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Abstract

We present Ambient Protein Diffusion, a framework for training protein diffusion
models that generates structures with unprecedented diversity and quality. State-of-
the-art generative models are trained on computationally derived structures from
AlphaFold2 (AF), as experimentally determined structures are relatively scarce.
The resulting models are therefore limited by the quality of synthetic datasets.
Since the accuracy of AF predictions degrades with increasing protein length and
complexity, de novo generation of long, complex proteins remains challenging.
Ambient Protein Diffusion overcomes this problem by treating low-confidence
AF structures as corrupted data. Rather than simply filtering out low-quality AF
structures, our method adjusts the diffusion objective for each structure based on
its corruption level, allowing the model to learn from both high and low quality
structures. Empirically, ambient protein diffusion yields major improvements: on
proteins with 700 residues, diversity increases from 45% to 85% from the previous
state-of-the-art, and designability improves from 70% to 88%.

1 Introduction

Proteins are the fundamental building block of life. They accelerate chemical reactions by many
orders of magnitude, convert sunlight into food, and underpin the myriads of processes within cells
and organisms with the level of accuracy and precision required to sustain life [6, 25]. Unlike
computational protein engineering—which focuses on improving the developability or function of
existing proteins through computationally guided mutations for practical biotechnological applica-
tions [[17, 31} 120} 32} 8l 129, [16]]—de novo protein design aims to create entirely new proteins with
specified structures and functions, ultimately seeking to discover folds and activities not found in na-
ture [[10]. Since protein function is largely determined by tertiary and quaternary structure, generative
machine learning frameworks for protein design focus on learning the sparse, evolutionarily sampled
landscape of protein structures, with the goal of generating novel, functional backbone scaffolds
beyond those observed in nature [40, 26} 27, 23] |19} 142} |18} [7}, 144} 37]).

Recent breakthroughs in machine learning—based structure prediction—most notably Al-
phaFold2 [24]—have made it possible to infer accurate protein structures directly from se-
quence [24, 9} 28]]. This progress has enabled the creation of large-scale structural resources such as
the AlphaFold Database (AFDB), which contains over 214M predicted structures from UniProtKB
sequences [11,[36]]. In parallel, high-throughput tools for sequence and structure comparison, such as
MMSeqs?2 and FoldSeek, have facilitated the curation of large, diverse training datasets from AFDB
[S]. Among them, the 2.3M AFDB cluster dataset, has already been shown to improve the capabilities
of generative models for protein structure design [27, [19]].
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The quality of a generative model depends on the size and fidelity of its training data. While
AlphaFold2 (AF) has enabled large-scale protein structure prediction, its outputs often contain
biological or computational inaccuracies [41]. To estimate the reliability of a predicted structure,
AlphaFold provides a per-residue confidence score, the predicted Local Distance Difference Test
(pLDDT), which is a proxy of local structural accuracy. In practice, researchers frequently filter
predicted structures based on average pLDDT scores, training only on high-confidence subsets
(typically using a cutoff of pLDDT > 80). Lower pLDDT scores are disproportionately associated
with longer and more structurally complex proteins. As a result, filtering based on pLDDT introduces
a bias toward smaller, simpler folds, reducing structural diversity in the training set and impairing the
model’s ability to generalize to more complex regions of structure space—including longer proteins.
Notably, many low-pLDDT structures still contain well-folded domains that are misoriented with
respect to each other, as reflected by low predicted alignment error (pAE). These structures can still
offer valuable domain-level and coarse-grained information about the structure distribution, which is
discarded by overly aggressive filtering.

To mitigate these issues, we depart from the standard paradigm of filtering low-confidence structures.
Instead, we introduce Ambient Protein Diffusion —a framework for training diffusion models
that incorporates proteins with noisy or incomplete structures directly into the training process.
Ambient Protein Diffusion builds on recent advances in learning generative models from corrupted
data [12} 14} 1} 13} 2} 33} 14} 139} 15} 130, 134]], which have explored controlled corruption settings such
as additive Gaussian noise [12} 14} [1} [15] and masking [13} 2]]. Our framework generalizes these
techniques to arbitrary, unknown corruption processes, enabling the training of generative models in
scientific domains where the corruption mechanism is complex and non-parametric. In our setting, the
AlphaFold prediction errors represent such a corruption: they are structured, not explicitly modeled,
and vary across protein size and topology. Yet, our method effectively leverages these imperfect
samples to significantly advance the capabilities of generative protein models. For example, on
proteins with 700 residues, our 16.7M parameter model our method improves diversity from 45% to
85% and increases designability from 70% to 88% compared to the previous state-of-the-art, Proteina,
a 200M parameter model. Below, we summarize our key contributions:

* We generalize recent approaches for training generative models on corrupted data to handle
arbitrary, non-parametric, and unknown corruption processes, enabling their application to
scientific domains.

* We construct a new training set from the AFDB cluster dataset optimized for geometric
diversity, rather than evolutionary similarity, yielding a broader and more representative
sampling of structural space for generative modeling.

* We demonstrate that Ambient Protein Diffusion effectively leverages low-pLDDT AlphaFold
predictions, allowing the model to learn from all available samples without distorting the
underlying structure distribution.

* We achieve state-of-the-art results in both diversity and designability for protein generation,
improve diversity by 45% and designability by 18% on long proteins (up to 800 residues),
and establish the Pareto frontier between these objectives on short proteins (< 256 residues).

2 Background and Related Work

De novo Protein Generation. Most de novo protein generation frameworks that operate in structure
space follow a three-step pipeline: (1) a generative model samples a three-dimensional backbone
structure; (2) an inverse folding model (e.g., ProteinMPNN) proposes amino acid sequences likely
to fold into the generated backbone; and (3) these sequences are evaluated by a structure prediction
model (e.g., ESMFold) to identify the ones that best recapitulate the target fold.

Pioneering methods such as RFDiffusion [40] and Chroma [23]] have established strong baselines
for backbone generation. More recent advances include Genie [26]], which introduces a denoising
diffusion model with an SE(3)-equivariant network that generates proteins as point clouds of reference
frames; Genie2 [27], which scales Genie using synthetic AlphaFold structures to improve training
data diversity; and Proteina [[19], which replaces diffusion with flow matching and scales both model
size and dataset scale by orders of magnitude to improve performance on longer and more complex
monomeric proteins.
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Figure 1: Overview of Ambient Protein Diffusion on alphafold structures. Rows 1-3 show the
noising process (from left to the right) of three different alphafold proteins based on their average
pLDDT (top: high, middle: medium, and bottom:low). These proteins are only used during training
at the green diffusion times. At these noise levels, any initial AlphaFold prediction errors in low-
pLDDT proteins have effectively been “erased” by the added noise, and the distributions of low- and
high-pLDDT proteins have merged.

Ambient Protein Diffusion is built using the Genie architecture and makes use of ambient protein
diffusion to achieve state-of-the-art results with substantially shorter training times, much fewer
parameters (16.7M vs 200M), and significantly reduced computational requirements.

Training Datasets. Recent advances in structure prediction—most notably AlphaFold2 [24] and
ESMFold [28]—have dramatically expanded the available structural data, enabling the prediction
of ~214M and ~617M monomeric protein structures from UniProtKB (via the AlphaFold Protein
Structure Database) [36]] and metagenomic libraries (via the ESM Atlas) [28], respectively. While this
explosion of computational structures presents unprecedented opportunities, it also poses significant
challenges for downstream bioinformatic analysis and model training, particularly due to the scale,
redundancy, and uneven quality of the predicted structures. To address this, prior work applied
MMSeqs2 [22] and FoldSeek [35] to cluster the AlphaFold Database (AFDB), yielding ~2.3M
clusters designed to capture evolutionary relationships between predicted structures [S)]. This AFDB
cluster dataset has since served as the foundational dataset to train several generative protein structure
models [19, 27].

In this work, we revisit the FoldSeek pipeline applied AFDB with a different objective: rather than
optimizing for evolutionary insight, we recluster the AFDB cluster dataset with hyperparameters
tuned to maximize geometric diversity. Our goal is to construct a dataset better suited for learning
a generative model of structural space—one that emphasizes structural rather than evolutionary
variation. Starting from the 2.3 million AFDB clusters, we use the cluster representatives with
average pLDDT > 70 (~1.29M structures) and apply our geometric clustering procedure. The
resulting dataset comprises roughly ~292K structurally diverse clusters.

Diffusion Models. The goal in diffusion modeling is to sample from an unknown density p, that
we have sample access to. Formally, let D = {z§}_, a dataset of N independent samples, where
X{ ~ po. The unknown distribution py is potentially complex, high-dimensional and multimodal. To
make the sampling problem more tractable, in diffusion modeling we target smoothened densities p;
defined as the convolution with a Gaussian: p; = po * N (0, a(t)Id where o (¢) is an increasing
function of ¢, with ¢(0) = 0. In particular, the object of interest in diffusion modeling is the score-
function of the smoothened densities, defined as V, log p; (). The latter is connected to the optimal

denoiser (in the 5 sense) through Tweedie’s Formula: V log py(z;) = %ﬁ)‘m]m'

! Alternative formulations of diffusion modeling, such as the Variance Preserving case, are equivalent to this
case up to a simple reparametrization. For the ease of analysis, we focus our presentation on corruptions of the
form Xy = Xo + 012, Z ~ N(0,1,).
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Given access to E[Xy|X; = z;] one can sample from the distribution p, of interest by running a
reverse diffusion process [3]]. Hence, the sampling problem becomes equivalent to the problem of
approximating the set of functions {E[X¢|X; = -|}]_,. Given a sufficiently rich family of functions
{hg : 6 € O}, the conditional expectation at a particular time ¢ can be learned by minimizing the
objective:

J(0) = Eycrijo 11zt ||1ho () — 20l - )

Protein Diffusion. In protein diffusion models that target backbone generation, X captures the 3-D

co-ordinates for each one of the backbone residues of the protein. The length of a protein varies and
the standard practice is to pad each protein to specified length (256 for Genie 26} [27]]), with some
special mask indicating the valid positions.

Learning from noisy data. Recent work has explored the problem of learning diffusion models
from corrupted data. Typically, the corruption process is simple, e.g. it can be additive Gaussian
noise as in [[12} 14} 1], or masking as in [[1, 2. Even in works that the corruption process is more
general, the degradation needs to be known and multiple diffusion trainings are required until an
Expectation-Maximization algorithm converges [33} 4]]. In this work, we deviate from this setting
as the corruption process is unknown and complex, which may include AlphaFold learning and
hallucination errors, and noise inherent to the structural biology technique used to solve the structure,
etc. We also target a single diffusion training instead of performing multiple EM iterations. The
method is detailed in Section[3l

Our work generalizes the techniques developed in [12, [14] for the additive Gaussian noise case.
Particularly, in [14], the authors consider learning from a dataset D = {(x}_,¢;)}}_; of samples noised
with additive Gaussian noise of different variances {o2(t;)}¥|. Formally, let X, = Xo + o(t;)Z,
where X ~ po, Z ~ N (0, I4). Each point X, contributes to the learning only for ¢ > ¢;, using
the objective:

j(@) = ]Eteu[O,T] Z Ezt\ﬂﬂtﬂti {HO‘(L ti)h‘g(‘rt’ t) + (1 - a(tv ti))xt - xti‘|2:| , (@
mtiED: t; >t

2 27y, . . .
a(t, t;) = %{;)(” As the number of samples grows to infinity, Equation E also recovers the
conditional expectation E[X(|X; = x;], but it does so while being able to utilize noisy samples.
This objective recovers the true minimizer because one can prove that the conditional expectation
E[X},|X: = 2¢], lies in the line that connects the current noisy point z; and the prediction of the

clean image, E[X|X; = x4].

3 Method

Formally, we are given access to samples from the AlphaFold distribution py and aim to learn how
to sample from the true distribution of experimentally solved structures, py, without an explicit
degradation model mapping py — po. In the protein structure setting, it is not appropriate to model
the structural deviations introduced by AlphaFold as additive Gaussian noise. Our key insight is that,
regardless of how py deviates from pg, adding noise to both distributions causes them to contract
toward one another. As the noise level increases, the distributions p; and p; become progressively
more aligned. This is because it is known that Gaussian noise contracts distribution distances (KL
divergence) in the following sense:

Dk (pel|pe) < Dxi(pe || p), VE>1t. 3)

In fact, as t — oo, we have that: Dy, (p: || p:) — 0, as both distributions converge to the same
Gaussian. We now define the concept of merging of two distributions towards the same measure.

Definition 3.1 (e-merged) We say that two distributions, p and p are e-merged, if the KL distance
between the two is upper-bounded, by ¢, i.e., if Dxr,(p || p) < e

Similarly, we define the merging time of two distributions as the minimal amount of noise we need to
add such that the two distributions become e-merged. Formally,
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Definition 3.2 (e-merging time) Let two distributions p, p. We define their e-merging time as follows:
tn(p, P, €) = inf{t : Dxr(p* N(0,0(t)*I) || p+ N(0,0(t)*]) < e}

Assuming we can estimate the e-merging time between two distributions p and p, our key idea is to
treat samples from p; as approximate samples from p; for all timesteps ¢ > ¢,,(p, p, €). This idea is
illustrated in Figure 1. The intuition is that once the distributions have sufficiently merged under
noise, the residual shift becomes negligible and samples from p; can be used for learning p;. This
holds because: (i) the learning algorithm may not be sensitive to small distributional discrepancies at
high noise levels, and (ii) even if some bias is introduced, the remaining diffusion trajectory for times
t < tn(p,p,€) is robust to small initial distributional mismatch due to its inherent stochasticity.

Sample dependent noise levels. At a high level, our objective is to determine the e-merging time
between the distribution of AlphaFold-predicted structures and that of experimentally resolved
proteins. A key challenge arises from the fact that the AlphaFold distribution is highly heterogeneous
in structural fidelity—that is, the accuracy with which AlphaFold predicts the true protein structure
varies widely across samples. It is well established that short, structurally simple proteins are predicted
with higher confidence, while longer and more complex proteins tend to yield lower-confidence
predictions. This trend is illustrated in Figure[2B (Left). If we were to assign a single noise level across
the entire AlphaFold dataset, we would need to select a relatively high noise level to accommodate the
lowest-confidence predictions, particularly from long proteins. This would unnecessarily degrade the
training signal for high-confidence structures—regardless of protein length—and limit the model’s
ability to learn from clean supervision. To address this, we treat the AlphaFold dataset as a mixture
of K sub-distributions, q1, g2, ..., qx, each representing a distinct confidence regime. We then
assign each sub-distribution an appropriate noise level, sufficient to bring it e-close to the distribution
of high-confidence structures under the same noise schedule. This formulation allows the model
to effectively learn from high-confidence AlphaFold predictions and incorporate low-confidence
structures in a controlled manner, mitigating the degradation typically caused by noisy training data.

A natural way to decompose the AlphaFold distribution into a mixture of quality-specific sub-
distributions is to leverage AlphaFold’s self-reported confidence metric—the average predicted
Local Distance Difference Test (pLDDT) score—as a proxy for predicted structural fidelity. In

particular, given a dataset D = {(:r((f), pLDDT(l)) N |, we consider K distributions (where K is
a hyperparameter to be chosen) with empirical observations for the j-th distribution being all the
samples {(x((f), pLDDT(i)) : cfii)n < pLDDT(i) < c%&x}, for some hyperparameters cffﬁ)n, cg;)ix.
Choice of sub-distribution boundaries. In this work, we adopt a deliberately simple and conservative
strategy by partitioning the AlphaFold dataset into three discrete quality regimes based on the average
pLDDT score: high-quality proteins (pLDDT > 90), medium-quality proteins (pLDDT in [80, 90])
and low-quality proteins (pLDDT in [70, 80]). We acknowledge that this discretization is coarse and
that more principled alternatives may yield further improvements—for instance, by optimizing the bin
boundaries or learning a continuous mapping from pLDDT to diffusion time. Despite the simplicity
of our choices, our experimental results demonstrate that even a naive quality-aware decomposition
can lead to important gains in performance across both short and long proteins. There are two sources
of benefit over filtering methdos: 1) low-quality data (previously discarded) give diversity and 2) the
distinction we do between medium-quality and high-quality data increases designability.

Ambient Protein Diffusion Algorithm. Our algorithm takes as input a dataset of protein structures

together with their average pLDDT score, D = {(a:((f), pLDDT®)}N | a diffusion schedule, o'(t),
and a mapping function f : [0, 100] — R that translates the average pLDDT value of a protein to
its estimated e-merging time.

Annotation stage. The first step of the algorithm replaces each protein in the dataset with a noisy
version of itself, where the noise level is determined by mapping function f. After this transformation,
each protein can be treated as a sample from the target distribution convolved with a Gaussian at
its assigned noise level. Importantly, this corruption step is only performed once during dataset
preprocessing.

Loss function. After the annotation stage, we need to solve a training problem where we have data
corrupted at different noise levels with additive Gaussian noise, as in [12,|14]. Hence, we can use the
objective of Equation
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Figure 2: Reclustering the AFDB cluster dataset for generative protein modeling. (A) Starting
from the 2.3M clusters in the AFDB, we cluster the representatives with FoldSeek with alignment-type set to
TM-Align, TM threshold set to 0.5, and coverage set to 0.75. This results in 300K cluster (pLDDT > 70) from
which we keep the representatives for training. (B) pLDDT and protein length statistics for our new training
set. (C) Example of two protein clusters where two cluster members (red and blue) are superimposed with their
cluster representative (beige and cyan).

Instead of directly applying the loss, we first need to rescale each time ¢ to account for the vanishing
gradient effect that is due to the multiplicative factor a(t). Specifically, we need to rescale the loss at

a%(t) = (02(15)0*4% ‘We underline that this rescaling was not mentioned in
the original paper of Daras et al. [14}112], for training with noisy data. Yet, we find this rescaling
critical for the success of our method. We hypothesize that the authors of [12,|14] did not encounter
this issue because there were at most two noise levels considered, while in AF predicted protein
structures there is a whole spectrum of assigned noise levels based on the predicted quality (measured
by average pLDDT) of a protein structure. We provide further details about the loss implementation

in the supplement and pseudocode for our Algorithm in the Appendix.

time ¢ with: w(t) =

Uniform Protein Sampling in terms of diffusion times. To perform a training update for a diffusion
model, we typically sample a point from the training distribution and then we uniformly sample the
noise level t. However, since in our case we are dealing with noisy data, not all times ¢ are allowed
for a given protein, i.e. a protein with pLDDT(i) is only used for times t > f (pLDDT(i)). To
avoid spending most of the training updates on very noisy proteins, we opt for sampling first the
diffusion time and then select from the eligible proteins that can be used in that diffusion time. This
strategy ensures balanced coverage across the diffusion trajectory—from low to high noise—while
still leveraging the diversity of low-confidence structures (pLDDT < 80) in our training dataset.

Reclustering AFDB clusters for generative modeling applications. The AFDB cluster dataset []]
has been used to train several generative protein models [27,[19]. However, the original intent behind
the clustering was to study structure evolution across AFDB. Thus, the hyperparameters were chosen
to obtain clusters of homologous structures, and the authors report that 97.4% of pairwise comparisons
within clusters are conserved at the H-group (Homology) level of the ECOD hierarchical domain
classification (median TM-score 0.71). While these FoldSeek hyperparameters are well-suited for
evolutionary analysis of AFDB, we found that the AFDB cluster dataset has a significant degree of
structural duplication and near-duplication between clusters that are more distantly evolutionarily
related (see Figure 2C). This structural redundancy leads to an imbalanced training set, where
structural motifs from the larger protein superfamilies are overrepresented.

Given this finding, we hypothesized that the datasets for generative modeling of protein struc-
tures—particularly for backbone-based models— benefit more from clusters defined purely by
geometric similarity. To address this, we constructed a new clustering dataset derived from the AFDB
cluster representatives, with an exclusive focus on structural topology. Specifically, these are the
changes we made to the FoldSeek hyperparameters: switched the alignment-type from 3Di+AA to
TM-Align to improve fidelity, used a TM-score threshold of 0.5, and relaxed the alignment coverage
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Figure 3: Long protein generation performance. We fine-tune Ambient Protein Diffusion on proteins
up to 768 residues and sample sequences ranging from 300 to 800 residues. Ambient Protein Diffusion generates
diverse and designable structures across this length range with consistent performance.

from 0.9 to 0.75. We relaxed the alignment coverage to improve clustering of AlphaFolded proteins
with extended, unfolded N- or C-terminal regions (i.e., noodle tails) (Figure 2C). This approach
produced a more balanced dataset that samples structural folds more uniformly, independent of their
evolutionary relationships. Ablations showing the contribution of this reclustering versus our ambient
training approach are given in Figure 4]

4 Experimental Results

We build on the Genie2 codebase [[27]. Our model architecture follows the Genie2 architecture except
that it is scaled larger, using 8 triangle layers as opposed to 5. We follow Genie2’s schedule for
inference time sampling and diffuse for 1000 timesteps.

We train Ambient Protein Diffusion in 3 stages with increasingly longer proteins. In first stage, we
train on proteins from 50 to 256 residues for 200 epochs on our ambient clusters dataset using the
representatives (~ 196,000 proteins). Since we increased the batch size to 384 items, we adopted
a learning rate schedule to improve convergence [21]. We train with the AdamW optimizer with
a maximal learning rate of 1.0 x 10~*. During the second and third stage, we include additional
cluster representatives of at most 512 and 712 residues, which scales our dataset to ~269,000 and
~291,000 proteins respectively. Training is performed on 48 GH200 GPUs and runs in 18, 48, and 48
hours for each stage respectively. More hyperparameters and details about our evaluation metrics can
be found in the supplement. We underline that the computational cost of training our model, while
significant, is still relatively low compared to the Proteina’s estimated 14 days training on 128 A100
GPUs. This is due to the decreased size of our model (< 17M vs 200M) and training set (~ 290K
vs ~ 780K). We further note that our goal is to develop models that perform well across a range of
tasks, including long-protein generation, motif scaffolding, and more. To this end, we train only two
models for the purposes of this paper: one model optimized for long-protein generation (Figure [3)
and another optimized for short-protein generation (Figure [).

Comparisons on unconditional generation of longer proteins.

In Figure 3] we compare Ambient Protein Diffusion performance on generating backbone for proteins
with length ranging from 300 to 800 residues. To directly compare with Proteina on long-protein
generation, we adopt its three-stage training and evaluation protocol. During training, the maximum
sequence length is capped at 768 residues. For evaluation, we sample 100 protein backbones at each
target length and evaluate them using the designability and diversity metrics. Since Ambient Protein
Diffusion builds on Genie2, we use the same sampling procedure—running 1000 diffusion steps with
a noise scale of v = 0.6.

Ambient Protein Diffusion achieves designability and diversity scores exceeding 90% for proteins
between 300 and 500 residues, and maintains scores above 85% for lengths up to 700 residues. For
800-residue proteins, both metrics decline to 68%. Compared to Proteina, Ambient Protein Diffusion
outperforms by 26% in designability and 91% in diversity at length 700, and by 25% and 44%,
respectively, at length 800. At every protein length, Ambient Protein Diffusion’s diversity is equal to
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its designability, indicating that every designable protein is unique. This is not the case for Proteina,
where diversity scores consistently fall below designability, regardless of protein length.

Taken together, these results demonstrate the impact of ambient diffusion on backbone-based genera-
tive models and highlight the strength of Genie2’s equivariant architecture. Our 17M parameter model
trained on approximately 290K AlphaFold structures significantly outperforms a 200M-parameter
transformer model trained on roughly 780K proteins. Our results show that smaller, more efficient
models can surpass larger transformer baselines in both structural diversity and designability.

Comparisons on unconditional generation of shorter proteins. In this experiment, we evaluate the
model on the unconditional generation of shorter proteins in Figure[d] The Ambient Protein Diffusion
model used in this experiment was trained on a dataset filtered with a TM-Align threshold of 0.4 (as
opposed to 0.5), resulting in a training set of approximately 90K cluster representative proteins.

Following the Genie2 protocol, we generate 5 structures for each sequence length from 50
to 256 residues, yielding a total of 1,035 structures. The generated structures are eval-
uvated for both designability and diversity. In line with prior work, we sweep the noise
scale v to explore the tradeoff between designability and diversity. Ambient Protein Dif-
fusion outperforms previous methods on both metrics, establishing a new Pareto frontier
that achieves superior performance compared to all existing models, including Proteina.
While it is well known that protein
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ent Diffusion. We validate the effec-

tiveness of Ambient Diffusion in Fig- . . L

ure [5. For our ablation, we perform Figure 4: Designability - diversity trade-off for short
the identical three stages of training protein generation (up to 256 residues). Ambient dominates
on a model variant that performs stan- completely the Pareto frontier between designability and diversity,
dard diffusion training gs opposed to while using a 12.88 x smaller model. We further do so without

Ambient Diffusion. The Genie? base- using any higher-order sampler or (auto-) guidance method.

line is taken from the Proteina paper.

We find that while our two models per-

form similarly on proteins of 300 residues, the designability and diversity of a vanilla diffusion model
diminishes much more significantly with longer proteins. For proteins with 800 residues, the number
of designable clusters drops from 68% to 25%.

Comparisons on Motif Scaffolding. We additionally compare our method to prior work on motif
scaffolding in Figure [6, with full results provided in the supplement. Our evaluation follows the
Genie2 benchmark, which comprises 24 single-motif and 6 multi-motif design tasks [27} 40]. For
each task, we generate 1,000 scaffold samples using a noise scale of v = 0.45. A design is considered
successful if it (1) satisfies Genie2’s motif designability criteria and (2) preserves the motif with an
RMSD below 1A. Among successful designs, a scaffold is counts as unique if its TM-score is at
most 0.6 when compared to any other successful scaffold. A task is considered solved if at least one
successful scaffold is generated.

With v = 0.45, Ambient Protein Diffusion generates 1,923 unique successful scaffolds for single-
motif tasks, a significant improvement over Genie2’s 1,445 [27] and performs comparably to Pro-
tefna’s 2,094 [19]]. Notably, all methods solve a similar number of motifs — RFDiffusion solves 22 of
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Figure 6: Performance on Motif Scaffolding Tasks. We compare Ambient Protein Diffusion to state-of-
the-art models for motif scaffolding. The graphs show the number of unique successful scaffolds generated for
each single- and multi-motif task. No model produced successful scaffolds for 4JHW and 3NTN. Only Ambient
Protein Diffusion produced a valid solution for multi-motif scaffolding of 2B51.

the 24 tasks, while Ambient Protein Diffusion, Genie2, and Proteina each solve the same 23 tasks. For
multi-motif scaffolding, Ambient Protein Diffusion generates 89 unique successful structures across
5 of the 6 benchmark problems, outperforming Genie2, which produces 40 and solves 4. Ambient
Protein Diffusion performs particularly well on the IPRW_four motif (38 vs. 11 successful structures)
in which a scaffold is generated surrounding a calcium binding motif [38]]. Overall, Ambient Protein
Diffusion outperforms existing methods such as Genie2 and RFDiffusion on single-motif tasks and
matches the performance of a Protefna model optimized specifically for motif-scaffolding.

5 Conclusion

We introduced Ambient Protein Diffusion, a diffusion-based model for protein structure generation
that leverages low-confidence AlphaFold structures as a source of noisy training data. Ambient
Protein Diffusion enables the generation of long protein structures with unprecedented levels of
designability and diversity. Diversity increases as it can use low-confidence Alphafold structures
that are typically discarded and designability increases as we separate the pristine quality proteins
structures from the medium quality AlphaFold predictions. Ambient Protein Diffusion represents a
foundational step toward robust de novo protein design at more natural, biologically relevant lengths.
Despite progress, Ambient Protein Diffusion still favors generating alpha-helical structures and
developing techniques that address this bias is a crucial direction for future work.



355

356
357
358

359
360
361
362

363
364

365
366
367

368
369

371

372
373

374
375
376
377

378
379
380

381
382
383
384

385
386

387
388

389
390
391

392
393
394
395

396
397
398

399

401
402

References

[1] Asad Aali, Marius Arvinte, Sidharth Kumar, and Jonathan I Tamir. Solving inverse problems
with score-based generative priors learned from noisy data. arXiv preprint arXiv:2305.01166,
2023.

[2] Asad Aali, Giannis Daras, Brett Levac, Sidharth Kumar, Alex Dimakis, and Jon Tamir. Ambient
diffusion posterior sampling: Solving inverse problems with diffusion models trained on
corrupted data. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=qeXcMutEZY.

[3] Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982.

[4] Weimin Bai, Yifei Wang, Wenzheng Chen, and He Sun. An expectation-maximization al-
gorithm for training clean diffusion models from corrupted observations. arXiv preprint
arXiv:2407.01014, 2024.

[5] Inigo Barrio-Hernandez, Jingi Yeo, Jiirgen Jidnes, Milot Mirdita, Cameron LM Gilchrist, Tanita
Wein, Mihaly Varadi, Sameer Velankar, Pedro Beltrao, and Martin Steinegger. Clustering
predicted structures at the scale of the known protein universe. Nature, 622(7983):637-645,
2023.

[6] Jeremy M Berg, John L Tymoczko, and Lubert Stryer. Biochemistry (loose-leaf). Macmillan,
2007.

[7] Avishek Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-
Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and
Alexander Tong. Se (3)-stochastic flow matching for protein backbone generation. arXiv
preprint arXiv:2310.02391, 2023.

[8] Jose M Carceller, Bhumika Jayee, Claire G Page, Daniel G Oblinsky, Gustavo Mondragén-
Solérzano, Nithin Chintala, Jingzhe Cao, Zayed Alassad, Zheyu Zhang, Nathaniel White, et al.
Engineering a photoenzyme to use red light. Chem, 11(2), 2025.

[9] Xinshi Chen, Yuxuan Zhang, Chan Lu, Wenzhi Ma, Jiaqi Guan, Chengyue Gong, Jincai Yang,
Hanyu Zhang, Ke Zhang, Shenghao Wu, Kuangqi Zhou, Yanping Yang, Zhenyu Liu, Lan Wang,
Bo Shi, Shaochen Shi, and Wenzhi Xiao. Protenix - advancing structure prediction through a
comprehensive alphafold3 reproduction. bioRxiv, 2025. doi: 10.1101/2025.01.08.631967.

[10] Alexander E Chu, Tianyu Lu, and Po-Ssu Huang. Sparks of function by de novo protein design.
Nature biotechnology, 42(2):203-215, 2024.

[11] UniProt Consortium. Uniprot: a hub for protein information. Nucleic acids research, 43(D1):
D204-D212, 2015.

[12] Giannis Daras, Yuval Dagan, Alexandros G Dimakis, and Constantinos Daskalakis. Consistent
diffusion models: Mitigating sampling drift by learning to be consistent. arXiv preprint
arXiv:2302.09057, 2023.

[13] Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans.
Ambient diffusion: Learning clean distributions from corrupted data. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=wBJBLy9kBY.

[14] Giannis Daras, Alexandros G Dimakis, and Constantinos Daskalakis. Consistent diffusion
meets tweedie: Training exact ambient diffusion models with noisy data. arXiv preprint
arXiv:2404.10177, 2024.

[15] Giannis Daras, Yeshwanth Cherapanamjeri, and Constantinos Costis Daskalakis. How much is
a noisy image worth? data scaling laws for ambient diffusion. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=qZwtPEw2qN.

10


https://openreview.net/forum?id=qeXcMutEZY
https://openreview.net/forum?id=wBJBLy9kBY
https://openreview.net/forum?id=wBJBLy9kBY
https://openreview.net/forum?id=wBJBLy9kBY
https://openreview.net/forum?id=qZwtPEw2qN
https://openreview.net/forum?id=qZwtPEw2qN
https://openreview.net/forum?id=qZwtPEw2qN

403
404
405

407
408
409

410
411
412

413
414
415

416
417
418

419
420
421

422
423
424

425
426
427
428

429

431

432
433

434
435
436

437
438
439

440
441
442

443
444
445
446

447
448
449

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Daniel J Diaz, Anastasiya V Kulikova, Andrew D Ellington, and Claus O Wilke. Using machine
learning to predict the effects and consequences of mutations in proteins. Current opinion in
structural biology, 78:102518, 2023.

Daniel J Diaz, Chengyue Gong, Jeffrey Ouyang-Zhang, James M Loy, Jordan Wells, David
Yang, Andrew D Ellington, Alexandros G Dimakis, and Adam R Klivans. Stability oracle:
a structure-based graph-transformer framework for identifying stabilizing mutations. Nature
Communications, 15(1):6170, 2024.

Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael Curtis McThrow, Tao Komikado,
Koji Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for
protein structure generation. In Learning on Graphs Conference, pages 29-1. PMLR, 2024.

Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim,
Mario Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, et al. Proteina: Scaling
flow-based protein structure generative models. arXiv preprint arXiv:2503.00710, 2025.

Chengyue Gong, Adam Klivans, James Madigan Loy, Tianlong Chen, Daniel Jesus Diaz, et al.
Evolution-inspired loss functions for protein representation learning. In Forty-first International
Conference on Machine Learning, 2024.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Maria Hauser, Martin Steinegger, and Johannes S6ding. Mmseqs software suite for fast and
deep clustering and searching of large protein sequence sets. Bioinformatics, 32(9):1323-1330,
2016.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail,
Vincent Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illumi-
nating protein space with a programmable generative model. Nature, 623(7989):1070-1078,
2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. nature, 596(7873):583-589, 2021.

Albert L Lehninger, David L Nelson, and Michael M Cox. Lehninger principles of biochemistry.
Macmillan, 2005.

Yeqing Lin and Mohammed AlQuraishi. Generating novel, designable, and diverse protein
structures by equivariantly diffusing oriented residue clouds. arXiv preprint arXiv:2301.12485,
2023.

Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of many, one: Designing
and scaffolding proteins at the scale of the structural universe with genie 2. arXiv preprint
arXiv:2405.15489, 2024.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123-1130, 2023.

Yi Liu, Sophie G Bender, Damien Sorigue, Daniel J Diaz, Andrew D Ellington, Greg Mann,
Simon Allmendinger, and Todd K Hyster. Asymmetric synthesis of a-chloroamides via
photoenzymatic hydroalkylation of olefins. Journal of the American Chemical Society, 146(11):
7191-7197, 2024.

Haoye Lu, Qifan Wu, and Yaoliang Yu. SFBD: A method for training diffusion models with

noisy data. In Frontiers in Probabilistic Inference: Learning meets Sampling, 2025. URL
https://openreview.net/forum?id=6HN14zuHRb.

11


https://openreview.net/forum?id=6HN14zuHRb

450
451
452

453
454

456
457

458
459

460
461
462

463
464
465
466

467
468
469

470
471
472

473
474
475

476
477
478

479
480

481
482
483

484
485

486
487
488

[31] Jeffrey Ouyang-Zhang, Daniel Diaz, Adam Klivans, and Philipp Krihenbiihl. Predicting a
protein’s stability under a million mutations. Advances in Neural Information Processing
Systems, 36:76229-76247, 2023.

[32] Jeffrey Ouyang-Zhang, Chengyue Gong, Yue Zhao, Philipp Krihenbiihl, Adam R Klivans, and
Daniel J Diaz. Distilling structural representations into protein sequence models. bioRxiv, pages
2024-11, 2024.

[33] Frangois Rozet, Gérdme Andry, Francois Lanusse, and Gilles Louppe. Learning diffusion priors
from observations by expectation maximization. arXiv preprint arXiv:2405.13712, 2024.

[34] Kulin Shah, Alkis Kalavasis, Adam R. Klivans, and Giannis Daras. Does generation require
memorization? creative diffusion models using ambient diffusion, 2025.

[35] Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Cameron LM
Gilchrist, Johannes Soding, and Martin Steinegger. Foldseek: fast and accurate protein structure
search. Biorxiv, pages 2022-02, 2022.

[36] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, S0(D1):D439-D444, 2022.

[37] Chentong Wang, Yannan Qu, Zhangzhi Peng, Yukai Wang, Hongli Zhu, Dachuan Chen, and
Longxing Cao. Proteus: exploring protein structure generation for enhanced designability and
efficiency. bioRxiv, pages 2024-02, 2024.

[38] Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M Castro,
Robert Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung Baek, et al. Scaffolding protein
functional sites using deep learning. Science, 377(6604):387-394, 2022.

[39] Yifei Wang, Weimin Bai, Weijian Luo, Wenzheng Chen, and He Sun. Integrating amortized
inference with diffusion models for learning clean distribution from corrupted images. arXiv
preprint arXiv:2407.11162, 2024.

[40] Joseph L. Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089—-1100, 2023.

[41] Carter J Wilson, Wing-Yiu Choy, and Mikko Karttunen. Alphafold2: a role for disordered
protein/region prediction? International Journal of Molecular Sciences, 23(9):4591, 2022.

[42] Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu,
and Ava P Amini. Protein structure generation via folding diffusion. Nature communications,
15(1):1059, 2024.

[43] Jinrui Xu and Yang Zhang. How significant is a protein structure similarity with tm-score= 0.5?
Bioinformatics, 26(7):889-895, 2010.

[44] Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna,
Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al.
Fast protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297,
2023.

12



490

491

492
493

494

497
498
499

500
501
502

503
504

505
506

507

508

509

510

511

512
513
514

515
516
517
518
519

524

538

539
540

541

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are validated in the experi-
mental results

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide thorough implementation details in the paper and supplement.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code and data will be released upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide thorough implementation details in the paper and supplement.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our evaluation follows the standard deterministic benchmarking setup com-
monly used in the protein design literature.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We detail the compute requirements in the implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have reviewed the ethics guidelines and find our paper conforms.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See conclusion section
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All existing models and datasets are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: New datasets, code, and models will be released upon publication.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM are not part of the core method.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Evaluation Metrics

Evaluation of a protein generative model is challenging and there have been a few metrics that have
been proposed. In what follows, we explain standard metrics in the protein-generative modeling
literature that we will use in our Experimental Results section. Our experiments report using Proteina’s
definitions of the metrics when possible.

Designability (also referred to as refoldability) assesses the structural plausibility of generated
proteins. Given a generated backbone, ProteinMPNN [1]] generates eight plausible amino acid
sequences for that backbone. ESMFold then folds each sequence and the resulting eight structures
are compared to the original backbone. The self-consistency RMSD (scRMSD) is defined as the
smallest root mean squared deviation between the generated backbone and each of the eight refolded
structures. A backbone is considered designable if scRMSD < 2 A and designability is defined as
the percentage of generated backbones that meet this criterion.

Diversity quantifies the structural variability among the generated proteins. Designable backbones
are clustered using Foldseek with a TM-score threshold of 0.5. Diversity is then defined as:

Number of Designable Clusters

Diversity = .
ety Number of Designable Samples

This metric reflects the proportion of structurally distinct (i.e., non-redundant) designable backbones
among all designable samples.

B Secondary Structure conditioning

Previous work [2] has explored conditioning protein structure generation on CATH labels, a form of
hierarchical classification derived from the orientation and spatial organization of protein secondary
structures [15]. In this setting, every residue in a protein sequence is typically assigned the same CATH
label. In contrast, we propose a more fine-grained approach. Rather than relying on the manually
curated and coarse-grained CATH classification, we condition our model directly on secondary
structure annotations at the residue level. Each residue is assigned a label corresponding to its local
secondary structure (e.g., helix, strand, coil), allowing the model to leverage localized structural
context during generation.

We train a variant of our model with partial conditioning, in which the model is conditioned on
the secondary structure sequence, without introducing any additional modifications to the input or
architecture. We show designable samples conditioned on the secondary structure extracted from real
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Figure 1: Qualitative visualizations of unconditional generations. Our model is capable of
producing diverse, multi-domain long proteins.
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Figure 2: Secondary Structure Conditioned Samples. We generate proteins using a model variant
trained with secondary structure conditioning. To guide generation, we extract secondary structure
strings from existing proteins and use this coarse-grained structural representation as input. This
conditioning enables the model to produce diverse and designable protein structures.

proteins in Figure 2. These results demonstrate that, even with coarse-grained secondary structure
conditioning, our model can generate long, diverse proteins exhibiting a wide range of folds.

C Model and Training Hyperparameters

Table [T)includes a more thorough list of the hyperparameters used for our experiments.

D Full Motif Scaffolding Results

Table [2/and table[3 represent the numbers of unique successful scaffolds generated by Genie2 [3],
RFDiffusion [6], Proteina [2] and Ambient Protein Diffusion for each motif in the benchmark dataset
in Genie2.

E Full Training Algorithm and Implementation Details
E.1 Additional Implentation Details

Loss buffer. The loss rescaling introduced in the main paper ensures balanced weighting across
noise levels. At the same time, it also introduces a potential instability: the loss explodes as o (t)
approaches o (¢;). To mitigate this instability, we define a buffer zone around each protein’s assigned
noise level. Specifically, given a protein’s assigned noise level ¢, it is only used during training at
timesteps ¢ + 7, where T is a buffer hyperparameter that controls the exclusion margin. This constraint
prevents the model from encountering degenerate gradient behavior near the rescaling boundaries
and is only applied to medium and low confidence structures (pLDDT < 90). We underline that is
similar to how in normal diffusion there is a buffer time zone around ¢ = 0 that is never sampled.

Ambient in high-noise regime. As explained in the main paper, each protein is only used for a subset
of diffusion times according to its average pLDDT value. The proteins that have super high PLDDT
(> 90) are considered clean data and can be used with the normal training objective. However, as
found in [4], using the Ambient training objective for high-noise might be useful even if clean data is
available. Intuitively, this objective prevents memorization and promotes diversity in the outputs. We
ablated this design choice, and we found a slight increase in diversity for the same designability by
using this. Hence, we used this tool from [4] for all our Ambient Protein Diffusion trainings.

E.2 Algorithm

We provide the full algorithm in Algorithm (1] We commit to open-sourcing our code and models to
facilitate the broader adoption of our method from the community.



Hyperparameter Genie2 Ambient (Stage 1) Stage 2 Stage 3
Diffusion
Number of timesteps 1,000 - - -
Noise schedule Cosine - - -
Ambient walls - (600,900) (600,900) (600,900)
Model Architecture
Single feature dimension 384 - - -
Pair feature dimension 128 - - -
Pair transform layers 5 8 8 8
Triangle dropout 0.25 - - -
Structure layers 8 - - -
Training
Optimizer AdamW - - -
Number of training proteins 586k 196k 269k 291k
Number epochs 40 200 50 20
Warmup iterations 10,000 1,000 500 100
Total batch size 384 384 96 48
Learning rate 1.0 x 1074 1.0 x 1074 1.0x107°% 1.0x1075
Weight decay 0.05 - - -
Minimum protein length 20 20 50 50
Maximum protein length 256 256 512 768
Minimum mean pLDDT 80 70 70 70
Compute Resources
Number of GPUs 48 48 48 48
Training time 18 hr 18hr 48hr 48hr

Table 1: Hyperparameters of the diffusion protein model. Dashes (-) indicate that the value is
the same as the previous column. The Ambient walls correspond to the assigned diffusion times
based on the protein’s PLDDT (times are from 1 to 1000). Proteins with PLDDT > 90 are used
everywhere. Proteins with PLDDT > 80 are used for times in [600, 1000] and proteins with PLDDT
> 70 are used for times in [900, 1000]. We underline that these hyperparameters were not particularly

optimized, and even more benefits might be observed by properly tuning these values.



Motif Name Genie2 RFDiffusion Proteina Ambient Protein Diffusion

6E6R_long 415 381 713 601
6EXZ_long 326 167 290 432
6E6R_med 272 151 417 406
1YCR 134 7 249 146
STRV_long 97 23 179 119
6EXZ_med 54 25 43 69
7TMRX_128 27 66 51 44
6E6R_short 26 23 56 27
S5TRV_med 23 10 22 23
TMRX_85 23 13 31 17
3IXT 14 3 8 4
5TPN 8 5 4 11
TMRX_60 5 1 2 1
1QJG 5 1 3 5
STRV_short 3 1 1 3
S5YUI 3 1 5 4
47ZYP 3 6 11 3
6EXZ _short 2 1 3 3
1PRW 1 1 1 1
SIUS 1 1 1 1
1BCF 1 1 1 1
SWN9 1 0 2 1
2KLS8 1 1 1 1
4JHW 0 0 0 0
Total 1445 889 2094 1923

Table 2: Detailed single motif scaffolding results. Ambient Protein Diffusion achieves superior
results to Genie 2 and RFDiffusion and performs on par with Proteina. Crucially, our model achieves
these results zero-shot, i.e., unlike Proteina, it is not optimized for motif scaffolding and still achieves
comparable performance while being an order of magnitude smaller.

Motif Name Genie 2 Ambient Protein Diffusion

3BIK+3BP5 17 23
1PRW_four 11 38
1PRW_two 8 15
4JHW+5WN9 4 12
2B5I1 0 1
3NTN 0 0
Total 40 89

Table 3: Multi-motif scaffolding results. Ambient Protein Diffusion achieves consistently superior
results to the predecessor Genie-2 model, despite using the same architecture, i.e. the benefit comes
from better use of the data. The motif 2B5I is only solved by Ambient Protein Diffusion.
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Algorithm 1 Ambient Protein Diffusion: Training Algorithm.

Require: untrained network hy, dataset D = {(:c(()i), pLDDT®)}N pLDDT to diffusion time
mapping function f : [0,100] — R*, noise scheduling o(¢), batch size B, diffusion time T,
buffer 7.

I: D« { (xg” + f(pLDDT®)e, f(pLDDT(“)) (2, pLDDT®) € D, ) ~ (0, Id)}
Noise each point in the training set according to its pLDDT and get (noisy, noise level) pairs.

2: while not converged do
3 tgl), ey 1B Sample uniformly B times in [0, 7] > Sample diffusion times for this batch.
4: D, + shuffle(D) > Shuffle dataset.
5: loss < 0 > Initialize loss.
6: pos + 0 > Initialize index at shuffled dataset.
7 for i € [1, B] do
8 while True do > find the first eligible point
9: Yy, ty < Dp[pos]
10: ift, >t + 7 then
11: break
12: else
13: pos ¢ pos + 1 > Move to the next point in the dataset.
14: end if
15: end while
16: e~N(0,1) > Sample noise.
17: t <+ t( 2 > Time to be used in this training update.
18: t; + t > Assigned time based on the PLDDT value
19: Ty, > Noised point to the assigned time.

20: Xy Ty, + \/03(t > Add additional noise.

21: at, t;) « %

22: w(t, t;) < wz(t;j% > Loss reweighting.

23: loss < loss + w(t, t;) [|a(t, t;)he (x4, t) + (1 — ault, t;))ay — a4, || > Ambient loss
24: end for

25: loss 1°§b > Compute average loss.
26: 0 < 6 —nVyloss > Update network parameters via backpropagation.

27: end while
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