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ABSTRACT

Momentum-based optimization methods, such as Heavy-Ball (HB) and Nesterov’s
accelerated gradient (NAG), are essential in training modern deep neural net-
works. This work sheds light on the learning dynamics of momentum-based
methods and how they behave differently than standard gradient descent (GD)
in theory and practice. A promising approach to answer this question is investi-
gating the continuous differential equations to approximate the discrete updates,
an area requiring much attention for momentum methods. In this work, we take
HB as a case study to investigate two important aspects of momentum methods.
First, to enable a formal analysis of the Heavy-Ball momentum method, we pro-
pose a new continuous approximation, HB Flow (HBF), with a formulation that
allows the control of discretization error to arbitrary order. As an application of
HBF, we leverage it to investigate the implicit bias of HB by conducting a series of
analyses on the diagonal linear networks to inspect the influence of momentum on
the model’s generalization property. We validate theoretical findings in numerical
experiments, which confirm the significance of HBF as an effective proxy of mo-
mentum methods to bridge between discrete and continuous learning dynamics.

1 INTRODUCTION

Gradient descent (GD) and its variants momentum methods, such as Polyak’s Heavy-Ball momen-
tum (HB) [31], Nesterov’s method of accelerated gradients (NAG) [27], and Adam [17], are at the
core of the success of training deep neural networks. However, analyzing such discrete learning
dynamics is challenging. Thus there is an extensive body of work in developing continuous ap-
proximations of GD and SGD (stochastic version of GD) [1; 2; 4; 5; 9; 14; 16; 22; 23; 24; 25].
These works advanced our understanding of the black-box generalization ability of the highly over-
parameterized deep neural networks trained by GD and SGD. Despite the progress in analyzing GD,
it remains unclear when and why momentum methods are effective. As momentum methods are
now essential in many practical scenarios, such as the training of Transformer-based models [37],
there is a critical need to understand the working mechanism of momentum methods.

Existing approaches for analyzing momentum methods typically use continuous differential equa-
tions to approximate discrete iterative updates. Representative works in the area include [19; 20; 33;
35; 40], which developed several second-order ODEs to analyze the convergence properties of HB
and NAG. [18] demonstrated that the continuous approximation of HB and NAG, which solves the
optimization problem minβ L(β), can be expressed as a rescaled gradient flow (RGF):

β̇ = −∇L(β)
1− µ

, (1)

where L is the objective function and µ is the momentum factor. Despite its convenience for studying
discrete momentum methods, this approximation has two fundamental drawbacks. First, it overlooks
a substantial portion of discretization error when approaching the continuous limit. Second, it is
insufficient to differentiate between HB and GD due to its overly simplified nature. For example,
the solutions of Eq. (1) and the gradient flow β̇ = −∇L are similar, suggesting that GD and HB will
converge to similar points. However, this is inconsistent with actual behavior (Fig. 1(a)), where GD
and HB behave differently and converge to different points.

To address these issues, the recent work [11] adopted backward error analysis [4; 13] to construct
a continuous equation for HB as a perturbed version of Eq. (1) that admits smaller discretization
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error. While promising, these approaches still do not account for the gaps between actual discrete
algorithms and their continuous approximations. Furthermore, these results are model-agnostic and
do not consider other aspects of training, such as model architectures for specific learning tasks.

To this end, we develop HB Flow (HBF), a novel continuous approximation of the HB momentum
method. HBF is designed to be arbitrarily close to HB (see Definition 2.1 for a formal definition).
Specifically, we add a perturbation term to cancel the discretization error to the improved version of
Eq. (1). This term helps to fill the gap between our continuous approximation and the discrete HB.
We emphasize that one can control the precision of HBF as a proxy of the discrete learning dynamics
of HB to arbitrary orders. Our approximation provides a more reliable foundation for continuously
analyzing the less well-studied momentum methods.

In addition, we highlight that one immediate benefit of HBF is that we can apply it to analyze various
intriguing properties of HB while the direct study of discrete learning dynamics is cumbersome.
Among these properties, an important one is its implicit bias—the preference for particular solutions
among all possible ones. For GD/GF, there are already abundant results for understanding their
implicit bias for diagonal linear networks [3; 10; 29; 30; 41; 42], a non-convex setting that shares
similar properties with more complex neural networks. As an interesting application of the proposed
HBF, we analyze the implicit bias of HB for this popular model through the HBF to arbitrary orders
of discretization error.

Contributions. Our primary contribution is a continuous approximation of HB, namely HBF, that
can be arbitrarily close to the discrete learning dynamics of HB (Theorem 3.1). HBF provides a reli-
able foundation for analyzing HB in a continuous manner. We also present the comparison between
HBF and continuous approximation of GD to different orders of approximation, as summarized in
Table 1. In addition, as an application of HBF, we explicitly investigate the implicit bias of HBF for
the diagonal linear network (Theorem 4.1 for arbitrary order of approximation and Corollary 4.2 for
order 2) and reveal its difference compared to that of GF. Our findings are helpful for the understand-
ing of the crucial while less studied implicit bias of momentum methods in a non-convex setting.
This indicates the importance of the proposed HBF as a proxy of HB for analyzing its properties.

RELATED WORKS

The backward error analysis was applied to GD in [4] where the implicit gradient regularization
effect was also proposed. With a similar idea, [25; 32] further developed continuous approximations
of GD with discretization error that can be arbitrarily smaller. [33; 35; 39; 40] constructed con-
tinuous ODEs for momentum methods and primarily focused on the convergence aspects. [18; 11]
studied the discretization error of continuous time limit of HB to the first 2 orders. [6] focused on the
continuous limit of Adam. As a comparison, we firstly propose the HBF that can be O (ηα)-close
to the discrete learning dynamics of HB.

The implicit bias of GD for various deep neural networks has been widely studied in, e.g., [16;
21; 34; 42] for linear networks and [7; 24; 26] for homogeneous networks. For diagonal linear
networks, [3; 10; 29; 30; 41] examined the implicit bias of GD and revealed the interesting transition
from kernel to rich regime by altering the scale of initialization. As a comparison, the study of
implicit bias of momentum methods is not as fruitful as that of GD. [38; 12] investigated momentum
methods for single-layer linear network and showed that they share a similar implicit bias with GD.
[15] showed that momentum leads to better generalization in a special setting. The recent work
[28] studied HB for diagonal linear networks using continuous approximation that is O (η)-close
to the discrete HB. To achieve a better understanding of the momentum methods for deep neural
networks, in this paper, we characterize the implicit bias of HB for diagonal linear networks through
the proposed HBF to arbitrary order of discretization error, which is absent in previous works, and
compare it with that of GF to explicitly reveal their difference.

2 PRELIMINARIES

Notations. For a vector β ∈ Rd that depends on time t, we use β̇ and β̈ to denote its first and
second derivative with respect to time t, respectively. We use βj to denote its j-th component and
∥β∥p for its ℓp-norm. We use α ·β to denote the inner product and⊙ to denote elementwise product.
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Heavy-Ball momentum method. HB [31] employs a two-step updating scheme [36], rather than
the one-step manner of GD. Particularly, HB first accumulates the history of past iterations before
updating the model parameter β ∈ Rd, i.e., mk+1 = µmk − η∇L(βk), βk+1 = βk +mk+1 where
µ ∈ (0, 1) is the momentum factor, η is the step size, k is the iteration number, and m ∈ Rd is the
momentum, which can be further written in a single equation

βk+1 = βk − η∇L(βk) + µ (βk − βk−1) . (2)

To characterize the gap between the discrete learning dynamics of HB and its continuous approxi-
mation, we adopt the following definition.

Definition 2.1 (O (ηα)-close continuous approximation of HB). Let βk be the sequence given by
Eq. (2) and tk = kη. Given α ≥ 1, an ODE whose solution is β(t) is O(ηα)-close continuous
approximation of the discrete HB Eq. (2) if for a constant C(T ) > 0 the supreme of the discretization
error

sup
0≤tk≤T

|β(tk)− βk| ≤ C(T )ηα.

3 CONTINUOUS APPROXIMATION OF MOMENTUM METHODS

In this section, we will propose a continuous differential equation that can be arbitrarily close to the
discrete learning dynamics of HB. Our initial attempt is based on [18], where the authors showed
that the O (η)-close continuous approximation of HB is equivalent to a rescaled version of GF. To
coincide with such observation and more precisely characterize the gap between HB and its continu-
ous approximation, one may attempt to directly model HB by perturbing the RGF with an additional
term that accounts for the discretization error using the backward error analysis [4]. However, this is
problematic due to the fact that each iteration of momentum methods exploits the history of previous
iterations, which renders the local error analysis unreliable since it ignores previous updates.

To address this difficulty and establish a more approachableO (ηα)-close continuous approximation
of HB for any α ≥ 1, inspired by [25] which was originally designed for GF only locally , we
propose a HB Flow (HBF)

β̇ = −Gk(β)− ηγk(β), for t ∈ [tk, tk+1) (3)

to perform a global analysis instead of directly utilizing the backward error analysis in [4], which was
previously discussed in [11]. In Eq. (3), k denotes the iteration number for the corresponding discrete
updates, tk = kη, Gk depends on k, and γk accounts for the discretization error and also depends
on k. The dependence on the iteration number k of Eq. (3) indicates its piece-wise approximation
nature, which will be made clearer in Theorem 3.1. Note that such dependence on the history of
iterations also makes the analysis of the arbitrary order continuous approximation more challenging
when compared to the case of GD, where each iteration only incorporates the information of the
current gradient, i.e., β̇ = −∇L(β)− ηγ(β).

We now roughly outline the desired properties of a reliable HBF, then present the main results in
Section 3, and defer the detailed technical proofs to Appendix A. Recall that in Definition 2.1 βk is
the sequence given by HB (Eq. (2)) and β(t) is the solution given by the HBF (Eq. (3)), we aim to
find a γk(β) that leads to a small discretization error εk = β(tk) − βk to make the HBF a precise
approximation of HB. For this purpose, considering the O (η) approximation of HB Eq. (1), we
expect that for our HBF Gk should have a form similar to ∇L(β)/(1 − µ) while ηγk(β) should
cancel the higher-order discretization error brought by the continuous approximation.

Specifically, for solution β given by Eq. (3) and tk = kη, Taylor expansion provides us

β(tk+1)− β(tk) = ηβ̇(t+k ) + η2I+k = −ηGk − η2γk + η2I+k (4)

where t+k means we approximate tk from t > tk, I+k =
∫ 1

0
β̈ (η(k + τ)) (1 − τ)dτ , and we apply

Eq. (3) in the second equality. Similarly, β(tk)−β(tk−1) = −ηGk−1−η2γk−1−η2I−k . Combined
with Eq. (4), we are able to give the relation between εk and εk−1. Suppose that we can further find
γk such that εk − εk−1 = O (ηα) and εk = O (ηα) by induction, then we can show that the HBF in
Eq. (3) is O (ηα)-close to the discrete HB learning dynamics.
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3.1 HBF WITH ARBITRARY ORDER CLOSENESS TO HB

It is now left for us to find the desired γk ∈ Rd and Gk ∈ Rd, which should consider the history
of previous iterations and can degenerate into RGF, and reveal that the obtained HBF by doing
so is indeed an O (ηα) continuous approximation of HB. Below we formalize the aforementioned
discussion and give the detailed expressions of Gk and γk in a recursive manner.

Theorem 3.1 (HBF withO (ηα) closeness to HB). Let k be the iteration number, η be the step size,
and tk = kη, then the discretization error between the discrete HB momentum method Eq. (2) and
the piece-wise HBF

β̇ = −Gk(β)− ηγk(β), for t ∈ [tk, tk+1)

is O (ηα) for α ≥ 1, i.e., HBF is O (ηα)-close continuous approximation of HB according to Defi-
nition 2.1, when

Gk = µGk−1 +∇L, γk =

α−2∑
σ=0

ησγ
(σ)
k , (5)

where the construction of Gk intuitively resembles the discrete learning dynamics of HB1 and we
define the following notations to make the above expressions more concise:

γ
(σ)
k =

k∑
j=0

µk−jχ
(σ)
j , γ

(−1)
k = Gk, L

(k,σ)
β = γ

(σ−1)
k · ∇, χ(0)

0 =
(1 + µ)

2
G0∇G0

Sm,σ = {(σ1, . . . , σm)|
m∑
i=1

σi = σ −m+ 2,∀i : σi ∈ Z+} (6)

χ
(σ)
j =

σ+2∑
m=2

∑
(σ1,...,σm)∈Sm,σ

1

m!

[
(−1)mL

(j,σ1)
β · · ·L(j,σm−1)

β γ
(σm−1)
j

+ µL
(j−1,σ1)
β · · ·L(j−1,σm−1)

β γ
(σm−1)
j−1

]
.

Comparison with GD. The gradient appeared in the continuous approximation of GD [25] is
replaced by Gk in our HBF, which depends on the iteration number k and can be further simplified
as

Gk =
1− µk+1

1− µ
∇L. (7)

This difference is because each iteration of HB depends on the history of previous iterations. Such
dependence is also reflected in the form of γ(σ)

k : it incorporates information of all previous χ(σ)
j with

j ≤ k as shown in Eq. (6). By letting µ = 0, all the dependence on k will disappear and our results
can recover those of GD. Interestingly, it is worth to mention that the difference between HBF and
the continuous approximations of GD is closely related to the powers of η(1 + µ)/(1 − µ)2 as we
will show in Section 3.2.

Arbitrary order continuous approximation of HB. We note that Gk ≈ ∇L/(1 − µ) for large k,
which is consistent with the RGF in theO (η) continuous approximation of HB. Aside from this, we
emphasize that HBF is more than just a rescaled version of GF—the differences are hidden in the
higher order terms. Our results generalize the O (η) continuous approximation Eq. (1) and O

(
η2
)

approximation of HB. In this sense, Theorem 3.1 provides a more reliable foundation for analyz-
ing the rather less well-studied momentum methods through a continuous learning dynamics—it
precisely indicates the extent of discrepancy between the results of HBF and the discrete ones. Par-
ticularly, to obtain a HBF that is O (ηα)-close to HB, one only needs to truncate the series of γk to
the order of α−2. As an important application, in Section 4, we will apply Theorem 3.1 to precisely
characterize the implicit bias of momentum methods for diagonal linear network, a popular deep
learning model that exhibits many insightful phenomena, such as the transition from kernel regime
to rich regime that is common in more complex architectures.
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εk = O (ηα) GD HB

α = 1 β̇ = −∇L β̇ = − ∇L
(1−µ) [18]

α = 2 β̇ = −∇L− η∇L·∇2L
2 [4] β̇ = − ∇L

1−µ − η 1+µ
(1−µ)3

∇L·∇2L
2 Eq. (9) and [11]

α = 3 β̇ = −∇L− η∇L·∇2L
2 β̇ = − ∇L

1−µ − η 1+µ
(1−µ)3

∇L·∇2L
2

−η2
[
ω1

4 + ω2

12

]
[25; 32] −η2(1+µ)2

(1−µ)5

[
ω1

4 + (1+10µ+µ2)ω2

12(1+µ)2

]
Eq. (10)

Arbitrary α [25; 32] Theorem 3.1 of this work

Discrete βk+1 = βk −∇L(βk) βk+1 = βk − η∇L(βk) + µ (βk − βk−1)

Table 1: Continuous approximations for GD and HB up to different orders of discretization error.

3.2 O (ηα)-CLOSE HBF FOR α = 2, 3

There are basically three steps for finding a HBF that is O (ηα)-close to HB: (1). truncate γk to the
desired order α, i.e, γk =

∑α−2
σ=0 γ

(σ)
k ; (2). from the smallest σ = 0 to σ = α− 2, find all χ(σ)

j with
j ≤ k by identifying the corresponding Sm,σ with m = {2, . . . , σ + 2} for each σ; (3). derive the
expression of γ(σ)

k for all σ ≤ α−2 in a recursive manner using the relation γ
(σ)
k =

∑k
j=0 µ

k−jχ
(σ)
j .

Following this approach, one can find HBF that is O (ηα)-close to HB for arbitrary α. In this
section, we give the HBF with discretization error to the first several orders, i.e., α = 2, 3. We also
summarize these results in Table 1. Note that the case for α = 1 states that HBF is a RGF, i.e.,
β̇ = −∇L/(1− µ), which might not fully characterize the difference between momentum methods
and vanilla GD.

HBF for α = 2. According to Theorem 3.1, there is only one term in the series of γk, i.e., γ(0)
k .

Recall that Lk,0
β = Gk · ∇ and there is only one element in the set Sm=2,σ=0, i.e., Sm=2,σ=0 =

{(σ1 = 0, σ2 = 0)}, we obtain for j ≥ 1 : χ
(0)
j = 1

2

[
Lj,0
β γ

(−1)
j + µLj−1,0

β γ
(−1)
j−1

]
. Thus, using the

definition of Lj,0
β and γ

(1)
j in Theorem 3.1, we can immediately derive that

γk = γ
(0)
k =

∇L · ∇2L

2(1− µ)2

k∑
j=0

µk−j [(1− µj+1)2 + µ(1− µj)2
]
. (8)

Typically the iteration number k is large, therefore we further simplify the form of γk for large
iteration number k: γk ≈ 1+µ

(1−µ)3
∇L·∇2L

2 . This gives us HBF that is O
(
η2
)
-close to HB:

β̇ = − ∇L
1− µ

− η
1 + µ

(1− µ)3
∇L · ∇2L

2
, (9)

which is consistent with the O
(
η2
)
continuous approximation of HB in [11] while our derivation of

HBF is in a different approach. It is worth to mention that when µ = 0, HBF recovers the O
(
η2
)

continuous approximation of GD as expected.

HBF for α = 3. In this case we first truncate γk to the order σ = 1, i.e., γk = γ
(0)
k + ηγ

(1)
k .

Since we already have χ(0)
j in Eq. (8), we only need to find χ

(1)
k and γ

(1)
k , which can be done by first

finding the collection of sets Sm,σ for m = {2, 3} and σ = 1: S2,1 = {(σ1 = 1, σ2 = 0), (σ1 =
0, σ2 = 1)},S3,1 = {(σ1 = 0, σ2 = 0, σ3 = 0)}. We defer the detailed calculation to Appendix A

1pk = µpk−1 −∇L.

5
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and directly present the results here: γ(1)
k =

∑k
j=0 µ

k−j(Ψ
(1)
j +µΘ

(1)
j ) where, for convenience, we

let

Ψ
(1)
j =

1

2

(
γ
(0)
j · ∇2L+∇L · ∇γ(0)

j

)
− 1

6
∇L · ∇ (Gj · ∇Gj)

Θ
(1)
j =

1

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
− Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1)

6
.

For large k, let ω1 =
(
∇L · ∇2L

)
· ∇2L and ω2 = ∇L · ∇

(
∇L · ∇2L

)
, we can further simplify

the form of γ(1)
k as γ

(1)
k = (1+µ)2

(1−µ)5

[
ω1

4 + (1+10µ+µ2)ω2

12(1+µ)2

]
, which further gives us the HBF that is

O
(
η3
)
-close to HB:

β̇ = − ∇L
1− µ

− η
1 + µ

(1− µ)3
∇L · ∇2L

2
− η2

(1 + µ)2

(1− µ)5

[
ω1

4
+

(1 + 10µ+ µ2)ω2

12(1 + µ)2

]
(10)

According to Eq. (9), the O
(
η2
)

approximation shows that momentum induces a stronger implicit
gradient regularization (IGR, [4]), i.e., γHB = (1 + µ)/(1 − µ)3γGD where γHB is the implicit
regularization of HB while γGD is that of GD. For the O

(
η3
)
-close HBF we can conclude that

the difference between HB and GD is more complicated since HBF will rely more on ω2 which
primarily depends on∇3L than the continuous approximation of GD.

4 IMPLICIT BIAS OF MOMENTUM METHODS THROUGH HBF

The HBF proposed in Theorem 3.1 provides a reliable mathematical tool for analyzing a wide vari-
ety of properties of HB. A crucial while less well-studied aspect is its implicit bias, which is closely
related to the generalization ability. To demonstrate the significance of HBF and obtain a deeper
understanding of HB, in this section, we will characterize the implicit bias of HBF and reveal how
it is connected with other sources such as model architectures. In particular, we focus on HBF for
the diagonal linear network, a special deep neural network which shares several interesting phenom-
ena with more complex architectures. This makes our setting a non-convex one. We begin with
the definition of diagonal linear networks and a brief introduction of the corresponding regression
setting.

The formulation of diagonal linear networks. An L-layer diagonal linear network [41] with
parameter w = (w1,w2, . . . ,wL) where wl ∈ Rd for any l ∈ {1, . . . , L} is equivalent to a linear
predictor f(x;w) = xT (wL ⊙wL−1 ⊙ · · · ⊙w1). The diagonal linear network is a popular proxy
model of more complicated deep neural networks. In this section, we focus on the 2-layer case,
which, according to [41], induces an equivalent parameterization of w = w+ ⊙w+ −w− ⊙w−.

For our task, given a dataset {(xi, yi)}ni=1 with n samples where xi ∈ Rd and yi ∈ R, we assume
that n < d and consider the regression problem. The quadratic loss is used for the linear predictor
f(x;w) = xTw, i.e., the empirical loss is L(w+,w−) =

∑n
i=1(x

T
i w − yi)

2/(2n). We use X ∈
Rn×d to represent the data matrix and let y = (y1, . . . , yn)

T ∈ Rn. In the rest of this section, we
use the HBF obtained in Theorem 3.1 to investigate its implicit bias and compare it with that of GF,
which is discussed below.

Implicit bias of GF for diagonal linear networks. For theO (η) continuous approximation of GD,
i.e., GF, [3; 41] showed that, if the model parameter w of the aforementioned 2-layer diagonal linear
network converges to the interpolation solution and the initialization is w(0) = w+(0)⊙w+(0)−
w−(0) ⊙ w−(0) with w+(0) = w−(0), then the limit point of w is equivalent to the solution of
the constrained optimization problem w(∞) = argminw ΛGF(w;κGF), s.t. Xw = y where, let
κGF
j = w+;j(0)w−;j(0), the potential function ΛGF(w;κGF) =

∑d
j=1 Λ

GF
j (w;κGF) and

ΛGF
j (w;κGF) =

1

4

[
wj arcsinh

(
wj

2κGF
j

)
−
√

4(κGF
j )2 +w2

j + 2κGF
j

]
. (11)

Note that the scale of κGF controls the transition from rich regime to kernel regime, i.e.,
ΛGF(w;κGF)→ ∥w∥1 for small κGF while it approximates ℓ2-norm for large κGF [41].

6
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4.1 IMPLICIT BIAS OF HBF FOR DIAGONAL LINEAR NETWORKS

According to Theorem 3.1, the learning dynamics of the diagonal linear networks f(x;w) can be
written as

ẇ+ = −
∇w+

L

1− µ
− ηγ

w+

k , ẇ− = −
∇w−L

1− µ
− ηγ

w−
k (12)

where we use γ
w+

k ∈ Rd and γ
w−
k ∈ Rd to represent the error terms for HBF of w+ and w−,

respectively. Compared to the O (η) continuous approximation HBF, i.e., the RGF Eq. (1), Eq. (12)
has one extra term that accounts for the high-order discretization error. One can check that the
implicit bias of w under the RGF is similar to that of GF by following the approach in, e.g., [3].
However, this is not the case for HBF that is O (ηα)-close to HB for α ≥ 1 due to the γk terms,
which will be examined in the following.

Theorem 4.1 (Implicit bias of HBF for diagonal linear networks). If the dynamics of diagonal linear
network f(x;w) = xTw where w = w+ ⊙w+ −w− ⊙w− follows HBF defined in Theorem 3.1
and if w(∞) converges to an interpolation solution, let κj(t) = w+;j(0)w−;j(0) exp(−ηϵj(t))
where ϵj(t) =

∫ t

0
ds
(
γ
w+

k;j (s)/w+;j(s) + γ
w−
k;j (s)/w−;j(s)

)
and w+;j(0) = w−;j(0), then w(∞)

satisfies that
w(∞) = argmin

w
Λ(w;κ) s.t. Xw = y, (13)

where Λ(w;κ) =
∑d

j=1 Λj(w,∞;κ) and

Λj(w, t;κ) = ΛGF
j (w;κ(t)) +wjφj(t),

φj(t) =
η

4

∫ t

0

ds

(
γ
w+

k;j (s)

w+;j(s)
−

γ
w−
k;j (s)

w−;j(s)

)
.

(14)

Note that we assume w+(s) ̸= 0 and w−(s) ̸= 0 for the dynamics. An immediate application of
Theorem 4.1 shows that the implicit bias of O (η)-close continuous approximation of HBF Eq. (1),
i.e., RGF, is the same as that of GF by setting all the γ

w±
k as 0. In this sense, RGF is not sufficient

for the purpose of revealing the difference between the implicit bias of HB and GD through the
continuous approximations, which suggests that the higher-order HBF is a more discerning choice.

Comparison with the implicit bias of GF. Compared to the implicit bias of GF in Eq. (11), there
are two differences brought by the high-order correction terms of HBF: (1). the potential function
ΛGF
j (w;κGF) for GF becomes ΛGF

j (w;κ(∞)) for HBF where κ(∞) is different from κGF, mean-
ing that HBF induces an effect equivalent to a rescaling of the initialization κGF

j ; (2). Λj(w,∞;κ)
additionally depends on the product wjφj(∞). A similar term will appear in the potential function
of GF ΛGF if the initialization no longer satisfies w+(0) = w−(0)

2. In this sense, HBF also brings
an effect that is equivalent to breaking the symmetry of the initialization.

Implicit bias of higher order continuous approximations of GD. Another byproduct of Theo-
rem 4.1 is the implicit bias of higher-order continuous approximation of GD for diagonal linear
networks, which can be obtained by setting all µ appeared in γ

w±
k as 0. In this sense, compared

to GF, the implicit bias of higher-order continuous approximation of GD will also induce an ef-
fect that is equivalent to the modification of the initialization. Such effect has also been verified in
GD [10] (and, interestingly, SGF [29]) and further reveals the reliability of high-order continuous
approximations.

IMPLICIT BIAS OF HBF FOR DIAGONAL LINEAR NETWORKS WITH α = 2

We now focus on a special case α = 2 as an explicit example to investigate the implicit bias of HBF
and compare it with that of GF.

2One can show that ΛGF will also depend on wT c for some vector c if w+(0) ̸= w−(0) following a
similar approach.
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Corollary 4.2 (Implicit bias of O
(
η2
)
-close HBF for diagonal linear networks). Under conditions

of Theorem 4.1, if the O
(
η2
)
-close HBF is used, then

Λ(w;κ) =

d∑
j=1

ΛGF
j (w, κ) +

η(1 + µ)

4(1− µ)2
wT (∇wL(0)),

where

Φj = 4

∫ ∞
0

ds(∂wj
L)2 > 0, q ∈ Rd with qi =

√
w2

i (∞) + 4κ2
i (0)− 2κi(0)

and κj = κj(0) exp
[
η(1+µ)
(1−µ)2

(
−(1− µ)−1Φj +

(
XTXq

)
j
/n
)]

.

Corollary 4.2 suggests that κ, which controls the transition from kernel regime to rich regime,
is no longer the initialization κ(0). Considering terms in the exponent of κj(∞), when the
first term (the integral of (∂wL)2) is much larger than the second one, we can conclude that
κj(∞) ≈ κj(0) exp

(
− 4η(1+µ)

(1−µ)3
∫∞
0

ds(∂wj
L)2
)

< κj(0), i.e., the initialization is equivalently
decreased. As a result, Λ(w;κ) is closer to the ℓ1-norm thus the solution w(∞) will enjoy better
sparsity.

Implication for difference of implicit bias between HB and GD. Setting µ = 0 in Corollary 4.2
gives us the implicit bias of O

(
η2
)
-close continuous approximation of GD, i.e., IGR [4] Flow

(IGRF). Both IGRF and HBF have the initialization rescaling effect. The difference between them
is closely connected with the parameter η(1 + µ)/(1 − µ)2 and the value of Φ/(1 − µ). And the
discrepancy between the implicit bias of HB and that of GD will be more obvious for large value of
µ. These observations stand in contrast to the case for O (η)-close RGF, which cannot distinguish
the implicit bias of HB from that of GD. In particular, compared to GD, HB converges faster thus
Φ tends to be smaller for HBF than for IGRF, suggesting that, if HB converges too fast, κ would be
larger for HB and solutions of GD would enjoy better generalization properties. More interestingly,
considering the case where Φ ≫ XTXq/n, e.g., κ(0) ≫ w(∞) such that q ≈ 0, if HB does
not converge much faster than GD such that the difference of Φ between HBF and IGRF is not too
significant, then HB would enjoy better sparsity than GD since it has a coefficient (1+µ)/(1−µ)2 >
1 for Φ that further strengthens the initialization mitigation effect. Therefore, Corollary 4.2 indicates
a trade-off between convergence rate and generalization benefit of momentum, which cannot be
captured by lower order continuous approximation RGF.

5 NUMERICAL EXPERIMENTS

In this section, we show numerical experiments to verify our theoretical claims. We first present a
2d example, and then focus on the implicit bias of HB for a two-layer diagonal linear networks.

Learning Dynamics in a 2-d Model We first explore a simple 2-d model f(x; a1, a2) = a1a2x
where a1, a2 ∈ R are the model parameters and x, y ∈ R is the training data. The loss function
is L = (f(x; a1, a2) − y)2/2. All parameters a1, a2 satisfying a1a2x = y are global minima. To
show that higher-order HBFs are better approximations of HB, we visualize trajectories for different
learning dynamics, i.e., GD, HB, RGF, HBF with α = 2, and HBF with α = 3, in Fig. 1(a).
The trajectory of HBF with α = 3 is closer to that of HB than both RGF and HBF with α =
2. Furthermore, Fig. 1(a) also reveals that RGF is more similar to GD and it cannot capture the
discrete learning dynamics of HB well. We also plot the norm of discretization errors ∥εk∥2 for
these continuous approximations during training in Fig. 1(b), where HBF with α = 3 has the lowest
discretization error after several steps. These results validate the reliability of HBF as a proxy of
HB.

Implicit Bias of HB for Diagonal Linear Networks We now investigate the implicit bias of HB
for 2-layer diagonal linear networks f(x;w) = wTx = (w+ ⊙w+ −w− ⊙w−)

Tx for a dataset
{(xi, yi)}ni=1 where x ∈ Rd, y ∈ R. The empirical loss is L(w+,w−) =

∑
i(f(xi;w)− yi)

2. We
let n < d and denote the ground truth solution as w∗ such that w∗Tx = y. We let w∗ be sparse. For

8
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Figure 1: (a). Trajectories for learning dynamics of GD, HB, RGF, and O
(
η2
)
-close and O

(
η2
)
-

close HBF in a 2-d model. All dynamics start from the same point (a1 = 2.8, a2 = 3.5). The
convergence point of HB is denoted as a black star. The black dotted line denotes the set of all
global minima. (b). Discretization errors for different continuous approximations of HB during
training in (a).

a given scale s we let κ(0) = w+(0)⊙w−(0) = s2(1, . . . , 1)T ∈ Rd. Our first experiment explores
the discretization error, where we let k denote the iteration count and first obtain wHB

k by training
f(x;w) with HB. In addition, we also train f(x;w) with RGF (Eq. (1)) and HBF (Corollary 4.2),
respectively. We calculate the discretization error as ∥wHB

k −w(tk)∥22 for w(tk) obtained from HBF
or RGF and present the results in Fig. 2(a), where HBF enjoys smaller discretization error than RGF
for different µ, supporting our theoretical claims.

In our second experiment, we compare the implicit bias of HB with that of GD. Given s, we train
f(x;w) with GD and HB, respectively. We calculate the distance between the returned solution
w(∞) and the ground truth solution w∗, i.e., ∥w(∞) − w∗∥2, as a measure of generalization
performance and report the results in Fig. 2(b). It can be seen that, when the initialization scale s is
small, solutions of GD generalize better than those of HB. This can be explained by Corollary 4.2:
compared to GD, when s is small, L(w) decreases much faster for HB (green lines in Fig. 2(c)),
which leads to a smaller

∫
dsL(w) and weaker initialization mitigation effect, thus the solutions

of HB generalize worse than GD solutions. Recall that in Corollary 4.2, as κj(0) = s2 increases,
Φ determines the generalization performances for HB and GD since it controls the extent of the
initialization mitigation effect. Furthermore, L(w) does not decrease much faster for HB than for
GD (blue lines in Fig. 2(c)), thus GD and HB have a similar value of Φ, which is further enhanced
by a factor of (1 + µ)/(1 − µ)3 for HB according to Corollary 4.2. As a result, HB solutions will
generalize better than GD and the discrepancy between them is more significant for large µ (large
(1 + µ)/(1− µ)3) as shown in Fig. 2(b).

0 2000 4000 6000 8000 10000
Iteration k

10 10
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10 6

10 4

10 2

||w
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B
k

w
(t k

)||
2 2
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Figure 2: (a). Discretization errors ∥wHB
k −w(tk)∥22 for HBF (dotted lines) and RGF (solid lines),

respectively, when training the 2-layer diagonal linear networks. (b). Generalization performances
∥w(∞) − w∗∥2 for different initialization scales s when f(x;w) is trained by GD and HB with
different values of µ. (c). L(w) during training processes of HB (µ = 0.9) and GD for different s.
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6 CONCLUSION

In this paper, we have established a new continuous approximation of HB, namely HBF, withO (ηα)
discretization error to the discrete HB for arbitrary α ≥ 1. Our results provide a reliable foundation
for analyzing the less well-studied momentum methods through the continuous time limit. As an
important and interesting application, we have studied the implicit bias of HBF for the popular proxy
model diagonal linear networks and revealed the difference between the implicit bias of HB and that
of GD which cannot be captured by RGF.

There are also many other momentum and adaptive algorithms, such as Adam [17] and AdaGrad [8],
and more complex neural networks. A clear characterization of properties for these momentum
methods and neural networks with methods developed in the current work is an interesting direction.
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APPENDIX

In Appendix A, we provide proofs for Section 3. We present proofs of Section 4 in Appendix B. In
Appendix C we show details of numerical experiments in Section 5 and 5.

A PROOFS FOR SECTION 3

We prove Theorem 3.1 in Appendix A.1 and give the details for the first several orders HBF in A.2.

A.1 PROOF OF THEOREM 3.1

Recall that the discrete learning dynamics of HB is

βk+1 − βk = −η∇L(βk) + µ(βk − βk−1), (15)

where µ is the momentum factor and k is the iteration number. Based on our discussion in Section 3,
suppose that the continuous differential equation for HB is

β̇ = −Gk(β)− ηγk(β) (16)

for t ∈ [tk, tk+1) where tk = kη and the solution is β(t), we expect that γk could cancel higher-
order discretization errors and Gk would be closely related to rescaled gradient, i.e., ∇L/(1 − µ),
when only the lowest order continuous approximation is considered, i.e., γk and Gk are chosen in
such a way that β(tk) is close to βk in the sense that

εk = β(tk)− βk (17)

is small. Inspired by [25], in the following, we will find such γk and Gk by investigating the
properties of εk.

For this purpose, we begin with considering the Taylor expansion

β(tk+1)− β(tk) = ηβ̇(t+k ) + η2I+k = −ηGk − η2γk + η2I+k (18)

where t+k means we approximate tk from t > tk, I+k =
∫ 1

0
β̈ (η(k + s)) (1 − s)ds, and we use

Eq. (16) in the second equality. Similarly,

β(tk)− β(tk−1) = −ηGk−1 − η2γk−1 − η2I−k .

We are now able to derive a recursive relation between εk+1 and εk by subtracting Eq. (15) from
both sides of Eq. (18):

εk+1 − εk = −η [Gk(β(tk))−∇L(βk)]− η2γk + η2I+k − µ(βk − βk−1). (19)

Note that

βk − βk−1 = β(tk)− β(tk−1)− (εk − εk−1)

= −ηGk−1 − η2γk−1 − η2I−k − (εk − εk−1),

we obtain

εk+1 − εk = µ(εk − εk−1)− η [Gk − µGk−1 −∇L(β(tk)− εk)]

+ η2
[
I+k + µI−k − γk + µγk−1

]
. (20)

To further establish the relation between εk and εk−1, we present the following lemma and the proof
can be found in A.1.1.
Lemma A.1. For the continuous differential equation Eq. (16) and the discrete sequence given by
Eq. (15), if Gk(β(tk)) = µGk−1(βtk) +∇L(β(tk)) with G−1 = 0 and

I+k + µI−k − γk + µγk−1 = O
(
ηα−2

)
, (21)

then we have εk = O (ηα) and
εk − εk−1 = O (ηα) .
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The above lemma ensures that the discretization error is of order O (ηα) as long as Eq. (21) is
satisfied, which can be done by finding appropriate γk. For this purpose, we investigate the integral
I±k in the following lemma and present the proof in A.1.2.
Lemma A.2. Under conditions of Lemma A.1, if we require that

I+k + µI−k = γk − µγk−1, (22)

then

I+k =

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

(−1)q

q!
ηpL

(k,σ1)
β · · ·L(k,σq−1)

β γ
(σq−1)
k (23)

I−k =

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

1

q!
ηpL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1 . (24)

Now suppose that γk can be written as a series

γk =

∞∑
σ=0

ησγ
(σ)
k , γ

(−1)
k = Gk,

we can apply Lemma A.2 for any given σ to solve Eq. (22) by requiring
σ+2∑
q=2

∑
∑q

j=1 σj=σ−q+2

ησ

q!

[
(−1)qL(k,σ1)

β · · ·L(k,σq−1)
β γ

(σq−1)
k + µL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1

]
= ησ(γ

(σ)
k − µγ

(σ)
k−1). (25)

Recall the definition in Theorem 3.1, we obtain that

γ
(σ)
k = µγ

(σ)
k−1 + χ

(σ)
k =⇒ γ

(σ)
k =

k∑
j=0

µk−jχ
(σ)
j (26)

for χ(σ)
0 = γ

(σ)
0 . Now we can show that by truncating γk to the order α−2, i.e., γk =

∑α−2
σ=0 η

σγ
(σ)
k ,

the obtained HBF is an O (ηα)-close continuous version of HB, since

εk+1 − εk = O (ηα) +O (ηα) + η2

[
I+k + µI−k −

α−2∑
σ=0

ησ(γ
(σ)
k − µγ

(σ)
k−1)

]

= η2
∞∑

σ=α−1
ησ(γ

(σ)
k − µγ

(σ)
k−1) = O (ηα) , (27)

where we use Lemma A.1 in the first equality and Lemma A.2 in the second equality. We thus
conclude that εk = O (ηα) according to Lemma A.1 again.

A.1.1 PROOF FOR LEMMA A.1

Proof. By definition we have ε0 = 0 = O (ηα) since the continuous differential equation and
discrete HB start from the same point. Note that G−1 = 0 and γ−1 = 0 by definition. Recall that
the first iterate of HB renders β1 = β0 − η∇L(β0) and that we let G0 = ∇L(β0), we have

ε1 − ε0 = β(t1)− β1 = β(t0) + ηβ̇(t0) + η2I0 − (β0 − η∇L(β0))

= ε0 − η(G0 −∇L(β0))− η2γ0 + η2I0 = O (ηα) . (28)

The proof can now be completed by induction: suppose that for the iteration k

εk = O (ηα) , εk − εk−1 = O (ηα) , (29)

then, using Eq. (20) and the condition defined in Lemma A.1, we have for k + 1

εk+1 = O (ηα)− η [∇L(β(tk))−∇L (β(tk)− εk)] +O (ηα)

= O (ηα)− ηεk · ∇2L(β(tk)) = O (ηα) . (30)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1.2 PROOF FOR LEMMA A.2

Proof. We first rewrite I±k as follows :

I±k =
1

η2

∫ kη±η

kη

β̈(τ)(kη ± η − τ)dτ

τ ′←τ−kη
=

1

η2

∫ ±η
0

[ ∞∑
n=0

1

n!

dn

dtn
β̈(kη)τ ′n

]±
(±η − τ ′)dτ ′

=

∞∑
n=0

(±η)n

(n+ 2)!

dn

dtn
β̈(t±k ) (31)

where we use
∫ η

0
τ ′n(η− τ ′)dτ ′ = ηn+2

n+1 −
ηn+2

n+2 = ηn+2

(n+1)(n+2) in the last equality. To continue, we
need the expression of dnβ/dtn and we start with t→ t+k :

dn

dtn
β(t+k ) =

d

dt

(
dn−1

dtn
β(t+k )

)
= β̇(t+k ) · ∇

(
dn−1

dtn
β(t+k )

)
= −(Gk + ηγk) · ∇

(
dn−1

dtn
β(t+k )

)
= (−1)n(L(k)

β )n−1 (Gk + ηγk) (32)

where we denote the differential operator L(k)
β = (Gk + ηγk) · ∇ and use Eq. (16) in the third

equality. Now suppose that γk can be written as a series

γk =

∞∑
σ=0

ησγ
(σ)
k , γ

(−1)
k = Gk,

then Eq. (32) becomes

dn

dtn
β(t) = (−1)n

( ∞∑
σ1=0

ησ1γ
(σ1−1)
k · ∇

)
· · ·

· · ·

 ∞∑
σn−1=0

ησn−1γ
(σn−1−1)
k · ∇

 ∞∑
σn−1=0

ησnγ
(σn−1)
k


= (−1)n

∞∑
σ1,...,σn=0

η
∑n

j=1 σjL
(k,σ1)
β · · ·L(k,σn−1)

β γ
(σn−1)
k (33)

Combined with Eq. (31), we obtain the form of I+k for t ∈ (tk, tk+1) as

I+k =

∞∑
n=0

ηn

(n+ 2)!

dn+2

dtn+2
β(t)

=

∞∑
n=0

∞∑
σ1,...,σn+2=0

(−1)n+2

(n+ 2)!
ηn+

∑n+2
j=1 σjL

(k,σ1)
β · · ·L(k,σn+1)

β γ
(σn+2−1)
k

=
∞∑

n=0

∞∑
m=0

∑
∑n+2

j=1 σj=m

(−1)n+2

(n+ 2)!
ηn+mL

(k,σ1)
β · · ·L(k,σn+1)

β γ
(σn+2−1)
k

=

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

(−1)q

q!
ηpL

(k,σ1)
β · · ·L(k,σq−1)

β γ
(σq−1)
k (34)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where we let p← n+
∑n+2

j=1 σj , q ← n+ 2, in the last equality. Similarly, when t→ t−k , we have

dn

dtn
β(t−k ) = (−1)n(L(k−1)

β )n−1 (Gk−1 + ηγk−1)

which implies that

I−k =

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2
q!
ηpL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1 . (35)

A.2 O (ηα)-CLOSE HBF FOR A SPECIFIC α

In this section, we derive the form of O (α)-close HBF for given a specific α. There are basically
three steps to find a HBF that is O (ηα)-close to HB:

1. truncate γk to the desired order α, i.e, γk =
∑α−2

σ=0 γ
(σ)
k ;

2. from the smallest σ, find all χ(σ)
j with j ≤ k by finding the corresponding Sm,σ with

m = {2, . . . , σ + 2} for each σ;

3. derive the expression of γ(σ)
k for all σ ≤ α − 2 in a recursive manner using the relation

γ
(σ)
k =

∑k
j=0 µ

k−jχ
(σ)
j .

In the following, we give the cases for α = 2 and 3 as examples. With this approach, one can in fact
find HBF with arbitrary order of closeness to HB.

A.2.1 α = 2.

According to Theorem 3.1, the series of γk is truncated to the first term, i.e., γk = η0γ
(0)
k , where

γk =
∑k

j=0 µ
k−jχ

(0)
j . Thus the first step is to find χ

(0)
j , which can be given by first identifying the

set S:
Sm=2,σ=0 = {(σ1 = 0, σ2 = 0)}, (36)

therefore there is only one term in χ
(0)
j :

χ
(0)
j =

1

2

[
Lj,0
β γ

(−1)
j + µLj−1,0

β γ
(−1)
j−1

]
.

Recall that

γ
(−1)
j = Gj =

1− µj+1

1− µ
∇L, (37)

which, according to our definition in Theorem 3.1, leads to

Lj,0
β = γ

(−1)
j · ∇ = Gj · ∇,

we obtain that

χ
(0)
j =

1

2
[Gj · ∇Gj + µGj−1 · ∇Gj−1]

=
1

2(1− µ)2
[
(1− µj+1)2 + µ(1− µj)2

]
∇L · ∇2L. (38)

Thus

γ
(0)
k =

1

2

k∑
j=0

µk−j [Gj · ∇Gj + µGj−1 · ∇Gj−1]

=
∇L · ∇2L

2(1− µ)2

k∑
j=0

µk−j [(1− µj+1)2 + µ(1− µj)2
]

=
∇L · ∇2L

2(1− µ)2

k∑
j=0

[
(1 + µ)µk−j + µk+1(µj(1 + µ)− 4)

]
. (39)
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When k is larege, the above expression can be simplified as

γ
(0)
k ≈

(1 + µ)
∑k

j=0 µ
j

2(1− µ)2
∇L · ∇2L ≈ 1 + µ

2(1− µ)3
∇L · ∇2L.

A.2.2 α = 3.

Similarly, in this case we first truncate the series of γk to the desired order, i.e., γk = γ
(0)
k + ηγ

(1)
k

where we have already obtained γ
(0)
k in the last section, thus we only need to find γ

(1)
k and χ

(1)
k ,

which can be done by first finding the set Sm=2,σ=1 and Sm=3,σ=1:

S2,1 = {(σ1 = 1, σ2 = 0), (σ1 = 0, σ2 = 1)},
S3,1 = {(σ1 = 0, σ2 = 0, σ3 = 0)}.

Therefore there are three terms of χ(1)
j :

χ
(1)
j =

1

2

[
Lj,1
β γ

(−1)
j + µLj−1,1

β γ
(−1)
j−1

]
+

1

2

[
Lj,0
β γ

(0)
j + µLj−1,0

β γ
(0)
j−1

]
− 1

6

[
Lj,0
β Lj,0

β γ
(−1)
j − µLj−1,0

β Lj−1,0
β γ

(−1)
j−1

]
. (40)

Recall that γ(−1)
j = Gj , Lj,0

β = Gj · ∇, and Lj,1
β = γ

(0)
j · ∇, the first line of Eq. (40) is

1

2

[
γ
(0)
j · ∇Gj + µγ

(0)
j−1 · ∇Gj−1 +Gj · ∇γ(0)

j + µGj−1 · ∇γ(0)
j−1

]
(41)

while the second line is

−1

6
[Gj · ∇ (Gj · ∇Gj)− µGj−1 · ∇ (Gj−1 · ∇Gj−1)] . (42)

To simplify these terms, we can either replace all γ(0)
j with the expression in Eq. (39) and write

Gj explicitly, or notice the recursive relation between Gj and Gj−1 in Theorem 3.1, i.e. ,Gj =
µGj−1 +∇L, then Eq. (41) becomes

1

2

[
γ
(0)
j · ∇2L+∇L · ∇γ(0)

j

]
+

µ

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
and Eq. (42) is now

−1

6
∇L · ∇ (Gj · ∇Gj)−

µ

6
Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) . (43)

Summing over these terms gives us χ(1)
j :

χ
(1)
j = Ψ

(1)
j + µΘ

(1)
j (44)

where

Ψ
(1)
j =

1

2

(
γ
(0)
j · ∇2L+∇L · ∇γ(0)

j

)
− 1

6
∇L · ∇ (Gj · ∇Gj)

Θ
(1)
j =

1

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
− 1

6
Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) .

We can now find γ
(1)
k through its definition:

γ
(1)
k =

k∑
j=0

µk−jχ
(1)
j =

k∑
j=0

µk−jΨ
(1)
j + µ

k∑
j=0

µk−jΘ
(1)
j . (45)
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In the following, we derive the form of γ(1)
k When k is large. According to Eq. (39), we have

µk−jγ
(0)
j = µk−j∇L · ∇2L

2(1− µ)2

j∑
i=0

[
(1 + µ)µj−i + µj+1(µi(1 + µ)− 4)

]
= µk−j∇L · ∇2L

2(1− µ)2

[
(1 + µ)(1− µj+1)

1− µ
+

µj+1(1 + µ)(1− µj+1)

1− µ
− 4(j + 1)µj+1

]
=
∇L · ∇2L

2(1− µ)2

[
(1 + µ)(µk−j − µk+1)

1− µ
+

µk+1(1 + µ)(1− µj+1)

1− µ
− 4(j + 1)µk+1

]
=
∇L · ∇2L

2(1− µ)2

[
(1 + µ)µk−j

1− µ
− µk+j+1(1 + µ)

1− µ
− 4(j + 1)µk+1

]
≈ µk−j (1 + µ)

2(1− µ)3
∇L · ∇2L (46)

and, according to Eq. (37),

µk−jGj · ∇Gj =
µk−j(1− 2µj+1 + µ2(j+1))

(1− µ)2
∇L · ∇2L ≈ µk−j

(1− µ)2
∇L · ∇2L. (47)

Combining Eq. (46) and (47) gives the form of µk−jΨ
(1)
j when k is large:

µk−jΨ
(1)
j ≈ µk−j(1 + µ)

4(1− µ)3
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
− µk−j

6(1− µ)2
∇L · ∇

(
∇L · ∇2L

)
which immediately leads to

k∑
j=0

µk−jΨ
(1)
j

≈ (1 + µ)

4(1− µ)4
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
−
∇L · ∇

(
∇L · ∇2L

)
6(1− µ)3

=
1

4(1− µ)4

[
(1 + µ)(∇L · ∇2L) · ∇2L+

(1 + 5µ)

3
∇L · ∇

(
∇L · ∇2L

)]
. (48)

The left part is now deriving the form of µk−jΘ
(1)
j , which can be done by first finding

µk−jγ
(0)
j · ∇Gj−1 ≈ µk−j (1 + µ)

2(1− µ)3
(∇L · ∇2L) · ∇Gj−1

≈ µk−j (1 + µ)

2(1− µ)4
(∇L · ∇2L) · ∇2L ≈ µk−jγ

(0)
j−1 · ∇Gj−1 (49)

and

µk−jGj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) ≈
2µk−j

(1− µ)3
∇L · ∇

(
∇L · ∇2L

)
, (50)

thus

k∑
j=0

µk−jΘ
(1)
j ≈ (1 + µ)

2(1− µ)5
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
. (51)
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Combing this equation with Eq. (48), we can now conclude the form of γ(1)
k when k is large:

γ
(1)
k =

k∑
j=0

µk−j
(
Ψ

(1)
j + µΘ

(1)
j

)
1

4(1− µ)4

[
(1 + µ)(∇L · ∇2L) · ∇2L+

(1 + 5µ)

3
∇L · ∇

(
∇L · ∇2L

)]
+

µ(1 + µ)

2(1− µ)5
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
=

(1 + µ)2

4(1− µ)5

[
(∇L · ∇2L) · ∇2L+

1 + 10µ+ µ2

3(1 + µ)2
∇L · ∇

(
∇L · ∇2L

)]
(52)

Note that when µ = 0 we recover the result of GD, i.e., γ(1)
k = (∇L·∇2L)·∇2L

4 +
∇L·∇(∇L·∇2L)

12 .

B PROOFS FOR SECTION 4

Given data (xi, yi), the architecture of 2-layer diagonal linear network is

f(xi;w) = xT
i (w+ ⊙w+ −w− ⊙w−) =

d∑
j=1

xi;j

(
w2

+;j −w2
−;j
)

(53)

and the empirical loss function is

L(w) =
1

2n

n∑
i=1

(f(xi;w)− yi)
2.

We let r = (r1, . . . , rn)
T ∈ Rn be the residual where ∀i : ri = f(xi;w) − yi. According to

Theorem 3.1, the HBF learning dynamics of model parameters w+ and w− will be

ẇ+ = −
∇w+

L

1− µ
− ηγ

w+

k , ẇ− = −
∇w−L

1− µ
− ηγ

w−
k (54)

where we use γ
w+

k ∈ Rd and γ
w−
k ∈ Rd to represent the error terms for HBF of w+ and w−,

respectively, and the gradients are

∇wL =
1

n
XT r, (55)

∇w+
L = 2w+ ⊙∇wL, ∇w−L = −2w− ⊙∇wL. (56)

Using the expressions above, it can be easily verified that

w− ⊙∇w+
L+w+ ⊙∇w−L = 0, (57)

and we will frequently use this relation later. Recall the definition of κj = w+;jw−;j , we now
present useful lemmas before proving Theorem 4.1.
Lemma B.1. Let κj(t) = w+;j(t)w−;j(t), γ

w±
k;j denote the j-th component of γw±

k , and

ϵj(t) =

∫ t

0

ds

(
γ
w+

k;j (s)

w+;j(s)
+

γ
w−
k;j (s)

w−;j(s)

)
, (58)

then we have
κj(t) = κj(0)e

−ηϵj(t). (59)

Proof. The proof applies the dynamics of w+ and that of w−:
dκ

dt
= ẇ+ ⊙w− + ẇ− ⊙w+

=

(
−
∇w+L

1− µ
− ηγ

w+

k

)
⊙w− +w+ ⊙

(
−
∇w−L

1− µ
− ηγ

w−
k

)
= −η

(
γ
w+

k ⊙w− +w+ ⊙ γ
w−
k

)
, (60)
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where we use Eq. (12) in the second equality and Eq. (57) in the third equality. As a result, for the
j-th component of κ, we have

κ̇j = −ηκj

(
γ
w+

k;j

w+;j
+

γ
w−
k;j

w−;j

)
=⇒ κj(t) = κj(0)e

−ηϵj(t). (61)

It is also interesting to investigate the dynamics of w as shown below.
Lemma B.2. If w± is run with HBF, then the dynamics of w satisfies that

ẇ = −4v ⊙ ∇wL

1− µ
− ηΓw

k (62)

where we let

v = (w+ ⊙w+ +w− ⊙w−) , Γw
k = 2

(
γ
w+

k ⊙w+ − γ
w−
k ⊙w−

)
. (63)

Proof. Using the dynamics of w± Eq. (12), we can show that

ẇ = 2ẇ+ ⊙w+ − 2ẇ− ⊙w−

= 2

(
−
∇w+L

1− µ
− ηγ

w+

k

)
⊙w+ − 2

(
−
∇w−L

1− µ
− ηγ

w−
k

)
⊙w−

= −4 (w+ ⊙w+ +w− ⊙w−)⊙
∇wL

1− µ
− 2η

(
γ
w+

k ⊙w+ − γ
w−
k ⊙w−

)
. (64)

To show the implicit bias of HBF, we need to first explore the dynamics of w, which is present in
the following lemma.
Lemma B.3 (Dynamics of w for diagonal linear networks under HBF). Under conditions of Theo-
rem 4.1, if the diagonal linear network f(x;w) is trained with HBF (Theorem 3.1), let

ΛGF
j (w;κ(t)) =

2κj(t)

4

[
wj(t)

2κj(t)
arcsinh

(
wj(t)

2κj(t)

)
−

√
1 +

w2
j (t)

4κ2
j (t)

+ 1

]

φj(t) =
η

4

∫ t

0

ds

[
γ
w+

k;j (s)

w+;j(s)
−

γ
w−
k;j (s)

w−;j(s)

]
Λj(w, t;κ) = ΛGF

j (w;κ(t)) +wj(t)φj(t), (65)

then the learning dynamics of the parameter w satisfies that

d

dt
∂wj

Λj +
∂wjL

1− µ
= 0. (66)

The proof of this lemma can be found in Appendix B.2. In the following we first focus on the proof
of Theorem 4.1.

B.1 PROOF OF THEOREM 4.1

Now we can prove Theorem 4.1 with above helper lemmas.

Proof. Recall the definition of Λj in Lemma B.3 and we further define

Λ(w, t;κ) =

d∑
j=1

Λj(w, t;κ), (67)
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then Lemma B.3 gives us

d

dt
∇wΛ(w, t;κ) =

(
d

dt
∂w1

Λ1(w, t;κ), . . . ,
d

dt
∂wd

Λd(w, t;κ)

)T

= − XT r

n(1− µ)

=⇒ ∇wΛ(w(∞),∞;κ(∞)) −∇wΛ(w(0), 0;κ(0)) = −
n∑

i=1

xi

∫∞
0

ri(τ)dτ

n(1− µ)
=

n∑
i=1

xici (68)

where we let ci = −
∫ ∞
0

ri(τ)dτ

n(1−µ) . Let ∇wΛ(w(0), 0;κ(0)) = 0 and recall the definition of Λ(w;κ)

in Theorem 4.1., then Eq. (68) is equivalent to

∇wΛ(w;κ)−
n∑

i=1

xici = 0,

which is exactly the KKT condition of argminw:Xw=y Λ(w;κ) proposed in Theorem 4.1. There-
fore, we finish the proof.

B.2 PROOF OF LEMMA B.3

In this section we present the proof of Lemma B.3.

Proof. For simplicity, in the following we write the subscripts explicitly. According to Lemma B.2,
the dynamics of wj can be written as

ẇj = −
4

1− µ
vj∂wjL− ηΓw

k;j . (69)

Note that
v2
j −w2

j = 4w2
+;jw

2
−;j =⇒ v2

j =
√

w2
j + 4κ2

j , (70)

then Eq. (69) can be written as

ẇj

4
√
w2

j + 4κ2
j

= −
∂wjL

1− µ
− η

Γw
k;j

4
√

w2
j + 4κ2

j

. (71)

We now define a function
Λj(w, t;κ) = Λ̄j(w, t;κ) +wjφj(t) (72)

for some Λ̄j(w, t;κ) and φj(t) such that

d

dt
∂wjΛj(w, t;κ) =

ẇj + ηΓw
k;j

4
√

w2
j + 4κ2

j

, (73)

the we can prove this lemma. Now we continue to find the Λ̄j(w, t;κ) and φj(t). By definition,

d

dt
∂wj

Λj(w, t;κ) = ∂2
wj

Λ̄jẇj + ∂t∂wj
Λ̄j + φ̇j , (74)

which, when compared with Eq. (73), implies that

∂2
wj

Λ̄j =
1

4
√
w2

j + 4κ2
j

. (75)

Solving this equation gives us

∂wj
Λ̄j =

1

4

∫
dwj√

w2
j + 4κ2

j

=
ln
(√

w2
j + 4κ2

j +wj

)
4

+ c (76)
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where c is a constant and can be determined by requiring ∂wj
Λ̄j |t=0 + φj(0) = 0 =⇒ c =

− ln(2κj(0))/4. Thus Eq. (76) becomes

∂wj Λ̄j =
1

4
ln


√
w2

j + 4κ2
j (t) +wj

2κj(t)

− ηϵj(t)

4

where we have used the definition of ϵj(t) in Lemma B.1. Solving the above equation will give us
the form of Λ̄j

Λ̄j =
1

4

∫
dwj arcsinh

(
wj

2κj(t)

)
− ηϵj(t)wj

4

=
1

4

[
wj arcsinh

(
wj

2κj(t)

)
−
√

w2
j + 4κ2

j (t) + 2κj(t)

]
− ηϵj(t)wj

4

= ΛGF
j (w;κ(t))− ηϵj(t)wj

4
(77)

where we use the definition of ΛGF in Eq. (11). Comparing the rest parts of Eq. (74) with Eq. (73)
requires that

∂t∂wj Λ̄j + φ̇j = η
Γw
k;j

4
√
w2

j + 4κ2
j (t)

=⇒ φ̇j(t) =
ηκ2

j (t)ϵ̇j(t)(
wj +

√
w2

j + 4κ2
j (t)

)√
w2

j + 4κ2
j (t)

+ η
Γw
k;j

4
√

w2
j + 4κ2

j (t)
. (78)

When combined with the form of Λ̄j , we can find the form of Λj :

Λj(w, t;κ) = ΛGF
j (w;κ(t)) + ηwj

∫
ds√

w2
j + 4κ2

j (s)

[
κ2
j (s)

wj +
√
w2

j + 4κ2
j (s)

ϵ̇j

−

√
w2

j + 4κ2
j (s)ϵ̇j

4
+

Γw
k;j

4

]

= ΛGF
j (w;κ(t)) + ηwj

∫
ds√

w2
j + 4κ2

j (s)

[
−wj ϵ̇j

4
+

Γw
k;j

4

]

= ΛGF
j (w;κ(t)) + ηwj

∫
ds

[
γ
w+

k;j

w+;j
−

γ
w−
k;j

w−;j

]
(79)

where we use the definition of ϵj (Lemma B.1) and Eq. (70) in the last equality.

B.3 IMPLICIT BIAS OF HBF FOR DIAGONAL LINEAR NETWORKS WHEN α = 2

In this case, the correction term γw± will be

γw± =
1 + µ

2(1− µ)3
∇w±L · ∇2

w±
L.

We need to first find the Hessian ∇2
w±

L. Due to the element-wise product, it will be convenient to
derive the Hessian by writing the subscripts explicitly. We start with w+.

∂w+;i
∂w+;j

L =
2

n
∂w+;i

(
w+;j(X

T r)j
)

=
2

n

[
δij(X

T r)j +

n∑
c=1

w+;j∂w+;i

(
xc;j(x

T
c w − yc)

)]

=
2

n

[
δij(X

T r)j + 2

n∑
c=1

w+;jxc;jxc;iw+;i

]
, (80)
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where we use the delta symbol δij = 1 if i = j otherwise δij = 0. Therefore, we can conclude that

∇2
w+

L =
2

n

[
diag(XT r) + 2

n∑
c=1

(w+ ⊙ xc)(w+ ⊙ xc)
T

]
. (81)

Following a similar approach, we obtain that for w−

∂w−;i
∂w−;j

L = − 2

n
∂w−;i

(
w−;j(X

T r)j
)

=
2

n

[
−δij(XT r)j + 2

n∑
c=1

w−;jxc;jxc;iw−;i

]
(82)

=⇒ ∇2
w−

L =
2

n

[
−diag(XT r) + 2

n∑
c=1

(w− ⊙ xc)(w− ⊙ xc)
T

]
. (83)

It is now left for us to find the form of∇w±L · ∇2
wL. Again, it is convenient to write the subscripts

explicitly:

(
∇w+

L · ∇2
w+

L
)
j
=

d∑
i=1

∂w+;i
∂w+;j

L∂w+;i
L

=
4

n2

d∑
i=1

[
δij(X

T r)j + 2

n∑
c=1

w+;jxc;jxc;iw+;i

]
w+;i(X

T r)i

=
4

n2

[
w+;j((X

T r)j)
2 + 2

n∑
c=1

w+;jxc;j (xc ⊙w+ ⊙w+)
T
XT r

]
. (84)

Similarly,

(
∇w−L · ∇2

w−
L
)
j
=

4

n2

[
w−;j((X

T r)j)
2 − 2

n∑
c=1

w−;jxc;j (xc ⊙w− ⊙w−)
T
XT r

]
. (85)

Using Eq. (84) and (85), we can derive that

γ
w±
j

w±;j
=

2(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 ± 2

n∑
c=1

xc;j (xc ⊙w± ⊙w±)
T
XT r

]
, (86)

which further gives us the integral ϵj :

ϵ̇j =
γ
w+

j

w+;j
+

γ
w−
j

w−;j

=
4(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 +

n∑
c=1

d∑
i=1

xc;jxc;i(X
T r)i

(
w2

+;i −w2
−;i
)]

=
4(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 +

n∑
c=1

xc;jx
T
c (w ⊙ (XT r))

]

=
4(1 + µ)

(1− µ)3

[
(∇wL)2j +

1

n

(
XTX(w ⊙∇wL)

)
j

]
. (87)

On the other hand, according to Lemma B.2, ∂wi
L can be written as

−(1− µ)
ẇi

4vi
− η(1− µ)

Γw
i

4vi
, (88)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

which further gives us that

η

∫ t

0

ds
(
XTX(w ⊙∇wL)

)
j
= −η(1− µ)

n∑
c=1

d∑
i=1

xc;jxc;i

∫ wi(t)

wi(0)

dwi
wi(s)

4vi(s)
+O

(
η2
)

= −η(1− µ)

n∑
c=1

d∑
i=1

xc;jxc;i

∫ wi(t)

wi(0)

dwi
wi(s)

4
√
w2

i (s) + 4κ2
i (s)

+O
(
η2
)

= −η(1− µ)

4

n∑
c=1

d∑
i=1

xc;jxc;i

(√
w2

i (t) + 4κ2
i (t)−

√
w2

i (0) + 4κ2
i (0)

)
.

where we use Lemma B.2 in the first equality and Eq. (70) in the second equality. Since w(0) = 0
and Lemma B.1, we obtain

η

∫ t

0

ds
(
XTX(w ⊙∇wL)

)
j
= −η(1− µ)

4

n∑
c=1

d∑
i=1

xc;jxc;i

(√
w2

i (t) + 4κ2
i (0)− 2κi(0)

)
= −η(1− µ)

4

(
XTXq(t)

)
j

(89)

where we let q ∈ Rd with

qi(t) =
√
w2

i (t) + 4κ2
i (0)− 2κi(0) ≥ 0.

Now combining Eq. (87) and Eq. (89), we can derive

ηϵj(t) =
4η(1 + µ)

(1− µ)3

∫ t

0

ds(∂wjL)
2 − η(1 + µ)

(1− µ)2n

(
XTXq

)
j
+O

(
η2
)
. (90)

To obtain the full potential function, we still need to find the form of φj . According to the definition
of v and ϵj and Eq. (86), we can derive

2γ
w+

k;j w+;j − 2γ
w−
k;j w−;j −wj ϵ̇j = vj

(
γ
w+

k;j

w+
−

γ
w−
k;j

w−

)

=
4(1 + µ)

(1− µ)3n

n∑
c=1

d∑
i=1

vjxc;jxc;ivi∂wi
L, (91)

which, when combined with the definition of φj in Lemma B.3, further gives us

φ̇j = η
(1 + µ)

(1− µ)3n

n∑
c=1

d∑
i=1

xc;jxc;ivi∂wi
L

= − η(1 + µ)

4(1− µ)2n

n∑
c=1

d∑
i=1

xc;jxc;iẇi +O
(
η2
)

(92)

where we use Eq. (88) in the second equality. As a result,

φj(∞) = − η(1 + µ)

4(1− µ)2n

n∑
c=1

d∑
i=1

xc;jxc;iwi(t) =
η(1 + µ)

4(1− µ)2n

(
XTXw

)
j
. (93)

One interesting thing aspect of φj if w converges to an interpolation solution where Xw(∞) = y
is

φj(∞) =
η(1 + µ)

4(1− µ)2
∂wjL(0). (94)

In summary, the potential function O
(
η2
)
-close HBF is

κj(∞) = κj(0) exp

(
−4η(1 + µ)

(1− µ)3

∫ ∞
0

ds(∂wj
L)2 +

η(1 + µ)

(1− µ)2n

(
XTXq(∞)

)
j

)
Λj(w,∞;κ) = ΛGF

j (w, κ(∞)) +
η(1 + µ)

4(1− µ)2
wj∂wjL(0). (95)
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C DETAILS FOR NUMERICAL EXPERIMENTS

C.1 DETAILS FOR SECTION 5

For the discrete learning dynamics of HB and GD, we set the learning rate as η and the momentum
factor is µ. For the continuous approximations, we use ηEuler = η/10 as the Euler step sizes to
approximate the dynamics. These hyper-parameters are listed in Table 2. We let the model parameter

x, y 1, 0.6
Starting point a1 = 2.8, a2 = 3.5

η 5× 10−3

µ 0.7
ηEuler 5× 10−4

Table 2: hyper-parameters for 2d model

be β = (a1, a2)
T ∈ R2. For RGF, we use the ODE β̇ = −∇βL

1−µ =⇒ βk+1 = βk − ηEuler
∇βL
1−µ .

Formulations of HBFs with α = 2, 3 are denoted in Table 1.

C.2 DETAILS FOR SECTION 5

We denote 1d = (1, . . . , 1)T ∈ Rd. For the dataset {(xi, yi)}di=1, we set n = 40, d = 100. The data
point follows a Gaussian distribution N (0, Id). To make the ground truth solution w∗ sparse, we
let 5 components of it be nonzero. Recall that the initialization is κ(0) = s21d where s controls the
initialization scale. In Fig. 2(a), we make the initialization as w+ = w− = s1d with s = 0.01. We
set the learning rate η for HB as 10−3. For RGF and HBF, we let the Euler step size ηEuler = 10−4

to simulate the continuous dynamics. In Fig. 2(b) and 2(c), we set η = 10−2. For the initialization,
to make the task slightly harder, we let w+ = ϑs1d and w− = s1d/ϑ with ϑ = 0.9 such that we
still have κ(0) = s21d while the initialization symmetry is slightly broken.
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