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Abstract

We present Ambient Protein Diffusion, a framework for training protein diffusion1

models that generates structures with unprecedented diversity and quality. State-of-2

the-art generative models are trained on computationally derived structures from3

AlphaFold2 (AF), as experimentally determined structures are relatively scarce.4

The resulting models are therefore limited by the quality of synthetic datasets.5

Since the accuracy of AF predictions degrades with increasing protein length and6

complexity, de novo generation of long, complex proteins remains challenging.7

Ambient Protein Diffusion overcomes this problem by treating low-confidence8

AF structures as corrupted data. Rather than simply filtering out low-quality AF9

structures, our method adjusts the diffusion objective for each structure based on10

its corruption level, allowing the model to learn from both high and low quality11

structures. Empirically, ambient protein diffusion yields major improvements: on12

proteins with 700 residues, diversity increases from 45% to 85% from the previous13

state-of-the-art, and designability improves from 70% to 88%.14

1 Introduction15

Proteins are the fundamental building block of life. They accelerate chemical reactions by many16

orders of magnitude, convert sunlight into food, and underpin the myriads of processes within cells17

and organisms with the level of accuracy and precision required to sustain life [6, 25]. Unlike18

computational protein engineering—which focuses on improving the developability or function of19

existing proteins through computationally guided mutations for practical biotechnological applica-20

tions [17, 31, 20, 32, 8, 29, 16]—de novo protein design aims to create entirely new proteins with21

specified structures and functions, ultimately seeking to discover folds and activities not found in na-22

ture [10]. Since protein function is largely determined by tertiary and quaternary structure, generative23

machine learning frameworks for protein design focus on learning the sparse, evolutionarily sampled24

landscape of protein structures, with the goal of generating novel, functional backbone scaffolds25

beyond those observed in nature [40, 26, 27, 23, 19, 42, 18, 7, 44, 37].26

Recent breakthroughs in machine learning–based structure prediction—most notably Al-27

phaFold2 [24]—have made it possible to infer accurate protein structures directly from se-28

quence [24, 9, 28]. This progress has enabled the creation of large-scale structural resources such as29

the AlphaFold Database (AFDB), which contains over 214M predicted structures from UniProtKB30

sequences [11, 36]. In parallel, high-throughput tools for sequence and structure comparison, such as31

MMSeqs2 and FoldSeek, have facilitated the curation of large, diverse training datasets from AFDB32

[5]. Among them, the 2.3M AFDB cluster dataset, has already been shown to improve the capabilities33

of generative models for protein structure design [27, 19].34
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The quality of a generative model depends on the size and fidelity of its training data. While35

AlphaFold2 (AF) has enabled large-scale protein structure prediction, its outputs often contain36

biological or computational inaccuracies [41]. To estimate the reliability of a predicted structure,37

AlphaFold provides a per-residue confidence score, the predicted Local Distance Difference Test38

(pLDDT), which is a proxy of local structural accuracy. In practice, researchers frequently filter39

predicted structures based on average pLDDT scores, training only on high-confidence subsets40

(typically using a cutoff of pLDDT > 80). Lower pLDDT scores are disproportionately associated41

with longer and more structurally complex proteins. As a result, filtering based on pLDDT introduces42

a bias toward smaller, simpler folds, reducing structural diversity in the training set and impairing the43

model’s ability to generalize to more complex regions of structure space—including longer proteins.44

Notably, many low-pLDDT structures still contain well-folded domains that are misoriented with45

respect to each other, as reflected by low predicted alignment error (pAE). These structures can still46

offer valuable domain-level and coarse-grained information about the structure distribution, which is47

discarded by overly aggressive filtering.48

To mitigate these issues, we depart from the standard paradigm of filtering low-confidence structures.49

Instead, we introduce Ambient Protein Diffusion —a framework for training diffusion models50

that incorporates proteins with noisy or incomplete structures directly into the training process.51

Ambient Protein Diffusion builds on recent advances in learning generative models from corrupted52

data [12, 14, 1, 13, 2, 33, 4, 39, 15, 30, 34], which have explored controlled corruption settings such53

as additive Gaussian noise [12, 14, 1, 15] and masking [13, 2]. Our framework generalizes these54

techniques to arbitrary, unknown corruption processes, enabling the training of generative models in55

scientific domains where the corruption mechanism is complex and non-parametric. In our setting, the56

AlphaFold prediction errors represent such a corruption: they are structured, not explicitly modeled,57

and vary across protein size and topology. Yet, our method effectively leverages these imperfect58

samples to significantly advance the capabilities of generative protein models. For example, on59

proteins with 700 residues, our 16.7M parameter model our method improves diversity from 45% to60

85% and increases designability from 70% to 88% compared to the previous state-of-the-art, Proteína,61

a 200M parameter model. Below, we summarize our key contributions:62

• We generalize recent approaches for training generative models on corrupted data to handle63

arbitrary, non-parametric, and unknown corruption processes, enabling their application to64

scientific domains.65

• We construct a new training set from the AFDB cluster dataset optimized for geometric66

diversity, rather than evolutionary similarity, yielding a broader and more representative67

sampling of structural space for generative modeling.68

• We demonstrate that Ambient Protein Diffusion effectively leverages low-pLDDT AlphaFold69

predictions, allowing the model to learn from all available samples without distorting the70

underlying structure distribution.71

• We achieve state-of-the-art results in both diversity and designability for protein generation,72

improve diversity by 45% and designability by 18% on long proteins (up to 800 residues),73

and establish the Pareto frontier between these objectives on short proteins (< 256 residues).74

2 Background and Related Work75

De novo Protein Generation. Most de novo protein generation frameworks that operate in structure76

space follow a three-step pipeline: (1) a generative model samples a three-dimensional backbone77

structure; (2) an inverse folding model (e.g., ProteinMPNN) proposes amino acid sequences likely78

to fold into the generated backbone; and (3) these sequences are evaluated by a structure prediction79

model (e.g., ESMFold) to identify the ones that best recapitulate the target fold.80

Pioneering methods such as RFDiffusion [40] and Chroma [23] have established strong baselines81

for backbone generation. More recent advances include Genie [26], which introduces a denoising82

diffusion model with an SE(3)-equivariant network that generates proteins as point clouds of reference83

frames; Genie2 [27], which scales Genie using synthetic AlphaFold structures to improve training84

data diversity; and Proteína [19], which replaces diffusion with flow matching and scales both model85

size and dataset scale by orders of magnitude to improve performance on longer and more complex86

monomeric proteins.87
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Figure 1: Overview of Ambient Protein Diffusion on alphafold structures. Rows 1-3 show the
noising process (from left to the right) of three different alphafold proteins based on their average
pLDDT (top: high, middle: medium, and bottom:low). These proteins are only used during training
at the green diffusion times. At these noise levels, any initial AlphaFold prediction errors in low-
pLDDT proteins have effectively been “erased” by the added noise, and the distributions of low- and
high-pLDDT proteins have merged.

Ambient Protein Diffusion is built using the Genie architecture and makes use of ambient protein88

diffusion to achieve state-of-the-art results with substantially shorter training times, much fewer89

parameters (16.7M vs 200M), and significantly reduced computational requirements.90

Training Datasets. Recent advances in structure prediction—most notably AlphaFold2 [24] and91

ESMFold [28]—have dramatically expanded the available structural data, enabling the prediction92

of →214M and →617M monomeric protein structures from UniProtKB (via the AlphaFold Protein93

Structure Database) [36] and metagenomic libraries (via the ESM Atlas) [28], respectively. While this94

explosion of computational structures presents unprecedented opportunities, it also poses significant95

challenges for downstream bioinformatic analysis and model training, particularly due to the scale,96

redundancy, and uneven quality of the predicted structures. To address this, prior work applied97

MMSeqs2 [22] and FoldSeek [35] to cluster the AlphaFold Database (AFDB), yielding →2.3M98

clusters designed to capture evolutionary relationships between predicted structures [5]. This AFDB99

cluster dataset has since served as the foundational dataset to train several generative protein structure100

models [19, 27].101

In this work, we revisit the FoldSeek pipeline applied AFDB with a different objective: rather than102

optimizing for evolutionary insight, we recluster the AFDB cluster dataset with hyperparameters103

tuned to maximize geometric diversity. Our goal is to construct a dataset better suited for learning104

a generative model of structural space—one that emphasizes structural rather than evolutionary105

variation. Starting from the 2.3 million AFDB clusters, we use the cluster representatives with106

average pLDDT > 70 (→1.29M structures) and apply our geometric clustering procedure. The107

resulting dataset comprises roughly →292K structurally diverse clusters.108

Diffusion Models. The goal in diffusion modeling is to sample from an unknown density p0 that109

we have sample access to. Formally, let D = {xi
0}Ni=1 a dataset of N independent samples, where110

Xi
0 → p0. The unknown distribution p0 is potentially complex, high-dimensional and multimodal. To111

make the sampling problem more tractable, in diffusion modeling we target smoothened densities pt112

defined as the convolution with a Gaussian: pt = p0 ↑N (0,ω(t)Id)1, where ω(t) is an increasing113

function of t, with ω(0) = 0. In particular, the object of interest in diffusion modeling is the score-114

function of the smoothened densities, defined as ↓xt log pt(xt). The latter is connected to the optimal115

denoiser (in the l2 sense) through Tweedie’s Formula: ↓ log pt(xt) =
E[X0|Xt=xt]→xt

ω2(t) .116

1Alternative formulations of diffusion modeling, such as the Variance Preserving case, are equivalent to this
case up to a simple reparametrization. For the ease of analysis, we focus our presentation on corruptions of the
form Xt = X0 + ωtZ, Z → N (0, Id).
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Given access to E[X0|Xt = xt] one can sample from the distribution p0 of interest by running a117

reverse diffusion process [3]. Hence, the sampling problem becomes equivalent to the problem of118

approximating the set of functions {E[X0|Xt = ·]}Tt=0. Given a sufficiently rich family of functions119

{hε : ε ↔ !}, the conditional expectation at a particular time t can be learned by minimizing the120

objective:121

J(ε) = Et↑U [0,T ]Ex0,xt|t

[
||hε(xt)↗ x0||2

]
. (1)

Protein Diffusion. In protein diffusion models that target backbone generation, X0 captures the 3-D122

co-ordinates for each one of the backbone residues of the protein. The length of a protein varies and123

the standard practice is to pad each protein to specified length (256 for Genie [26, 27]), with some124

special mask indicating the valid positions.125

Learning from noisy data. Recent work has explored the problem of learning diffusion models126

from corrupted data. Typically, the corruption process is simple, e.g. it can be additive Gaussian127

noise as in [12, 14, 1], or masking as in [1, 2]. Even in works that the corruption process is more128

general, the degradation needs to be known and multiple diffusion trainings are required until an129

Expectation-Maximization algorithm converges [33, 4]. In this work, we deviate from this setting130

as the corruption process is unknown and complex, which may include AlphaFold learning and131

hallucination errors, and noise inherent to the structural biology technique used to solve the structure,132

etc. We also target a single diffusion training instead of performing multiple EM iterations. The133

method is detailed in Section 3.134

Our work generalizes the techniques developed in [12, 14] for the additive Gaussian noise case.135

Particularly, in [14], the authors consider learning from a dataset D = {(xi
ti , ti)}

N
i=1 of samples noised136

with additive Gaussian noise of different variances {ω2(ti)}Ni=1. Formally, let Xti = X0 + ω(ti)Z,137

where X0 → p0, Z → N (0, Id). Each point Xti contributes to the learning only for t ↘ ti, using138

the objective:139

Ĵ(ε) = Et↑U [0,T ]

∑

xti↑D: ti>t

Ext|xti ,ti

[
||ϑ(t, ti)hε(xt, t) + (1↗ ϑ(t, ti))xt ↗ xti ||

2
]
, (2)

ϑ(t, ti) =
ω2(t)→ω2(ti)

ω2(t) . As the number of samples grows to infinity, Equation 2 also recovers the140

conditional expectation E[X0|Xt = xt], but it does so while being able to utilize noisy samples.141

This objective recovers the true minimizer because one can prove that the conditional expectation142

E[Xti |Xt = xt], lies in the line that connects the current noisy point xt and the prediction of the143

clean image, E[X0|Xt = xt].144

3 Method145

Formally, we are given access to samples from the AlphaFold distribution p̃0 and aim to learn how146

to sample from the true distribution of experimentally solved structures, p0, without an explicit147

degradation model mapping p0 ≃ p̃0. In the protein structure setting, it is not appropriate to model148

the structural deviations introduced by AlphaFold as additive Gaussian noise. Our key insight is that,149

regardless of how p̃0 deviates from p0, adding noise to both distributions causes them to contract150

toward one another. As the noise level increases, the distributions p̃t and pt become progressively151

more aligned. This is because it is known that Gaussian noise contracts distribution distances (KL152

divergence) in the following sense:153

DKL(pt||p̃t) ⇐ DKL(pt→ || p̃t→), ⇒t ↘ t↓. (3)

In fact, as t ≃ ⇑, we have that: DKL(pt || p̃t) ≃ 0, as both distributions converge to the same154

Gaussian. We now define the concept of merging of two distributions towards the same measure.155

Definition 3.1 (ϖ-merged) We say that two distributions, p and p̃ are ϖ-merged, if the KL distance156

between the two is upper-bounded, by ϖ, i.e., if DKL(p || p̃) ⇐ ϖ.157

Similarly, we define the merging time of two distributions as the minimal amount of noise we need to158

add such that the two distributions become ϖ-merged. Formally,159
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Definition 3.2 (ϖ-merging time) Let two distributions p, p̃. We define their ϖ-merging time as follows:160

tn(p, p̃, ϖ) = inf{t : DKL(p ↑N (0,ω(t)2I) || p̃ ↑N (0,ω(t)2I) ⇐ ϖ}.161

Assuming we can estimate the ϖ-merging time between two distributions p and p̃, our key idea is to162

treat samples from p̃t as approximate samples from pt for all timesteps t > tn(p, p̃, ϖ). This idea is163

illustrated in Figure 1. The intuition is that once the distributions have sufficiently merged under164

noise, the residual shift becomes negligible and samples from p̃t can be used for learning pt. This165

holds because: (i) the learning algorithm may not be sensitive to small distributional discrepancies at166

high noise levels, and (ii) even if some bias is introduced, the remaining diffusion trajectory for times167

t ⇐ tn(p, p̃, ϖ) is robust to small initial distributional mismatch due to its inherent stochasticity.168

Sample dependent noise levels. At a high level, our objective is to determine the ϖ-merging time169

between the distribution of AlphaFold-predicted structures and that of experimentally resolved170

proteins. A key challenge arises from the fact that the AlphaFold distribution is highly heterogeneous171

in structural fidelity—that is, the accuracy with which AlphaFold predicts the true protein structure172

varies widely across samples. It is well established that short, structurally simple proteins are predicted173

with higher confidence, while longer and more complex proteins tend to yield lower-confidence174

predictions. This trend is illustrated in Figure 2B (Left). If we were to assign a single noise level across175

the entire AlphaFold dataset, we would need to select a relatively high noise level to accommodate the176

lowest-confidence predictions, particularly from long proteins. This would unnecessarily degrade the177

training signal for high-confidence structures—regardless of protein length—and limit the model’s178

ability to learn from clean supervision. To address this, we treat the AlphaFold dataset as a mixture179

of K sub-distributions, q1, q2, . . . , qK , each representing a distinct confidence regime. We then180

assign each sub-distribution an appropriate noise level, sufficient to bring it ϖ-close to the distribution181

of high-confidence structures under the same noise schedule. This formulation allows the model182

to effectively learn from high-confidence AlphaFold predictions and incorporate low-confidence183

structures in a controlled manner, mitigating the degradation typically caused by noisy training data.184

A natural way to decompose the AlphaFold distribution into a mixture of quality-specific sub-185

distributions is to leverage AlphaFold’s self-reported confidence metric—the average predicted186

Local Distance Difference Test (pLDDT) score—as a proxy for predicted structural fidelity. In187

particular, given a dataset D = {(x(i)
0 , pLDDT(i))}Ni=1, we consider K distributions (where K is188

a hyperparameter to be chosen) with empirical observations for the j-th distribution being all the189

samples {(x(i)
0 , pLDDT(i)) : c(j)min ⇐ pLDDT(i) ⇐ c(j)max}, for some hyperparameters c(j)min, c

(j)
max.190

Choice of sub-distribution boundaries. In this work, we adopt a deliberately simple and conservative191

strategy by partitioning the AlphaFold dataset into three discrete quality regimes based on the average192

pLDDT score: high-quality proteins (pLDDT > 90), medium-quality proteins (pLDDT in [80, 90])193

and low-quality proteins (pLDDT in [70, 80]). We acknowledge that this discretization is coarse and194

that more principled alternatives may yield further improvements—for instance, by optimizing the bin195

boundaries or learning a continuous mapping from pLDDT to diffusion time. Despite the simplicity196

of our choices, our experimental results demonstrate that even a naive quality-aware decomposition197

can lead to important gains in performance across both short and long proteins. There are two sources198

of benefit over filtering methdos: 1) low-quality data (previously discarded) give diversity and 2) the199

distinction we do between medium-quality and high-quality data increases designability.200

Ambient Protein Diffusion Algorithm. Our algorithm takes as input a dataset of protein structures201

together with their average pLDDT score, D = {(x(i)
0 , pLDDT(i))}Ni=1, a diffusion schedule, ω(t),202

and a mapping function f : [0, 100] ⇓≃ R+ that translates the average pLDDT value of a protein to203

its estimated ϖ-merging time.204

Annotation stage. The first step of the algorithm replaces each protein in the dataset with a noisy205

version of itself, where the noise level is determined by mapping function f . After this transformation,206

each protein can be treated as a sample from the target distribution convolved with a Gaussian at207

its assigned noise level. Importantly, this corruption step is only performed once during dataset208

preprocessing.209

Loss function. After the annotation stage, we need to solve a training problem where we have data210

corrupted at different noise levels with additive Gaussian noise, as in [12, 14]. Hence, we can use the211

objective of Equation 2.212
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Figure 2: Reclustering the AFDB cluster dataset for generative protein modeling. (A) Starting
from the 2.3M clusters in the AFDB, we cluster the representatives with FoldSeek with alignment-type set to
TM-Align, TM threshold set to 0.5, and coverage set to 0.75. This results in 300K cluster (pLDDT > 70) from
which we keep the representatives for training. (B) pLDDT and protein length statistics for our new training
set. (C) Example of two protein clusters where two cluster members (red and blue) are superimposed with their
cluster representative (beige and cyan).

Instead of directly applying the loss, we first need to rescale each time t to account for the vanishing213

gradient effect that is due to the multiplicative factor a(t). Specifically, we need to rescale the loss at214

time t with: w(t) = 1
a2(t) =

ω4(t)
(ω2(t)→ω2(ti))

2 . We underline that this rescaling was not mentioned in215

the original paper of Daras et al. [14, 12], for training with noisy data. Yet, we find this rescaling216

critical for the success of our method. We hypothesize that the authors of [12, 14] did not encounter217

this issue because there were at most two noise levels considered, while in AF predicted protein218

structures there is a whole spectrum of assigned noise levels based on the predicted quality (measured219

by average pLDDT) of a protein structure. We provide further details about the loss implementation220

in the supplement and pseudocode for our Algorithm in the Appendix.221

Uniform Protein Sampling in terms of diffusion times. To perform a training update for a diffusion222

model, we typically sample a point from the training distribution and then we uniformly sample the223

noise level t. However, since in our case we are dealing with noisy data, not all times t are allowed224

for a given protein, i.e. a protein with pLDDT(i) is only used for times t ↘ f(pLDDT(i)). To225

avoid spending most of the training updates on very noisy proteins, we opt for sampling first the226

diffusion time and then select from the eligible proteins that can be used in that diffusion time. This227

strategy ensures balanced coverage across the diffusion trajectory—from low to high noise—while228

still leveraging the diversity of low-confidence structures (pLDDT < 80) in our training dataset.229

Reclustering AFDB clusters for generative modeling applications. The AFDB cluster dataset [5]230

has been used to train several generative protein models [27, 19]. However, the original intent behind231

the clustering was to study structure evolution across AFDB. Thus, the hyperparameters were chosen232

to obtain clusters of homologous structures, and the authors report that 97.4% of pairwise comparisons233

within clusters are conserved at the H-group (Homology) level of the ECOD hierarchical domain234

classification (median TM-score 0.71). While these FoldSeek hyperparameters are well-suited for235

evolutionary analysis of AFDB, we found that the AFDB cluster dataset has a significant degree of236

structural duplication and near-duplication between clusters that are more distantly evolutionarily237

related (see Figure 2C). This structural redundancy leads to an imbalanced training set, where238

structural motifs from the larger protein superfamilies are overrepresented.239

Given this finding, we hypothesized that the datasets for generative modeling of protein struc-240

tures—particularly for backbone-based models— benefit more from clusters defined purely by241

geometric similarity. To address this, we constructed a new clustering dataset derived from the AFDB242

cluster representatives, with an exclusive focus on structural topology. Specifically, these are the243

changes we made to the FoldSeek hyperparameters: switched the alignment-type from 3Di+AA to244

TM-Align to improve fidelity, used a TM-score threshold of 0.5, and relaxed the alignment coverage245
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Figure 3: Long protein generation performance. We fine-tune Ambient Protein Diffusion on proteins
up to 768 residues and sample sequences ranging from 300 to 800 residues. Ambient Protein Diffusion generates
diverse and designable structures across this length range with consistent performance.

from 0.9 to 0.75. We relaxed the alignment coverage to improve clustering of AlphaFolded proteins246

with extended, unfolded N- or C-terminal regions (i.e., noodle tails) (Figure 2C). This approach247

produced a more balanced dataset that samples structural folds more uniformly, independent of their248

evolutionary relationships. Ablations showing the contribution of this reclustering versus our ambient249

training approach are given in Figure 4.250

4 Experimental Results251

We build on the Genie2 codebase [27]. Our model architecture follows the Genie2 architecture except252

that it is scaled larger, using 8 triangle layers as opposed to 5. We follow Genie2’s schedule for253

inference time sampling and diffuse for 1000 timesteps.254

We train Ambient Protein Diffusion in 3 stages with increasingly longer proteins. In first stage, we255

train on proteins from 50 to 256 residues for 200 epochs on our ambient clusters dataset using the256

representatives (→ 196,000 proteins). Since we increased the batch size to 384 items, we adopted257

a learning rate schedule to improve convergence [21]. We train with the AdamW optimizer with258

a maximal learning rate of 1.0 ⇔ 10→4. During the second and third stage, we include additional259

cluster representatives of at most 512 and 712 residues, which scales our dataset to →269,000 and260

→291,000 proteins respectively. Training is performed on 48 GH200 GPUs and runs in 18, 48, and 48261

hours for each stage respectively. More hyperparameters and details about our evaluation metrics can262

be found in the supplement. We underline that the computational cost of training our model, while263

significant, is still relatively low compared to the Proteína’s estimated 14 days training on 128 A100264

GPUs. This is due to the decreased size of our model (< 17M vs 200M) and training set (→ 290K265

vs → 780K). We further note that our goal is to develop models that perform well across a range of266

tasks, including long-protein generation, motif scaffolding, and more. To this end, we train only two267

models for the purposes of this paper: one model optimized for long-protein generation (Figure 3)268

and another optimized for short-protein generation (Figure 4).269

Comparisons on unconditional generation of longer proteins.270

In Figure 3, we compare Ambient Protein Diffusion performance on generating backbone for proteins271

with length ranging from 300 to 800 residues. To directly compare with Proteína on long-protein272

generation, we adopt its three-stage training and evaluation protocol. During training, the maximum273

sequence length is capped at 768 residues. For evaluation, we sample 100 protein backbones at each274

target length and evaluate them using the designability and diversity metrics. Since Ambient Protein275

Diffusion builds on Genie2, we use the same sampling procedure—running 1000 diffusion steps with276

a noise scale of ϱ = 0.6.277

Ambient Protein Diffusion achieves designability and diversity scores exceeding 90% for proteins278

between 300 and 500 residues, and maintains scores above 85% for lengths up to 700 residues. For279

800-residue proteins, both metrics decline to 68%. Compared to Proteína, Ambient Protein Diffusion280

outperforms by 26% in designability and 91% in diversity at length 700, and by 25% and 44%,281

respectively, at length 800. At every protein length, Ambient Protein Diffusion’s diversity is equal to282
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its designability, indicating that every designable protein is unique. This is not the case for Proteína,283

where diversity scores consistently fall below designability, regardless of protein length.284

Taken together, these results demonstrate the impact of ambient diffusion on backbone-based genera-285

tive models and highlight the strength of Genie2’s equivariant architecture. Our 17M parameter model286

trained on approximately 290K AlphaFold structures significantly outperforms a 200M-parameter287

transformer model trained on roughly 780K proteins. Our results show that smaller, more efficient288

models can surpass larger transformer baselines in both structural diversity and designability.289

Comparisons on unconditional generation of shorter proteins. In this experiment, we evaluate the290

model on the unconditional generation of shorter proteins in Figure 4. The Ambient Protein Diffusion291

model used in this experiment was trained on a dataset filtered with a TM-Align threshold of 0.4 (as292

opposed to 0.5), resulting in a training set of approximately 90K cluster representative proteins.293

Following the Genie2 protocol, we generate 5 structures for each sequence length from 50294

to 256 residues, yielding a total of 1,035 structures. The generated structures are eval-295

uated for both designability and diversity. In line with prior work, we sweep the noise296

scale ϱ to explore the tradeoff between designability and diversity. Ambient Protein Dif-297

fusion outperforms previous methods on both metrics, establishing a new Pareto frontier298

that achieves superior performance compared to all existing models, including Proteina.299

Figure 4: Designability - diversity trade-off for short

protein generation (up to 256 residues). Ambient dominates
completely the Pareto frontier between designability and diversity,
while using a 12.88↑ smaller model. We further do so without
using any higher-order sampler or (auto-) guidance method.

While it is well known that protein300

pairs with TM-scores above 0.5 typ-301

ically share the same fold, and those302

below 0.5 generally do not, we find303

that the trade-off between designabil-304

ity and diversity is sensitive to the305

underlying structural heterogeneity of306

the dataset. Notably, clustering with a307

TM-align threshold of 0.4, which cor-308

responds to less than a 1% chance of309

shared global topology, slightly out-310

performs the 0.5 threshold, which re-311

flects a →38% probability of topolog-312

ical similarity [43].313

Ablating the Significance of Ambi-314

ent Diffusion. We validate the effec-315

tiveness of Ambient Diffusion in Fig-316

ure 5. For our ablation, we perform317

the identical three stages of training318

on a model variant that performs stan-319

dard diffusion training as opposed to320

Ambient Diffusion. The Genie2 base-321

line is taken from the Proteína paper.322

We find that while our two models per-323

form similarly on proteins of 300 residues, the designability and diversity of a vanilla diffusion model324

diminishes much more significantly with longer proteins. For proteins with 800 residues, the number325

of designable clusters drops from 68% to 25%.326

Comparisons on Motif Scaffolding. We additionally compare our method to prior work on motif327

scaffolding in Figure 6, with full results provided in the supplement. Our evaluation follows the328

Genie2 benchmark, which comprises 24 single-motif and 6 multi-motif design tasks [27, 40]. For329

each task, we generate 1,000 scaffold samples using a noise scale of ϱ = 0.45. A design is considered330

successful if it (1) satisfies Genie2’s motif designability criteria and (2) preserves the motif with an331

RMSD below 1Å. Among successful designs, a scaffold is counts as unique if its TM-score is at332

most 0.6 when compared to any other successful scaffold. A task is considered solved if at least one333

successful scaffold is generated.334

With ϱ = 0.45, Ambient Protein Diffusion generates 1,923 unique successful scaffolds for single-335

motif tasks, a significant improvement over Genie2’s 1,445 [27] and performs comparably to Pro-336

teína’s 2,094 [19]. Notably, all methods solve a similar number of motifs – RFDiffusion solves 22 of337
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Figure 5: Effect of ambient diffusion on long protein generation. We sample protein sequences
ranging from 300 to 800 residues. The baseline model (without Ambient Diffusion) shares the same architecture
and training dataset, differing only in the diffusion loss and sampling procedure. At a sequence length of
300, the baseline yields four additional designable clusters. However, Ambient Protein Diffusion consistently
outperforms both the baseline and Genie2, with increasingly significant improvements as sequence length grows.

Figure 6: Performance on Motif Scaffolding Tasks. We compare Ambient Protein Diffusion to state-of-
the-art models for motif scaffolding. The graphs show the number of unique successful scaffolds generated for
each single- and multi-motif task. No model produced successful scaffolds for 4JHW and 3NTN. Only Ambient
Protein Diffusion produced a valid solution for multi-motif scaffolding of 2B5I.

the 24 tasks, while Ambient Protein Diffusion, Genie2, and Proteína each solve the same 23 tasks. For338

multi-motif scaffolding, Ambient Protein Diffusion generates 89 unique successful structures across339

5 of the 6 benchmark problems, outperforming Genie2, which produces 40 and solves 4. Ambient340

Protein Diffusion performs particularly well on the 1PRW_four motif (38 vs. 11 successful structures)341

in which a scaffold is generated surrounding a calcium binding motif [38]. Overall, Ambient Protein342

Diffusion outperforms existing methods such as Genie2 and RFDiffusion on single-motif tasks and343

matches the performance of a Proteína model optimized specifically for motif-scaffolding.344

5 Conclusion345

We introduced Ambient Protein Diffusion, a diffusion-based model for protein structure generation346

that leverages low-confidence AlphaFold structures as a source of noisy training data. Ambient347

Protein Diffusion enables the generation of long protein structures with unprecedented levels of348

designability and diversity. Diversity increases as it can use low-confidence Alphafold structures349

that are typically discarded and designability increases as we separate the pristine quality proteins350

structures from the medium quality AlphaFold predictions. Ambient Protein Diffusion represents a351

foundational step toward robust de novo protein design at more natural, biologically relevant lengths.352

Despite progress, Ambient Protein Diffusion still favors generating alpha-helical structures and353

developing techniques that address this bias is a crucial direction for future work.354
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nature of the contribution. For example578

(a) If the contribution is primarily a new algorithm, the paper should make it clear how579

to reproduce that algorithm.580

(b) If the contribution is primarily a new model architecture, the paper should describe581

the architecture clearly and fully.582

(c) If the contribution is a new model (e.g., a large language model), then there should583

either be a way to access this model for reproducing the results or a way to reproduce584

the model (e.g., with an open-source dataset or instructions for how to construct585

the dataset).586

(d) We recognize that reproducibility may be tricky in some cases, in which case587

authors are welcome to describe the particular way they provide for reproducibility.588

In the case of closed-source models, it may be that access to the model is limited in589

some way (e.g., to registered users), but it should be possible for other researchers590

to have some path to reproducing or verifying the results.591
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tions to faithfully reproduce the main experimental results, as described in supplemental594

material?595
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Justification: Code and data will be released upon acceptance.597
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• The instructions should contain the exact command and environment needed to run to606

reproduce the results. See the NeurIPS code and data submission guidelines (https:607
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• The authors should provide instructions on data access and preparation, including how609

to access the raw data, preprocessed data, intermediate data, and generated data, etc.610

• The authors should provide scripts to reproduce all experimental results for the new611

proposed method and baselines. If only a subset of experiments are reproducible, they612

should state which ones are omitted from the script and why.613

• At submission time, to preserve anonymity, the authors should release anonymized614

versions (if applicable).615

• Providing as much information as possible in supplemental material (appended to the616

paper) is recommended, but including URLs to data and code is permitted.617

6. Experimental setting/details618

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-619

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the620

results?621

Answer: [Yes]622

Justification: We provide thorough implementation details in the paper and supplement.623
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• The answer NA means that the paper does not include experiments.625

• The experimental setting should be presented in the core of the paper to a level of detail626

that is necessary to appreciate the results and make sense of them.627

• The full details can be provided either with the code, in appendix, or as supplemental628

material.629

7. Experiment statistical significance630
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information about the statistical significance of the experiments?632

Answer: [No]633

Justification: Our evaluation follows the standard deterministic benchmarking setup com-634

monly used in the protein design literature.635
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• The answer NA means that the paper does not include experiments.637

• The authors should answer "Yes" if the results are accompanied by error bars, confi-638

dence intervals, or statistical significance tests, at least for the experiments that support639

the main claims of the paper.640
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• It should be clear whether the error bar is the standard deviation or the standard error647

of the mean.648

• It is OK to report 1-sigma error bars, but one should state it. The authors should649

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis650

of Normality of errors is not verified.651

• For asymmetric distributions, the authors should be careful not to show in tables or652

figures symmetric error bars that would yield results that are out of range (e.g. negative653

error rates).654

• If error bars are reported in tables or plots, The authors should explain in the text how655

they were calculated and reference the corresponding figures or tables in the text.656

8. Experiments compute resources657

Question: For each experiment, does the paper provide sufficient information on the com-658

puter resources (type of compute workers, memory, time of execution) needed to reproduce659

the experiments?660

Answer: [Yes]661

Justification: We detail the compute requirements in the implementation details.662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,665

or cloud provider, including relevant memory and storage.666

• The paper should provide the amount of compute required for each of the individual667

experimental runs as well as estimate the total compute.668

• The paper should disclose whether the full research project required more compute669

than the experiments reported in the paper (e.g., preliminary or failed experiments that670

didn’t make it into the paper).671

9. Code of ethics672

Question: Does the research conducted in the paper conform, in every respect, with the673

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?674

Answer: [Yes]675

Justification: We have reviewed the ethics guidelines and find our paper conforms.676

Guidelines:677

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.678

• If the authors answer No, they should explain the special circumstances that require a679

deviation from the Code of Ethics.680

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-681

eration due to laws or regulations in their jurisdiction).682

10. Broader impacts683

Question: Does the paper discuss both potential positive societal impacts and negative684

societal impacts of the work performed?685

Answer: [Yes]686

Justification: See conclusion section687

Guidelines:688

• The answer NA means that there is no societal impact of the work performed.689

• If the authors answer NA or No, they should explain why their work has no societal690

impact or why the paper does not address societal impact.691

• Examples of negative societal impacts include potential malicious or unintended uses692

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations693

(e.g., deployment of technologies that could make decisions that unfairly impact specific694
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• The conference expects that many papers will be foundational research and not tied696

to particular applications, let alone deployments. However, if there is a direct path to697

any negative applications, the authors should point it out. For example, it is legitimate698

to point out that an improvement in the quality of generative models could be used to699

generate deepfakes for disinformation. On the other hand, it is not needed to point out700

that a generic algorithm for optimizing neural networks could enable people to train701

models that generate Deepfakes faster.702
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being used as intended and functioning correctly, harms that could arise when the704
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strategies (e.g., gated release of models, providing defenses in addition to attacks,708

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from709

feedback over time, improving the efficiency and accessibility of ML).710

11. Safeguards711

Question: Does the paper describe safeguards that have been put in place for responsible712

release of data or models that have a high risk for misuse (e.g., pretrained language models,713

image generators, or scraped datasets)?714

Answer: [NA]715

Justification: Paper poses no such risks.716

Guidelines:717

• The answer NA means that the paper poses no such risks.718

• Released models that have a high risk for misuse or dual-use should be released with719

necessary safeguards to allow for controlled use of the model, for example by requiring720

that users adhere to usage guidelines or restrictions to access the model or implementing721

safety filters.722

• Datasets that have been scraped from the Internet could pose safety risks. The authors723

should describe how they avoided releasing unsafe images.724

• We recognize that providing effective safeguards is challenging, and many papers do725

not require this, but we encourage authors to take this into account and make a best726

faith effort.727

12. Licenses for existing assets728

Question: Are the creators or original owners of assets (e.g., code, data, models), used in729

the paper, properly credited and are the license and terms of use explicitly mentioned and730

properly respected?731

Answer: [Yes]732

Justification: All existing models and datasets are properly credited.733

Guidelines:734

• The answer NA means that the paper does not use existing assets.735

• The authors should cite the original paper that produced the code package or dataset.736

• The authors should state which version of the asset is used and, if possible, include a737

URL.738

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.739

• For scraped data from a particular source (e.g., website), the copyright and terms of740

service of that source should be provided.741

• If assets are released, the license, copyright information, and terms of use in the742

package should be provided. For popular datasets, paperswithcode.com/datasets743

has curated licenses for some datasets. Their licensing guide can help determine the744

license of a dataset.745

• For existing datasets that are re-packaged, both the original license and the license of746

the derived asset (if it has changed) should be provided.747
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• If this information is not available online, the authors are encouraged to reach out to748

the asset’s creators.749

13. New assets750

Question: Are new assets introduced in the paper well documented and is the documentation751

provided alongside the assets?752

Answer: [Yes]753

Justification: New datasets, code, and models will be released upon publication.754

Guidelines:755

• The answer NA means that the paper does not release new assets.756

• Researchers should communicate the details of the dataset/code/model as part of their757

submissions via structured templates. This includes details about training, license,758

limitations, etc.759

• The paper should discuss whether and how consent was obtained from people whose760

asset is used.761

• At submission time, remember to anonymize your assets (if applicable). You can either762

create an anonymized URL or include an anonymized zip file.763

14. Crowdsourcing and research with human subjects764

Question: For crowdsourcing experiments and research with human subjects, does the paper765

include the full text of instructions given to participants and screenshots, if applicable, as766

well as details about compensation (if any)?767

Answer: [NA]768

Justification: No human subjects.769

Guidelines:770

• The answer NA means that the paper does not involve crowdsourcing nor research with771

human subjects.772

• Including this information in the supplemental material is fine, but if the main contribu-773

tion of the paper involves human subjects, then as much detail as possible should be774

included in the main paper.775

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,776

or other labor should be paid at least the minimum wage in the country of the data777

collector.778

15. Institutional review board (IRB) approvals or equivalent for research with human779

subjects780

Question: Does the paper describe potential risks incurred by study participants, whether781

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)782

approvals (or an equivalent approval/review based on the requirements of your country or783

institution) were obtained?784

Answer: [NA]785

Justification: No human subjects.786

Guidelines:787

• The answer NA means that the paper does not involve crowdsourcing nor research with788

human subjects.789

• Depending on the country in which research is conducted, IRB approval (or equivalent)790

may be required for any human subjects research. If you obtained IRB approval, you791

should clearly state this in the paper.792

• We recognize that the procedures for this may vary significantly between institutions793

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the794

guidelines for their institution.795

• For initial submissions, do not include any information that would break anonymity (if796

applicable), such as the institution conducting the review.797

16. Declaration of LLM usage798
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Question: Does the paper describe the usage of LLMs if it is an important, original, or799

non-standard component of the core methods in this research? Note that if the LLM is used800

only for writing, editing, or formatting purposes and does not impact the core methodology,801

scientific rigorousness, or originality of the research, declaration is not required.802

Answer: [NA]803

Justification: LLM are not part of the core method.804

Guidelines:805

• The answer NA means that the core method development in this research does not806

involve LLMs as any important, original, or non-standard components.807

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)808

for what should or should not be described.809
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A Evaluation Metrics1

Evaluation of a protein generative model is challenging and there have been a few metrics that have2

been proposed. In what follows, we explain standard metrics in the protein-generative modeling3

literature that we will use in our Experimental Results section. Our experiments report using Proteína’s4

definitions of the metrics when possible.5

Designability (also referred to as refoldability) assesses the structural plausibility of generated6

proteins. Given a generated backbone, ProteinMPNN [1] generates eight plausible amino acid7

sequences for that backbone. ESMFold then folds each sequence and the resulting eight structures8

are compared to the original backbone. The self-consistency RMSD (scRMSD) is defined as the9

smallest root mean squared deviation between the generated backbone and each of the eight refolded10

structures. A backbone is considered designable if scRMSD < 2 Å and designability is defined as11

the percentage of generated backbones that meet this criterion.12

Diversity quantifies the structural variability among the generated proteins. Designable backbones
are clustered using Foldseek with a TM-score threshold of 0.5. Diversity is then defined as:

Diversity =
Number of Designable Clusters
Number of Designable Samples

.

This metric reflects the proportion of structurally distinct (i.e., non-redundant) designable backbones13

among all designable samples.14

B Secondary Structure conditioning15

Previous work [2] has explored conditioning protein structure generation on CATH labels, a form of16

hierarchical classification derived from the orientation and spatial organization of protein secondary17

structures [5]. In this setting, every residue in a protein sequence is typically assigned the same CATH18

label. In contrast, we propose a more fine-grained approach. Rather than relying on the manually19

curated and coarse-grained CATH classification, we condition our model directly on secondary20

structure annotations at the residue level. Each residue is assigned a label corresponding to its local21

secondary structure (e.g., helix, strand, coil), allowing the model to leverage localized structural22

context during generation.23

We train a variant of our model with partial conditioning, in which the model is conditioned on24

the secondary structure sequence, without introducing any additional modifications to the input or25

architecture. We show designable samples conditioned on the secondary structure extracted from real26
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Figure 1: Qualitative visualizations of unconditional generations. Our model is capable of
producing diverse, multi-domain long proteins.
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Figure 2: Secondary Structure Conditioned Samples. We generate proteins using a model variant
trained with secondary structure conditioning. To guide generation, we extract secondary structure
strings from existing proteins and use this coarse-grained structural representation as input. This
conditioning enables the model to produce diverse and designable protein structures.

proteins in Figure 2. These results demonstrate that, even with coarse-grained secondary structure27

conditioning, our model can generate long, diverse proteins exhibiting a wide range of folds.28

C Model and Training Hyperparameters29

Table 1 includes a more thorough list of the hyperparameters used for our experiments.30

D Full Motif Scaffolding Results31

Table 2 and table 3 represent the numbers of unique successful scaffolds generated by Genie2 [3],32

RFDiffusion [6], Proteína [2] and Ambient Protein Diffusion for each motif in the benchmark dataset33

in Genie2.34

E Full Training Algorithm and Implementation Details35

E.1 Additional Implentation Details36

Loss buffer. The loss rescaling introduced in the main paper ensures balanced weighting across37

noise levels. At the same time, it also introduces a potential instability: the loss explodes as ω(t)38

approaches ω(ti). To mitigate this instability, we define a buffer zone around each protein’s assigned39

noise level. Specifically, given a protein’s assigned noise level ti, it is only used during training at40

timesteps t+ε , where ε is a buffer hyperparameter that controls the exclusion margin. This constraint41

prevents the model from encountering degenerate gradient behavior near the rescaling boundaries42

and is only applied to medium and low confidence structures (pLDDT < 90). We underline that is43

similar to how in normal diffusion there is a buffer time zone around t = 0 that is never sampled.44

Ambient in high-noise regime. As explained in the main paper, each protein is only used for a subset45

of diffusion times according to its average pLDDT value. The proteins that have super high PLDDT46

(> 90) are considered clean data and can be used with the normal training objective. However, as47

found in [4], using the Ambient training objective for high-noise might be useful even if clean data is48

available. Intuitively, this objective prevents memorization and promotes diversity in the outputs. We49

ablated this design choice, and we found a slight increase in diversity for the same designability by50

using this. Hence, we used this tool from [4] for all our Ambient Protein Diffusion trainings.51

E.2 Algorithm52

We provide the full algorithm in Algorithm 1. We commit to open-sourcing our code and models to53

facilitate the broader adoption of our method from the community.54
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Hyperparameter Genie2 Ambient (Stage 1) Stage 2 Stage 3

Diffusion

Number of timesteps 1,000 - - -
Noise schedule Cosine - - -
Ambient walls - (600,900) (600,900) (600,900)

Model Architecture

Single feature dimension 384 - - -
Pair feature dimension 128 - - -
Pair transform layers 5 8 8 8
Triangle dropout 0.25 - - -
Structure layers 8 - - -

Training

Optimizer AdamW - - -
Number of training proteins 586k 196k 269k 291k
Number epochs 40 200 50 20
Warmup iterations 10,000 1,000 500 100
Total batch size 384 384 96 48
Learning rate 1.0→ 10→4 1.0→ 10→4 1.0→ 10→5 1.0→ 10→5

Weight decay 0.05 - - -
Minimum protein length 20 20 50 50
Maximum protein length 256 256 512 768
Minimum mean pLDDT 80 70 70 70

Compute Resources

Number of GPUs 48 48 48 48
Training time 18 hr 18hr 48hr 48hr

Table 1: Hyperparameters of the diffusion protein model. Dashes (-) indicate that the value is
the same as the previous column. The Ambient walls correspond to the assigned diffusion times
based on the protein’s PLDDT (times are from 1 to 1000). Proteins with PLDDT > 90 are used
everywhere. Proteins with PLDDT > 80 are used for times in [600, 1000] and proteins with PLDDT
> 70 are used for times in [900, 1000]. We underline that these hyperparameters were not particularly
optimized, and even more benefits might be observed by properly tuning these values.
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Motif Name Genie 2 RFDiffusion Proteína Ambient Protein Diffusion

6E6R_long 415 381 713 601
6EXZ_long 326 167 290 432

6E6R_med 272 151 417 406
1YCR 134 7 249 146
5TRV_long 97 23 179 119
6EXZ_med 54 25 43 69

7MRX_128 27 66 51 44
6E6R_short 26 23 56 27
5TRV_med 23 10 22 23

7MRX_85 23 13 31 17
3IXT 14 3 8 4
5TPN 8 5 4 11

7MRX_60 5 1 2 1
1QJG 5 1 3 5

5TRV_short 3 1 1 3

5YUI 3 1 5 4
4ZYP 3 6 11 3
6EXZ_short 2 1 3 3

1PRW 1 1 1 1

5IUS 1 1 1 1

1BCF 1 1 1 1

5WN9 1 0 2 1
2KL8 1 1 1 1
4JHW 0 0 0 0

Total 1445 889 2094 1923

Table 2: Detailed single motif scaffolding results. Ambient Protein Diffusion achieves superior
results to Genie 2 and RFDiffusion and performs on par with Proteina. Crucially, our model achieves
these results zero-shot, i.e., unlike Proteina, it is not optimized for motif scaffolding and still achieves
comparable performance while being an order of magnitude smaller.

Motif Name Genie 2 Ambient Protein Diffusion

3BIK+3BP5 17 23

1PRW_four 11 38

1PRW_two 8 15

4JHW+5WN9 4 12

2B5I 0 1

3NTN 0 0
Total 40 89

Table 3: Multi-motif scaffolding results. Ambient Protein Diffusion achieves consistently superior
results to the predecessor Genie-2 model, despite using the same architecture, i.e. the benefit comes
from better use of the data. The motif 2B5I is only solved by Ambient Protein Diffusion.
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Algorithm 1 Ambient Protein Diffusion: Training Algorithm.

Require: untrained network hω, dataset D = {(x(i)
0 , pLDDT(i))}Ni=1, pLDDT to diffusion time

mapping function f : [0, 100] ↑↓ R+, noise scheduling ω(t), batch size B, diffusion time T ,
buffer ε .

1: D̃ ↔
{(

x(i)
0 + f(pLDDT(i))ϑ(i), f(pLDDT(i))

)
|(x(i)

0 , pLDDT(i)) ↗ D, ϑ(i) ↘ N (0, Id)
}
ϖ

Noise each point in the training set according to its pLDDT and get (noisy, noise level) pairs.
2: while not converged do

3: t(1)s , ..., t(B)
s ↔ Sample uniformly B times in [0, T ] ϖ Sample diffusion times for this batch.

4: D̃p ↔ shu!e(D̃) ϖ Shuffle dataset.
5: loss ↔ 0 ϖ Initialize loss.
6: pos ↔ 0 ϖ Initialize index at shuffled dataset.
7: for i ↗ [1, B] do

8: while True do ϖ find the first eligible point
9: y, ty ↔ D̃p[pos]

10: if ty ≃ tis + ε then

11: break
12: else

13: pos ↔ pos + 1 ϖ Move to the next point in the dataset.
14: end if

15: end while

16: ϑ ↘ N (0, I) ϖ Sample noise.
17: t ↔ t(i)s ϖ Time to be used in this training update.
18: ti ↔ ty ϖ Assigned time based on the PLDDT value
19: xti ↔ y ϖ Noised point to the assigned time.
20: xt ↔ xti +

√
ω2(t)⇐ ω2(ti)ϑ ϖ Add additional noise.

21: ϱ(t, ti) ↔ ε2(t)→ε2(ti)
ε2(t) .

22: w(t, ti) ↔ ε4(t)
(ε2(t)→ε2(ti))

2 . ϖ Loss reweighting.

23: loss ↔ loss + w(t, ti) ||ϱ(t, ti)hω(xt, t) + (1⇐ ϱ(t, ti))xt ⇐ xti ||
2 ϖ Ambient loss

24: end for

25: loss ↔ loss
B ϖ Compute average loss.

26: ς ↔ ς ⇐ φ⇒ωloss ϖ Update network parameters via backpropagation.
27: end while
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