
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTINUOUS APPROXIMATION OF MOMENTUM
METHODS WITH EXPLICIT DISCRETIZATION ERROR

Anonymous authors
Paper under double-blind review

ABSTRACT

Momentum-based optimization methods, such as Heavy-Ball (HB) and Nesterov’s
accelerated gradient (NAG), are essential in training modern deep neural net-
works. This work sheds light on the learning dynamics of momentum-based
methods and how they behave differently than standard gradient descent (GD)
in theory and practice. A promising approach to answer this question is investi-
gating the continuous differential equations to approximate the discrete updates,
an area requiring much attention for momentum methods. In this work, we take
HB as a case study to investigate two important aspects of momentum methods.
First, to enable a formal analysis of the Heavy-Ball momentum method, we pro-
pose a new continuous approximation, HB Flow (HBF), with a formulation that
allows the control of discretization error to arbitrary order. As an application of
HBF, we leverage it to investigate the implicit bias of HB by conducting a series of
analyses on the diagonal linear networks to inspect the influence of momentum on
the model’s generalization property. We validate theoretical findings in numerical
experiments, which confirm the significance of HBF as an effective proxy of mo-
mentum methods to bridge between discrete and continuous learning dynamics.

1 INTRODUCTION

Gradient descent (GD) and its variants momentum methods, such as Polyak’s Heavy-Ball momen-
tum (HB) [31], Nesterov’s method of accelerated gradients (NAG) [27], and Adam [17], are at the
core of the success of training deep neural networks. However, analyzing such discrete learning
dynamics is challenging. Thus there is an extensive body of work in developing continuous ap-
proximations of GD and SGD (stochastic version of GD) [1; 2; 4; 5; 9; 14; 16; 22; 23; 24; 25].
These works advanced our understanding of the black-box generalization ability of the highly over-
parameterized deep neural networks trained by GD and SGD. Despite the progress in analyzing GD,
it remains unclear when and why momentum methods are effective. As momentum methods are
now essential in many practical scenarios, such as the training of Transformer-based models [37],
there is a critical need to understand the working mechanism of momentum methods.

Existing approaches for analyzing momentum methods typically use continuous differential equa-
tions to approximate discrete iterative updates. Representative works in the area include [19; 20; 33;
35; 40], which developed several second-order ODEs to analyze the convergence properties of HB
and NAG. [18] demonstrated that the continuous approximation of HB and NAG, which solves the
optimization problem minβ L(β), can be expressed as a rescaled gradient flow (RGF):

β̇ = −∇L(β)
1− µ

, (1)

where L is the objective function and µ is the momentum factor. Despite its convenience for studying
discrete momentum methods, this approximation has two fundamental drawbacks. First, it overlooks
a substantial portion of discretization error when approaching the continuous limit. Second, it is
insufficient to differentiate between HB and GD due to its overly simplified nature. For example,
the solutions of Eq. (1) and the gradient flow β̇ = −∇L are similar, suggesting that GD and HB will
converge to similar points. However, this is inconsistent with actual behavior (Fig. 1(a)), where GD
and HB behave differently and converge to different points.

To address these issues, the recent work [11] adopted backward error analysis [4; 13] to construct
a continuous equation for HB as a perturbed version of Eq. (1) that admits smaller discretization

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

error. While promising, these approaches still do not account for the gaps between actual discrete
algorithms and their continuous approximations. Furthermore, these results are model-agnostic and
do not consider other aspects of training, such as model architectures for specific learning tasks.

To this end, we develop HB Flow (HBF), a novel continuous approximation of the HB momentum
method. HBF is designed to be arbitrarily close to HB (see Definition 2.1 for a formal definition).
Specifically, we add a perturbation term to cancel the discretization error to the improved version of
Eq. (1). This term helps to fill the gap between our continuous approximation and the discrete HB.
We emphasize that one can control the precision of HBF as a proxy of the discrete learning dynamics
of HB to arbitrary orders. Our approximation provides a more reliable foundation for continuously
analyzing the less well-studied momentum methods.

In addition, we highlight that one immediate benefit of HBF is that we can apply it to analyze various
intriguing properties of HB while the direct study of discrete learning dynamics is cumbersome.
Among these properties, an important one is its implicit bias—the preference for particular solutions
among all possible ones. For GD/GF, there are already abundant results for understanding their
implicit bias for diagonal linear networks [3; 10; 29; 30; 41; 42], a non-convex setting that shares
similar properties with more complex neural networks. As an interesting application of the proposed
HBF, we analyze the implicit bias of HB for this popular model through the HBF to arbitrary orders
of discretization error.

Contributions. Our primary contribution is a continuous approximation of HB, namely HBF, that
can be arbitrarily close to the discrete learning dynamics of HB (Theorem 3.1). HBF provides a reli-
able foundation for analyzing HB in a continuous manner. We also present the comparison between
HBF and continuous approximation of GD to different orders of approximation, as summarized in
Table 1. In addition, as an application of HBF, we explicitly investigate the implicit bias of HBF for
the diagonal linear network (Theorem 4.1 for arbitrary order of approximation and Corollary 4.2 for
order 2) and reveal its difference compared to that of GF. Our findings are helpful for the understand-
ing of the crucial while less studied implicit bias of momentum methods in a non-convex setting.
This indicates the importance of the proposed HBF as a proxy of HB for analyzing its properties.

RELATED WORKS

The backward error analysis was applied to GD in [4] where the implicit gradient regularization
effect was also proposed. With a similar idea, [25; 32] further developed continuous approximations
of GD with discretization error that can be arbitrarily smaller. [33; 35; 39; 40] constructed con-
tinuous ODEs for momentum methods and primarily focused on the convergence aspects. [18; 11]
studied the discretization error of continuous time limit of HB to the first 2 orders. [6] focused on the
continuous limit of Adam. As a comparison, we firstly propose the HBF that can be O (ηα)-close
to the discrete learning dynamics of HB.

The implicit bias of GD for various deep neural networks has been widely studied in, e.g., [16;
21; 34; 42] for linear networks and [7; 24; 26] for homogeneous networks. For diagonal linear
networks, [3; 10; 29; 30; 41] examined the implicit bias of GD and revealed the interesting transition
from kernel to rich regime by altering the scale of initialization. As a comparison, the study of
implicit bias of momentum methods is not as fruitful as that of GD. [38; 12] investigated momentum
methods for single-layer linear network and showed that they share a similar implicit bias with GD.
[15] showed that momentum leads to better generalization in a special setting. The recent work
[28] studied HB for diagonal linear networks using continuous approximation that is O (η)-close
to the discrete HB. To achieve a better understanding of the momentum methods for deep neural
networks, in this paper, we characterize the implicit bias of HB for diagonal linear networks through
the proposed HBF to arbitrary order of discretization error, which is absent in previous works, and
compare it with that of GF to explicitly reveal their difference.

2 PRELIMINARIES

Notations. For a vector β ∈ Rd that depends on time t, we use β̇ and β̈ to denote its first and
second derivative with respect to time t, respectively. We use βj to denote its j-th component and
∥β∥p for its ℓp-norm. We use α ·β to denote the inner product and⊙ to denote elementwise product.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Heavy-Ball momentum method. HB [31] employs a two-step updating scheme [36], rather than
the one-step manner of GD. Particularly, HB first accumulates the history of past iterations before
updating the model parameter β ∈ Rd, i.e., mk+1 = µmk − η∇L(βk), βk+1 = βk +mk+1 where
µ ∈ (0, 1) is the momentum factor, η is the step size, k is the iteration number, and m ∈ Rd is the
momentum, which can be further written in a single equation

βk+1 = βk − η∇L(βk) + µ (βk − βk−1) . (2)

To characterize the gap between the discrete learning dynamics of HB and its continuous approxi-
mation, we adopt the following definition.

Definition 2.1 (O (ηα)-close continuous approximation of HB). Let βk be the sequence given by
Eq. (2) and tk = kη. Given α ≥ 1, an ODE whose solution is β(t) is O(ηα)-close continuous
approximation of the discrete HB Eq. (2) if for a constant C(T) > 0 the supreme of the discretization
error

sup
0≤tk≤T

|β(tk)− βk| ≤ C(T)ηα.

3 CONTINUOUS APPROXIMATION OF MOMENTUM METHODS

In this section, we will propose a continuous differential equation that can be arbitrarily close to the
discrete learning dynamics of HB. Our initial attempt is based on [18], where the authors showed
that the O (η)-close continuous approximation of HB is equivalent to a rescaled version of GF. To
coincide with such observation and more precisely characterize the gap between HB and its continu-
ous approximation, one may attempt to directly model HB by perturbing the RGF with an additional
term that accounts for the discretization error using the backward error analysis [4]. However, this is
problematic due to the fact that each iteration of momentum methods exploits the history of previous
iterations, which renders the local error analysis unreliable since it ignores previous updates.

To address this difficulty and establish a more approachableO (ηα)-close continuous approximation
of HB for any α ≥ 1, inspired by [25] which was originally designed for GF only locally , we
propose a HB Flow (HBF)

β̇ = −Gk(β)− ηγk(β), for t ∈ [tk, tk+1) (3)

to perform a global analysis instead of directly utilizing the backward error analysis in [4], which was
previously discussed in [11]. In Eq. (3), k denotes the iteration number for the corresponding discrete
updates, tk = kη, Gk depends on k, and γk accounts for the discretization error and also depends
on k. The dependence on the iteration number k of Eq. (3) indicates its piece-wise approximation
nature, which will be made clearer in Theorem 3.1. Note that such dependence on the history of
iterations also makes the analysis of the arbitrary order continuous approximation more challenging
when compared to the case of GD, where each iteration only incorporates the information of the
current gradient, i.e., β̇ = −∇L(β)− ηγ(β).

We now roughly outline the desired properties of a reliable HBF, then present the main results in
Section 3, and defer the detailed technical proofs to Appendix A. Recall that in Definition 2.1 βk is
the sequence given by HB (Eq. (2)) and β(t) is the solution given by the HBF (Eq. (3)), we aim to
find a γk(β) that leads to a small discretization error εk = β(tk) − βk to make the HBF a precise
approximation of HB. For this purpose, considering the O (η) approximation of HB Eq. (1), we
expect that for our HBF Gk should have a form similar to ∇L(β)/(1 − µ) while ηγk(β) should
cancel the higher-order discretization error brought by the continuous approximation.

Specifically, for solution β given by Eq. (3) and tk = kη, Taylor expansion provides us

β(tk+1)− β(tk) = ηβ̇(t+k) + η2I+k = −ηGk − η2γk + η2I+k (4)

where t+k means we approximate tk from t > tk, I+k =
∫ 1

0
β̈ (η(k + τ)) (1 − τ)dτ , and we apply

Eq. (3) in the second equality. Similarly, β(tk)−β(tk−1) = −ηGk−1−η2γk−1−η2I−k . Combined
with Eq. (4), we are able to give the relation between εk and εk−1. Suppose that we can further find
γk such that εk − εk−1 = O (ηα) and εk = O (ηα) by induction, then we can show that the HBF in
Eq. (3) is O (ηα)-close to the discrete HB learning dynamics.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 HBF WITH ARBITRARY ORDER CLOSENESS TO HB

It is now left for us to find the desired γk ∈ Rd and Gk ∈ Rd, which should consider the history
of previous iterations and can degenerate into RGF, and reveal that the obtained HBF by doing
so is indeed an O (ηα) continuous approximation of HB. Below we formalize the aforementioned
discussion and give the detailed expressions of Gk and γk in a recursive manner.

Theorem 3.1 (HBF withO (ηα) closeness to HB). Let k be the iteration number, η be the step size,
and tk = kη, then the discretization error between the discrete HB momentum method Eq. (2) and
the piece-wise HBF

β̇ = −Gk(β)− ηγk(β), for t ∈ [tk, tk+1)

is O (ηα) for α ≥ 1, i.e., HBF is O (ηα)-close continuous approximation of HB according to Defi-
nition 2.1, when

Gk = µGk−1 +∇L, γk =

α−2∑
σ=0

ησγ
(σ)
k , (5)

where the construction of Gk intuitively resembles the discrete learning dynamics of HB1 and we
define the following notations to make the above expressions more concise:

γ
(σ)
k =

k∑
j=0

µk−jχ
(σ)
j , γ

(−1)
k = Gk, L

(k,σ)
β = γ

(σ−1)
k · ∇, χ(0)

0 =
(1 + µ)

2
G0∇G0

Sm,σ = {(σ1, . . . , σm)|
m∑
i=1

σi = σ −m+ 2,∀i : σi ∈ Z+} (6)

χ
(σ)
j =

σ+2∑
m=2

∑
(σ1,...,σm)∈Sm,σ

1

m!

[
(−1)mL

(j,σ1)
β · · ·L(j,σm−1)

β γ
(σm−1)
j

+ µL
(j−1,σ1)
β · · ·L(j−1,σm−1)

β γ
(σm−1)
j−1

]
.

Comparison with GD. The gradient appeared in the continuous approximation of GD [25] is
replaced by Gk in our HBF, which depends on the iteration number k and can be further simplified
as

Gk =
1− µk+1

1− µ
∇L. (7)

This difference is because each iteration of HB depends on the history of previous iterations. Such
dependence is also reflected in the form of γ(σ)

k : it incorporates information of all previous χ(σ)
j with

j ≤ k as shown in Eq. (6). By letting µ = 0, all the dependence on k will disappear and our results
can recover those of GD. Interestingly, it is worth to mention that the difference between HBF and
the continuous approximations of GD is closely related to the powers of η(1 + µ)/(1 − µ)2 as we
will show in Section 3.2.

Arbitrary order continuous approximation of HB. We note that Gk ≈ ∇L/(1 − µ) for large k,
which is consistent with the RGF in theO (η) continuous approximation of HB. Aside from this, we
emphasize that HBF is more than just a rescaled version of GF—the differences are hidden in the
higher order terms. Our results generalize the O (η) continuous approximation Eq. (1) and O

(
η2
)

approximation of HB. In this sense, Theorem 3.1 provides a more reliable foundation for analyz-
ing the rather less well-studied momentum methods through a continuous learning dynamics—it
precisely indicates the extent of discrepancy between the results of HBF and the discrete ones. Par-
ticularly, to obtain a HBF that is O (ηα)-close to HB, one only needs to truncate the series of γk to
the order of α−2. As an important application, in Section 4, we will apply Theorem 3.1 to precisely
characterize the implicit bias of momentum methods for diagonal linear network, a popular deep
learning model that exhibits many insightful phenomena, such as the transition from kernel regime
to rich regime that is common in more complex architectures.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

εk = O (ηα) GD HB

α = 1 β̇ = −∇L β̇ = − ∇L
(1−µ) [18]

α = 2 β̇ = −∇L− η∇L·∇2L
2 [4] β̇ = − ∇L

1−µ − η 1+µ
(1−µ)3

∇L·∇2L
2 Eq. (9) and [11]

α = 3 β̇ = −∇L− η∇L·∇2L
2 β̇ = − ∇L

1−µ − η 1+µ
(1−µ)3

∇L·∇2L
2

−η2
[
ω1

4 + ω2

12

]
[25; 32] −η2(1+µ)2

(1−µ)5

[
ω1

4 + (1+10µ+µ2)ω2

12(1+µ)2

]
Eq. (10)

Arbitrary α [25; 32] Theorem 3.1 of this work

Discrete βk+1 = βk −∇L(βk) βk+1 = βk − η∇L(βk) + µ (βk − βk−1)

Table 1: Continuous approximations for GD and HB up to different orders of discretization error.

3.2 O (ηα)-CLOSE HBF FOR α = 2, 3

There are basically three steps for finding a HBF that is O (ηα)-close to HB: (1). truncate γk to the
desired order α, i.e, γk =

∑α−2
σ=0 γ

(σ)
k ; (2). from the smallest σ = 0 to σ = α− 2, find all χ(σ)

j with
j ≤ k by identifying the corresponding Sm,σ with m = {2, . . . , σ + 2} for each σ; (3). derive the
expression of γ(σ)

k for all σ ≤ α−2 in a recursive manner using the relation γ
(σ)
k =

∑k
j=0 µ

k−jχ
(σ)
j .

Following this approach, one can find HBF that is O (ηα)-close to HB for arbitrary α. In this
section, we give the HBF with discretization error to the first several orders, i.e., α = 2, 3. We also
summarize these results in Table 1. Note that the case for α = 1 states that HBF is a RGF, i.e.,
β̇ = −∇L/(1− µ), which might not fully characterize the difference between momentum methods
and vanilla GD.

HBF for α = 2. According to Theorem 3.1, there is only one term in the series of γk, i.e., γ(0)
k .

Recall that Lk,0
β = Gk · ∇ and there is only one element in the set Sm=2,σ=0, i.e., Sm=2,σ=0 =

{(σ1 = 0, σ2 = 0)}, we obtain for j ≥ 1 : χ
(0)
j = 1

2

[
Lj,0
β γ

(−1)
j + µLj−1,0

β γ
(−1)
j−1

]
. Thus, using the

definition of Lj,0
β and γ

(1)
j in Theorem 3.1, we can immediately derive that

γk = γ
(0)
k =

∇L · ∇2L

2(1− µ)2

k∑
j=0

µk−j [(1− µj+1)2 + µ(1− µj)2
]
. (8)

Typically the iteration number k is large, therefore we further simplify the form of γk for large
iteration number k: γk ≈ 1+µ

(1−µ)3
∇L·∇2L

2 . This gives us HBF that is O
(
η2
)
-close to HB:

β̇ = − ∇L
1− µ

− η
1 + µ

(1− µ)3
∇L · ∇2L

2
, (9)

which is consistent with the O
(
η2
)
continuous approximation of HB in [11] while our derivation of

HBF is in a different approach. It is worth to mention that when µ = 0, HBF recovers the O
(
η2
)

continuous approximation of GD as expected.

HBF for α = 3. In this case we first truncate γk to the order σ = 1, i.e., γk = γ
(0)
k + ηγ

(1)
k .

Since we already have χ(0)
j in Eq. (8), we only need to find χ

(1)
k and γ

(1)
k , which can be done by first

finding the collection of sets Sm,σ for m = {2, 3} and σ = 1: S2,1 = {(σ1 = 1, σ2 = 0), (σ1 =
0, σ2 = 1)},S3,1 = {(σ1 = 0, σ2 = 0, σ3 = 0)}. We defer the detailed calculation to Appendix A

1pk = µpk−1 −∇L.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and directly present the results here: γ(1)
k =

∑k
j=0 µ

k−j(Ψ
(1)
j +µΘ

(1)
j) where, for convenience, we

let

Ψ
(1)
j =

1

2

(
γ
(0)
j · ∇2L+∇L · ∇γ(0)

j

)
− 1

6
∇L · ∇ (Gj · ∇Gj)

Θ
(1)
j =

1

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
− Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1)

6
.

For large k, let ω1 =
(
∇L · ∇2L

)
· ∇2L and ω2 = ∇L · ∇

(
∇L · ∇2L

)
, we can further simplify

the form of γ(1)
k as γ

(1)
k = (1+µ)2

(1−µ)5

[
ω1

4 + (1+10µ+µ2)ω2

12(1+µ)2

]
, which further gives us the HBF that is

O
(
η3
)
-close to HB:

β̇ = − ∇L
1− µ

− η
1 + µ

(1− µ)3
∇L · ∇2L

2
− η2

(1 + µ)2

(1− µ)5

[
ω1

4
+

(1 + 10µ+ µ2)ω2

12(1 + µ)2

]
(10)

According to Eq. (9), the O
(
η2
)

approximation shows that momentum induces a stronger implicit
gradient regularization (IGR, [4]), i.e., γHB = (1 + µ)/(1 − µ)3γGD where γHB is the implicit
regularization of HB while γGD is that of GD. For the O

(
η3
)
-close HBF we can conclude that

the difference between HB and GD is more complicated since HBF will rely more on ω2 which
primarily depends on∇3L than the continuous approximation of GD.

4 IMPLICIT BIAS OF MOMENTUM METHODS THROUGH HBF

The HBF proposed in Theorem 3.1 provides a reliable mathematical tool for analyzing a wide vari-
ety of properties of HB. A crucial while less well-studied aspect is its implicit bias, which is closely
related to the generalization ability. To demonstrate the significance of HBF and obtain a deeper
understanding of HB, in this section, we will characterize the implicit bias of HBF and reveal how
it is connected with other sources such as model architectures. In particular, we focus on HBF for
the diagonal linear network, a special deep neural network which shares several interesting phenom-
ena with more complex architectures. This makes our setting a non-convex one. We begin with
the definition of diagonal linear networks and a brief introduction of the corresponding regression
setting.

The formulation of diagonal linear networks. An L-layer diagonal linear network [41] with
parameter w = (w1,w2, . . . ,wL) where wl ∈ Rd for any l ∈ {1, . . . , L} is equivalent to a linear
predictor f(x;w) = xT (wL ⊙wL−1 ⊙ · · · ⊙w1). The diagonal linear network is a popular proxy
model of more complicated deep neural networks. In this section, we focus on the 2-layer case,
which, according to [41], induces an equivalent parameterization of w = w+ ⊙w+ −w− ⊙w−.

For our task, given a dataset {(xi, yi)}ni=1 with n samples where xi ∈ Rd and yi ∈ R, we assume
that n < d and consider the regression problem. The quadratic loss is used for the linear predictor
f(x;w) = xTw, i.e., the empirical loss is L(w+,w−) =

∑n
i=1(x

T
i w − yi)

2/(2n). We use X ∈
Rn×d to represent the data matrix and let y = (y1, . . . , yn)

T ∈ Rn. In the rest of this section, we
use the HBF obtained in Theorem 3.1 to investigate its implicit bias and compare it with that of GF,
which is discussed below.

Implicit bias of GF for diagonal linear networks. For theO (η) continuous approximation of GD,
i.e., GF, [3; 41] showed that, if the model parameter w of the aforementioned 2-layer diagonal linear
network converges to the interpolation solution and the initialization is w(0) = w+(0)⊙w+(0)−
w−(0) ⊙ w−(0) with w+(0) = w−(0), then the limit point of w is equivalent to the solution of
the constrained optimization problem w(∞) = argminw ΛGF(w;κGF), s.t. Xw = y where, let
κGF
j = w+;j(0)w−;j(0), the potential function ΛGF(w;κGF) =

∑d
j=1 Λ

GF
j (w;κGF) and

ΛGF
j (w;κGF) =

1

4

[
wj arcsinh

(
wj

2κGF
j

)
−
√

4(κGF
j)2 +w2

j + 2κGF
j

]
. (11)

Note that the scale of κGF controls the transition from rich regime to kernel regime, i.e.,
ΛGF(w;κGF)→ ∥w∥1 for small κGF while it approximates ℓ2-norm for large κGF [41].

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 IMPLICIT BIAS OF HBF FOR DIAGONAL LINEAR NETWORKS

According to Theorem 3.1, the learning dynamics of the diagonal linear networks f(x;w) can be
written as

ẇ+ = −
∇w+

L

1− µ
− ηγ

w+

k , ẇ− = −
∇w−L

1− µ
− ηγ

w−
k (12)

where we use γ
w+

k ∈ Rd and γ
w−
k ∈ Rd to represent the error terms for HBF of w+ and w−,

respectively. Compared to the O (η) continuous approximation HBF, i.e., the RGF Eq. (1), Eq. (12)
has one extra term that accounts for the high-order discretization error. One can check that the
implicit bias of w under the RGF is similar to that of GF by following the approach in, e.g., [3].
However, this is not the case for HBF that is O (ηα)-close to HB for α ≥ 1 due to the γk terms,
which will be examined in the following.

Theorem 4.1 (Implicit bias of HBF for diagonal linear networks). If the dynamics of diagonal linear
network f(x;w) = xTw where w = w+ ⊙w+ −w− ⊙w− follows HBF defined in Theorem 3.1
and if w(∞) converges to an interpolation solution, let κj(t) = w+;j(0)w−;j(0) exp(−ηϵj(t))
where ϵj(t) =

∫ t

0
ds
(
γ
w+

k;j (s)/w+;j(s) + γ
w−
k;j (s)/w−;j(s)

)
and w+;j(0) = w−;j(0), then w(∞)

satisfies that
w(∞) = argmin

w
Λ(w;κ) s.t. Xw = y, (13)

where Λ(w;κ) =
∑d

j=1 Λj(w,∞;κ) and

Λj(w, t;κ) = ΛGF
j (w;κ(t)) +wjφj(t),

φj(t) =
η

4

∫ t

0

ds

(
γ
w+

k;j (s)

w+;j(s)
−

γ
w−
k;j (s)

w−;j(s)

)
.

(14)

Note that we assume w+(s) ̸= 0 and w−(s) ̸= 0 for the dynamics. An immediate application of
Theorem 4.1 shows that the implicit bias of O (η)-close continuous approximation of HBF Eq. (1),
i.e., RGF, is the same as that of GF by setting all the γ

w±
k as 0. In this sense, RGF is not sufficient

for the purpose of revealing the difference between the implicit bias of HB and GD through the
continuous approximations, which suggests that the higher-order HBF is a more discerning choice.

Comparison with the implicit bias of GF. Compared to the implicit bias of GF in Eq. (11), there
are two differences brought by the high-order correction terms of HBF: (1). the potential function
ΛGF
j (w;κGF) for GF becomes ΛGF

j (w;κ(∞)) for HBF where κ(∞) is different from κGF, mean-
ing that HBF induces an effect equivalent to a rescaling of the initialization κGF

j ; (2). Λj(w,∞;κ)
additionally depends on the product wjφj(∞). A similar term will appear in the potential function
of GF ΛGF if the initialization no longer satisfies w+(0) = w−(0)

2. In this sense, HBF also brings
an effect that is equivalent to breaking the symmetry of the initialization.

Implicit bias of higher order continuous approximations of GD. Another byproduct of Theo-
rem 4.1 is the implicit bias of higher-order continuous approximation of GD for diagonal linear
networks, which can be obtained by setting all µ appeared in γ

w±
k as 0. In this sense, compared

to GF, the implicit bias of higher-order continuous approximation of GD will also induce an ef-
fect that is equivalent to the modification of the initialization. Such effect has also been verified in
GD [10] (and, interestingly, SGF [29]) and further reveals the reliability of high-order continuous
approximations.

IMPLICIT BIAS OF HBF FOR DIAGONAL LINEAR NETWORKS WITH α = 2

We now focus on a special case α = 2 as an explicit example to investigate the implicit bias of HBF
and compare it with that of GF.

2One can show that ΛGF will also depend on wT c for some vector c if w+(0) ̸= w−(0) following a
similar approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Corollary 4.2 (Implicit bias of O
(
η2
)
-close HBF for diagonal linear networks). Under conditions

of Theorem 4.1, if the O
(
η2
)
-close HBF is used, then

Λ(w;κ) =

d∑
j=1

ΛGF
j (w, κ) +

η(1 + µ)

4(1− µ)2
wT (∇wL(0)),

where

Φj = 4

∫ ∞
0

ds(∂wj
L)2 > 0, q ∈ Rd with qi =

√
w2

i (∞) + 4κ2
i (0)− 2κi(0)

and κj = κj(0) exp
[
η(1+µ)
(1−µ)2

(
−(1− µ)−1Φj +

(
XTXq

)
j
/n
)]

.

Corollary 4.2 suggests that κ, which controls the transition from kernel regime to rich regime,
is no longer the initialization κ(0). Considering terms in the exponent of κj(∞), when the
first term (the integral of (∂wL)2) is much larger than the second one, we can conclude that
κj(∞) ≈ κj(0) exp

(
− 4η(1+µ)

(1−µ)3
∫∞
0

ds(∂wj
L)2
)

< κj(0), i.e., the initialization is equivalently
decreased. As a result, Λ(w;κ) is closer to the ℓ1-norm thus the solution w(∞) will enjoy better
sparsity.

Implication for difference of implicit bias between HB and GD. Setting µ = 0 in Corollary 4.2
gives us the implicit bias of O

(
η2
)
-close continuous approximation of GD, i.e., IGR [4] Flow

(IGRF). Both IGRF and HBF have the initialization rescaling effect. The difference between them
is closely connected with the parameter η(1 + µ)/(1 − µ)2 and the value of Φ/(1 − µ). And the
discrepancy between the implicit bias of HB and that of GD will be more obvious for large value of
µ. These observations stand in contrast to the case for O (η)-close RGF, which cannot distinguish
the implicit bias of HB from that of GD. In particular, compared to GD, HB converges faster thus
Φ tends to be smaller for HBF than for IGRF, suggesting that, if HB converges too fast, κ would be
larger for HB and solutions of GD would enjoy better generalization properties. More interestingly,
considering the case where Φ ≫ XTXq/n, e.g., κ(0) ≫ w(∞) such that q ≈ 0, if HB does
not converge much faster than GD such that the difference of Φ between HBF and IGRF is not too
significant, then HB would enjoy better sparsity than GD since it has a coefficient (1+µ)/(1−µ)2 >
1 for Φ that further strengthens the initialization mitigation effect. Therefore, Corollary 4.2 indicates
a trade-off between convergence rate and generalization benefit of momentum, which cannot be
captured by lower order continuous approximation RGF.

5 NUMERICAL EXPERIMENTS

In this section, we show numerical experiments to verify our theoretical claims. We first present a
2d example, and then focus on the implicit bias of HB for a two-layer diagonal linear networks.

Learning Dynamics in a 2-d Model We first explore a simple 2-d model f(x; a1, a2) = a1a2x
where a1, a2 ∈ R are the model parameters and x, y ∈ R is the training data. The loss function
is L = (f(x; a1, a2) − y)2/2. All parameters a1, a2 satisfying a1a2x = y are global minima. To
show that higher-order HBFs are better approximations of HB, we visualize trajectories for different
learning dynamics, i.e., GD, HB, RGF, HBF with α = 2, and HBF with α = 3, in Fig. 1(a).
The trajectory of HBF with α = 3 is closer to that of HB than both RGF and HBF with α =
2. Furthermore, Fig. 1(a) also reveals that RGF is more similar to GD and it cannot capture the
discrete learning dynamics of HB well. We also plot the norm of discretization errors ∥εk∥2 for
these continuous approximations during training in Fig. 1(b), where HBF with α = 3 has the lowest
discretization error after several steps. These results validate the reliability of HBF as a proxy of
HB.

Implicit Bias of HB for Diagonal Linear Networks We now investigate the implicit bias of HB
for 2-layer diagonal linear networks f(x;w) = wTx = (w+ ⊙w+ −w− ⊙w−)

Tx for a dataset
{(xi, yi)}ni=1 where x ∈ Rd, y ∈ R. The empirical loss is L(w+,w−) =

∑
i(f(xi;w)− yi)

2. We
let n < d and denote the ground truth solution as w∗ such that w∗Tx = y. We let w∗ be sparse. For

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
a1

1.0

1.5

2.0

2.5

3.0

3.5

a 2

RGF
HBF, = 2
HBF, = 3
HB
GD

(a)

100 101 102 103

Iteration k

10 4

10 3

10 2

10 1

100

||
k||

Discretization error of HBF
RGF
HBF, = 2
HBF, = 3

(b)

Figure 1: (a). Trajectories for learning dynamics of GD, HB, RGF, and O
(
η2
)
-close and O

(
η2
)
-

close HBF in a 2-d model. All dynamics start from the same point (a1 = 2.8, a2 = 3.5). The
convergence point of HB is denoted as a black star. The black dotted line denotes the set of all
global minima. (b). Discretization errors for different continuous approximations of HB during
training in (a).

a given scale s we let κ(0) = w+(0)⊙w−(0) = s2(1, . . . , 1)T ∈ Rd. Our first experiment explores
the discretization error, where we let k denote the iteration count and first obtain wHB

k by training
f(x;w) with HB. In addition, we also train f(x;w) with RGF (Eq. (1)) and HBF (Corollary 4.2),
respectively. We calculate the discretization error as ∥wHB

k −w(tk)∥22 for w(tk) obtained from HBF
or RGF and present the results in Fig. 2(a), where HBF enjoys smaller discretization error than RGF
for different µ, supporting our theoretical claims.

In our second experiment, we compare the implicit bias of HB with that of GD. Given s, we train
f(x;w) with GD and HB, respectively. We calculate the distance between the returned solution
w(∞) and the ground truth solution w∗, i.e., ∥w(∞) − w∗∥2, as a measure of generalization
performance and report the results in Fig. 2(b). It can be seen that, when the initialization scale s is
small, solutions of GD generalize better than those of HB. This can be explained by Corollary 4.2:
compared to GD, when s is small, L(w) decreases much faster for HB (green lines in Fig. 2(c)),
which leads to a smaller

∫
dsL(w) and weaker initialization mitigation effect, thus the solutions

of HB generalize worse than GD solutions. Recall that in Corollary 4.2, as κj(0) = s2 increases,
Φ determines the generalization performances for HB and GD since it controls the extent of the
initialization mitigation effect. Furthermore, L(w) does not decrease much faster for HB than for
GD (blue lines in Fig. 2(c)), thus GD and HB have a similar value of Φ, which is further enhanced
by a factor of (1 + µ)/(1 − µ)3 for HB according to Corollary 4.2. As a result, HB solutions will
generalize better than GD and the discrepancy between them is more significant for large µ (large
(1 + µ)/(1− µ)3) as shown in Fig. 2(b).

0 2000 4000 6000 8000 10000
Iteration k

10 10

10 8

10 6

10 4

10 2

||w
H

B
k

w
(t k

)||
2 2

HBF, = 0.6
RGF, = 0.6
HBF, = 0.7
RGF, = 0.7
HBF, = 0.8
RGF, = 0.8

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Initialization scale s

0.5

1.0

1.5

2.0

2.5

||w
w

* ||
2

GD
HB, = 0.8
HB, = 0.9
HB, = 0.95

(b)

100 101 102 103

Iteration k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L(
w

),
s

=
0.

01

GD
HB
GD
HB

10 12

10 10

10 8

10 6

10 4

10 2

100

L(
w

),
s

=
0.

6

(c)

Figure 2: (a). Discretization errors ∥wHB
k −w(tk)∥22 for HBF (dotted lines) and RGF (solid lines),

respectively, when training the 2-layer diagonal linear networks. (b). Generalization performances
∥w(∞) − w∗∥2 for different initialization scales s when f(x;w) is trained by GD and HB with
different values of µ. (c). L(w) during training processes of HB (µ = 0.9) and GD for different s.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this paper, we have established a new continuous approximation of HB, namely HBF, withO (ηα)
discretization error to the discrete HB for arbitrary α ≥ 1. Our results provide a reliable foundation
for analyzing the less well-studied momentum methods through the continuous time limit. As an
important and interesting application, we have studied the implicit bias of HBF for the popular proxy
model diagonal linear networks and revealed the difference between the implicit bias of HB and that
of GD which cannot be captured by RGF.

There are also many other momentum and adaptive algorithms, such as Adam [17] and AdaGrad [8],
and more complex neural networks. A clear characterization of properties for these momentum
methods and neural networks with methods developed in the current work is an interesting direction.

REFERENCES

[1] Alnur Ali, Edgar Dobriban, and Ryan Tibshirani. The implicit regularization of stochastic
gradient flow for least squares. In International Conference on Machine Learning, volume
PMLR, 2020.

[2] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. CoRR, abs/1802.06509, 2018.

[3] Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro,
Amir Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond
infinitesimal mirror descent. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 468–477. PMLR, 18–24 Jul 2021.

[4] David G. T. Barrett and Benoit Dherin. Implicit gradient regularization. In International
Conference on Machine Learning, 2022.

[5] Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep
neural networks driven by an ornstein-uhlenbeck like process. In Conference on Learning
Theory, 2020.

[6] Matias D. Cattaneo, Jason M. Klusowski, and Boris Shigida. On the implicit bias of adam,
2023.

[7] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, 2020.

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. In Journal of Machine Learning Research, 2011.

[9] Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural net-
works. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, 2021.

[10] Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s)gd over diagonal
linear networks: Implicit regularisation, large stepsizes and edge of stability, 2023.

[11] Avrajit Ghosh, He Lyu, Xitong Zhang, and Rongrong Wang. Implicit regularization in heavy-
ball momentum accelerated stochastic gradient descent, 2023.

[12] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. In International Conference on Machine Learning, 2018.

[13] Ernst Hairer, Gerhard Wanner, and Christian Lubich. Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Berlin, Hei-
delberg, 2006.

[14] Jeff Z. HaoChen, Colin Wei, Jason D. Lee, and Tengyu Ma. Understanding the implicit bias
of the noise covariance. In Conference on Learning Theory, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

[15] Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization
in deep learning, 2022.

[16] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
arXiv:1412.6980, 2017.

[18] Nikola B. Kovachki and Andrew M. Stuart. Continuous time analysis of momentum methods.
In Journal of Machine Learning Research, 2020.

[19] Walid Krichene and Peter L Bartlett. Acceleration and averaging in stochastic descent dynam-
ics. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[20] Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in con-
tinuous and discrete time. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates,
Inc., 2015.

[21] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient
descent for matrix factorization: Greedy low-rank learning. In International Conference on
Learning Representations, 2021.

[22] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after SGD reaches zero loss?
–a mathematical framework. In International Conference on Learning Representations, 2022.

[23] Bochen Lyu and Zhanxing Zhu. Implicit bias of (stochastic) gradient descent for rank-1 linear
neural network. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[24] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. In International Conference on Learning Representations, 2020.

[25] Taiki Miyagawa. Toward equation of motion for deep neural networks: Continuous-time gra-
dient descent and discretization error analysis. In 36th Conference on Neural Information
Processing Systems (NeurIPS 2022), 2023.

[26] Mor Shpigel Nacson, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, and Daniel Soudry. Lex-
icographic and depth-sensitive margins in homogeneous and non-homogeneous deep models.
In International Conference on Machine Learning, 2019.

[27] Yurii Nesterov. A method of solving a convex programming problem with convergence rate
o(1/k2). In Soviet Mathematics Doklady, 1983.

[28] Hristo Papazov, Scott Pesme, and Nicolas Flammarion. Leveraging continuous time to un-
derstand momentum when training diagonal linear networks. In International Conference on
Artificial Intelligence and Statistics, 2024.

[29] Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for di-
agonal linear networks: a provable benefit of stochasticity. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Sys-
tems, 2021.

[30] Loucas Pillaud-Vivien, Julien Reygner, and Nicolas Flammarion. Label noise (stochastic)
gradient descent implicitly solves the lasso for quadratic parametrisation. In Conference on
Learning Theory, 2020.

[31] Boris Polyak. Some methods of speeding up the convergence of iteration methods. In Ussr
Computational Mathematics and Mathematical Physics, 1964.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[32] Mihaela Rosca, Yan Wu, Chongli Qin, and Benoit Dherin. On a continuous time model of
gradient descent dynamics and instability in deep learning. Transactions on Machine Learning
Research, 2023.

[33] Bin Shi, Simon S. Du, Michael I. Jordan, and Weijie J. Su. Understanding the acceleration phe-
nomenon via high-resolution differential equations. Mathematical Programming, 195, 2022.

[34] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on spearable data. In Journal of Machine Learning Research,
2018.

[35] Weijie Su, Stephen Boyd, and Emmanuel J. Candès. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights. Journal of Machine Learning
Research, 17(153):1–43, 2016.

[36] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 1139–1147, Atlanta, Georgia, USA, 17–19
Jun 2013. PMLR.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[38] Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-Ming Ma, and Tie-Yan
Liu. Does momentum change the implicit regularization on separable data?, 2022.

[39] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. A variational perspective on ac-
celerated methods in optimization. In The Proceedings of the National Academy of Scienc,
2016.

[40] Ashia C. Wilson, Benjamin Recht, and Michael I. Jordan. A lyapunov analysis of momentum
methods in optimization. In arXiv:1611.02635, 2016.

[41] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized mod-
els. In Conference on Learning Theory, 2020.

[42] Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in
training linear neural networks. In International Conference on Learning Representations,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

In Appendix A, we provide proofs for Section 3. We present proofs of Section 4 in Appendix B. In
Appendix C we show details of numerical experiments in Section 5 and 5.

A PROOFS FOR SECTION 3

We prove Theorem 3.1 in Appendix A.1 and give the details for the first several orders HBF in A.2.

A.1 PROOF OF THEOREM 3.1

Recall that the discrete learning dynamics of HB is

βk+1 − βk = −η∇L(βk) + µ(βk − βk−1), (15)

where µ is the momentum factor and k is the iteration number. Based on our discussion in Section 3,
suppose that the continuous differential equation for HB is

β̇ = −Gk(β)− ηγk(β) (16)

for t ∈ [tk, tk+1) where tk = kη and the solution is β(t), we expect that γk could cancel higher-
order discretization errors and Gk would be closely related to rescaled gradient, i.e., ∇L/(1 − µ),
when only the lowest order continuous approximation is considered, i.e., γk and Gk are chosen in
such a way that β(tk) is close to βk in the sense that

εk = β(tk)− βk (17)

is small. Inspired by [25], in the following, we will find such γk and Gk by investigating the
properties of εk.

For this purpose, we begin with considering the Taylor expansion

β(tk+1)− β(tk) = ηβ̇(t+k) + η2I+k = −ηGk − η2γk + η2I+k (18)

where t+k means we approximate tk from t > tk, I+k =
∫ 1

0
β̈ (η(k + s)) (1 − s)ds, and we use

Eq. (16) in the second equality. Similarly,

β(tk)− β(tk−1) = −ηGk−1 − η2γk−1 − η2I−k .

We are now able to derive a recursive relation between εk+1 and εk by subtracting Eq. (15) from
both sides of Eq. (18):

εk+1 − εk = −η [Gk(β(tk))−∇L(βk)]− η2γk + η2I+k − µ(βk − βk−1). (19)

Note that

βk − βk−1 = β(tk)− β(tk−1)− (εk − εk−1)

= −ηGk−1 − η2γk−1 − η2I−k − (εk − εk−1),

we obtain

εk+1 − εk = µ(εk − εk−1)− η [Gk − µGk−1 −∇L(β(tk)− εk)]

+ η2
[
I+k + µI−k − γk + µγk−1

]
. (20)

To further establish the relation between εk and εk−1, we present the following lemma and the proof
can be found in A.1.1.
Lemma A.1. For the continuous differential equation Eq. (16) and the discrete sequence given by
Eq. (15), if Gk(β(tk)) = µGk−1(βtk) +∇L(β(tk)) with G−1 = 0 and

I+k + µI−k − γk + µγk−1 = O
(
ηα−2

)
, (21)

then we have εk = O (ηα) and
εk − εk−1 = O (ηα) .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The above lemma ensures that the discretization error is of order O (ηα) as long as Eq. (21) is
satisfied, which can be done by finding appropriate γk. For this purpose, we investigate the integral
I±k in the following lemma and present the proof in A.1.2.
Lemma A.2. Under conditions of Lemma A.1, if we require that

I+k + µI−k = γk − µγk−1, (22)

then

I+k =

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

(−1)q

q!
ηpL

(k,σ1)
β · · ·L(k,σq−1)

β γ
(σq−1)
k (23)

I−k =

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

1

q!
ηpL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1 . (24)

Now suppose that γk can be written as a series

γk =

∞∑
σ=0

ησγ
(σ)
k , γ

(−1)
k = Gk,

we can apply Lemma A.2 for any given σ to solve Eq. (22) by requiring
σ+2∑
q=2

∑
∑q

j=1 σj=σ−q+2

ησ

q!

[
(−1)qL(k,σ1)

β · · ·L(k,σq−1)
β γ

(σq−1)
k + µL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1

]
= ησ(γ

(σ)
k − µγ

(σ)
k−1). (25)

Recall the definition in Theorem 3.1, we obtain that

γ
(σ)
k = µγ

(σ)
k−1 + χ

(σ)
k =⇒ γ

(σ)
k =

k∑
j=0

µk−jχ
(σ)
j (26)

for χ(σ)
0 = γ

(σ)
0 . Now we can show that by truncating γk to the order α−2, i.e., γk =

∑α−2
σ=0 η

σγ
(σ)
k ,

the obtained HBF is an O (ηα)-close continuous version of HB, since

εk+1 − εk = O (ηα) +O (ηα) + η2

[
I+k + µI−k −

α−2∑
σ=0

ησ(γ
(σ)
k − µγ

(σ)
k−1)

]

= η2
∞∑

σ=α−1
ησ(γ

(σ)
k − µγ

(σ)
k−1) = O (ηα) , (27)

where we use Lemma A.1 in the first equality and Lemma A.2 in the second equality. We thus
conclude that εk = O (ηα) according to Lemma A.1 again.

A.1.1 PROOF FOR LEMMA A.1

Proof. By definition we have ε0 = 0 = O (ηα) since the continuous differential equation and
discrete HB start from the same point. Note that G−1 = 0 and γ−1 = 0 by definition. Recall that
the first iterate of HB renders β1 = β0 − η∇L(β0) and that we let G0 = ∇L(β0), we have

ε1 − ε0 = β(t1)− β1 = β(t0) + ηβ̇(t0) + η2I0 − (β0 − η∇L(β0))

= ε0 − η(G0 −∇L(β0))− η2γ0 + η2I0 = O (ηα) . (28)

The proof can now be completed by induction: suppose that for the iteration k

εk = O (ηα) , εk − εk−1 = O (ηα) , (29)

then, using Eq. (20) and the condition defined in Lemma A.1, we have for k + 1

εk+1 = O (ηα)− η [∇L(β(tk))−∇L (β(tk)− εk)] +O (ηα)

= O (ηα)− ηεk · ∇2L(β(tk)) = O (ηα) . (30)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1.2 PROOF FOR LEMMA A.2

Proof. We first rewrite I±k as follows :

I±k =
1

η2

∫ kη±η

kη

β̈(τ)(kη ± η − τ)dτ

τ ′←τ−kη
=

1

η2

∫ ±η
0

[∞∑
n=0

1

n!

dn

dtn
β̈(kη)τ ′n

]±
(±η − τ ′)dτ ′

=

∞∑
n=0

(±η)n

(n+ 2)!

dn

dtn
β̈(t±k) (31)

where we use
∫ η

0
τ ′n(η− τ ′)dτ ′ = ηn+2

n+1 −
ηn+2

n+2 = ηn+2

(n+1)(n+2) in the last equality. To continue, we
need the expression of dnβ/dtn and we start with t→ t+k :

dn

dtn
β(t+k) =

d

dt

(
dn−1

dtn
β(t+k)

)
= β̇(t+k) · ∇

(
dn−1

dtn
β(t+k)

)
= −(Gk + ηγk) · ∇

(
dn−1

dtn
β(t+k)

)
= (−1)n(L(k)

β)n−1 (Gk + ηγk) (32)

where we denote the differential operator L(k)
β = (Gk + ηγk) · ∇ and use Eq. (16) in the third

equality. Now suppose that γk can be written as a series

γk =

∞∑
σ=0

ησγ
(σ)
k , γ

(−1)
k = Gk,

then Eq. (32) becomes

dn

dtn
β(t) = (−1)n

(∞∑
σ1=0

ησ1γ
(σ1−1)
k · ∇

)
· · ·

· · ·

 ∞∑
σn−1=0

ησn−1γ
(σn−1−1)
k · ∇

 ∞∑
σn−1=0

ησnγ
(σn−1)
k

= (−1)n

∞∑
σ1,...,σn=0

η
∑n

j=1 σjL
(k,σ1)
β · · ·L(k,σn−1)

β γ
(σn−1)
k (33)

Combined with Eq. (31), we obtain the form of I+k for t ∈ (tk, tk+1) as

I+k =

∞∑
n=0

ηn

(n+ 2)!

dn+2

dtn+2
β(t)

=

∞∑
n=0

∞∑
σ1,...,σn+2=0

(−1)n+2

(n+ 2)!
ηn+

∑n+2
j=1 σjL

(k,σ1)
β · · ·L(k,σn+1)

β γ
(σn+2−1)
k

=
∞∑

n=0

∞∑
m=0

∑
∑n+2

j=1 σj=m

(−1)n+2

(n+ 2)!
ηn+mL

(k,σ1)
β · · ·L(k,σn+1)

β γ
(σn+2−1)
k

=

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2

(−1)q

q!
ηpL

(k,σ1)
β · · ·L(k,σq−1)

β γ
(σq−1)
k (34)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where we let p← n+
∑n+2

j=1 σj , q ← n+ 2, in the last equality. Similarly, when t→ t−k , we have

dn

dtn
β(t−k) = (−1)n(L(k−1)

β)n−1 (Gk−1 + ηγk−1)

which implies that

I−k =

∞∑
p=0

p+2∑
q=2

∑
∑q

j=1 σj=p−q+2
q!
ηpL

(k−1,σ1)
β · · ·L(k−1,σq−1)

β γ
(σq−1)
k−1 . (35)

A.2 O (ηα)-CLOSE HBF FOR A SPECIFIC α

In this section, we derive the form of O (α)-close HBF for given a specific α. There are basically
three steps to find a HBF that is O (ηα)-close to HB:

1. truncate γk to the desired order α, i.e, γk =
∑α−2

σ=0 γ
(σ)
k ;

2. from the smallest σ, find all χ(σ)
j with j ≤ k by finding the corresponding Sm,σ with

m = {2, . . . , σ + 2} for each σ;

3. derive the expression of γ(σ)
k for all σ ≤ α − 2 in a recursive manner using the relation

γ
(σ)
k =

∑k
j=0 µ

k−jχ
(σ)
j .

In the following, we give the cases for α = 2 and 3 as examples. With this approach, one can in fact
find HBF with arbitrary order of closeness to HB.

A.2.1 α = 2.

According to Theorem 3.1, the series of γk is truncated to the first term, i.e., γk = η0γ
(0)
k , where

γk =
∑k

j=0 µ
k−jχ

(0)
j . Thus the first step is to find χ

(0)
j , which can be given by first identifying the

set S:
Sm=2,σ=0 = {(σ1 = 0, σ2 = 0)}, (36)

therefore there is only one term in χ
(0)
j :

χ
(0)
j =

1

2

[
Lj,0
β γ

(−1)
j + µLj−1,0

β γ
(−1)
j−1

]
.

Recall that

γ
(−1)
j = Gj =

1− µj+1

1− µ
∇L, (37)

which, according to our definition in Theorem 3.1, leads to

Lj,0
β = γ

(−1)
j · ∇ = Gj · ∇,

we obtain that

χ
(0)
j =

1

2
[Gj · ∇Gj + µGj−1 · ∇Gj−1]

=
1

2(1− µ)2
[
(1− µj+1)2 + µ(1− µj)2

]
∇L · ∇2L. (38)

Thus

γ
(0)
k =

1

2

k∑
j=0

µk−j [Gj · ∇Gj + µGj−1 · ∇Gj−1]

=
∇L · ∇2L

2(1− µ)2

k∑
j=0

µk−j [(1− µj+1)2 + µ(1− µj)2
]

=
∇L · ∇2L

2(1− µ)2

k∑
j=0

[
(1 + µ)µk−j + µk+1(µj(1 + µ)− 4)

]
. (39)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

When k is larege, the above expression can be simplified as

γ
(0)
k ≈

(1 + µ)
∑k

j=0 µ
j

2(1− µ)2
∇L · ∇2L ≈ 1 + µ

2(1− µ)3
∇L · ∇2L.

A.2.2 α = 3.

Similarly, in this case we first truncate the series of γk to the desired order, i.e., γk = γ
(0)
k + ηγ

(1)
k

where we have already obtained γ
(0)
k in the last section, thus we only need to find γ

(1)
k and χ

(1)
k ,

which can be done by first finding the set Sm=2,σ=1 and Sm=3,σ=1:

S2,1 = {(σ1 = 1, σ2 = 0), (σ1 = 0, σ2 = 1)},
S3,1 = {(σ1 = 0, σ2 = 0, σ3 = 0)}.

Therefore there are three terms of χ(1)
j :

χ
(1)
j =

1

2

[
Lj,1
β γ

(−1)
j + µLj−1,1

β γ
(−1)
j−1

]
+

1

2

[
Lj,0
β γ

(0)
j + µLj−1,0

β γ
(0)
j−1

]
− 1

6

[
Lj,0
β Lj,0

β γ
(−1)
j − µLj−1,0

β Lj−1,0
β γ

(−1)
j−1

]
. (40)

Recall that γ(−1)
j = Gj , Lj,0

β = Gj · ∇, and Lj,1
β = γ

(0)
j · ∇, the first line of Eq. (40) is

1

2

[
γ
(0)
j · ∇Gj + µγ

(0)
j−1 · ∇Gj−1 +Gj · ∇γ(0)

j + µGj−1 · ∇γ(0)
j−1

]
(41)

while the second line is

−1

6
[Gj · ∇ (Gj · ∇Gj)− µGj−1 · ∇ (Gj−1 · ∇Gj−1)] . (42)

To simplify these terms, we can either replace all γ(0)
j with the expression in Eq. (39) and write

Gj explicitly, or notice the recursive relation between Gj and Gj−1 in Theorem 3.1, i.e. ,Gj =
µGj−1 +∇L, then Eq. (41) becomes

1

2

[
γ
(0)
j · ∇2L+∇L · ∇γ(0)

j

]
+

µ

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
and Eq. (42) is now

−1

6
∇L · ∇ (Gj · ∇Gj)−

µ

6
Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) . (43)

Summing over these terms gives us χ(1)
j :

χ
(1)
j = Ψ

(1)
j + µΘ

(1)
j (44)

where

Ψ
(1)
j =

1

2

(
γ
(0)
j · ∇2L+∇L · ∇γ(0)

j

)
− 1

6
∇L · ∇ (Gj · ∇Gj)

Θ
(1)
j =

1

2

[(
γ
(0)
j + γ

(0)
j−1

)
· ∇Gj−1 +Gj−1 · ∇

(
γ
(0)
j + γ

(0)
j−1

)]
− 1

6
Gj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) .

We can now find γ
(1)
k through its definition:

γ
(1)
k =

k∑
j=0

µk−jχ
(1)
j =

k∑
j=0

µk−jΨ
(1)
j + µ

k∑
j=0

µk−jΘ
(1)
j . (45)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

In the following, we derive the form of γ(1)
k When k is large. According to Eq. (39), we have

µk−jγ
(0)
j = µk−j∇L · ∇2L

2(1− µ)2

j∑
i=0

[
(1 + µ)µj−i + µj+1(µi(1 + µ)− 4)

]
= µk−j∇L · ∇2L

2(1− µ)2

[
(1 + µ)(1− µj+1)

1− µ
+

µj+1(1 + µ)(1− µj+1)

1− µ
− 4(j + 1)µj+1

]
=
∇L · ∇2L

2(1− µ)2

[
(1 + µ)(µk−j − µk+1)

1− µ
+

µk+1(1 + µ)(1− µj+1)

1− µ
− 4(j + 1)µk+1

]
=
∇L · ∇2L

2(1− µ)2

[
(1 + µ)µk−j

1− µ
− µk+j+1(1 + µ)

1− µ
− 4(j + 1)µk+1

]
≈ µk−j (1 + µ)

2(1− µ)3
∇L · ∇2L (46)

and, according to Eq. (37),

µk−jGj · ∇Gj =
µk−j(1− 2µj+1 + µ2(j+1))

(1− µ)2
∇L · ∇2L ≈ µk−j

(1− µ)2
∇L · ∇2L. (47)

Combining Eq. (46) and (47) gives the form of µk−jΨ
(1)
j when k is large:

µk−jΨ
(1)
j ≈ µk−j(1 + µ)

4(1− µ)3
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
− µk−j

6(1− µ)2
∇L · ∇

(
∇L · ∇2L

)
which immediately leads to

k∑
j=0

µk−jΨ
(1)
j

≈ (1 + µ)

4(1− µ)4
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
−
∇L · ∇

(
∇L · ∇2L

)
6(1− µ)3

=
1

4(1− µ)4

[
(1 + µ)(∇L · ∇2L) · ∇2L+

(1 + 5µ)

3
∇L · ∇

(
∇L · ∇2L

)]
. (48)

The left part is now deriving the form of µk−jΘ
(1)
j , which can be done by first finding

µk−jγ
(0)
j · ∇Gj−1 ≈ µk−j (1 + µ)

2(1− µ)3
(∇L · ∇2L) · ∇Gj−1

≈ µk−j (1 + µ)

2(1− µ)4
(∇L · ∇2L) · ∇2L ≈ µk−jγ

(0)
j−1 · ∇Gj−1 (49)

and

µk−jGj−1 · ∇ (Gj · ∇Gj −Gj−1 · ∇Gj−1) ≈
2µk−j

(1− µ)3
∇L · ∇

(
∇L · ∇2L

)
, (50)

thus

k∑
j=0

µk−jΘ
(1)
j ≈ (1 + µ)

2(1− µ)5
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
. (51)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Combing this equation with Eq. (48), we can now conclude the form of γ(1)
k when k is large:

γ
(1)
k =

k∑
j=0

µk−j
(
Ψ

(1)
j + µΘ

(1)
j

)
1

4(1− µ)4

[
(1 + µ)(∇L · ∇2L) · ∇2L+

(1 + 5µ)

3
∇L · ∇

(
∇L · ∇2L

)]
+

µ(1 + µ)

2(1− µ)5
[
(∇L · ∇2L) · ∇2L+∇L · ∇

(
∇L · ∇2L

)]
=

(1 + µ)2

4(1− µ)5

[
(∇L · ∇2L) · ∇2L+

1 + 10µ+ µ2

3(1 + µ)2
∇L · ∇

(
∇L · ∇2L

)]
(52)

Note that when µ = 0 we recover the result of GD, i.e., γ(1)
k = (∇L·∇2L)·∇2L

4 +
∇L·∇(∇L·∇2L)

12 .

B PROOFS FOR SECTION 4

Given data (xi, yi), the architecture of 2-layer diagonal linear network is

f(xi;w) = xT
i (w+ ⊙w+ −w− ⊙w−) =

d∑
j=1

xi;j

(
w2

+;j −w2
−;j
)

(53)

and the empirical loss function is

L(w) =
1

2n

n∑
i=1

(f(xi;w)− yi)
2.

We let r = (r1, . . . , rn)
T ∈ Rn be the residual where ∀i : ri = f(xi;w) − yi. According to

Theorem 3.1, the HBF learning dynamics of model parameters w+ and w− will be

ẇ+ = −
∇w+

L

1− µ
− ηγ

w+

k , ẇ− = −
∇w−L

1− µ
− ηγ

w−
k (54)

where we use γ
w+

k ∈ Rd and γ
w−
k ∈ Rd to represent the error terms for HBF of w+ and w−,

respectively, and the gradients are

∇wL =
1

n
XT r, (55)

∇w+
L = 2w+ ⊙∇wL, ∇w−L = −2w− ⊙∇wL. (56)

Using the expressions above, it can be easily verified that

w− ⊙∇w+
L+w+ ⊙∇w−L = 0, (57)

and we will frequently use this relation later. Recall the definition of κj = w+;jw−;j , we now
present useful lemmas before proving Theorem 4.1.
Lemma B.1. Let κj(t) = w+;j(t)w−;j(t), γ

w±
k;j denote the j-th component of γw±

k , and

ϵj(t) =

∫ t

0

ds

(
γ
w+

k;j (s)

w+;j(s)
+

γ
w−
k;j (s)

w−;j(s)

)
, (58)

then we have
κj(t) = κj(0)e

−ηϵj(t). (59)

Proof. The proof applies the dynamics of w+ and that of w−:
dκ

dt
= ẇ+ ⊙w− + ẇ− ⊙w+

=

(
−
∇w+L

1− µ
− ηγ

w+

k

)
⊙w− +w+ ⊙

(
−
∇w−L

1− µ
− ηγ

w−
k

)
= −η

(
γ
w+

k ⊙w− +w+ ⊙ γ
w−
k

)
, (60)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where we use Eq. (12) in the second equality and Eq. (57) in the third equality. As a result, for the
j-th component of κ, we have

κ̇j = −ηκj

(
γ
w+

k;j

w+;j
+

γ
w−
k;j

w−;j

)
=⇒ κj(t) = κj(0)e

−ηϵj(t). (61)

It is also interesting to investigate the dynamics of w as shown below.
Lemma B.2. If w± is run with HBF, then the dynamics of w satisfies that

ẇ = −4v ⊙ ∇wL

1− µ
− ηΓw

k (62)

where we let

v = (w+ ⊙w+ +w− ⊙w−) , Γw
k = 2

(
γ
w+

k ⊙w+ − γ
w−
k ⊙w−

)
. (63)

Proof. Using the dynamics of w± Eq. (12), we can show that

ẇ = 2ẇ+ ⊙w+ − 2ẇ− ⊙w−

= 2

(
−
∇w+L

1− µ
− ηγ

w+

k

)
⊙w+ − 2

(
−
∇w−L

1− µ
− ηγ

w−
k

)
⊙w−

= −4 (w+ ⊙w+ +w− ⊙w−)⊙
∇wL

1− µ
− 2η

(
γ
w+

k ⊙w+ − γ
w−
k ⊙w−

)
. (64)

To show the implicit bias of HBF, we need to first explore the dynamics of w, which is present in
the following lemma.
Lemma B.3 (Dynamics of w for diagonal linear networks under HBF). Under conditions of Theo-
rem 4.1, if the diagonal linear network f(x;w) is trained with HBF (Theorem 3.1), let

ΛGF
j (w;κ(t)) =

2κj(t)

4

[
wj(t)

2κj(t)
arcsinh

(
wj(t)

2κj(t)

)
−

√
1 +

w2
j (t)

4κ2
j (t)

+ 1

]

φj(t) =
η

4

∫ t

0

ds

[
γ
w+

k;j (s)

w+;j(s)
−

γ
w−
k;j (s)

w−;j(s)

]
Λj(w, t;κ) = ΛGF

j (w;κ(t)) +wj(t)φj(t), (65)

then the learning dynamics of the parameter w satisfies that

d

dt
∂wj

Λj +
∂wjL

1− µ
= 0. (66)

The proof of this lemma can be found in Appendix B.2. In the following we first focus on the proof
of Theorem 4.1.

B.1 PROOF OF THEOREM 4.1

Now we can prove Theorem 4.1 with above helper lemmas.

Proof. Recall the definition of Λj in Lemma B.3 and we further define

Λ(w, t;κ) =

d∑
j=1

Λj(w, t;κ), (67)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

then Lemma B.3 gives us

d

dt
∇wΛ(w, t;κ) =

(
d

dt
∂w1

Λ1(w, t;κ), . . . ,
d

dt
∂wd

Λd(w, t;κ)

)T

= − XT r

n(1− µ)

=⇒ ∇wΛ(w(∞),∞;κ(∞)) −∇wΛ(w(0), 0;κ(0)) = −
n∑

i=1

xi

∫∞
0

ri(τ)dτ

n(1− µ)
=

n∑
i=1

xici (68)

where we let ci = −
∫ ∞
0

ri(τ)dτ

n(1−µ) . Let ∇wΛ(w(0), 0;κ(0)) = 0 and recall the definition of Λ(w;κ)

in Theorem 4.1., then Eq. (68) is equivalent to

∇wΛ(w;κ)−
n∑

i=1

xici = 0,

which is exactly the KKT condition of argminw:Xw=y Λ(w;κ) proposed in Theorem 4.1. There-
fore, we finish the proof.

B.2 PROOF OF LEMMA B.3

In this section we present the proof of Lemma B.3.

Proof. For simplicity, in the following we write the subscripts explicitly. According to Lemma B.2,
the dynamics of wj can be written as

ẇj = −
4

1− µ
vj∂wjL− ηΓw

k;j . (69)

Note that
v2
j −w2

j = 4w2
+;jw

2
−;j =⇒ v2

j =
√

w2
j + 4κ2

j , (70)

then Eq. (69) can be written as

ẇj

4
√
w2

j + 4κ2
j

= −
∂wjL

1− µ
− η

Γw
k;j

4
√

w2
j + 4κ2

j

. (71)

We now define a function
Λj(w, t;κ) = Λ̄j(w, t;κ) +wjφj(t) (72)

for some Λ̄j(w, t;κ) and φj(t) such that

d

dt
∂wjΛj(w, t;κ) =

ẇj + ηΓw
k;j

4
√

w2
j + 4κ2

j

, (73)

the we can prove this lemma. Now we continue to find the Λ̄j(w, t;κ) and φj(t). By definition,

d

dt
∂wj

Λj(w, t;κ) = ∂2
wj

Λ̄jẇj + ∂t∂wj
Λ̄j + φ̇j , (74)

which, when compared with Eq. (73), implies that

∂2
wj

Λ̄j =
1

4
√
w2

j + 4κ2
j

. (75)

Solving this equation gives us

∂wj
Λ̄j =

1

4

∫
dwj√

w2
j + 4κ2

j

=
ln
(√

w2
j + 4κ2

j +wj

)
4

+ c (76)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where c is a constant and can be determined by requiring ∂wj
Λ̄j |t=0 + φj(0) = 0 =⇒ c =

− ln(2κj(0))/4. Thus Eq. (76) becomes

∂wj Λ̄j =
1

4
ln

√
w2

j + 4κ2
j (t) +wj

2κj(t)

− ηϵj(t)

4

where we have used the definition of ϵj(t) in Lemma B.1. Solving the above equation will give us
the form of Λ̄j

Λ̄j =
1

4

∫
dwj arcsinh

(
wj

2κj(t)

)
− ηϵj(t)wj

4

=
1

4

[
wj arcsinh

(
wj

2κj(t)

)
−
√

w2
j + 4κ2

j (t) + 2κj(t)

]
− ηϵj(t)wj

4

= ΛGF
j (w;κ(t))− ηϵj(t)wj

4
(77)

where we use the definition of ΛGF in Eq. (11). Comparing the rest parts of Eq. (74) with Eq. (73)
requires that

∂t∂wj Λ̄j + φ̇j = η
Γw
k;j

4
√
w2

j + 4κ2
j (t)

=⇒ φ̇j(t) =
ηκ2

j (t)ϵ̇j(t)(
wj +

√
w2

j + 4κ2
j (t)

)√
w2

j + 4κ2
j (t)

+ η
Γw
k;j

4
√

w2
j + 4κ2

j (t)
. (78)

When combined with the form of Λ̄j , we can find the form of Λj :

Λj(w, t;κ) = ΛGF
j (w;κ(t)) + ηwj

∫
ds√

w2
j + 4κ2

j (s)

[
κ2
j (s)

wj +
√
w2

j + 4κ2
j (s)

ϵ̇j

−

√
w2

j + 4κ2
j (s)ϵ̇j

4
+

Γw
k;j

4

]

= ΛGF
j (w;κ(t)) + ηwj

∫
ds√

w2
j + 4κ2

j (s)

[
−wj ϵ̇j

4
+

Γw
k;j

4

]

= ΛGF
j (w;κ(t)) + ηwj

∫
ds

[
γ
w+

k;j

w+;j
−

γ
w−
k;j

w−;j

]
(79)

where we use the definition of ϵj (Lemma B.1) and Eq. (70) in the last equality.

B.3 IMPLICIT BIAS OF HBF FOR DIAGONAL LINEAR NETWORKS WHEN α = 2

In this case, the correction term γw± will be

γw± =
1 + µ

2(1− µ)3
∇w±L · ∇2

w±
L.

We need to first find the Hessian ∇2
w±

L. Due to the element-wise product, it will be convenient to
derive the Hessian by writing the subscripts explicitly. We start with w+.

∂w+;i
∂w+;j

L =
2

n
∂w+;i

(
w+;j(X

T r)j
)

=
2

n

[
δij(X

T r)j +

n∑
c=1

w+;j∂w+;i

(
xc;j(x

T
c w − yc)

)]

=
2

n

[
δij(X

T r)j + 2

n∑
c=1

w+;jxc;jxc;iw+;i

]
, (80)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where we use the delta symbol δij = 1 if i = j otherwise δij = 0. Therefore, we can conclude that

∇2
w+

L =
2

n

[
diag(XT r) + 2

n∑
c=1

(w+ ⊙ xc)(w+ ⊙ xc)
T

]
. (81)

Following a similar approach, we obtain that for w−

∂w−;i
∂w−;j

L = − 2

n
∂w−;i

(
w−;j(X

T r)j
)

=
2

n

[
−δij(XT r)j + 2

n∑
c=1

w−;jxc;jxc;iw−;i

]
(82)

=⇒ ∇2
w−

L =
2

n

[
−diag(XT r) + 2

n∑
c=1

(w− ⊙ xc)(w− ⊙ xc)
T

]
. (83)

It is now left for us to find the form of∇w±L · ∇2
wL. Again, it is convenient to write the subscripts

explicitly:

(
∇w+

L · ∇2
w+

L
)
j
=

d∑
i=1

∂w+;i
∂w+;j

L∂w+;i
L

=
4

n2

d∑
i=1

[
δij(X

T r)j + 2

n∑
c=1

w+;jxc;jxc;iw+;i

]
w+;i(X

T r)i

=
4

n2

[
w+;j((X

T r)j)
2 + 2

n∑
c=1

w+;jxc;j (xc ⊙w+ ⊙w+)
T
XT r

]
. (84)

Similarly,

(
∇w−L · ∇2

w−
L
)
j
=

4

n2

[
w−;j((X

T r)j)
2 − 2

n∑
c=1

w−;jxc;j (xc ⊙w− ⊙w−)
T
XT r

]
. (85)

Using Eq. (84) and (85), we can derive that

γ
w±
j

w±;j
=

2(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 ± 2

n∑
c=1

xc;j (xc ⊙w± ⊙w±)
T
XT r

]
, (86)

which further gives us the integral ϵj :

ϵ̇j =
γ
w+

j

w+;j
+

γ
w−
j

w−;j

=
4(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 +

n∑
c=1

d∑
i=1

xc;jxc;i(X
T r)i

(
w2

+;i −w2
−;i
)]

=
4(1 + µ)

(1− µ)3n2

[
((XT r)j)

2 +

n∑
c=1

xc;jx
T
c (w ⊙ (XT r))

]

=
4(1 + µ)

(1− µ)3

[
(∇wL)2j +

1

n

(
XTX(w ⊙∇wL)

)
j

]
. (87)

On the other hand, according to Lemma B.2, ∂wi
L can be written as

−(1− µ)
ẇi

4vi
− η(1− µ)

Γw
i

4vi
, (88)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

which further gives us that

η

∫ t

0

ds
(
XTX(w ⊙∇wL)

)
j
= −η(1− µ)

n∑
c=1

d∑
i=1

xc;jxc;i

∫ wi(t)

wi(0)

dwi
wi(s)

4vi(s)
+O

(
η2
)

= −η(1− µ)

n∑
c=1

d∑
i=1

xc;jxc;i

∫ wi(t)

wi(0)

dwi
wi(s)

4
√
w2

i (s) + 4κ2
i (s)

+O
(
η2
)

= −η(1− µ)

4

n∑
c=1

d∑
i=1

xc;jxc;i

(√
w2

i (t) + 4κ2
i (t)−

√
w2

i (0) + 4κ2
i (0)

)
.

where we use Lemma B.2 in the first equality and Eq. (70) in the second equality. Since w(0) = 0
and Lemma B.1, we obtain

η

∫ t

0

ds
(
XTX(w ⊙∇wL)

)
j
= −η(1− µ)

4

n∑
c=1

d∑
i=1

xc;jxc;i

(√
w2

i (t) + 4κ2
i (0)− 2κi(0)

)
= −η(1− µ)

4

(
XTXq(t)

)
j

(89)

where we let q ∈ Rd with

qi(t) =
√
w2

i (t) + 4κ2
i (0)− 2κi(0) ≥ 0.

Now combining Eq. (87) and Eq. (89), we can derive

ηϵj(t) =
4η(1 + µ)

(1− µ)3

∫ t

0

ds(∂wjL)
2 − η(1 + µ)

(1− µ)2n

(
XTXq

)
j
+O

(
η2
)
. (90)

To obtain the full potential function, we still need to find the form of φj . According to the definition
of v and ϵj and Eq. (86), we can derive

2γ
w+

k;j w+;j − 2γ
w−
k;j w−;j −wj ϵ̇j = vj

(
γ
w+

k;j

w+
−

γ
w−
k;j

w−

)

=
4(1 + µ)

(1− µ)3n

n∑
c=1

d∑
i=1

vjxc;jxc;ivi∂wi
L, (91)

which, when combined with the definition of φj in Lemma B.3, further gives us

φ̇j = η
(1 + µ)

(1− µ)3n

n∑
c=1

d∑
i=1

xc;jxc;ivi∂wi
L

= − η(1 + µ)

4(1− µ)2n

n∑
c=1

d∑
i=1

xc;jxc;iẇi +O
(
η2
)

(92)

where we use Eq. (88) in the second equality. As a result,

φj(∞) = − η(1 + µ)

4(1− µ)2n

n∑
c=1

d∑
i=1

xc;jxc;iwi(t) =
η(1 + µ)

4(1− µ)2n

(
XTXw

)
j
. (93)

One interesting thing aspect of φj if w converges to an interpolation solution where Xw(∞) = y
is

φj(∞) =
η(1 + µ)

4(1− µ)2
∂wjL(0). (94)

In summary, the potential function O
(
η2
)
-close HBF is

κj(∞) = κj(0) exp

(
−4η(1 + µ)

(1− µ)3

∫ ∞
0

ds(∂wj
L)2 +

η(1 + µ)

(1− µ)2n

(
XTXq(∞)

)
j

)
Λj(w,∞;κ) = ΛGF

j (w, κ(∞)) +
η(1 + µ)

4(1− µ)2
wj∂wjL(0). (95)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C DETAILS FOR NUMERICAL EXPERIMENTS

C.1 DETAILS FOR SECTION 5

For the discrete learning dynamics of HB and GD, we set the learning rate as η and the momentum
factor is µ. For the continuous approximations, we use ηEuler = η/10 as the Euler step sizes to
approximate the dynamics. These hyper-parameters are listed in Table 2. We let the model parameter

x, y 1, 0.6
Starting point a1 = 2.8, a2 = 3.5

η 5× 10−3

µ 0.7
ηEuler 5× 10−4

Table 2: hyper-parameters for 2d model

be β = (a1, a2)
T ∈ R2. For RGF, we use the ODE β̇ = −∇βL

1−µ =⇒ βk+1 = βk − ηEuler
∇βL
1−µ .

Formulations of HBFs with α = 2, 3 are denoted in Table 1.

C.2 DETAILS FOR SECTION 5

We denote 1d = (1, . . . , 1)T ∈ Rd. For the dataset {(xi, yi)}di=1, we set n = 40, d = 100. The data
point follows a Gaussian distribution N (0, Id). To make the ground truth solution w∗ sparse, we
let 5 components of it be nonzero. Recall that the initialization is κ(0) = s21d where s controls the
initialization scale. In Fig. 2(a), we make the initialization as w+ = w− = s1d with s = 0.01. We
set the learning rate η for HB as 10−3. For RGF and HBF, we let the Euler step size ηEuler = 10−4

to simulate the continuous dynamics. In Fig. 2(b) and 2(c), we set η = 10−2. For the initialization,
to make the task slightly harder, we let w+ = ϑs1d and w− = s1d/ϑ with ϑ = 0.9 such that we
still have κ(0) = s21d while the initialization symmetry is slightly broken.

25

	Introduction
	Preliminaries
	Continuous Approximation of Momentum Methods
	HBF with Arbitrary Order Closeness to HB
	O()-close HBF for = 2, 3

	Implicit Bias of Momentum Methods through HBF
	Implicit Bias of HBF for Diagonal Linear Networks

	Numerical Experiments
	Conclusion
	Proofs for Section 3
	Proof of Theorem 3.1
	Proof for Lemma A.1
	Proof for Lemma A.2

	O()-close HBF for a specific
	= 2.
	= 3.

	Proofs for Section 4
	Proof of Theorem 4.1
	Proof of Lemma B.3
	Implicit Bias of HBF for Diagonal Linear Networks when = 2

	Details for Numerical experiments
	Details for Section 5
	Details for Section 5

