U− = {ui} where ŷi ̸= c
0: Identify correct samples U+ = {ui} where ŷi = c
0: Obtain upsampled samples Ũ− by uniform-randomly sampling from U− s.t. |Ũ−| = |U+|
0: Update resampled samples U∗ ← U∗ ∪

(
Ũ− ∪ U+

)
0: end for=0

Algorithm 3 Contrastive adapting
input Set of contrastive batches B, resampled training samples U∗, number of epochs K.

0: Randomly initialize adapter fθ
0: for epoch 1, . . . ,K do
0: Sample contrastive batch {b} from B
0: Sample randomly-shuffled minibatch of samples {u} from U∗

0: Update fθ with sample-wise SupCon loss over {b}
0: Update fθ with Equation 3 over {u}
0: end for=0

C. Additional experimental details
C.1. Main results comparison methods

In Table 3, we compared contrastive adapting with several other approaches designed to improve downstream transfer in
related settings, while similarly only requiring pretrained model embeddings. We describe them in more detail below:

• Weight space ensembling (WiSE-FT) (Wortsman et al., 2021), which first trains a linear classifier with standard ERM,
and then ensembles the classifier outputs with the initial zero-shot predictions. While proposed for both training linear
classifiers and finetuning the original weights of a foundation model, we focus on the linear classifier version for fair
comparison in our setting.
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• Deep feature reweighting (DFR) (Kirichenko et al., 2022), which first trains a linear probe on embeddings computed
from a pretrained model over group-balanced data. As we do not assume training group labels, we first infer groups using
zero-shot classification with foundation model embeddings. As in prior work (Liu et al., 2021; Zhang et al., 2022), we
treat the incorrect and correctly classified samples as proxies for different groups.

Finally, assuming we have validation group labels, we know what groups could plausibly be in our test data. We thus
also compare against group-informed prompting, which performs zero-shot classification using prompts with group
information (e.g, “a waterbird on a land background”).

C.2. Model selection and hyperparameters

For each dataset and method, we use the following hyperparameters. As in prior group robustness work (Koh et al., 2021),
we select the best model and hyperparameters based on early stopping that achieves highest worst-group validation accuracy.
For all methods and datasets, we train both linear probes and adapters with SGD, and sweep over learning rate ∈ {1e-3, 1e-4,
1e-5} and weight decay ∈ {5e-5, 1e-5, 5e-4}. For adapter classification, we used the default temperature used for zero-shot
classification in CLIP (Radford et al., 2021). We did not tune the contrastive temperature. Unless noted, we ran all numbers.

We list hyperparameters for linear probes (Table 5), adapters (Table 6, both ERM and contrastive), and contrastive-specific
hyperparameters (Table 7). We discuss method-specific hyperparameters:

• Contrastive adapting requires selecting three additional hyperparameters: the number of positives and negatives, and the
number of nearest neighbors to sample negatives from. For these we swept over the following combinations of (number
positives, number negatives, number neighbors): (2048, 2048, 2146), (2048, 2048, 4096), (512, 512, 1024).

• Weight-space ensembling (WiSE-FT): WiSE-FT requires picking a value α ∈ [0, 1] to compute a weighted combination
of the zero-shot classifier parameters and the trained linear probe parameters. We sweep over intervals of size 0.1, i.e
α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

Table 5. Linear probe hyperparameters

Dataset Max Epochs Learning Rate Weight Decay Momentum Batch Size

Waterbirds 100 1e-3 5e-5 0.9 128
CelebA 50 1e-3 5e-5 0.9 128
BREEDS Living-17 100 1e-3 5e-5 0.9 128
BREEDS Nonliving-26 100 1e-3 5e-5 0.9 128
CIFAR-10.001 100 1e-3 5e-5 0.9 128
CIFAR-10.02 100 1e-3 5e-5 0.9 128
FMoW-WILDS 100 1e-3 5e-5 0.9 128
Amazon-WILDS 100 1e-3 5e-5 0.9 16
CivilComments-WILDS 100 1e-3 5e-5 0.9 16

C.3. Data splits

We use the same train, validation, and test splits for Waterbirds, CelebA, FMoW-WILDS, Amazon-WILDS, and
CivilComments-WILDS as in prior work. For BREEDS and CIFAR datasets that we adapt for our problem setting,
we construct test splits by combining official test splits from the original benchmarks. We then create training and validation
splits by combining the rest of the data from these benchmarks, and randomly splitting this into 80% training data and 20%
validation data. No original test data is seen during training on our splits.
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Table 6. Adapter hyperparameters. For contrastive adapters, batch size refers to the size of each minibatch sampled for updating with
cross-entropy loss.
Dataset Max Epochs Learning Rate Weight Decay Momentum Batch Size Hidden Dimension Temperature

Waterbirds 100 1e-3 5e-5 0.9 128 128 0.01
CelebA 50 1e-3 5e-5 0.9 128 128 0.01
BREEDS Living-17 100 1e-3 5e-5 0.9 128 128 0.01
BREEDS Nonliving-26 100 1e-3 5e-5 0.9 128 128 0.01
CIFAR-10.001 100 1e-3 5e-5 0.9 128 128 0.01
CIFAR-10.02 100 1e-3 5e-5 0.9 128 128 0.01
FMoW-WILDS 100 1e-3 5e-5 0.9 128 512 0.01
Amazon-WILDS 100 1e-3 5e-5 0.9 16 512 0.01
CivilComments-WILDS 100 1e-3 5e-5 0.9 16 512 0.01

Table 7. Specific contrastive adapter hyperparameters.

Dataset Number Positives Number Negatives Number Nearest Neighbors Contrastive Temperature

Waterbirds 2048 2048 4096 0.1
CelebA 2048 2048 4096 0.1
BREEDS Living-17 2048 2048 4096 0.1
BREEDS Nonliving-26 512 512 1024 0.1
CIFAR-10.001 512 512 1024 0.1
CIFAR-10.02 512 512 1024 0.1
FMoW-WILDS 2048 2048 2146 0.1
Amazon-WILDS 2048 2048 2146 0.1
CivilComments-WILDS 2048 2048 2146 0.1

C.4. Additional dataset assets details and discussion

Dataset licenses. To curate CIFAR-10.0001 we use the CIFAR-10.1 dataset, which is distributed under the MIT License.
The FMoW-WILDS dataset is distributed under the FMoW Challenge Public License6. The CivilComments-WILDS dataset
is distributed under CC0 1.0. The Amazon-WILDS dataset does not have a license, but is requested to be used for research
purposes only (Koh et al., 2021). We were not able to find explicit license information for CIFAR-10.2, Waterbirds, CelebA,
or the BREEDS datasets. We note that the BREEDS datasets are sourced from ImageNet, which is distributed under the
BSD 3-Clause License, and set up with code from the MadryLab robustness GitHub repository7, which is distributed under
a MIT license. The authors of the CelebA dataset provide a list of agreements8, including that the dataset is used only for
non-commercial research purposes.

Existing assets personally identifiable information and offensive content. The CelebA dataset consists of images of
celebrity faces, which are personally identifiable. The dataset is also categorized by male and female identification at the
time of curation, which may be outdated. The CivilComments-WILDS contains text samples flagged as toxic by toxicity
classifiers (Koh et al., 2021), which contain potentially offensive content. Both datasets are existing assets, and both personal
identifiability for CelebA and offensive content for CivilComments-WILDS can be checked by inspecting the original data
inputs (images and text comments).

C.5. Compute and resources

All experiments were run on a machine with 14 CPU cores and a single NVIDIA Tesla P100 GPU. For training a contrastive
adapter on top of CLIP ResNet-50 Waterbirds embeddings, this took approximately 30 minutes to run 100 epochs. Other
than the numbers reported from their original publications in Table 2, we report all numbers from running experiments on
the same machine.

6https://github.com/fMoW/dataset/blob/master/LICENSE
7https://github.com/MadryLab/robustness
8http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

https://github.com/fMoW/dataset/blob/master/LICENSE
https://github.com/MadryLab/robustness
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html


Contrastive Adapters for Foundation Model Group Robustness

Table 8. Class prompt templates or example prompts

Dataset Foundation Model Prompt template / example of prompt

Waterbirds CLIP “This is a picture of a [class name].”
CLOOB “a [class name]”

CelebA CLIP “A photo of a celebrity with blond hair.”
CLOOB “A photo of a celebrity with blond hair.”

BREEDS Living-17 CLIP “This is a picture of a [class name].”
CLOOB “This is a picture of a [class name].”

BREEDS Nonliving-26 CLIP “A photo of a [class name].”
CLOOB “a [class name]”

CIFAR-10.001 CLIP “a [class name]”
CLOOB “a [class name]”

CIFAR-10.02 CLIP “a [class name]”
CLOOB “a [class name]”

FMoW-WILDS CLIP “satellite view of the [class name]”
CLOOB “aerial view of an [class name]”

Amazon-WILDS GPT-Neo “Negative”

CivilComments-WILDS GPT-Neo “Not toxic”

C.6. Class prompt templates

In Table 8, we list the templates used to generate class prompts for each dataset. As a reminder, for each provided class
name in a dataset, we create a prompt by inserting the class name into the prompt template. We then encode this prompt
with a foundation model text encoder to get class embeddings.

D. Additional related work discussion
We provide additional discussion of related work and connections to our work below.

Zero-shot classification with foundation models. Our work builds on a growing literature on applying foundation models,
large pretrained models that can be applied to various downstream tasks. These models demonstrate exciting promise in
their ability to achieve accurate downstream transfer without any additional finetuning (Brown et al., 2020; Radford et al.,
2021; Bommasani et al., 2021). In particular we consider the zero-shot capabilities of pretrained vision-language foundation
models. These models, such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and CLOOB (Fürst et al., 2021)
are trained on massive amounts of naturally paired image-text data, e.g, Internet images and their corresponding captions.
Consisting of an image encoder (usually a ResNet or Vision Transformer) and a text encoder (usually a Transformer), such
foundation models are commonly trained to learn a shared image-text embedding space where embeddings of images are
most similar to embeddings of their corresponding caption text. While these objectives have been shown to lead to powerful
representations (Zhang et al., 2020; Desai & Johnson, 2021), a crucial element for successful zero-shot classification
is training data scale (Radford et al., 2021). However, added scale can also be a double-edged sword; when zero-shot
classification still makes undesirable mistakes, standard ways to correct for these mistakes via retraining can become
prohibitively expensive. We study one such motivating instance via group robustness, and provide a first-step solution
towards improving group robustness efficiently.

Improving foundation model inference efficiently. Prior works aim to improve foundation model downstream performance,
without having to finetune or update original model weights. Prompt tuning optimizes the inputs of a FM while keeping
the original model weights frozen. Optimizing either text (Li & Liang, 2021; Zhou et al., 2021; 2022; Levine et al.,
2022) or image (Bahng et al., 2022; Yao et al., 2021) inputs can improve a frozen foundation model’s downstream task
accuracy. However, doing so can require multiple passes through the foundation model, which may become expensive in
certain situations (e.g, interacting with a foundation model via a commercial API). Another paradigm adds small trainable
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parameters to the original model, either within its layers or on top of its embeddings. These include linear probes (linear
classifiers) (Radford et al., 2021) and adapters (small bottleneck MLPs) (Houlsby et al., 2019; Rebuffi et al., 2017; Pfeiffer
et al., 2021; 2020). Recently, Kumar et al. (2022); Wortsman et al. (2021) propose methods that use linear probes to
improve robustness to dataset-level out-of-distribution shifts. Gao et al. (2021) propose to train single adapters on top of FM
embeddings to improve average downstream task accuracy. We focus on group shifts that occur within a dataset. We also
show that the latter can hurt group robustness, and propose alternatives to consistently improve group robustness.

Robustness of foundation models. Prior works have studied the robustness of foundation model inference to natural
distribution shifts. Radford et al. (2021) show that zero-shot CLIP models can be more robust to out-of-distribution (OOD)
shifts than prior ImageNet-trained models, measured via better generalization to various dataset-level distribution shifts on
ImageNet classes. However, they also show that finetuning, or updating the original weights, of CLIP models on ImageNet
can reduce this OOD robustness. Kumar et al. (2022); Wortsman et al. (2021) thus propose finetuning methods that improve
downstream in-distribution accuracy while maintaining out-of-distribution robustness. Kumar et al. (2022) specifically study
the trade-off between linear probing and finetuning, finding that finetuning on downstream data can improve generalization
on in-distribution data over linear probing but more substantially hurt performance OOD data than linear probing. They show
theoretically and empirically that a two-step strategy of first linear probing then full fine-tuning can combine the performance
boosts of both. Wortsman et al. (2021) focus on the OOD trade-off presented by Radford et al. (2021) between a finetuned
foundation model and its pretrained zero-shot weights. They propose weight-space ensembling (WiSE-FT), which computes
a weighted average of the finetuned and pretraiend foundation model parameters, and show that the resulting averaged
parameters can in some instances achieve higher performance on both data distributions that the model was finetuned on
and unseen OOD data than the initial finetuned and zero-shot or pretrained models. They show this effect with both full
finetuning and training a linear probe. Unlike these works, we focus on foundation model robustness to group shifts that
occur within a dataset. We also compare against the linear probe version of WiSE-FT, and find that training adapters can be
advantageous for achieving higher group robustness on various datasets.

Recently, other works also study foundation model learned spurious correlations and biases. Singla et al. (2022) show how
various models (including CLIP models) may rely on spurious artifacts to classify ImageNet images. Berg et al. (2022) aim
to debias CLIP image embeddings of human faces using extra metadata (textual concepts or attributes) that the embeddings
should ignore. Our evaluation is complementary, noting poor group robustness across multiple types of data sources (objects,
animals, human faces, text). We also provide a method that works without additional training metadata.

Improving group robustness of deep learning models. Improving the group robustness of deep learning models is a
common deep learning challenge, where models may learn biases during training that lead to poor performance on certain
groups. This is a widespread issue presented in contexts ranging from algorithmic fairness to healthcare diagnosis (Blodgett
et al., 2016; Hashimoto et al., 2018; Buolamwini & Gebru, 2018). Several methods exist to improve group robustness. We
compare against several recent approaches in Section 4. While one effective strategy to improve group robustness is to
upweight the error of worst-performing group during training (Sagawa et al., 2019; 2020), training group labels may be
impractical to obtain in practice (Sohoni et al., 2020; Oakden-Rayner et al., 2020). We thus consider robustness approaches
which aim to work without training group labels. Several approaches involve training two models; one model is first trained
with standard ERM to help infer groups, and another trained with a robust objective using these inferred groups. Just
Train Twice (JTT) (Liu et al., 2021) treats samples that the first model misclassifies as inferred minority group samples
to upweight. JTT then upweights these samples by a hyperparameter factor, and trains a second model with ERM on this
upsampled data. Environment Inference for Invariant Learning (EIIL) (Creager et al., 2021) infers groups by assigning
samples to group under which the ERM model maximally violates an Invariant Risk Minimization (Arjovsky et al., 2019)
principle. It then trains a robust model with Group DRO (Sagawa et al., 2019) using the inferred groups, which dynamically
upweights the worst-performing groups during training. Correct-N-Contrast (CNC) (Zhang et al., 2022) instead identifies
samples with the same class labels but different ERM model predictions, and trains a robust model by using a contrastive
loss to learn similar representations between these samples. Spread Spurious Attribute (SSA) (Nam et al., 2022) specifically
trains the first model to predict groups using a small set of group labels, before using Group DRO to train a robust model.
Contrastive Input Morphing (CIM) (Taghanaki et al., 2021) trains a network to transform the input features of an image to
better present class-specific information shared across groups. Idrissi et al. (2021) suggest that simply changing the training
data by subsampling large classes (SUBY) or balancing the class sampling probabilities (RWY), then training a model with
ERM, can also improve group robustness.
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E. Additional experimental results
E.1. Extended main results

In Table 11 and Table 12 we report group robustness results evaluating all methods discussed in Section 4 on all group
robustness benchmarks. Table 11 contains results for image datasets, using CLIP-RN50 embeddings. Table 12 contains
results for text datasets, using GPT-Neo 1.3B embeddings. As in Table 3, we report the worst-group and average accuracies,
along with their gap. Higher worst-group accuracy and smaller accuracy gap are indicative of better group robustness. All
results are computed over three random seeds, with mean and one standard deviation included (error bars deferred to here
from the main paper). Compared to alternative methods, contrastive adapting consistently improves group robustness over
zero-shot classification, and obtains highest worst-group accuracy and smallest accuracy gap on datasets where training
adapters with ERM fails. On datasets where ERM-trained adapters achieve best group robustness, contrastive adapters are
also competitive or closest to ERM-trained adapters among other robustness methods.

E.2. Contrastive adapter ablations

In this section, we ablate different training components of contrastive adapting. We show that the presented combination
leads to best worst-group accuracy on the Waterbirds dataset. We also study how the number of positives and negatives used
in contrastive sampling affects performance, and find that models do seem to benefit from a greater number of samples.

E.2.1. TRAINING COMPONENT ABLATIONS

We study the importance of the contrastive and cross-entropy components in contrastive adapting. For evaluation, we use
the Waterbirds dataset, and run ablations comparing adapters trained on top of CLIP embeddings with (i) no contrastive
component, (ii) no cross-entropy component, or the default proposed approach. We evaluate across five different CLIP
models. All other training procedures are kept consistent.

In Table 9, we report worst-group accuracies. We find that both contrastive and cross-entropy components are necessary for
best worst-group accuracy. The contrastive objective leads to a substantial improvement over just the resampled cross-entropy
loss (+17.9 pp on average). However, we also note that without the cross-entropy objective to learn sample embeddings
close to their ground-truth class embeddings, we observe high variance in classification accuracy. We improve +26.9 pp on
average using both objectives compared to contrastive alone.

Table 9. Contrastive adapter training component ablation. For five CLIP models, we report the worst-group accuracy (%) on Waterbirds.
Both contrastive and cross-entropy components are necessary for best worst-group accuracy. Without the cross-entropy objective to learn
sample embeddings close to class embeddings (No cross-entropy), we observe high variance in classification accuracy.

Training Component Ablation RN-50 RN-101 ViT-B/32 ViT-B/16 ViT-L/14

No contrastive 56.3± 1.5 68.8± 2.2 56.7± 2.4 70.2± 1.4 75.1± 1.0
No cross-entropy 60.7± 8.3 37.8± 12.0 23.1± 10.5 77.7± 2.9 82.4± 2.0
Default 83.7± 0.7 82.0± 1.3 80.7± 1.4 83.1± 2.1 86.9± 1.6

E.2.2. EFFECT OF CONTRASTIVE BATCH SIZE

While one advantage of training adapters is that because we train on embeddings, the memory size of our data inputs during
training is much smaller than the traditional alternative (e.g, storing an tensorized image). We can thus train with larger
batch sizes. Here we study how contrastive batch size, i.e how many positives and negatives we sample per anchor, affects
worst-group accuracy. On the Waterbirds and CelebA datasets and with CLIP RN-50 embeddings, we train a contrastive
adapter with varying levels of positives and negatives. For both datasets, the default is 2048 positives and 2048 negatives per
batch. We ablate these numbers with the following (positive, negative) combinations: (1, 1), (2, 2), (256, 256), (256, 512),
(512, 256), (512, 512), (512, 1024), (1024, 512), (1024, 1024), (1024, 2048), (2048, 1024).

In Figure 7, we plot the effect of smaller batch sizes on worst-group accuracy. We find that larger batch sizes weakly
correspond to higher worst-group accuracy on both Waterbirds and CelebA. However, perhaps surprisingly, we still maintain
a substantial improvement over zero-shot classification with just a single positive and negative per anchor.
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Figure 7. Effect of contrastive batch size on worst-group accuracy. With CLIP RN-50 embeddings, training contrastive adapters with
larger batch sizes (greater number of positives and negatives) tends to help worst-group accuracy. However, even training with one positive
and negative per batch leads to substantially greater worst-group accuracy than zero-shot classification.

E.3. Comparison to TIP-adapter and training sample nearest-neighbors lookup

On representative benchmarks, we perform further comparison to the nearest-neighbor look-up approach employed by TIP
Adapter (Zhang et al., 2021). Instead of learning transformed representations of pretrained embeddings, another approach to
better classify a test sample is to use the class of its nearest training sample. Under the assumption that the training and
test data are sampled from the same broader distribution and share the same groups, then test samples in a given group
should embed closest to training samples in the same group. The training sample ground-truth class should then apply to the
test sample. TIP adapter operates accordingly, keeping a cache of training sample embeddings available at test-time. One
advantage is this allows for potentially more accurate classification without any training. To test how well this idea fares for
group robust classification, for each test sample we perform a look-up with all training samples, using cosine similarity to
identify nearest neighbors.

In Table 10, we compare TIP-adapter with zero-shot classification and contrastive adapting on the Waterbirds, CelebA,
BREEDS Living-17, and CIFAR-10.02 group robustness benchmarks. For all methods, we use CLIP RN-50 pretrained
embeddings. We find that TIP adapter improves worst-group accuracy over zero-shot classification on 3 out of 4 datasets, and
notably achieves best worst-group accuracy on BREEDS Living-17 without training any additional parameters. However,
the improvements are more marginal on Waterbirds and CIFAR-10.02. Contrastive adapting still achieves 30.4 pp higher
worst-group accuracy over TIP adapter on average. This may suggest that learning a nonlinear transformation of the
pretrained embeddings can still be helpful for better “presenting” class-specific information to classify samples by.

Table 10. Group robustness comparison to nearest training sample look-up / TIP Adapter (Zhang et al., 2021). Across representative
benchmarks, on average contrastive adapting achieves 30.4 pp higher worst-group accuracy than the nearest training sample look-up
employed by TIP-adapter. This supports learning non-linear transformations of pretrained embeddings to better classify samples.

Waterbirds CelebA BREEDS Living-17 CIFAR-10.02

Acc (%) WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

Zero-shot (ZS) 36.6 92.2 55.6 74.0 81.9 7.9 6.0 86.7 80.7 39.1 69.9 30.8
TIP Adapter 39.9 93.9 54.0 19.4 91.1 71.7 64.0 90.7 26.7 51.5 75.4 23.9
Contrastive Adapter 83.7 89.4 5.7 90.0 90.7 0.7 62.0 90.9 28.9 60.7 80.9 20.2

E.4. Evaluation with respect to weight-space ensembling trade-off

To provide additional perspective on how different embedding-only methods trade-off worst-group and average accuracy, we
compare how these methods perform with respect to the accuracy trade-off traced out by weight-space ensembles. Wortsman
et al. (2021) show an interesting phenomenon where simply taking a weighted average of a trained linear probe and the
original foundation model (either over the weights, or the outputs) can result in a “pareto frontier” of accuracy metrics. They
specifically show that a weight-space ensemble can often achieve better OOD performance without sacrificing too much IID
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Figure 8. Plotting worst-group versus average accuracy trade-off against WiSE-FT ensemble (traced out) on representative datasets
(Table 3). Contrastive adapters (dark blue stars) consistently achieve higher worst-group accuracy than weight-space ensembles.
performance. compared to a single linear probe. In this context, we see how this trade-off occurs over average accuracy and
worst-group accuracy across our representative set of group-robustness datasets. We also evaluate how other approaches
(ERM adapters, DFR (Kirichenko et al., 2022), contrastive adapters) fare along this trade-off.

In Figure 8, we plot the accuracies of these methods run on CLIP RN-50 embeddings. We note several observations. Weight-
space ensembles (WiSE-FT) achieve the desired effect on certain datasets but not others. On CelebA and CIFAR-10.02,
we find that an ensemble can obtain a better worst-group accuracy versus average accuracy trade-off than either zero-shot
classification or linear probes. However, the single linear probe does at least as well as any ensemble in BREEDS Living-17,
while the zero-shot classification does at least as well as any ensemble in Waterbirds.

We also find that among other methods, contrastive adapting is the only evaluated approach that consistently achieves higher
worst-group accuracy than any weight-space ensemble. While contrastive adapting places “above” the trade-off curve
traced out by WiSE-FT on 3 out of 4 datasets (CelebA, BREEDS Living-17, and CIFAR-10.02), it tends to degrade average
performance in favor of higher worst-group performance compared to other approaches. Further work can improve how to
raise worst-group performance without sacrificing any average performance.

F. Limitations and societal impact
Method limitations. While in this work, we demonstrated that we can substantially improve the group robustness of
foundation model classification without any finetuning of the original model, several limitations still exist. First, this does
not imply that we can get desirable performance in general without additional retraining. To obtain high worst-group
performance in general, we are upper-bounded by whether the pretrained embeddings do contain the information needed
to classify all groups. While our study suggests that in many cases they do carry this information—which can surprising
given that the zero-shot classification with the same embeddings results in poor group robustness—in other situations the
pretrained embeddings may lack this information. For example, if downstream task data is very different in distribution
from the pretraining data, then the pretrained foundation model embeddings may not be sufficient to work with. While more
efficient ways to improve robustness can democratize foundation model use, further finetuning may still be needed.

We also emphasize that our approach is a simple first-step method to improving the group robustness over existing baseline
approaches. This is motivated by our observation that foundation model zero-shot classification may not be group robust,
and that we would like to both (i) improve performance of these models when we realize they fail in certain aspects, and (ii)
do so efficiently, such that fixing their failures is not bound by who can conduct costly retraining procedures, and when they
can do so. We are excited for future work and expect further improvements as this thread of how to efficiently improve FM
performance with limited access (e.g, only pretrained embeddings) is further explored.

Societal impact and related limitations. Finally, we note that it is important to carefully study the learned biases of
foundation models, and to devise appropriate solutions evaluated outside of just computational metrics. Due to their promise
of widespread and effective downstream transfer, foundation models may have a particularly strong impact on various
parts of society. Individuals may get the sense that they can successfully apply these pretrained models to their desired
downstream tasks “out-of-the-box”. However, doing so also risks applying any learned biases of the model. Our work raises
this issue with respect to group robustness as motivation for our problem setting, and also notes that additional evaluation
beyond average accuracy can shed light on the negative qualities of existing models (where zero-shot FM classification may
perform very well on average, but very poorly on certain groups, c.f. Figure 5). However we recognize the limitations of
purely computational solutions to addressing group performance disparities in society. We also recognize the need to better
understand foundation models and their potential uses in broader socio-technical systems (Bommasani et al., 2021).
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Table 11. Worst-group (WG) and average (Avg) accuracies (in %) for zero-shot and efficient methods to improve CLIP-RN50 inference.
1st / 2nd highest WG acc. and 1st / 2nd smallest accuracy gap bolded / underlined respectively.

Waterbirds
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 49.8± 0.0 55.9± 0.0 7.9± 1.0 60.8± 0.9 49.8± 0.0 51.3± 1.4 63.9± 1.5 83.7± 0.7
Avg. 91.0± 0.0 87.8± 0.0 93.5± 0.1 96.0± 0.1 91.0± 0.0 92.4± 0.1 91.8± 3.1 89.4± 0.9
Gap 41.2 31.9 85.6 35.2 41.2 41.1 27.9 5.7

CelebA
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 74.0± 0.0 70.8 11.9± 0.3 36.1± 1.4 85.6± 0.0 76.9± 1.4 89.6± 0.3 90.0± 0.4
Avg. 81.9± 0.0 82.6 94.7± 0.0 94.2± 0.2 88.6± 0.0 92.5± 0.2 91.8± 0.1 90.7± 0.0
Gap 7.9 11.8 82.8 58.1 3.0 15.6 2.2 0.7

BREEDS Living-17
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 6.0± 0.0 30.0± 0.0 53.3± 0.9 70.7± 0.9 53.3± 0.9 46.7± 3.4 44.0± 0.0 62.0± 1.6
Avg 86.7± 0.0 90.6± 0.0 90.8± 0.0 93.9± 0.1 90.8± 0.0 89.3± 0.3 86.4± 0.0 90.9± 0.3
Gap 80.7 60.6 37.5 23.2 37.5 42.6 42.4 28.9

BREEDS Nonliving-26
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 6.0± 0.0 56.0± 0.0 32.0± 0.0 61.3± 1.9 36.7± 0.9 29.3± 1.9 30.0± 4.1 55.3± 4.2
Avg 72.3± 0.0 87.1± 0.0 82.3± 0.1 92.1± 0.2 83.6± 0.1 80.6± 0.1 83.6± 0.0 88.1± 0.6
Gap 66.3 31.1 50.3 30.8 46.9 51.3 53.6 32.8

CIFAR-10.001
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 31.4± 0.0 N/A 44.0± 1.4 68.2± 3.5 53.3± 0.0 18.1± 4.3 45.0± 1.6 59.7± 4.1
Avg 69.8± 0.0 N/A 75.2± 0.2 87.3± 0.3 81.1± 0.0 58.7± 1.7 78.3± 0.1 82.0± 0.1
Gap 38.4 N/A 31.2 19.1 27.8 40.6 33.3 22.3

CIFAR-10.02
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 39.1± 0.0 N/A 51.3± 0.2 68.8± 0.5 58.2± 0.2 45.0± 0.8 38.5± 2.1 60.7± 1.7
Avg 69.9± 0.0 N/A 77.7± 0.1 86.0± 0.5 79.1± 0.0 75.0± 0.3 77.9± 0.5 80.9± 0.2
Gap 48 N/A 26.4 17.2 20.9 30.0 39.4 20.2

FMoW-WILDS
Acc. Zero-shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 10.5± 0.0 - 21.6± 0.1 41.3± 0.5 21.6± 0.1 6.8± 0.6 27.0± 0.2 39.2± 0.7
Avg 13.2± 0.0 - 24.1± 0.1 43.6± 0.5 24.1± 0.1 10.2± 0.5 28.7± 0.2 41.9± 0.1
Gap 2.7 - 2.5 2.3 2.5 3.4 1.7 2.7

Table 12. Worst-group (WG) and average (Avg) accuracies (in %) for zero-shot and efficient methods to improve GPT-Neo 1.3B inference.
1st / 2nd highest WG acc. and 1st / 2nd smallest accuracy gap bolded / underlined respectively.

Amazon-WILDS
Acc. Zero-shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 79.4± 0.0 N/A 87.2± 0.3 87.2± 0.3 87.2± 0.3 87.2± 0.3 85.4± 0.8 87.9± 1.1
Avg 86.7± 0.0 N/A 93.3± 0.2 93.6± 0.1 93.3± 0.2 93.2± 0.3 92.7± 0.7 92.6± 0.8
Gap 7.3 N/A 6.1 6.4 6.1 6.0 7.3 4.7

CivilComments-WILDS
Acc. Zero-shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrastive Adapter

WG 16.0± 0.0 N/A 46.7± 2.0 32.1± 1.5 46.7± 2.0 47.4± 0.9 48.2± 1.3 50.1± 1.5
Avg 74.8± 0.0 N/A 51.2± 0.26 37.7± 0.7 51.2± 0.26 51.9± 0.8 52.1± 1.3 54.2± 0.5
Gap 58.8 N/A 4.5 5.6 4.5 4.5 3.9 4.1


