
Scissorhands: Exploiting the Persistence of
Importance Hypothesis for LLM KV Cache

Compression at Test Time

Zichang Liu
Department of Computer Science

Rice University
zichangliu@rice.edu

Aditya Desai
Department of Computer Science

Rice University
Aditya.P.Desai@rice.edu

Fangshuo Liao
Department of Computer Science

Rice University
Fangshuo.Liao@rice.edu

Weitao Wang
Department of Computer Science

Rice University
wtwang@rice.edu

Victor Xie
Department of Computer Science

Rice University
vyx2@rice.edu

Zhaozhuo Xu
Department of Computer Science
Stevens Institute of Technology

zxu79@stevens.edu

Anastasios Kyrillidis
Department of Computer Science

Rice University
anastasios@rice.edu

Anshumali Shrivastava
Department of Computer Science
Rice University & ThirdAI Corp.

anshumali@rice.edu

Abstract

Large language models(LLMs) have sparked a new wave of exciting AI applica-
tions. Hosting these models at scale requires significant memory resources. One
crucial memory bottleneck for the deployment stems from the context window. It is
commonly recognized that model weights are memory hungry; however, the size of
key-value embedding stored during the generation process (KV cache) can easily
surpass the model size. The enormous size of the KV cache puts constraints on
the inference batch size, which is crucial for high throughput inference workload.
Inspired by an interesting observation of the attention scores, we hypothesize the
persistence of importance: only pivotal tokens, which had a substantial influence
at one step, will significantly influence future generations. Based on our empirical
verification and theoretical analysis around this hypothesis, we propose SCIS-
SORHANDS, a system that maintains the memory usage of KV cache under a fixed
budget without finetuning the model. We validate that SCISSORHANDS reduces
the inference memory usage of the KV cache by up to 5× without compromising
model quality. We further demonstrate that SCISSORHANDS can be combined with
4-bit quantization for further compression

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1 Introduction

Large language models(LLMs), trained on immense amounts of text data, have demonstrated an
incredible ability to generate text that is both logically connected and contextually relevant [1–5].
LLM inference follows an autoregressive fashion, generating one token at each step conditioned
on the previous steps. At each step, the key-value embedding in attention is stored in memory to
avoid repetitive key-value projection computation at future steps. Unfortunately, the memory of the
key-value cache(KV cache), including prompts and previously generated tokens, can be surprisingly
large. Using OPT-175B as an example, the impressive 175 billion parameters consume around 325
GB of memory. At the same time, at batch size 128 and sequence length 2048, the KV cache requires
around 950 GB of memory, three times larger than the model weights. Considering that 8 Nvidia
A100-80GB offers 640GB GPU memory, the memory usage of the KV cache is truly concerning.

LLMs are typically deployed on fixed memory hardware, and the size of model weights is also
fixed once deployed. Apart from a small memory buffer typically reserved for communication and
computation, the rest of the available memory is for the KV cache. The size of the KV cache depends
on batch size, sequence length, and model dimension. Thus, at a given inference sequence length,
compression in the KV cache memory translates almost linearly into an increase in the batch size.
And any increase in batch size is significant for high-throughput inference systems [6, 7].

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(a) Attention map at position 178

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(b) Attention map at position 228

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(c) Attention map at position 278

Figure 1: Repetitive Attention Pattern. We plot the attention
map at three token positions in a sentence. Only five attention
heads are plotted for a clearer presentation. We discretize the
attention score such that the high score is dark green, and the low
score is light green. In Figure 1(a), the token at position 178 pays
heavy attention to positions 27, 63, 98, etc. This pattern is also
present in the attention maps of position 228 and position 278.

Quantization and sparsity ap-
proaches [8–14] have been stud-
ied in LLMs to reduce the model
sizes. However, compressing
the KV cache remains an open
but challenging problem. First,
training models at the scale of
hundreds of billions of parame-
ters on a large amount of data
is prohibitively expensive. Thus,
an ideal compression algorithm
should be applicable without
training. Second, emerging ap-
plications such as dialogue sys-
tems require an extremely long
context window. The maximum
sequence length of LLMs is grow-
ing to over 32K [15]. The size of
the KV cache also grows linearly
with sequence length. For scala-
bility, an ideal compression algo-
rithm should reduce the memory
from the sequence length dimen-
sion. At last, compression should
preserve LLMs’ quality and in-
context learning ability.

We go beyond the traditional model compression techniques to achieve such demanding requirements.
We envision that not all tokens must be stored in memory for LLM to understand the context. Just
like humans can skim through an article and grasp the main idea, LLMs may also be able to skim
and comprehend. It is commonly observed that the attention score from one token follows a strong
power law distribution [16–20], meaning that one token will only heavily attend to a small number of
tokens. More importantly, we observe Repetitive Attention Pattern from different tokens in the
sequence in a trained LLM(Figure 1). Certain tokens are more important throughout the paragraph.
Specifically, for two different tokens, there are similarities between which tokens they are heavily
attending to and similarities between which tokens they are ignoring.

Inspired by the above observation, we articulate the Persistence of Importance Hypothesis: Only
pivotal tokens, which had a substantial influence at one previous step, will have a significant influence
at a future step. This hypothesis, if true, suggests that it is possible to foresee which token is likely
to be important for future generations. Fortunately, we empirically verify that later tokens in the

2

sentence mostly only attend to tokens that were heavily attended from the early tokens in a sentence.
And the overlapping ratio is surprisingly high, over 90% in most of the transformer layers (Figure 2).

Based on the above two findings, we present SCISSORHANDS that exploits the persistence of impor-
tance hypothesis to realize LLM inference with a compressed KV cache. In Section 4, we present
an efficient algorithm such that the size of KV cache is always less than a predetermined budget. A
theoretical guarantee justifies that such a compressed KV cache can approximate the attention output.
In Section 5, we empirically evaluate SCISSORHANDS and show that SCISSORHANDS reduces the
memory usage of KV cache 2−5× without compromising model quality. Reduction in the KV cache
can directly result in a larger batch size. Further, we adopt quantization and show its compatibility
with SCISSORHANDS.

2 Problem Description and Related Work

This paper considers the LLM inference workflow, specifically focusing on the memory usage for
storing the keys and values in attention. Let d be the hidden dimension of the model, b be the batch
size, and p be the length of prompt sentences. We are given the trained model weights, W i

K ∈ Rd×d,
W i

V ∈ Rd×d for the key and value projection matrix at the ith transformer layer.

The standard LLM inference consists of two stages: prompting and token generation. In the prompting
stage, the model takes the prompt sentences as the input, and the key/value embedding in attention is
stored as a cache to reduce repetitive computation. Denote xi

prompt = [xi
1, ..., x

i
p], x

i
prompt ∈ Rb×p×d

as the input to attention at the ith transformer layer. Denote the key cache and value cache at layer i
as Ki,Vi ∈ Rb×p×d, Ki

0 = xi
promptW

i
K ,Vi

0 = xi
promptW

i
V .

In the generation stage, the model starts with the stored KV cache in the prompting stage and generates
one token at each step. At each step, the KV cache gets updated. Given the input to attention at step t
in the ith transformer layer xi

t ∈ Rb×1×d. Ki
t+1 = [Ki

t, x
i
tW

i
K],Vi

t+1 = [Vi
t , x

i
tW

i
V].

2.1 LLM Inference Memory Breakdown

In this section, we provide the memory consumption breakdown of LLMs. The memory footprint
consists of three parts: model weights, KV cache, and activation buffer. The size of model weights
depends on model configuration, such as the number of transformer layers and hidden size. The size
of the KV cache depends on model configurations, sequence length, and batch size. The size of the
activation buffer depends on parallelism strategy, model configurations, and implementation. The
size of the activation buffer is considerably smaller than the previous two. As shown in Table 1, the
size of the KV cache, 2.5×-5× larger than model weights, can quickly become the bottleneck in
memory consumption. At the same time, much research has been spent on extending the length of the
context window. GPT-4-32K can process up to 32,768 tokens [15]. Longer sequence length would
make the KV cache memory problem even more severe.

Assuming LLM generates until its maximum sequence length, we summarize the maximum batch
size before going out of GPU memory on a box of 8 A100 80GB GPU in Table 2. At the GPT-3 scale
with a maximum sequence length of 2048, batch size cannot exceed 35 without offloading. Small
batch size limits the model inference throughput.

2.2 Efficient Attention

Computing the attention matrix necessitates a time complexity of O(n2), where n is the sequence
length. As a result, a line of work has been proposed to mitigate the computation burden of the
attention mechanism [16–20]. These approaches exploit low-rank or sparsification to approximate the
attention output. Besides, [21] realized exact efficient attention with wall-clock speed by optimizing

Table 1: The memory consumption of model weights and KV cache for three different LLMs at batch
size 128 and sequence length 2048 shows that the KV cache dominates the memory consumption.

Model # of Layer Hidden Size Weights (GB) KV cache (GB)
OPT-175B 96 12288 325 1152

LLaMA-65B 80 8192 130 640
BLOOM 70 14336 352 950

3

Table 2: Maximum batch size before hitting out of memory on a box of 8 A100 80GB GPU when
models are deployed with its maximum sequence length.

Model OPT-175B LLaMA-65B BLOOM
Maximum Batch Size 34 102 36

the number of memory reads and writes. However, these approaches were evaluated mostly for
training, focused on computation complexity, and did not address the KV-Cache memory usage
introduced by auto-regressive language models.

Recently, there is active research attempting to apply quantization or pruning in LLM [8–14].
However, they mostly focus on reducing the size of model weights. Flexgen [7] applies quantization
and sparsification to the KV cache; however, the memory of the KV cache is not reduced regarding
sequence lengths. It stores the quantized KV cache for all tokens in CPU memory and loads all
attention keys from CPU memory to compute attention scores. At the same time, methods such as
Multi-Query-Attention(MQA) [22] change the attention design such that keys and values are shared
across all attention heads. MQA requires training the model from scratch, while our works focus
entirely on the inference stage.

3 The Persistence of Importance Hypothesis

We first present one interesting observation upon which the persistence of importance hypothesis is
derived in Section 3.1. In Section 3.2, we discuss the hypothesis in detail with empirical verification.
Then, in Section 3.3, we provide theoretical intuition on the reason behind such model behaviors.

3.1 Repetitive Attention Pattern.

Observation. We are interested in the attention score from the position t over all the words that come
before it in the sentence. In Figure 1, we provide three attention maps of a sentence randomly drawn
from the Colossal Clean Crawled Corpus (C4) [23] using OPT-6B. Each attention map is a discretized
attention score calculated at a random position. We consider a score larger than 1

t as significant as 1
t

indicates an averaging mixing score. High attention scores are marked with dark green.

Result. High attention scores are observed at the same set of tokens from various positions in the
sentence. In all three plots, we see dark green at sequence positions 27, 63, 98, 121, 152, and 177,
suggesting that these tokens received high attention at all three positions. We observe similar model
behavior at different transformer layers with different text inputs. More plots are in Appendix A.

Implication. Even though small differences exist, repetitive attention patterns are evident in the
attention maps. There exist specific tokens that keep receiving high attention. Meanwhile, these
attention maps show sparsity: only a few tokens have high attention scores.

3.2 The Persistence of Importance Hypothesis

The repetitive attention pattern suggests that specific tokens are influential throughout the sequence.
A stricter claim is that these tokens are the only ones that could be significant for a future step. Thus,
we articulate the persistence of importance hypothesis.

The Persistence of Importance Hypothesis. With a trained autoregressive language model, only
pivotal tokens, which had a substantial influence at one previous step, will have a significant influence
at a future step.

If true, this hypothesis indicates the possibility of foreseeing what information in the previous
sequences could be vital for future steps. This hypothesis is trivial when pivotal tokens include all
tokens in the entire sentences. However, a much more interesting case is when pivotal tokens are a
subset of previous words. This would enable us to reduce the size of the KV cache by throwing away
the embedding of non-important tokens.

Pivotal Token. One natural indication of a token’s influence is the attention score. We consider a
token pivotal for position t if this token receives an attention score larger than threshold α from the
token at position t. Let St denote the set of pivotal tokens for position t. Sa→b denote the set of

4

0 10 20 30 40 50 60
Transformer Layer

0.5

0.6

0.7

0.8

0.9

1.0

Pe
sis

te
nc

e
Ra

tio

OPT-6B
OPT-13B
OPT-30B
OPT-66B

(a) Persistence Ratio

0 10 20 30 40 50 60
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

|S
0

t|
t

OPT-6B
OPT-13B
OPT-30B
OPT-66B

(b) Size of S0→t

Figure 2: Persistence ratio and the corresponding size of the pivotal token set. The persistence ratio is
over 95% in most layers, with decreases at the later layers. Meanwhile, the number of pivotal tokens
is considerably smaller than the sequence length. This suggests that the pivotal tokens of later half
sentences are almost all included in the set of first halves.

pivotal tokens for every position from a to b.

Sa→b = ∪t=b
t=aSt

Verification. We measure persistence ratio as an empirical test the hypothesis. Persistence ratio
measures how many tokens in the pivotal token sets of the later part of the sentence are also in the
pivotal token sets of the initial part of the sentence. Let l denote the length of the sentence. We record
S1→t ∈ {x1, ...xt}, tokens in {x1, ..., xt} who received high attention from every position until
t. Then, we record St+1→l ∈ {x1, ...xt}, tokens in {x1, ..., xt} who received high attention from
position after t. The persistence ratio is the intersection divided by the size of St+1→l. Formally,

Persistence Ratio =
|St+1→l ∩ S0→t|

|{x|x ∈ St+1→l, x ∈ {x1, ..., xt}}|

At the same time, we measure |S0→t|
t . |S0→t| = t indicates that every token substantially impacted

at least one position, which is the trivial case of persistence of importance hypothesis. Our test
is performed with OPT models [24] with different datasets such as OpenBookQA [25] and Wiki-
Text [26]. In our verification, we set t = l

2 , which measures the overlapping between the first and
later half of the sentences. Same as in Section 3.1, we set α = 1

t , which suggests an average score.

Result. We present our main results in Figure 2. First, given the current criterion of pivotal token and
t value, the size of S0→t is considerably smaller than half of the sentence length. This verifies that
we are not considering the trivial case of our hypothesis. Second, the persistence ratio is generally
over 95%, with dips in the later transformer layers. The pivotal token set of the later half sentences
is mostly included in the set of the first half sentences. Combining these two pieces of empirical
evidence, we see positive evidence for our hypothesis test.

Implication. The hypothesis provides insights for understanding the behavior of LLMs and opens
up new opportunities for reducing the KV cache memory. The hypothesis suggests the possibility
of predicting the potentially influential tokens for future steps. The non-influential tokens are
unnecessary to store in the memory, as they are unlikely to have high attention scores. This reduces
the number of tokens stored in the KV cache and the computation required at the attention.

3.3 Attention Weights Decides the Pivotal Tokens

In the previous section, we verified that the significant tokens would continue to be significant. In
this section, we try to understand the reasons for such phenomena. We consider the token generation
process of a simplified model: a single-layer transformer model with single-head attention.

xt+1 = F (at) , where at = softmax
(
1/t · xtWQW

⊤
KX⊤

t−1

)
Xt−1WV WO (1)

xt ∈ R1×d is a row vector. Xt−1 ∈ R(t−1)×d denotes the aggregation of x1, . . . , xt−1, where
the jth row is xj . WQ,WK ,WV ∈ Rd×d and WO ∈ Rd×d are the attention weights. Lastly,
F : R1×d → R1×d denotes the MLP block following attention block, a two-layer MLP with skip
connections, given by

F(x) = x+W2relu(W1x) (2)

5

Algorithm 1 Inference with Budget KV cache
Input: Memory Budget B, Maximum Sequence Length Tmax
Key Cache K̄ ∈ Rn×d, Value Cache V̄ ∈ Rn×d, where n = 0
while t < Tmax do

Model update K̄, V̄ such that n← n+ 1
if n > B then:

Compress KV cache using Algorithm 2 such that n ≤ B.
end if
t← t+ 1

end while

Algorithm 2 Compress KV Cache
Input: Key Cache K̄ ∈ Rn×d, Value Cache V̄ ∈ Rn×d, History Window Size w, Recent Window
Size r, Drop Amount m, Generation Step t,
Importance Record I ← 0⃗ ∈ Rt

for i ∈ [t− w, t] do ▷ Consider tokens within history window
I ← I + αi <

1
t ▷ Increment the counter for low score token

end for
I[: −r]← 0 ▷ Keep cache within the recent window
Keep set St ← Argsort (I) [: −m]
Keep everything in St in K̄ ∈ Rn×d, V̄ ∈ Rn×d such that n← n−m

We are interested in the attention scores αt = softmax(1/t ·xtWQW
⊤
KX⊤

t−1). Notice that αt,j scales
with xtWQW

⊤
Kx⊤

j . The following theorem characterizes the behavior of xtWQW
⊤
Kx⊤

j

Theorem 3.1. Let A = WV WOWQW
⊤
K and let λK , λQ, λV , λO denote the largest singular values of

WK ,WQ,WV ,WO, respectively. Consider the transformer in (1) with normalized inputs ∥xt∥2 = 1

for all t. Let c, ϵ > 0 be constants. Assume that atx⊤
t+1 ≥ (1− δ) ∥at∥2 with δ ≤

(
cϵ

λQλKλV λO

)2
.

Then for all xℓ satisfying xℓAx⊤
ℓ ≥ c and xℓAxℓ ≥ ϵ−1 maxj∈[t],j ̸=ℓ xjAx⊤

ℓ , it holds that

xℓAx⊤
ℓ

∥at∥2
(αt,ℓ − 3ϵ) ≤ xt+1WQW

⊤
Kx⊤

j ≤
xℓAx⊤

ℓ

∥at∥2
(αt,ℓ + 3ϵ) (3)

The proof is provided in Appendix B. Theorem 3.1 shows that under an assumption on the MLP
in (2), for all xℓ such that xℓAx⊤

ℓ is large enough, xt+1WQW
⊤
Kx⊤

j satisfies Equation (3). The
assumption on the MLP atx

⊤
t+1 ≥ (1−δ) ∥at∥2 essentially requires a large cosine similarity between

the input and output of F . This behavior can be empirically verified in Appendix A. Essentially,
skip connection dominates the output because ∥x∥2 ≫ ∥W2relu(W1x)∥2, resulting in a cosine

similarity close to one between input and output. Equation (3) shows that despite a factor of xℓAx⊤
ℓ

∥at∥2
,

xt+1WQW
⊤
Kx⊤

j almost scales with αt,ℓ. Since xt+1WQW
⊤
Kx⊤

j directly affects αt+1,ℓ, this property
shows that a larger αt,ℓ will potentially imply a large αt+1,ℓ.

Our theorem shows that the property in Equation (3) property only holds for xℓ such that xℓAx⊤
ℓ

is large. A are trained attention weights. This condition may suggest that the trained weights A
selects xℓ as a pivotal token. Each attention is learned to identify some subspace. Only those tokens
embedded inside these regions are pivotal for this attention. This would explain why only some
specific tokens are always relevant.

4 Sequential Token Generation Under budget

In this section, we present SCISSORHANDS, which reduces the KV cache memory from the sequence
length dimension without fine-tuning the model. In Section 4.1, we describe how SCISSORHANDS
maintains the KV cache under a given budget. Section 4.2 provides a theoretical analysis of the
algorithm and the approximation error.

6

4.1 Budget KV Cache for Single Attention Head

In this section, for the sake of the discussion, we drop the layer number notation i and batch size
dimension. Kt,Vt ∈ Rt×d denote for the KV cache until step t. xt ∈ R1×d is a row vector that
denotes the input to attention at step t. The output of an attention head at step t can be written as,

at =

t∑
i=1

αt,iV[i]t, where αt,i =
exp(⟨xtWQ,Kt[i]⟩)∑t
i=1 exp(⟨xtWQ,Kt[i]⟩)

Intuition. As shown in Section 3, the attention scores αt,i follow a strong power-law distribution.
For the autoregressive generation process, if there exists an oracle such that we can identify the heavy
score tokens before the future generation step, then the memory of the KV cache can be significantly
reduced by only storing the heavy score tokens. Fortunately, the persistence of importance hypothesis
provides us with such an oracle. It states that only historical tokens with significant contributions
toward previous generated tokens will have significant contributions toward future tokens.

Challenges. LLMs are deployed on hardware with a fixed memory. The algorithm should maintain the
cache under fixed memory to meet the hard requirement. Further, LLMs are already computationally
intensive. The algorithm should avoid introducing much extra burden on computation.

A fixed memory budget for one attention head is B tokens. In other words, we can store key and
value embedding for B previous tokens. We describe the problem as follows,

Definition 4.1 (Sequential generation at an attention head under budget B). Given a stream of token
embedding, including prompt and previously generated tokens, denotes their input to the head as
{x1, . . . , xt, . . .}. The problem of sequential generation at an attention head under budget B is
maintaining a key cache K̄t and value cache V̄t such that K̄t, V̄t ∈ Rn×d and n < B.

Approach. Inspired by the textbook solution of reservoir sampling and the Least Recent Usage cache
replacement algorithm, SCISSORHANDS reserves a fixed memory buffer for the KV cache. When the
buffer is full, SCISSORHANDS drops stored but non-influential tokens from the cache. We present the
main algorithm in Algorithm 1 and Algorithm 2.

When the KV cache size exceeds the budget, SCISSORHANDS drops tokens from the KV cache
according to Algorithm 2. The importance record is a counter that indicates how many times a token
is deemed non-important. We choose attention scores as the importance indicators, following our
methodology in Section 3.2. The importance record is collected over a history window w to reduce
variance. A higher counter suggests dropping from the cache. Recent tokens are always kept because
of the lack of information on their importance by setting the counter for all tokens in the recent
window r to 0.

With a sampled KV cache, attention output can be computed by the following estimator

ât =

n∑
i=1

α̂t,iV̄t[i], where α̂t,i =
exp(⟨xtWQ, K̄t[i]⟩)∑n
i=1 exp(⟨xtWQ, K̄t[i]⟩)

Overhead Tradeoff At the compression step, an extra attention computation is introduced to collect
the importance measurements over a history window. However, such compression is not required at
every generation step. m controls the frequency, and we use m = 0.5B in our experiment. Further,
steps after the compression have reduced attention computation because of the reduction in the
KV cache. On the other hand, one can trade a tiny amount of memory to avoid the overhead by
maintaining the importance record during generation steps in Algorithm 1.

Allocating Budgets Across Attention Heads. An LLM typically consists of L transformer layers
where each layer has H heads. A total memory budget has to be distributed over layers and heads.
Within each transformer layer, the budget is distributed evenly across heads. Within the entire model,
we distributed the budget according to Figure 2. The rule of thumb is to allocate more budget to later
layers to compensate for the lower persistence ratio.

7

4.2 Theoretical Analysis.

We study how much the tokens generated by the compressed KV cache deviate from the tokens
generated by the original transformer using our simplified model in (1). Let {x̃t}Tt=0 denote the
tokens generated by the transformer with budget KV cache as in Algorithm 2 with m = 1:

x̃t+1 = F (ãt) , where ãt = softmax
(
1/t · x̃tWQK̃⊤

t

)
Ṽ⊤
t WO

Notice that when m = 1, i.e., in each iteration, we drop one token with the lowest score, the cache
will always maintain B tokens. If the ranking of the attention scores does not change in each iteration,
Algorithm 2 will always drop tokens with the smallest attention scores.

For reference purposes, let {xt}Tt=0 denote the tokens generated by a vanilla transformer defined in
(1). We will bound the difference ∥xt − x̃t∥2.
Theorem 4.1. Let λ1, λ2 denote the largest singular values of W1 and W2 in (2). Let

βt,j =
exp

(
1/t · x̃tWQW

⊤
K x̃⊤

j

)∑t−1
i=1 exp

(
1/t · x̃tWQW⊤

K x̃⊤
i

)
and assume that each βt,j = cvt,j , where vt,j are sampled from a power-law distribution with pdf
f(x) = c(x + b)−k. Suppose that λV λO(1 + λ1λ2)(1 + λQλK) ≤ 1

2 . Let Tmin and Tmax denote
the starting and maximum sequence lengths, respectively, and let B ≤ Tmax denote the budget as in
Algorithm 2. If for all t ∈ [Tmin, Tmax], St contains only tokens with at most the largest B values
of βt,j , that is, |St| = B and minj∈St βt,j ≥ maxj /∈Ŝt

βt,j , then for all ϵ ∈ (0, 1), with probability

at least 1− Tmax exp
(
− ϵ2b2(Tmin−1)

(k−2)2(u−b)2

)
− Tmax exp

(
− 2(Tmin−1)(1−B/Tmax)

2

(1−ϵ)2

)
, the following error

bound must hold for all t ∈ [Tmin, Tmax]

E [∥xt − x̃t∥2] ≤
2.1(1− B/Tmax)

(1− ϵ)2

(
k − (k − 1)

(
1− ϵ

B/Tmax − ϵ

)1/(k − 1)
)

(4)

The definition of βt,j means the attention scores computed on the tokens generated by the compressed
approach. Our theorem assumes that dropping the tokens depends on the attention score of the current
iteration. (4) provided a bound on the expected difference between the tokens generated in the budget
and the original approach. The upper bound scales with 1 − B/Tmax. When B = Tmax, meaning

that we are keeping all of the tokens, the error becomes zero. The term k − (k − 1)
(

1−ϵ
B−ϵ

)1/(k − 1)

depends on the distribution that the attention scores are fitted to and is always less than one. With a
strong power-law distribution, this term provides a further decrease to the error bound in (4).

5 Empirical Evaluation

In this section, we present the results that demonstrate SCISSORHANDS achieves up to 5× reduction
in the KV cache memory compared to the standard model with no accuracy loss. We also show that
SCISSORHANDS is compatible with 4-bit quantization.

Experiment Setting. We compare the accuracy of SCISSORHANDS-OPT against the original OPT on
one language model datasets C4 [23] and a number of few-shot downstream tasks: Hellaswag [27],
MathQA [28], PIQA [29], Winogrande [30]. We use lm-eval-harness [31] to evaluate few-shot tasks.
Our experiments are conducted on NVIDIA 4 A100 40GB GPU servers.

No Accuracy Drop untill 5×. In Figure 3, we present SCISSORHANDS’s accuracy trend where 1×
denotes the original OPT. In the language modeling setting, perplexity is the lower the better. For
OPT-6B, perplexity is maintained until 50% of the original KV cache size for OPT-13B. For OPT-66B,
perplexity is maintained until 75% of the original KV cache. We observe a flatter accuracy trend
as the model size grows, which is exceptionally encouraging. This suggests that SCISSORHANDS
can scale with the model size. Downstream tasks are usually less sensitive to perturbation and bear
more variance in terms of accuracy. We evaluate the 5-shot setting and 1× denotes the original
OPT model. For Winogrande and MathQA, accuracy is maintained even after 5× compression for
OPT-66B. Similar to the language modeling setting, SCISSORHANDS performs better at larger models.
Generally, accuracy is maintained with 15% - 30% of the original KV cache size.

8

1X 2X 3X 4X 5X
Compression

7.5

8.0

8.5

9.0

9.5

10.0

Pe
rle

xi
ty

OPT-13B
OPT-30B
OPT-66B

(a) Language Modeling

1X 2X 3X 4X 5X
Compression

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Hellaswag
MathQA
PIQA
Winogrande

(b) OPT-6B Five shot

1X 2X 3X 4X 5X
Compression

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Hellaswag
MathQA
PIQA
Winogrande

(c) OPT-13B Five shot

1X 2X 3X 4X 5X
Compression

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Hellaswag
MathQA
PIQA
Winogrande

(d) OPT-30B Five shot

Figure 3: Accuracy trend of SCISSORHANDS on language modeling dataset and downstream tasks
with different KV cache compression. In general, SCISSORHANDS incurs no accuracy drop until 5×
compression on OPT-66B.

Ablation on the Importance of Pivotal Tokens We divide C4 into three subsets depending on
the sequence length. C4-[256-512] contains data sequences that are longer than 256 tokens but
less than 512 tokens. C4-[512-1024] contains data sequences longer than 512 tokens but less than
1024 tokens. C4-[1024-2048] contains data sequences that are longer than 1024 tokens but less
than 2048. Results are summarized in Table 3. Local Windows refers to only keeping tokens in the
recent window, while SCISSORHANDSkeeps both recent tokens and pivotal tokens. We observe the
perplexity of the full model degrades slightly with the growing sequence length. At all sequence
lengths, SCISSORHANDS’s performance is comparable against the full cache model, while Local
Window incurs a significant quality loss. This demonstrates that keeping the pivotal tokens is
important to reserve model performance. It is also interesting to note that at longer sequence lengths,
the local window has higher accuracy. This also shows at longer sequence length, the attention
mechanism in current architecture tends to focus on recent context.

Table 3: Perplexity on C4 with different sequence lengths.

[256 - 512] [512- 1024] [1024- 2048]
OPT-13B 8.7968 9.1017 9.3005

OPT-13B + Local Window 81.8297 29.3823 15.5883
OPT-13B + SCISSORHANDS 8.7972 9.1011 9.3009

Table 4: Applying 4-bit quantization on top of
SCISSORHANDS on Hellaswag.

OPT-6B
Original SCISSORHANDS SCISSORHANDS+ 4-bit

0.702 0.706 0.704
OPT-13B

Original SCISSORHANDS SCISSORHANDS+ 4-bit
0.720 0.720 0.720

Compatible with 4-bit Quantization We test
the compatibility of quantization and SCIS-
SORHANDS at 2× compression. We adopt 4-bit
quantization following [7]. Even Hellaswag is
most sensitive based on Figure 3, adding quan-
tization doesn’t introduce compounded errors.

Ablation on Attention Score Error. We
present the change ratio in attention score be-
tween original OPT-13B and SCISSORHANDS
OPT-13B at 3× compression on C4 in Figure 4.

9

We observe the attention score generated from SCISSORHANDS is almost the same as the original
KV cache, which also echoes Theorem 4.1. The change ratio is calculated as αs−αo

αo
where αs is

the SCISSORHANDS attention score and αo is the original score. From Figure 4, we observe that
the change ratio is centered around 0. -1 indicating that αs is significantly smaller compared to the
original, suggesting that a small portion of the important tokens are dropped in the cache. To explain
the above observation of SCISSORHANDS, we denote the n number of tokens with the highest score
as {xtop_n

t }Tt=0. Then, for any other sets of tokens {x′
t}Tt=0 that has no greater than n tokens, we can

easily prove that similarity
(
xtopB
t , xt

)
≤ (x′

t, xt). Thus, SCISSORHANDS gives the most similar
output as the original model at all layers.

6 Discussion, Limitation, and Future Work

1.0 0.8 0.6 0.4 0.2 0.0
Change Ratio

Figure 4: Score between OPT
and SCISSORHANDS.

We discover repetitive attention patterns given trained language
models. One interesting question that needs to be answered is
whether such behavior is a model architecture bias or an un-
expected training outcome. For such purpose, we perform the
same experiment with a randomly initialized OPT, and compare it
against the results presented in Section 3.1. As shown in Figure 5,
the repetitive attention pattern does not exist in randomly initial-
ized models. Apart from an efficiency deployment perspective,
could such repetitive attention patterns contribute to some known
problems in language generation, such as repetitions? It may be
worth investigating the relationship between repetitive attention patterns and undesired generations.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(a) Attention map of the token at position 178

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(b) Attention map of the token at position 228
Figure 5: We plot the attention map corresponding to Section 3.1
but with a randomly initialized OPT. We observe no repetitive
attention for a randomly initialized model.

Due to the limitation of the server
in academics, the largest model
we can fit is OPT-66B. We try to
understand the behavior and ver-
ify the generality across the differ-
ent models and datasets. However,
we cannot access the training pro-
cess and fail to know exactly how
an LLM is trained to exhibit such
behavior. Experiments with the
large model create carbon dioxide
emissions. However, our work im-
proves the efficiency of LLM, and
we foresee no negative impacts.

7 Conclusion

Inspired by our intriguing findings
that pivotal tokens exert a lasting influence on future steps, we developed SCISSORHANDS to leverage
this observation to reduce the memory usage of KV cache. Our method achieves memory reductions of
5× in the KV cache without compromising the performance of LLMs. Furthermore, we demonstrate
the compatibility of SCISSORHANDS with quantization techniques, opening up the possibility of
reducing memory usage in both the representation and sequence length dimensions.

8 Acknowledgement

We would like to thank the anonymous reviewers for their helpful discussions and feedback. This
work is supported by NSF-CCS-2211815, ONR-DURIP and NSF-BIGDATA-1838177.

10

References
[1] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[2] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of
language models. arXiv preprint arXiv:2211.09110, 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837, 2022.

[5] Stephanie CY Chan, Adam Santoro, Andrew Kyle Lampinen, Jane X Wang, Aaditya K Singh,
Pierre Harvey Richemond, James McClelland, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. In Advances in Neural Information Processing
Systems, 2022.

[6] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022.

[7] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang
Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica,
and Ce Zhang. High-throughput generative inference of large language models with a single
gpu, 2023.

[8] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
arXiv preprint arXiv:2206.01861, 2022.

[9] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo
Lee. nuqmm: Quantized matmul for efficient inference of large-scale generative language
models. arXiv preprint arXiv:2206.09557, 2022.

[10] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

[11] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[12] Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023.

[13] Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff,
and Dan Roth. Rethinking the role of scale for in-context learning: An interpretability-based
case study at 66 billion scale. arXiv preprint arXiv:2212.09095, 2022.

[14] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

[15] OpenAI. Gpt-4 technical report, 2023.

[16] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[17] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

11

[18] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao
Song, Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for
efficient neural network training. In International Conference on Learning Representations,
2021.

[19] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems,
34:17413–17426, 2021.

[20] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with
performers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[21] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness, 2022.

[22] Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019.

[23] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv e-prints, 2019.

[24] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

[25] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

[26] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

[27] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

[28] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[29] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on
Artificial Intelligence, 2020.

[30] Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An
adversarial winograd schema challenge at scale. In Communications of the ACM, 2019.

[31] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation. In Version v0. 0.1. Sept. Zenodo, September 2021.

12

Appendix

A More Results

A.1 Repetitive Attention Pattern

We provide the attention map similar to Figure 1 but from a different transformer layer on the same
text in Figure 6, Figure 7, Figure 8 and Figure 9. A repetitive pattern and attention sparsity can be
observed across layers.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(a) Attention map at position 178

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(b) Attention map at position 228

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(c) Attention map at position 278

Figure 6: Attention Map at Layer 5

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(a) Attention map at position 178

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(b) Attention map at position 228

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(c) Attention map at position 278

Figure 7: Attention Map at Layer 10

13

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(a) Attention map at position 178

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(b) Attention map at position 228

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(c) Attention map at position 278

Figure 8: Attention Map at Layer 15

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(a) Attention map at position 178

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(b) Attention map at position 228

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

16
0

16
4

16
8

17
2

17
6

18
0

18
4

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

22
4

22
8

23
2

23
6

24
0

24
4

24
8

25
2

25
6

26
0

26
4

26
8

27
2

27
6

Sequence Position

0
1

2
3

4At
te

nt
io

n
He

ad

(c) Attention map at position 278

Figure 9: Attention Map at Layer 20

A.2 Cross Layer Cosine Similarity

In Section 3.3, our analysis assumes a large cosine similarity between the input and output of F . Here,
we provide empirical evidence to support such an assumption in Figure 10. Because of the residual
connection in F and the domination of x, the cosine similarity between x and F(x) is extremely
high.

A.3 Generated examples with SCISSORHANDS

14

0 5 10 15 20
Transformer Layer

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

Co
sin

e
Si

m
ila

rit
y

Residual At MLP

Cos(x, (x))

(a) Cosine Similarity

0 5 10 15 20
Transformer Layer

0
20
40
60
80

100
120

No
rm

Residual At MLP

||x||
||W2Relu(W1x)||

(b) Norm Comparision

Figure 10: x and F(x) is high in cosine similarity

Table 5: Generated examples using OPT-13B with full cache and SCISSORHANDSat different
compression ratio.

Prompt

Hi. Does Asus ever plan to update the intel and nvidia display drivers on the UL30VT laptop?
The only downloadable drivers from the Asus website are at least 3 years behind and new
features for both graphics chips have been released since then. I sent a message to Asus but no
response was given. Intel and Nvidia will not allow the user to download the new drivers
directly. problem is the drivers won’t install. states something about your notebook needs
custom drivers from the manufacturer due to customized this that or the other.

OPT-13B
I have the same problem. I have a laptop with an Intel HD Graphics 4000 and an Nvidia
GeForce GT 740M. I can’t install the drivers from the Asus website. I have to use the
drivers from the Nvidia website.

3x Compression
I have the same problem. I have a laptop with an Intel HD Graphics 4000 and an Nvidia
GeForce GT 740M. I can’t install the drivers from the Asus website. I have to use the
drivers from the Nvidia website.

6x Compression I have the same problem. I have a custom laptop and I can’t install the drivers.

B Proofs

B.1 Proof of Theorem 3.1

We consider the token generation process of a simplified model: a single-layer transformer model
with single-head attention.

xt+1 = F (at) , where at = softmax
(
1/t · xtWQW

⊤
KX⊤

t−1

)
Xt−1WV WO (5)

xt ∈ R1×d is a row vector. Xt−1 ∈ R(t−1)×d denotes the aggregation of x1, . . . , xt−1, where
the jth row is xj . WQ,WK ,WV ∈ Rd×p and WO ∈ Rp×d are the attention weights. Lastly,
F : R1×d → R1×d denotes the MLP block following attention block, a two-layer MLP with skip
connections, given by

F(x) = x+W2relu(W1x) (6)
We are interested in the attention scores αt = softmax(1/t ·xtWQW

⊤
KX⊤

t−1). Notice that αt,j scales
with xtWQW

⊤
Kx⊤

j . We first re-state the Theorem 3.1 below.

15

Theorem B.1. Let A = WV WOWQW
⊤
K and let λK , λQ, λV , λO denote the largest singular values

of WK ,WQ,WV ,WO, respectively. Consider the transformer in (5) with normalized inputs ∥xt∥2 =

1 for all t. Let c, ϵ > 0 be constants. Assume that atx⊤
t+1 ≥ (1− δ) ∥at∥2 with δ ≤

(
cϵ

λQλKλV λO

)2
.

Then for all xℓ satisfying xℓAx⊤
ℓ ≥ c and xℓAxℓ ≥ ϵ−1 maxj∈[t],j ̸=ℓ xjAx⊤

ℓ , it holds that

xℓAx⊤
ℓ

∥at∥2
(αt,ℓ − 3ϵ) ≤ xt+1WQW

⊤
Kx⊤

j ≤
xℓAx⊤

ℓ

∥at∥2
(αt,ℓ + 3ϵ) (7)

As a preparation of the proof, we first show two lemmas.
Lemma B.1. Let x1, x2 ∈ R1×m satisfies ∥x1∥2 = ∥x2∥2 = 1 and x1x

⊤
2 ≥ 1 − δ for some

δ ∈ (0, 1). Then for all y ∈ R1×m we have∣∣x1y
⊤ − x2y

⊤∣∣ ≤ √2δ ∥y∥2
Proof. Let x2 = x

∥
2 + x⊥

2 where

x
∥
2 = x1x

⊤
2 · x1; x⊥

2 = x2 − x
∥
2

Then it is easy to see that x⊥
2 x

⊤
1 = 0. By the Pythagorean Theorem, we have∥∥x⊥

2

∥∥2
2
= ∥x2∥22 −

∥∥∥x∥
2

∥∥∥2
2
= δ(2− δ)

Therefore, we have

∥x1 − x2∥22 =
∥∥∥(x1 − x

∥
2)− x⊥

2

∥∥∥2
2

=
∥∥(1− x1x

⊤
2

)
x1 − x⊥

2

∥∥2
2

=
(
1− x1x

⊤
2

)2
+
∥∥x⊥

2

∥∥2
2

= 2δ

Thus, the Cauchy-Schwarz inequality implies∣∣x1y
⊤ − x2y

⊤∣∣ ≤ ∥x1 − x2∥2 · ∥y∥2 =
√
2δ ∥y∥2

Lemma B.2. Let ℓ ∈ [t] be given. Suppose that xℓAx⊤
ℓ > ϵ−1

∣∣xjAx⊤
ℓ

∣∣ for all j ̸= ℓ. Then we have

(S(t)ℓ − ϵ)x⊤
ℓ axℓ ≤ x⊤

ℓ W
⊤
KWQat ≤ (S(t)ℓ + ϵ)x⊤

ℓ axℓ

Proof. Notice that

at = αtXt−1WV WO =

t−1∑
j=1

αt,jxj

WV WO

Thus, we have

atWQW
⊤
Kx⊤

ℓ =

t−1∑
j=1

αt,jxj

WV WOWQW
⊤
Kx⊤

ℓ =

t−1∑
j=1

αt,jxjAx⊤
ℓ

Therefore ∣∣atWQW
⊤
Kx⊤

ℓ − αt,ℓxℓAx⊤
ℓ

∣∣ =
∣∣∣∣∣∣

t−1∑
j=1,j ̸=ℓ

αt,jxjAx⊤
ℓ

∣∣∣∣∣∣
≤

t−1∑
j=1,j ̸=ℓ

αt,j

∣∣xjAx⊤
ℓ

∣∣
≤ ϵxℓAx⊤

ℓ

t−1∑
j=1,j ̸=ℓ

αt,j

≤ ϵxℓAx⊤
ℓ

16

where in the second inequality we use ϵ−1
∣∣xjAx⊤

ℓ

∣∣ ≤ xℓAx⊤
ℓ and in the third inequality we use∑t−1

j=1,j ̸=ℓ αt,j ≤
∑t−1

j=1 αt,j = 1. This implies that

(αt,ℓ − ϵ)xℓAx⊤
ℓ ≤ atWQW

⊤
Kx⊤

ℓ ≤ (αt,ℓ + ϵ)xℓAx⊤
ℓ

Now we proceed to the main body of the proof. Assume that ∥xℓ∥2 = 1 for all ℓ. Using Lemma
(B.1), if atx⊤

t+1 ≥ (1− δ) ∥at∥2, then we have∣∣∣∥at∥−1
2 atWQW

⊤
Kx⊤

ℓ − xt+1WQW
⊤
Kx⊤

ℓ

∣∣∣ ≤ √2δ ∥∥WQW
⊤
Kx⊤

ℓ

∥∥
2

Recall that λQ, λK are the maximum singular values of WQ and WK , respectively. Then it holds
that

∥∥WQW
⊤
Kx⊤

ℓ

∥∥
2
≤ λQλK ∥xℓ∥2. Using ∥xℓ∥2 = 1, we have∣∣∣∥at∥−1

2 atWQW
⊤
Kx⊤

ℓ − xt+1WQW
⊤
Kx⊤

ℓ

∣∣∣ ≤ √2δλQλK

Notice that

∥at∥2 =

∥∥∥∥∥∥
t−1∑

j=1

αt,jxj

WV WO

∥∥∥∥∥∥
≤ λOλV

∥∥∥∥∥∥
t−1∑
j=1

αt,jxj

∥∥∥∥∥∥
2

≤ λOλV

t−1∑
j=1

αt,j ∥xj∥2

= λOλV

Then since δ ≤
(

cϵ
λQλKλV λO

)2
, we have∣∣∣∥at∥−1

2 atWQW
⊤
Kx⊤

ℓ − xt+1WQW
⊤
Kx⊤

ℓ

∣∣∣ ≤ 2cϵ

λV λO
≤ 2cϵ

∥at∥2
Since by Lemma (B.2), we have∣∣atWQW

⊤
Kx⊤

ℓ − αt,ℓxℓAx⊤
ℓ

∣∣ ≤ ϵx⊤
ℓ axℓ

It must hold that∣∣∣xt+1WQW
⊤
Kx⊤

ℓ − ∥at+1∥−1
2 αt,ℓxℓAx⊤

ℓ

∣∣∣ ≤ ϵ

∥at∥2
x⊤
ℓ axℓ +

2cϵ

∥at∥2

Since x⊤
ℓ axℓ ≥ c, it holds that

2cϵ

∥at∥2
≤ 2ϵ

∥at∥2
x⊤
ℓ axℓ

which implies that ∣∣∣xt+1WQW
⊤
Kx⊤

ℓ − ∥at∥
−1
2 αt,ℓxℓAx⊤

ℓ

∣∣∣ ≤ 3ϵ

∥at∥2
x⊤
ℓ axℓ

Therefore

xℓAx⊤
ℓ

∥at∥2
(αt,ℓ − 3ϵ) ≤ xt+1WQW

⊤
Kx⊤

ℓ ≤
xℓAx⊤

ℓ

∥at∥2
(αt,ℓ + 3ϵ)

17

B.2 Proof of Theorem 4.1

Let {x̃t}Tt=0 denote the tokens generated by the transformer with budget KV cache as in Algorithm 2
with m = 1:

x̃t+1 = F (ãt) , where ãt = softmax
(
1/t · x̃tWQK̃⊤

t

)
Ṽ⊤
t WO

Notice that when m = 1, i.e., in each iteration, we drop one token with the lowest score, the cache
will always maintain B tokens. If the ranking of the attention scores does not change in each iteration,
Algorithm 2 will always drop tokens with the smallest attention scores.

For reference purposes, let {xt}Tt=0 denote the tokens generated by a vanilla transformer defined in
(5). We re-state Theorem 4.1 below, which bounds the difference ∥xt − x̃t∥2.
Theorem B.2. Let λ1, λ2 denote the largest singular values of W1 and W2 in (6). Let

βt,j =
exp

(
1/t · x̃tWQW

⊤
K x̃⊤

j

)∑t−1
i=1 exp

(
1/t · x̃tWQW⊤

K x̃⊤
i

)
and assume that each βt,j = cvt,j , where vt,j are sampled from a power-law distribution with pdf
f(x) = c(x + b)−k. Suppose that λV λO(1 + λ1λ2)(1 + λQλK) ≤ 1

2 . Let Tmin and Tmax denote
the starting and maximum sequence lengths, respectively, and let B ≤ Tmax denote the budget as
in Algorithm 2. If for all t ∈ [Tmin, Tmax], St contains only tokes with at most the largest B values
of βt,j , that is, |St| = B and minj∈St

βt,j ≥ maxj /∈Ŝt
βt,j , then for all ϵ ∈ (0, 1), with probability

at least 1− Tmax exp
(
− ϵ2b2(Tmin−1)

(k−2)2(u−b)2

)
− Tmax exp

(
− 2(Tmin−1)(1−B/Tmax)

2

(1−ϵ)2

)
, the following error

bound must hold for all t ∈ [Tmin, Tmax]

E [∥xt − x̃t∥2] ≤
2.1(1− B/Tmax)

(1− ϵ)2

(
k − (k − 1)

(
1− ϵ

B/Tmax − ϵ

)1/(k − 1)
)

Define mk,j = I {j ∈ St}. With the definition of mk,j , ãt can be written as

ãt =

t−1∑
j=1

α̃t,j x̃j

WV WO; α̃t,j =
mk,j exp

(
1/t · x̃tWQW

⊤
K x̃⊤

j

)∑t−1
i=1 mk,j exp

(
1/t · x̃tWQW⊤

K x̃⊤
i

) (8)

Our first lemma shows the Lipschitzness of the attention module.
Lemma B.3. Consider two sequences of tokens {xi}ti=1 and {yi}ti=1 where ∥xi∥2 = ∥yi∥2 = 1 for
all i ∈ [t]. Define Xt−1, Yt−1 ∈ R(t−1)×d as the matrices whose ith row are xi and yi, respectively.
Let ∆t = ∥xt − yt∥2. Then we have∥∥∥∥softmax(1

t
xtWQW

⊤
KX⊤

t−1

)
2

− softmax
(
1

t
ytWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

≤ 2

√
t− 1

t
λQλK∆t

Proof. We can decompose the difference as∥∥∥∥softmax(1

t
xtWQW

⊤
KX⊤

t−1

)
− softmax

(
1

t
ytWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

≤
∥∥∥∥softmax(1

t
xtWQW

⊤
KX⊤

t−1

)
− softmax

(
1

t
xtWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

+

∥∥∥∥softmax(1

t
xtWQW

⊤
KY ⊤

t−1

)
− softmax

(
1

t
ytWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

By the Lipschitzness of softmax, we have∥∥∥∥softmax(1

t
xtWQW

⊤
KX⊤

t−1

)
− softmax

(
1

t
xtWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

≤ 1

t

∥∥∥xtWQW
⊤
K (Xt−1 − Yt−1)

⊤
∥∥∥
2

≤ 1

t
λQλK ∥xt∥2 ∥Xt−1 − Yt−1∥2

18

Since ∥xt∥2 = 1 and ∥Xt−1 − Yt−1∥2 =
(∑t−1

j=1 ∥xj − yj∥2
) 1

2 ≤
√
t− 1∆t, we have

∥∥softmax (xtWQW
⊤
KX⊤

t−1

)
− softmax

(
xtWQW

⊤
KY ⊤

t−1

)∥∥
2
≤
√
t− 1

t
λQλK∆t

Similarly, ∥∥∥∥softmax(1

t
xtWQW

⊤
KY ⊤

t−1

)
− softmax

(
1

t
ytWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

≤ 1

t

∥∥(xt − yt)WQW
⊤
KY ⊤

t−1

∥∥
2

≤ 1

t
λQλK ∥Yt−1∥F ∥xt − yt∥2

Since ∥xt − yt∥2 = ∆t and ∥Yt−1∥2 =
√
t− 1, we have∥∥∥∥softmax(1

t
xtWQW

⊤
KY ⊤

t−1

)
− softmax

(
1

t
ytWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

≤
√
t− 1

t
λQλK∆t

Combining the two bounds gives∥∥∥∥softmax(1√
t
xtWQW

⊤
KX⊤

t−1

)
− softmax

(
1√
t
ytWQW

⊤
KY ⊤

t−1

)∥∥∥∥
2

≤ 2

√
t− 1

t
λQλK∆t

Our second lemma shows the difference between the output of the sampled and vanilla transformer
when the input is the same.
Lemma B.4. Let ãt be defined as in (8). Define bt as

bt =

t−1∑
j=1

βt,j x̃j

WV WO; βt,j =
exp

(
1/t · x̃tWQW

⊤
K x̃⊤

j

)∑t−1
i=1 exp

(
1/t · x̃tWQW⊤

K x̃⊤
i

) (9)

Assume that ∥xj∥2 = 1 for all j ∈ [t]. Then we have

∥ãt − bt∥2 ≤ λV λO

∑
j /∈Ŝt

βt,j

Proof. A direction computation yields

ãt − bt =

t−1∑
j=1

(α̃t,j − βt,j) x̃j

WV WO

Thus, ∥ãt − bt∥2 can be bounded as

∥ãt − bt∥2 ≤ λV λO

t−1∑
j=1

(α̃t,j − βt,j) ∥x̃j∥2 = λV λO

t−1∑
j=1

(α̃t,j − βt,j)

since ∥x̃j∥2 = 1 for all j ∈ [t]. Now we analyze α̃t,j − βt,j . Let Ŝt = St \ {t}. Then mk,j = 1 if
and only if j ∈ Ŝt. For convenience, let rt,j = 1/t · x̃tWQW

⊤
K x̃⊤

j . Thus, β can be written as

βt,j =
exp (rt,j)∑

i∈Ŝt
exp (rt,i) +

∑
i/∈Ŝt

exp (rt,i)

Furthermore, for all j /∈ Ŝt, we have α̃t,j = 0. For all j ∈ Ŝt, we have

α̃t,j =
exp (rt,j)∑

i∈Ŝt
exp (rt,i)

19

Therefore, for all j ∈ Ŝt, we have

βt,j − α̃t,j = exp (rt,j) ·
∑

i/∈Ŝt
exp (rt,i)(∑

i∈Ŝt
exp (rt,i)

)(∑
i∈Ŝt

exp (rt,i) +
∑

i/∈Ŝt
exp (rt,i)

)
=

exp (rt,j)∑
i∈Ŝt

exp (rt,i)
·

∑
i/∈Ŝt

exp (rt,i)∑
i∈Ŝt

exp (rt,i) +
∑

i/∈Ŝt
exp (rt,i)

= α̃t,j

∑
i/∈Ŝt

βt,j

Therefore, the bound of ∥ãt − bt∥2 can be written as

∥ãt − bt∥2 ≤ λV λO

 t−1∑
j∈Ŝt

α̃t,j

∑
i/∈Ŝt

βt,j −
∑
j /∈Ŝt

βt,j

 = 2λV λO

∑
j /∈Ŝt

βt,j

where the last equality follows from
∑

j∈Ŝt
α̃t,j = 1.

Our last lemma shows the Lipschitzness of the MLP in (6).
Lemma B.5. Let λ1, λ2 denote the largest singular values of W1,W2 in (6). For all x1, x2 ∈ Rd,
we have

∥F(x1)−F(x2)∥ ≤ (1 + λ1λ2) ∥x1 − x2∥2

Proof. Direct computation yields

∥F(x1)−F(x2)∥ = ∥(x1 +W2relu (W1x1))− (x2 +W2relu (W1x2))∥
≤ ∥x1 − x2∥2 + ∥W2relu (W1x1)−W2relu (W1x2)∥
≤ ∥x1 − x2∥2 + λ2 ∥relu (W1x1)− relu (W1x2)∥
≤ ∥x1 − x2∥2 + λ2 ∥W1 (x1 − x2)∥2
≤ ∥x1 − x2∥2 + λ1λ1 ∥x1 − x2∥2
= (1 + λ1λ2) ∥x1 − x2∥2

where in the third inequality we use the fact that relu(·) is 1-Lipschitz.

Now we turn to the proof of our main theorem. Combining all of the results, we have

at − ãt =

t−1∑
j=1

αt,jxj

WV WO −

t−1∑
j=1

α̃t,j x̃j

WV WO

=

t−1∑
j=1

αt,jxj

WV WO −

t−1∑
j=1

αt,j x̃j

WV WO︸ ︷︷ ︸
T1

+

t−1∑
j=1

αt,j x̃j

WV WO −

t−1∑
j=1

βt,j x̃j

WV WO︸ ︷︷ ︸
T2

+

t−1∑
j=1

βt,j x̃j

WV WO −

t−1∑
j=1

α̃t,j x̃j

WV WO︸ ︷︷ ︸
T3

Therefore, by triangle inequality, we have

∥at − ãt∥2 ≤ ∥T1∥2 + ∥T2∥2 + ∥T3∥2 (10)

20

To start, the magnitude of T1 can be bounded as

∥T1∥2 =

∥∥∥∥∥∥
t−1∑

j=1

αt,j(xt,j − x̃t,j)

WV WO

∥∥∥∥∥∥
2

≤ λV λO

∥∥∥∥∥∥
t−1∑
j=1

αt,j(xt,j − x̃t,j)

∥∥∥∥∥∥
≤ λV λO

t−1∑
j=1

αt,j ∥xt,j − x̃t,j∥2

≤ λV λO∆t

t−1∑
j=1

αt,j

= λV λO∆t

where in the third inequality we use ∥xt,j − x̃t,j∥2 = ∆t and in the last equality we use∑t−1
j=1 αt,j = 1. To bound the magnitude of T2, we apply Lemma B.3, which shows that

∥αt − βt∥ ≤ 2
√
t−1
t λQλK∆t to get that

∥T2∥2 =

∥∥∥∥∥∥
t−1∑

j=0

(αt,j − βt,j)x̃j

WV WO

∥∥∥∥∥∥
2

≤ λV λO

∥∥∥∥∥∥
t−1∑

j=0

(αt,j − βt,j)x̃j

∥∥∥∥∥∥
2

≤ λV λO

t−1∑
j=0

|αt,j − βt,j | ∥x̃j∥2

≤ λV λO ∥αt − βt∥1
≤
√
t− 1λV λO ∥αt − βt∥2

≤ 2

(
1− 1

t

)
λQλKλV λO∆t

Lastly, to bound the magnitude of T3, we use Lemma B.4 to get that

∥T3∥2 ≤ 2λV λO

∑
j /∈Ŝt

βt,j

Putting things together for (10), we have

∥at − ãt∥2 ≤ λV λO

2
∑
j /∈Ŝt

βt,j + (2λQλK + 1)∆t


By Lemma B.5 we can further show that

∥xt+1 − x̃t+1∥2 ≤ (1 + λ1λ2)λV λO

2
∑
j /∈Ŝt

βt,j + (2λQλK + 1)∆t


By Theorem B.3, we have that with probability at least 1 − Tmax exp

(
− ϵ2b2(Tmin−1)

(k−2)2(u−b)2

)
−

Tmax exp
(
− 2(Tmin−1)(1−B/Tmax)

2

(1−ϵ)2

)
, it holds for all t ∈ [Tmin, Tmax] that

E

∑
j /∈Ŝt

βt,j

 ≤ (1− B/Tmax)

0.98(1− ϵ)2

(
k − (k − 1)

(
1− ϵ

B/Tmax − ϵ

) 1
k−1

)
:= ∆max

21

Given that E [∥xt − x̃t∥] ≤ 2∆max, we have

E [∥xt+1 − x̃t+1∥2] ≤ (1 + λ1λ2)λV λO (2∆max + 2 (2λQλK + 1)∆max)

≤ 4λV λO(1 + λ1λ2)(1 + λQλK)∆max

Thus, as long as λV λO(1 + λ1λ2)(1 + λQλK) ≤ 1
2 , we can guarantee that

E [∥xt+1 − x̃t+1∥2] ≤ 2∆max

Thus, for all t ∈ [Tmin, Tmax], we have that

E [∥xt − x̃t∥2] ≤
2.1(1− B/Tmax)

(1− ϵ)2

(
k − (k − 1)

(
1− ϵ

B/Tmax − ϵ

) 1
k−1

)

B.3 Budgeted Cache

Theorem B.3. Let βt,j be sampled from some power-law distribution f(x) = c(x+b)−γ with support
on [0, u− b) for some k > 2 and u ≥ 5b. Let St be defined in Theorem B.2, and define Ŝt = St \ {t}.
Then with probability at least 1− Tmax exp

(
− ϵ2b2(Tmin−1)

(k−2)2(u−b)2

)
− Tmax exp

(
− 2(Tmin−1)(1−B)2

(1−ϵ)2

)
it

holds for all t ∈ T that

E

∑
j /∈Ŝt

βt,j

 ≤ (1− B/Tmax)

0.98(1− ϵ)2

(
k − (k − 1)

(
1− ϵ

B/Tmax − ϵ

) 1
k−1

)
(11)

We consider the case of maintaining a budget of B by dropping the smallest βt,j’s. Assume that vj
has pdf f(x) = c(x+ b)−k with support on [0, u− b). To make things precise, we first compute c

c =

(∫ u−b

0

(x+ b)−kdx

)−1

=
k − 1

b1−k − u1−k

To start, we notice that∫
x(x+ b)−k = − (x+ b)1−k((k − 1)x+ b)

(k − 1)(k − 2)
:= g(x)

Let C =
∑t−1

j=1 vj , then the expectation of C is

E [C] = (t− 1)E [v1] = (t− 1)
k − 1

b1−k − u1−k

∫ ∞

0

x(x+ b)−kdx

= (t− 1)
k − 1

b1−k − u1−k
(g(u)− g(0))

= (t− 1)
k − 1

b1−k − u1−k

(
b2−k

(k − 1)(k − 2)
− u1−k((k − 1)u− (k − 2)b)

(k − 1)(k − 2)

)
=

t− 1

k − 2
· b

2−k − (k − 1)u2−k + (k − 2)bu1−k

b1−k − u1−k

Let ∆ = b2−k−(k−1)u2−k+(k−2)bu1−k

b1−k−u1−k . By Hoeffding’s inequality, we have that

P (C ≤ (1− ϵ)E [C]) ≤ exp

(
− 2ϵ2E [C]

2

(t− 1)(u− b)2

)

This implies that with probability at least 1− exp
(
− 2ϵ2∆2(t−1)

(k−2)2(u−b)2

)
we have

C ≥ (1− ϵ)∆
t− 1

k − 2

22

Now, we proceed to bound
∑

j /∈Ŝt
βt,j where Ŝt = {j ∈ [t− 1] : βt,j ≥ γ

C }. Equivalently, we can

bound C−1
∑t−1

j=1 I {vj ≤ γ} vj . Its expectation is given by

E

C−1
t−1∑
j=1

I {vj ≤ γ} vj

 ≤ k − 2

(t− 1)∆(1− ϵ)
E

t−1∑
j=1

I {vj ≤ γ} vj


=

k − 2

∆(1− ϵ)
· k − 1

b1−k − u1−k

∫ γ

0

x(x+ b)−kdx

=
(k − 1)(k − 2)

∆(1− ϵ) (b1−k − u1−k)
(g(γ)− g(0))

We pause here and study how small can we choose γ. Notice that

E

t−1∑
j=1

I {vj ≤ γ}

 = (t− 1)P (vj ≤ γ) = (t− 1) · b
1−k − (γ + b)1−k

b1−k − u1−k

By Hoeffding’s inequality again, we have that

P

t−1∑
j=1

I {vj ≤ γ} ≥ (1− ϵ)(t− 1) · b
1−k − (γ + b)1−k

b1−k − u1−k


≤ exp

(
−
2(t− 1)ϵ2

(
b1−k − (γ + b)1−k

)2
(b1−k − u1−k)

2

)

Enforcing
∑t−1

j=1 I {vj ≤ γ} ≥ Tmax − B gives (γ + b)1−k ≤ b1−k − 1−B/Tmax

1−ϵ (b1−k − u1−k),

which can be satisfied as long as γ ≥
((

B/Tmax−ϵ
1−ϵ

) 1
1−k − 1

)
b. Therefore

g(γ) = −
(
b1−k − 1− B/Tmax

1− ϵ
(b1−k − u1−k)

)
b+ (k − 1)γ

(k − 1)(k − 2)

We further notice that

b1−k − 1− B/Tmax

1− ϵ
(b1−k − u1−k) ≥

B/Tmax − ϵ

1− ϵ
(b1−k − u1−k)

This gives

E

C−1
t−1∑
j=1

I {vj ≤ γ} vj

 ≤ b(1− B/Tmax)

∆(1− ϵ)2
− (k − 1)(B/Tmax − ϵ)γ

∆(1− ϵ)2

≤ b(1− B/Tmax)

∆(1− ϵ)2

(
k − (k − 1)

(
1− ϵ

B/Tmax − ϵ

) 1
k−1

)
Notice that if u ≥ 5b, we have

∆ = b− (k − 1)
(u
b

)1−k

· b− u

b1−k − u1−k
≤ 0.98b

Therefore

E

C−1
t−1∑
j=1

I {vj ≤ γ} vj

 ≤ (1− B/Tmax)

0.98(1− ϵ)2

(
k − (k − 1)

(
1− ϵ

B/Tmax − ϵ

) 1
k−1

)

holds with probability at least 1 − exp
(
− ϵ2b2(t−1)

(k−2)2(u−b)2

)
− exp

(
− 2(t−1)(1−B/Tmax)

2

(1−ϵ)2

)
. Taking a

union bound gives the desired result.

23

	Introduction
	Problem Description and Related Work
	LLM Inference Memory Breakdown
	Efficient Attention

	The Persistence of Importance Hypothesis
	Repetitive Attention Pattern.
	The Persistence of Importance Hypothesis
	Attention Weights Decides the Pivotal Tokens

	Sequential Token Generation Under budget
	Budget KV Cache for Single Attention Head
	Theoretical Analysis.

	Empirical Evaluation
	Discussion, Limitation, and Future Work
	Conclusion
	Acknowledgement
	More Results
	Repetitive Attention Pattern
	Cross Layer Cosine Similarity
	Generated examples with Scissorhands

	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 4.1
	Budgeted Cache

