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Abstract

Compositionality is a common property in many modalities including text and
images, but the compositional generalization of multi-modal models is not well-
understood. In this paper, we identify two sources of visual-linguistic composition-
ality: linguistic priors and the interplay between images and texts. We show that
current attempts to improve compositional generalization rely on linguistic priors
rather than on information in the image, as the strength of the language model in
detecting sentences that are syntactically and semantically likely overwhelms the
vision part of the model. We find in particular that a benchmark for compositional-
ity mostly favors pure language models. Finally, we propose a new benchmark for
compositionality without such linguistic priors.

1 Introduction

Compositional generalization is the ability to combine known concepts in a novel way. It exists in
multiple modalities, and is believed to be a key ingredient to human intelligence. For example, after
knowing the meanings of "a person wearing a shirt" and "a cat playing with a dog", one should be
able to understand "a person playing with a cat". Similarly, after seeing a wood chair and a green
apple, one could imagine a green chair. Human are known to have good compositional generalization
ability. However, it is not clear whether neural networks have these capabilities, especially in a
multi-modal setting.

On the one hand, text-to-image generative models, including DALL-E 2 [24], Parti [31], and Imagen
[25], are good at generating novel combinations of known concepts, e.g., an avocado chair or a snake
made of corn. On the other hand, previous research have shown that many multi-modal networks
lack compositional generalization [29]. This seems contradictory.

Moreover, a multi-modal network obtains information from multiple modalities. It can utilize
information from a single modality, and it can also benefit from combining information from multiple
modalities. As for compositional generalization, it is not clear whether this ability comes from a
single modality or multiple ones. All this raises many questions. Where does the compositional
generalization of multi-modal models come from? How do we measure multi-modal compositional
generalization and resolve the contradiction mentioned above?
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To answer these questions, we analyze the multi-modal compositional generalization in a more
fine-grained way. We discovered the capability of language models on vision-language compositional
generalization benchmarks and found that language models can beat most vision-language models
without looking at the images, demonstrating a potential bias of these benchmarks.

We then decompose the source of compositional generalization into two parts: the uni-modal part and
the multi-modal part. We illustrate the contribution of these two parts for commonly-used models.
We also propose a new metric “hard test accuracy” to quantify the contribution from linguistic priors
into the overall compositional generalization ability of vision-language models.

2 Related Works

Compositional generalization is frequently studied in natural languages and is also discussed in other
domains including images [27], videos [[7], and programming languages [6]. It can be measured by
various benchmarks about different aspects: In the realm of natural languages, notable benchmarks
include SCAN [14]], COGS [13], CommonGen [17], etc. For multi-modal domains including vision-
language, it can be measured by different tasks, e.g., visual question answering [2, [3, [10], verb
understanding [8]], counting [21]], image-text retrieval [26], and word ordering [29]. People have
also proposed different metrics and fine-grained aspects [, [11} [12]] with benchmarks to measure
compositional generalization ability.

Extensive analyses have been conducted using these benchmarks to understand compositional gen-
eralization. Studies [9, [15) [19] have revealed that models like BERT are generally insensitive to
word ordering, while vision-language models [20} 132] often struggle with tasks involving word order,
relationship recognition, or counting.

Furthermore, the interaction among modalities in multi-modal models has been a subject of research.
Key findings include the language bias in solving the “FOIL it!” benchmark [18]], the phenomenon of
"unimodal collapse" [20], and the asymmetry of information flow between image and text modalities

(3.

3 Preliminaries

3.1 ARO Datasets: A benchmark for multi-modal compositional generalization

The ARO dataset [32] is designed to measure the compositional generalization of visual-language
models. This dataset consists of 4 parts: Visual Genome Attribution (VG_A), VG Relation(VG_R),
COCO Ordering(CC_0), and Flickr Ordering(FL_O). Each data point in this dataset contains an
image with multiple captions (2 captions for VG tasks and 5 for Ordering tasks). One of these
captions is the true caption corresponding to the image, and the other ones are corrupted captions that
were obtained by changing the attribution, relation, or word ordering of the true caption. Given the
image and the captions, the model is asked to pick the true caption among all candidates. Examples
of the data in the ARO dataset are shown in Table[I] and the details of this dataset can be found in
[32]].

3.2 Performance of Vision-language Models on ARO Datasets

In [32], the authors computed the prediction accuracy of some most popular vision-language models.
Given a pair of image and text, the model computes a score between 0 (or —1) and 1 reflecting
the alignment between the image and the text, i.e., the degree to which the text matches the image.
Perfectly-aligned image and text have a score of 1. Following [32], we use CLIP [22], BLIP [16]],
and FLAVA [28]] to replicate their results, as shown in the top half of Table[2] BLIP and FLAVA have
multiple heads that could be used to match images with texts, and we compute the accuracy of all
these heads.

As noted in [32], the compositional generalization performance of commonly-used vision-language
models are usually better than chance, but far from satisfying. This indicates the lack of compositional
generalization ability for these models.



Table 1: Example captions from ARO datasets. VG_A/R for VG Attribution/Relation, CC/FL_O for
COCO/Flickr Ordering

DATASET CAPTION EXAMPLES

VG_A T: THE WOOD FLOOR AND THE BLACK BAG
F: THE BLACK FLOOR AND THE WOOD BAG
VG_R T: THE PLATE IS ON THE TABLE
F: THE TABLE IS ON THE PLATE
CC_O T: A FIRE HYDRANT ON A CITY STREET
F: ON A CITY A FIRE HYDRANT STREET
FL_O T: GROUP GATHERED TO GO SNOWMOBILING
F: GROUP GO SNOWMOBILING GATHERED TO

4 Pure Language Models Perform Well on ARO Datasets

We may see from Table[I]that we can easily pick the true caption by only looking at these captions
alone because the true captions usually are more likely to happen. For instance, it is very unlikely that
a table is on a plate or a bag is made of wood. Besides, previous works showed that large language
models are very powerful in various tasks [4]. Therefore, by utilizing the knowledge only from the
text side, it is possible to perform pretty well on these datasets. To validate our hypothesis, we would
like to compute the prediction accuracy of language models on these ARO datasets.

4.1 Prediction Method

Predicting true caption with pure language modeling: Given multiple captions of the same length,
we compute their perplexity and predict the caption with the smallest perplexity as the true caption.
Concretely, given an input sentence * = (1,2, -, Z,) that contains n tokens, its perplexity
computed by a language model LM is defined as

1 n
PPL]w(I) = 7m21OgPI‘LM (11|I1$1_1) (1)
=2

Here Pryas (x;|x1 - - x;—1) is the predicted probability of the i-th token being x; given by the
language model LM conditioning on the previous sequence =y - - - T;_1.

Language Models Selection: Since the number of parameters in the text encoder of vision-language
models is usually at the scale of 100M or above, we choose the smallest version of GPT-2 [23]],
which has about 117M parameters, to do a fair comparison. To further investigate the compositional
generalization of language models, we also use larger language models with the number of parameters
ranging from 1B to 6B. These models include GPT-2-XL [23], OPT-1.3B [33l], and GPT-J-6B [30]. To
reduce the variance in the prediction, we use an unweighted average version of GPT-2-XL, OPT-1.3B,
and GPT-J-6B, i.e., for each caption, we use these three language models to compute the perplexities
and take the average, and select the caption with the lowest average perplexity. We call this predictor
“AVG_LM?”, and this predictor will be used in later sections to build our new metric.

Performance of Language Models on ARO Datasets: The prediction accuracies of the language
models are shown in the bottom half of Table[2]

From Table |2} we notice that for the Ordering tasks, GPT-2 is almost perfect in selecting the correct
caption among all 5 candidates. This is intuitive because the false captions are obtained by permuting
the words of the true caption in a fairly random way and usually destroys the sentence structure.
In VG Relation, although the accuracy of GPT-2 is not close to perfect, it still outperforms the
vision-language models. In VG Attribution, GPT-2 is slightly worse than BLIP, but are significantly
better than the other models. Therefore, with roughly the same number of parameters, GPT-2 can
achieve better or on-par performance than vision-language models. If we increase the number of
parameters of the language model, the performance can be further increased.

To summarize, in most cases, it is possible to beat the vision-language models in compositional
generalization by simply looking at the texts. Therefore, it is natural to ask: Does the compositional



Table 2: Prediction Accuracies on ARO datasets. ITC/ITM/CONTR are ITC/ITM/contrastive heads
of models. Language Model Details in Section @1}

CC_O FL_.O VG_A VG_R

CLIP 47.73  59.12  61.35 59.79
CLIP_FT 31.18 4096 62.41 60.01
BLIP ITC 13.21 17.60 80.00 41.59
BLIP ITM 20.83 25.02 88.56 53.35
FLAVA CoNTR  7.03 18.66  60.37  29.13
FLAVA ITM 4.81 13.20 68.83  23.71
GPT-2 95.28 96.26 76.57 85.07
GPT-2 XL 95.79 96.68 80.64  85.07
OPT 1.3B 98.00 98.32 81.60 84.30
GPT-J 6B 94.71 95.82 82.66 85.36
AVG_LM 97.33 97.70 84.48  85.67

generalization ability of these vision-language models mostly come from the text side? Answering
this question requires a fine-grained analysis, which we show in the next section.

S Fine-grained Analysis of Multi-modal Compositional Generalization

The compositional generalization ability of multi-modal models consists of two parts: uni-modal
compositional generalization and its multi-modal counterpart. In the case of ARO datasets, since the
image is fixed for each datum, the only two possible sources of information are the text alone and the
interplay between the image and the text. To investigate the contribution of these two sources to the
model performances, we analyze the prediction accuracy of models conditioned on the properties of
caption candidates.

Testbed Selection: In [32], the authors proposed a new method to fine-tune CLIP on COCO. For each
image in the COCO training set, they generate negative captions by randomly swapping two content
words or phrases with the same part of speech as in the true captionE] The resulting model is called
NegCLIP. They also fine-tuned CLIP on COCO normally without any additional hard negatives,
resulting in the model CLIP_FT. Table E] shows the VG Attribution accuracies of these three models,
and NegCLIP clearly outperforms CLIP_FT and CLIP. Since these models are obtained in very
similar ways, we decided to use our framework to understand where this improvement comes from.

5.1 Prediction Accuracies of CLIP variants based on language prior

Similar to Section[d} we use the perplexity computed by AVG_LM to represent the possibility of a
caption, and compute fine-grained model performance for input data that have similar perplexities for
the caption candidates. Specifically, for VG Attribution, we divide the range of true/false caption
perplexities evenly into 10 intervalﬂ and this divides the input data into 100 blocks. We only
compute the accuracy when there are at least 10 samples in a block.

Figure [I| shows the prediction accuracies of pre-trained CLIP, CLIP_FT, and NegCLIP based on
linguistic priors. The smaller the true caption perplexity is, or the larger the false caption perplexity
is, the easier it is for language models to select the true caption between the two candidates. In
other words, the top-left parts are the easiest for language models, and the bottom-right parts are the
hardest.

From Figure |1| we could notice that the prediction accuracies of both CLIP and CLIP_FT are
relatively stable for different blocks, meaning their compositional generalization performance is

’They also did hard negative mining for images, which we do not include in this paper. However, our model
trained with only hard negative text mining still matches their final performance. In this paper, NegCLIP refers
to our replicated version which doesn’t involve hard image negative mining.

3Note that the true caption has a slightly smaller average perplexity so the x-axis and y-axis are not perfectly
aligned.
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Figure 1: Prediction Accuracies of CLIP variants based on language prior. The = and y axis are the
perplexities (computed by AVG_LM) of true and false captions, separately, and the number in each
square shows the prediction accuracy (in percentile) of the vision-language model on data belonging
to that particular region.

mostly independent from the perplexities of the caption candidates. However, for NegCLIP, the
prediction accuracies for upper-left blocks are much higher than those of bottom-right ones. Therefore,
the performance of NegCLIP has a strong correlation with the linguistic prior. Furthermore, despite
the improvement in overall accuracy, the performance of NegCLIP for bottom-right blocks are similar
to CLIP and CLIP_FT. Hence we hypothesize that NegCLIP mostly learns linguistic priors during its
fine-tuning process.

5.2 Hard Test Accuracy and Linguistic Gap

To further quantify the alignment of these models with linguistic priors, we propose a new metric
“hard test accuracy” to measure the dependency of the benchmark performance of models on linguistic
priors of the captions.

To eliminate the effect of linguistic priors, we only selected the samples which are hard for the
language models to classify, and evaluate the performance of vision-language models on these hard
instances. For ARO datasets, we define “hard instances” to be the data where AVG_LM made
mistakes, i.e., where the true caption has a higher perplexity than false ones. The number of hard
instances is about 15% of the original dataset. We define “hard test accuracy” as the accuracy of
a model on these hard instances, and define “linguistic gap” as the difference between the overall
accuracy and the hard test accuracy.

The linguistic gap can reflect the dependency of the model’s performance on linguistic priors. A
model whose prediction is independent of the perplexities of the candidate captions should have
a constant accuracy over hard and easy samples, yielding zero linguistic gap. A model relying on
linguistic priors will be more accurate when the true caption has a lower perplexity than the false
captions, so it will have a positive linguistic gap. Therefore, for models with a fixed overall accuracy,
a larger linguistic gap implies a stronger dependency on linguistic priors.



Table B shows the overall and hard test accuracies of CLIP variants on VG Attribution. Similar to our
intuition from Figure|[T] the linguistic gap for CLIP and CLIP_FT is significantly smaller than that of
NegCLIP. We also notice that the hard test accuracy of NegCLIP is almost the same as CLIP_FT, so
the effect of the extra negative captions only helps the model learn linguistic priors and does not help
with the interplay between image and text.

Table 3: Accuracies and Linguistic Gap on VG Attribution

ToTAL AcC HARD AcC LING. GAP

CLIP 61.35 57.92 3.43
CLIP_FT 63.17 60.43 2.74
NEGCLIP 74.90 61.66 13.24
BLIP ITC 80.00 76.63 3.37
BLIP ITM 88.56 88.08 0.48
FLAVA CONTR 60.37 58.91 1.46
FLAVA ITM 68.83 71.10 -2.27

5.3 Hard Test Accuracy on the VG Attribution Dataset

Using this framework, we also evaluate the hard test accuracies for commonly-used vision-language
models, including different heads of BLIP and FLAVA, as shown in Table E} Although different
models and different heads vary in their overall prediction accuracies, these models do not have a
large linguistic gap, so their prediction on VG Attribution is relatively independent of the linguistic
prior. This framework can be applied on other ARO datasets as well. The conclusions are similar to
VG Attribution, and the detailed results are in Appendix [A]

6 Conclusion and Future Work

In this paper, we studied the multi-modal compositional generalization ability of vision-language
models. We showed that language models with similar sizes could achieve better performances than
vision-language models on vision-language compositional generalization benchmarks without even
taking the images as inputs, demonstrating the important role of linguistic priors in vision-language
compositional generalization. We then decomposed the model performance on these benchmarks
into a uni-modal part and a multi-modal part, and proposed a new metric to quantify these two parts.

For future directions, we would like to apply our framework to more models, benchmarks, and
modalities. It will also be interesting to explore better ways of generating hard negatives for these
models. Finally, it is more important to dig deeper into the reasons why multi-modal networks have
this compositional generalization behavior. The reasons may lie in the shared embedding space for
different modalities.
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A Hard Test Accuracy on other ARO datasets

We also apply the framework of hard test accuracy on the other ARO datasets. However, since
language models perform almost perfectly on the Ordering datasets, the number of hard instances is
very small (400+ for COCO ordering and less than 100 for Flickr Ordering). As for VG Relation,
when evaluating hard test accuracy, we only keep the relationships(“hard relationships’) that contain
at least 10 hard instances, which reduces the number of relationships by 80%. Therefore, for VG
Relation, we compute both the prediction accuracy on all data in hard relationships (hard total
accuracy) and on hard instances in hard relationships (hard test accuracy). The results are shown in
Table 4] The results for Flickr Ordering are very close to COCO Ordering and we omit them due to
space constraints. Similar to VG Attribution, both CLIP and CLIP_FT have much smaller linguistic
gaps than NegCLIP, and NegCLIP even has the worst hard test accuracy, meaning it aligns so much
with the linguistic prior that the prediction power on hard instances got reduced.

Table 4: Overall and Hard Accuracies on COCO Ordering and VG Relation, format: “overall
accuracy / hard test accuracy” for COCO Ordering, “overall accuracy / hard overall accuracy / hard
test accuracy” for VG Relation.

COCO_ORDER VG RELATION
CLIP 47.73 /1 43.56 59.79/53.52/55.90
CLIP_FT 31.18/27.10 60.01/53.11/50.48
NEGCLIP 91.74/71.56 80.50/60.94/48.62
BLIP ITC 13.21/17.51 41.59/52.02/58.31
BLIP ITM 20.83/23.95 53.35/62.26 / 64.80
FLAVA CoN 7.03/4.79 29.13/38.17/36.00
FLAVA ITM 4.81/4.79 23.71/37.20/33.91

B More Experimental Details

Image-Text Matching Score Computation: For models that output embedding vectors, we compute
the inner product of the normalized image and text embeddings and use this number as the matching
score. For models that directly compute a score for image-text matching, we use this score directly.
After getting the scores, for each datum in the ARO datasets, since the image is fixed, we predict the
text with the highest matching score as the true caption and compute the prediction accuracy.

Model Details: We obtain CLIP [22]], BLIP [16], and FLAVA [28]] models using the same way as in
[32], and download all language models from huggingface.
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