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ABSTRACT

Mechanistic interpretability seeks to uncover the internal mechanisms of Large
Language Models (LLMs) by identifying circuits—subgraphs in the model’s com-
putational graph that correspond to specific behaviors—while ensuring sparsity
and maintaining task performance. Although automated methods have made mas-
sive circuit discovery feasible, determining the functionalities of circuit compo-
nents still requires manual effort, limiting scalability and efficiency. To address
this, we propose a novel framework that accelerates circuit discovery and anal-
ysis. Building on methods like edge pruning, our framework introduces circuit
selection, comparison, attention grouping, and logit clustering to investigate the
intended functionalities of circuit components. By focusing on what components
aim to achieve, rather than their direct causal effects, this framework streamlines
the process of understanding interpretability, reduces manual labor, and scales the
analysis of model behaviors across various tasks. Inspired by observing circuit
variations when models are fine-tuned or prompts are tweaked (while maintaining
the same task type), we apply our framework to explore these variations across
four PEFT methods and full fine-tuning on two well-known tasks. Our results
suggest that while fine-tuning generally preserves the structure of the mechanism
for solving tasks, individual circuit components may not retain their original in-
tended functionalities.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has established them as powerful tools
across a wide range of tasks for (Vaswani, 2017; Devlin, 2018; Achiam et al., 2023) natural lan-
guage and beyond. However, their vast scale—often involving billions of parameters—and black-
box nature pose significant challenges in understanding their decision-making processes, leading
to unpredictable risks in critical domains where accuracy, fairness, and transparency are essential.
The field of interpretability aims to address these challenges by developing methods to uncover the
internal reasoning of these models. Mechanistic interpretability, a subfield within this area, seeks
to reverse-engineer LLMs into human-understandable algorithms (Conmy et al., 2023; Bereska &
Gavves, 2024). A key objective is to identify circuits, subgraphs within the model’s computational
graph that correspond to specific behaviors, while maintaining a high level of sparsity and preserving
the model’s performance on the given task.

Recent progress in mechanistic interpretability has shed light on the inner workings of language
models through meticulous human inspections, uncovering key circuits responsible for specific tasks
(Wang et al., 2022; Hanna et al., 2024; Merullo et al., 2023). To accelerate this process and reduce
reliance on costly manual efforts, automated tools have been developed to systematically identify
circuits driving certain behaviors (Conmy et al., 2023; Bhaskar et al., 2024; Syed et al., 2023).
However, these methods are either time-consuming (Conmy et al., 2023) or rely on approximations
that prioritize speed over reliability (Syed et al., 2023). As a result, further investigations into the
relationships between circuits (Tigges et al., 2024; Prakash et al., 2024; Jain et al., 2024) are limited
in either scale or precision in finding circuits. The recent introduction of techniques like Edge
Pruning (Bhaskar et al., 2024) has made it possible to automatically identify more accurate and
faithful circuits across larger datasets while keeping computational costs manageable.
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Despite advancements in circuit discovery, significant challenges remain in understanding the func-
tionalities of the circuit components. Existing studies often assign specific functions to individual
nodes within circuits through manual inspection. These nodes and their roles are typically identified
during the discovery process by observing changes in the model’s output (e.g., variations in logit
values) when specific node activations are perturbed. This approach generally requires extensive
path interventions to determine the direct effects of nodes on the final output and careful design of
such intervention. The process demands considerable manual effort, leading to a limited scope (e.g.
only focus on the change in target output logits) and placing a heavy burden on researchers, ulti-
mately slowing down the progress of Mechanistic Interpretability. Moreover, as circuit discovery
methods become automated, the identification of circuits and their functionalities no longer hap-
pen in parallel. While progress has been made in circuit identification, a growing gap persists in
understanding the broader implications —after circuits are identified, what coming next? With
automated methodologies generating vast amounts of circuits, investigating their internal function-
alities has become increasingly laborious and challenging.

This challenge is evident in our observations from the IOI task. Modifying objects within the task
results in significant changes to the discovered circuits, as shown in Fig. 1. Intuitively, circuits
responsible for the same reasoning across similar tasks should remain consistent. However, the pre-
trained model struggles to maintain this consistency when performing identical tasks across various
types of objects (e.g., changing “Mary” to “Dog”). Moreover, applying different supervised fine-
tuning methods introduces further variations in the circuits. However, investigating these changes in
circuits and their functionalities becomes increasingly demanding and labor-intensive.

Inspired by these challenges and building on these findings, this work explores how circuits vary in
both structure and functionality across different ablated prompts, and how model fine-tuning meth-
ods affect these circuits. To address this, we propose a framework for circuit analysis that integrates
efficient discovery with automated interpretability. To broaden the scope of functionality ex-
ploration and accelerate the process, we make a trade-off by foregoing functionality conclusions
based on causal effects. Instead, we integrated the attention pattern and logit lens with clustering
techniques to describe the intended functionalities of the circuits components. By ‘intended func-
tionalities’, we refer to what the circuit components are attempting to do in the context of a given
tasks, rather than what they ultimately contribute to the final output. Our framework extends the
edge pruning algorithm (Bhaskar et al., 2024) for circuit discovery by incorporating stages for cir-
cuit selection, circuit comparison, attention grouping, and logit clustering, as outlined in Fig. 2.
We further summarize our findings and contributions as following: (1). We introduce a novel frame-
work that accelerates the process of estimating the functionality of circuit components, reducing the
reliance on manual efforts. (2). We demonstrate that the functionality of circuit components does not
necessarily remain consistent across ablated prompts. (3). We show that while fine-tuning methods
maintain the overall functional structure, the specific components performing those functions may
change.

2 EXPERIMENT SETUP AND PIPELINE

In this section, we first outline the experimental setup, providing an overview of the prompt settings
for the tasks and fine-tuning methodologies involved in our work. Next, we describe the process
for identifying and selecting circuits, along with the metrics used for circuit validations. We then
introduce the methods for evaluating the intended functionality of the circuit components. Lastly,
we discuss how comparative circuit analysis is conducted, following the pipeline in Fig. 2.

2.1 TASKS AND MODELS

We explore circuit variations within the context of two specific tasks: Indirect Object Identifica-
tion (IOI) and Greater Than (GT). These tasks were initially examined by Wang et al. and Hanna
et al., respectively. We focused on IOI and GT due to their well-established, human-inspected cir-
cuits, making them particularly suitable for implementing our framework and conducting an in-depth
analysis of circuit variations through different fine-tuning methods and ablated prompts. Addition-
ally, recent work by Merullo et al. offers promising insights through the study of these fundamental
tasks. Building on top of these tasks, Merullo et al. has studied the transferrability of these circuits
beyond the base syntactic structure of these tasks. To gain a more granular understanding of the
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Original IOI Prompts Example:

When Mary and John went to the store, John gave a drink to ..

Ablated IOI Prompts Example:

When Dog and Cat went to the store, Cat gave a drink to ..
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Figure 1: We demonstrate how circuits vary between IOl prompts and ablated prompts. When hu-
man names are replaced with animals, the newly discovered circuits become almost a subset of the
IOI circuits. Nodes are clustered based on their logit outputs. We focus on logit outputs regarding
to the prompt components. For each cluster, the major up-weights on logits for the sentence compo-
nents are listed. Upon further analysis, we found that even overlapping nodes can perform different
functions, colored in yellow.
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Figure 2: Pipeline of experiments: (1) Fine-tuned models on certain tasks; control model being the
original GPT-2 model (2) Apply Edge-pruning to identify a series of candidate circuits (3) Select
ideal circuits that balance sparsity and performance recovery, evaluated using KL Divergence and
Exact Match metrics. (4) Compare circuits across models fine-tuned with different methods. (5)
Conduct functionality analysis by: (5a). Grouping the heads based on their primary attended input
sentence components - what the head is focusing on. (5b). Computing logits for each input sentence
component per head - which components the head up-weights or down-weights for generation. (5c).
Clustering heads by their min-maxed logits across input sentence components - which heads share
or differ in functionality.
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model’s mechanisms, we focus on GPT-2 small, as its resulted circuits are more manageable and
human-readable. More details are discussed as follows:

Indirect Object Identification (I0OI): IOl (Wang et al., 2022) is the task of predicting the name
of the indirect object in a sentence. The task follows the format of “When {A} and {B} went to
{PLACE}, {B} bought a {OBJECT} to — {A}”. The datasets are generated by filling in A, B,
PLACE, and OBJECT with a list of nouns. The model then completes the sentence by filling in the
predicted indirect object, ideally {A}. Additionally, the prompts include variations in both ABBA
and BABA formats. In the original IOI settings, A and B are filled by human names such as “John”
and “Mary” as shown in Fig. 1. Following the setting by Edge Pruning (Bhaskar et al., 2024), we
adopt the prompts on a variant with 30 templates from Hugging Face. Similarly, we randomly select
200 examples each for the train and validations; and 36,084 instances for the test sets.

Ablated IOI: In addition to the IOI dataset, we introduce an ablated IOI dataset to investigate
whether the functionality and structure within the circuits are preserved across different types of
objects, inspired by the observations in Fig. 1. We retain the template structure from the original
IOI tasks; however, instead of populating A and B with human names, we use capitalized names
of animals, cities, and colors. An example of the ablated prompt can be found in Fig. 1. To avoid
tokenization issues that could affect model performance, we only include names that map to a single
token. All other settings, such as train, test, and validation splits, remain the same as in the original
IO tasks.

Greater Than (GT): GT tasks (Hanna et al., 2024) follows the format of “The war lasted from
the year 1743 to 17 — xy.” The tasks requires the model to place a higher probability on the
continuations 44, 45, ..., 99, compared to 00, 01, ..., 42. We adopted the version of dataset proposed
in Edge Pruning (Bhaskar et al., 2024) which has 150 examples in the train and valitation, and
12,240 instances in the test. This task is generally considered simpler than IOI, as it involves fewer
logical steps to complete.

PEFT Methods: We primarily focus on Parameter-Efficient Fine-Tuning (PEFT) methods that pre-
serve the original model structure. Specifically, we fine-tuned the GPT-2 small model with supervi-
sion, using Bitfit (Zaken et al., 2021), LoRA (Hu et al., 2021), IA3 (Liu et al., 2022), and AdaLoRA
(Zhang et al., 2023), on the IOI and GT tasks. A fully fine-tuned model was used as a control for
comparison. To ensure a fair comparison, all fine-tuned models are controlled to achieve nearly
identical performances on the same test set. For the IOI task, the goal was to minimize the predic-
tion loss for the indirect object. For the GT task, the goal was to maximize the gap between the
cumulative probabilities of correct and incorrect years.

2.2 CIRCUIT DISCOVERY AND SELECTION

We adopted edge-pruning (Bhaskar et al., 2024) to automate the circuits discovery step for each
finetuned models along with the pretrained version across the above mentioned tasks. To evaluate
and ensure the faithfulness and preciseness of the identified circuits, we mainly relied on the measure
of KL-Divergence and Exact Match, adopted by Bhaskar et al. and Conmy et al..

Circuit Discovery Algorithm: We implemented the edge pruning algorithm for automated circuit
discovery (Bhaskar et al., 2024). This method addresses circuit discovery through gradient-based
pruning on the edges of the model’s computational graph over hyperparameter edge-sparsity (es).
Similar to path-patching (Wang et al., 2022) and the other automated methodologies (Conmy et al.,
2023; Syed et al., 2023), it involves causal interventions on edges by substituting the target edges
with counterfactual activations from corrupted examples. This process further generates sparse cir-
cuits by masking out edges that has no causal effect on the target tasks.

In this work, we first reproduced the circuits for the IOI and GT tasks. Next, we retrieved the circuits
from the models fine-tuned with supervision on the two tasks. Finally, we retrieved the circuits from
the models on the ablated IOI dataset using all the described models.

Circuit Evaluation and Selection: A circuit is considered accurate and faithful when its output
closely aligns with that of the full model, even at a high level of graph sparsity, as highlighted in
previous works (Hanna et al., 2024; Conmy et al., 2023; Bhaskar et al., 2024). Specifically, we uti-
lized metrics, such as Exact Match for IOI, Kendall’s 7 for GT, and KL Divergence for both, from the
edge pruning approach to assess how closely the circuit’s output aligns with the full model. Addi-
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tionally, we measured the differences between target and distractor outputs, such as logit difference
for I0I and probability difference for GT, both traditionally used for these tasks.

As shown in the circuit selection stage of Fig. 2, we observed an exponential relationship between
edge sparsity and KL divergence, consistent across all models and tasks. More results for the metrics
are provided in the Appendix B. For this work, we selected a group of ‘best’ circuits for each model
by identifying those at the ‘knee’ of the KL-divergence curve, as highlighted in red in the circuit
selection stage of Fig. 2. Using this selection criterion, we chose the circuits with the highest
possible sparsity, just before the KL divergence sharply increases. Among the circuits in this selected
group, we considered them to be equivalently ‘best’. Therefore, we randomly selected one circuit
from the group for further comparison and analysis. A sample circuit from this group represents the
best tradeoff between performance and sparsity.

2.3 CIRCUIT FUNCTIONALITY DISCOVERY

We explore the intended functionalities of circuit components using a combination of attention heat
maps and the logit lens. Unlike previous works, we conceptualize the mechanism within the model
as either reducing the logits of incorrect choices or enhancing the logits of correct ones. In doing so,
we broaden the focus beyond just the target outputs, providing a more comprehensive view of the
model’s inner mechanism. For IOI-related tasks, we categorize the prompts into ten groups: “B, IO,
S1,PLACE, M, S2, V, OBJ, E, and T,” following the structure of the IOI prompts. “B” represents the
beginning of the sentence (e.g., “When” in Fig. 3), “M” refers to the middle of the sentence (e.g., a
comma), and “T” denotes the end of the sentence (e.g., “to”). “V” represents the verb in the second
half of the sentence, such as “gave,” while “OBJ” refers to the object before “E.” “S1”” and “S2” refer
to the distractor such as “John”, while “IO” represents the indirect object the model needs to predict,
such as “Mary,”. We assign the rest of the templates into “T”. For GT tasks, we divide the prompts
into six parts: “B, N, V, S, E, and T.” “B” represents the beginning of the sentence, “N” refers to the
noun that the task focuses on (e.g., “war”), “V” indicates the verb such as “lasts” (suggesting the
predicted numbers should be larger), “S” represents the start of the year, and “E” refers to the end
of the sentence. We assign the rest of the templates into “T”. It is important to note that the intended
functionalities do not directly reflect the ultimate contributions of the circuit components to the final
output. However, understanding these intended functionalities still provides valuable insights and
allows us to estimate their direct effects. As shown in Fig. 3, we found that the previously identified
Name Mover Head formed its own group of intended functionality, exhibiting shared similarities
in attention patterns. In fact, most of the previously identified nodes with the same functionalities
cluster well together when analyzed using the logit lens.

Attention Grouping is a technique used to analyze and categorize transformer heads based on their
attention patterns. In transformers, each head focuses on different components of the input, reflect-
ing what it “intends” to process. By examining the attention values, we can infer which parts of the
sentence each head is attending to and determine its specific intended functionality. Since not all
attended tokens carry equal importance, the method focus on the most relevant components. Heads
that focus on similar elements, such as an indirect object (10), are grouped together, suggesting they
contribute similarly to the model’s decision-making process.

Attention grouping helps uncover the various strategies a model uses to achieve the same outcome.
For example, when the indirect object (I0) is emphasized, the model can do this by either increasing
attention to the IO or by down-weighting attention to other components. Without grouping heads
by their attention patterns, these diverse approaches could be overlooked. By clustering heads that
focus on similar components, attention grouping allows for a deeper understanding of how the model
processes information and how different heads contribute to the final prediction. This is especially
useful in tasks like IOI, where multiple heads may contribute to the same result through distinct
ways, offering valuable insights into the model’s internal workings.

The attention grouping process involves computing the attention of each head for all tokens in a
sentence and mapping them to sentence components (e.g., B, 10). The average attention for each
component is calculated, and the top k£ components with the highest attention values are selected. If
a component’s attention exceeds the mean across these top components, the head is considered to be
attending to that component. Heads are grouped if they attend to the same components. An example
can be found in Fig. 3.
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Figure 3: An example of attention grouping and logit clustering from IOI circuit. We assign the
IOI prompts into several categories following their general pattern. We found that the previously
identified Name Remover Head form its own cluster where the logits on IO get highly up-weighted
over the other components. These heads’ attention focus on IO and S1/S2 as well, indicating their
intentional functionality of attending to and up-weighting IO for correct prediction.

For the I0I task, with 9 sentence components, k = 5 is chosen based on observations that heads
primarily focus on 4 or less components. For tasks with a different number of sentence components,
the value of k can be adjusted accordingly.

Logit Clustering is an essential technique used to group transformer heads based on their logit
patterns, providing insights into how different heads intended to contribute to the model’s decision-
making process. One key method used in logit clustering is the logit lens, which allows researchers
to probe intermediate representations in neural networks (NNs) and transformers. The logit lens
works by examining the logits produced at each layer, representing the model’s confidence about
which token it might output at that specific stage. This technique reveals how early layers begin
forming predictions and how these predictions evolve and refine as more layers process the input.

The logit patterns generated by different heads give a sense of how each head contributes to the
model’s predictions by up-weighting or down-weighting specific components. For example, in tasks
such as the IOl task, where the indirect object (I0) is the correct target and the first subject (S1) is a
distractor, a head that increases the logit on IO while decreasing the logit on S1 plays a crucial role
in making the correct prediction. Similarly, other heads may contribute by focusing on irrelevant
tokens such as punctuation or template words, which might help the model understand sentence
structure or task objectives. Comparing the logit patterns across different heads and layers, thus,
helps identify where significant changes in token predictions occur and how intermediate layers
potentially contribute to the final outcome.

By clustering heads based on their logit patterns, we can group heads that are performing similar
functions. This logit clustering allows for the identification of heads that collaborate in the model’s
decision-making process, providing a clearer view of the functional roles played by different heads.
The use of logit clustering is particularly useful when logit patterns vary across layers or even re-
peat in heads across multiple layers, as we have observed. Applying clustering algorithms to these
patterns automates the grouping process, facilitating the analysis of head functions. For example,
clustering can reveal whether heads within certain layers, such as deeper layers, are grouped together
or whether logit patterns are distributed across all layers.

In this work, we used K-means algorithm for logits clustering. While other clustering methods
or human calibrations may provide more precise results, K-means has proven to deliver satisfying
results in grouping logit patterns, reducing the amount of manual effort required in functional anal-
ysis. This method allows for a scalable approach to understanding how different transformer heads
influence the model’s output and decisions.
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Attention Grouping + Logit Clustering: Both attention grouping and logit clustering are needed
because each method has limitations when used in isolation. Attention grouping only indicates
which components the heads focus on but doesn’t reveal whether the heads are attempting to up-
weight or down-weight those components. On the other hand, logit clustering identifies which
components the heads are likely up-weighting or down-weighting but cannot clarify whether this
effect is intentional or a byproduct from another function. For example, an up-weighted logit on IO
might either reflect direct attention and up-weighting on this component, or it could be the result of
down-weighting other components.

By integrating these two methods, we can better understand the intentional functionality of the
heads. Attention grouping helps reveal the intention behind the model’s focus, while logit clustering
estimates the functionality — the effect the heads are having on specific components. When ob-
serving attention groups within the same logit cluster, it’s easier to discern how nodes with similar
functions differ in their intentions. Similarly, identical attention groups may belong to different logit
clusters, indicating varied roles in the model’s decision-making process. This combined framework
simplifies the investigation of intentional functionalities, helping to clarify how different compo-
nents intended to contribute to the overall behavior of the model.

3 EXPERIMENTAL RESULTS

In this section, we provide a detailed analysis of how the structure and intended functionality of
IOl circuits differ from those retrieved from ablated prompts, where we focus on the animal objects
since the original GPT2-small is incapable of performing IOI tasks when changing IO and S to
cities and colors. We then explore how various finetuning methods enhance performance on both
the IOI and GT tasks. Lastly, we investigate how finetuning on the original IOl task improves the
model’s capability of performing the IOI task when applied to ablated prompts. Evaluations on
model performance can be found in Appendix. Sec. B. For the following results, we focus on
attention head only by collapsing the QKV nodes into the corresponding attention heads.

Table 1: The model’s circuit differences on the GT and IOI tasks are compared in terms of the
number of nodes. For clarity, we have consolidated the QKV (Query, Key, Value) nodes of the 101
task into a single attention head. The results are averaged over the selected group of the “best”
circuits for each model under each task. A 95% confidence interval is calculated to demonstrate
statistically significant variations in circuit sizes. Blocks highlighted in green indicate a statistically
significant larger number of nodes. Our analysis shows that finetuning methods generally reduce the
circuit sizes for the GT task while introducing more components to the 10I task.

GT task 101 task

Model A Model B A only B only Shared A only B only Shared

Original 1A3 172+122 11.2+2.10 386+256 | 162+1.83 20.8+199 742+ 1.34
Original AdalLoRA | 200+1.69 138+ 172 358+2.01 | 13.0+2.13 182+1.09 77441093
Original Bitfit 250+243 11.0+£1.82 3084298 | 21.2+1.58 20.2+094 692+ 1.65
Original Full 1924+1.72 824178 36.6+£286 | 180+1.84 220+1.07 724+1.37
Original LoRA 202 +1.74 140+2.69 3564137 | 14.8+233 220+£196 756+148
1A3 AdaLoRA | 104 +1.63 102+128 394+236 | 178 4+1.22 184+1.23 77.2+1.01
1A3 Bitfit 178 +£2.87 98+174 3204305 |228+191 154+£1.13 7224140
1A3 Full 13.0+246 80+257 368+195|192+094 18.6+£129 758 +0.58
IA3 LoRA 10.8 +£2.37 10.6 £2.07 39.0£1.57 | 17.0+£1.07 19.6 143 78.0+ 1.04
LoRA AdalLoRA | 9.6 + 1.81 9.6 +158 400+190 | 176 £1.35 15.6+1.99 80.0+ 1.33
LoRA Bitfit 18.0+2.16 102+£299 31.6£185 | 2244+2.68 124+1.09 752+1.01
LoRA Full 140+235 92+285 3564172 | 192+1.60 160+1.07 78.440.90
AdaLoRA  Bitfit 174+ 181 9.6+197 3224287 |220+0.78 14.0+1.21 73.6+0.66
AdaLoRA Full 1444+156 96+2.03 352+£255|202+1.22 190+1.21 754+0.53
Bitfit Full | 1124£239 1424195 306+289 | 146+172 2144185 73.0+1.07

3.1 IOI CIRCUITS AND ABLATED PROMPTS

As shown in Fig. |, substituting human names with other types of objects, such as animals, leads
to significantly smaller circuits. Additionally, as illustrated in Fig. 4, we observed three distinct
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Figure 4: Logit clusters across fine-tuning methods and ablated prompts. The clusters are mostly
uniform across fine-tuning methods for either prompt setting, indicating that fine-tuning does not
significantly modify circuit’s main functionalities; however, variations can be observed, both in
terms of the general sizes of each cluster and individual head’s intentional functionalities. Compar-
ing I0I and ablated prompts, the ablation circuits consist of fewer functional clusters than IOI, and
the number of heads for the shared clusters generally reduces. This is likely due to the complexity
of processing human names in a semantically meaningful sentence which requires more functional
nodes.

clustering groups that consistently appear across all circuits in both IOI and IOI-ablated tasks. One
of the clusters places a strong emphasis on the M, E, and T parts of the sentence, in terms of logit,
while also attending to the entire sentence. We assume that these nodes intend to complete the
sentence with the simplest solutions, such as adding a comma or repeating the final word. Another
cluster, in contrast, emphasizes all parts of the sentence except for M, E, and T, while still attending
to the entire sentence. This cluster appears to function in opposition to the sentence completion
cluster. This cluster also aligns with where all previously identified induction heads (Wang et al.,
2022) are clustered. The final preserved cluster focuses heavily on the IO and S tokens, both in terms
of logits and attention. This cluster generally down-weights OBJECT and PLACE, components that
are irrelevant to correct prediction, which makes it distinguished from the induction heads cluster
who usually up-weights them.

In terms of the general cluster analysis, the cluster of induction heads are mostly preserved, with
only three additional nodes in IOI. The sentence completion cluster has significantly more heads in
IO, contributing to the difference in circuit sparsity. The cluster that focuses on IO and S is mostly
preserved. S-inhibition and the negative name mover (downweighting 10 and S, upweighting others)
are also preserved.

Interestingly, there is no cluster found in the animals-ablated circuit that purely concentrates on 10
in terms of logits and attention. It is worth noting that most of the attention patterns from ablated
prompts do not involve any exclusive focus on IO or S tokens in terms of logits and attentions. In-
stead, they tend to focus on IO and S along with the beginning words. Furthermore, the name mover
heads, which are well-clustered in the IOI circuits shown in Fig. 3, now appear to be more dispersed.
For instance, node 10.0 still upweights 10 over S1, but the effect is less pronounced. It also shows
a strong upweighting of PLACE. Node 9.6 shifts to upweight S over 10, while node 9.9 joins the
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sentence completion cluster, upweighting M, E, and T but downweighting the other elements. These
findings overall suggest that the model struggles to isolate IO and S from the prompt. Most of the
time, it relies on the beginning of the sentence to identify the IO and S pair. Although the behavior
of indirect object identification persists, the model’s limited ability to accurately identify IO and
S hinders its performance compared to the original IOI task. These findings are consistent across
finetuning methods and ablation settings.

3.2 PEFT METHODS COMPARISON

By fine-tuning GPT-2 small on IOI and GT tasks, we observed that the circuits retrieved from GT
tasks are generally statistically significantly smaller than those from the original GT tasks, as shown
in Table 1. An analysis of logits and attention patterns on GT revealed that the fine-tuned model
tends to focus more on the starting year, while the MLP in deeper layers increasingly up-weights
target number continuations. These findings suggest that the reduction in circuit size for GT tasks is
likely due to the simplicity of the task —simply selecting numbers greater than the starting year, as
the task only has one direction (Greater Than)— and a more focused approach in solving it. More
results on GT tasks can be found in Appendix. Sec. D. In contrast, for the more complex IOl task,
fine-tuning methods generally result in a statistically significantly larger circuit to address the task’s
increased complexity.

For the IOI task, the overall structure of functionality for circuits is largely preserved, aligning with
findings from Prakash et al.. Specifically, many of the heads identified by Wang et al. as serving
certain functions continue to perform similar roles in fine-tuned cases. For example, Duplicate
Token Heads, Previous Token Heads, some S-inhibition Heads, and certain Backup Name Mover
Heads remain consistent across all fine-tuning methods, maintaining their functionalities despite the
fine-tuning adjustments. This stability in key components ensures that model behavior is preserved,
allowing fine-tuned heads to focus more effectively on specific task elements, thereby enhancing
overall task performance. Furthermore, this consistency not only highlights the critical contribution
of these heads to solving the IOI task but also validates our framework, which integrates attention
grouping and logit clustering to explore the intended functionalities of LLM attention heads.

While many individual heads’ intentional functionalities are generally preserved, fine-tuning often
causes shifts in their behavior. Different fine-tuning methods may or may not achieve the same effect
on this change in behavior. For instance, in the two Induction Heads identified by Wang et al., a5.h5
and a6.h9, we observe that while fine-tuning preserves the intentional functionality of a6.h9, a5.h5
undergoes significant modifications with different fine-tuning methods. In the original circuit, a5.hS
attends to the beginning of the sentence, up-weighting B, 10, S, OBJ, and down-weighting M, E,
and T. However, after fine-tuning, Full Finetune, BitFit, and LoRA shift it to primarily up-weight V,
whereas AdaLoRA and IA3 reverse the effect, down-weighting B, 10, S, OBJ, and PLACE, while
up-weighting M, V, E, and T. Additional example of how fine-tuning methods align or differ in
modifying the Name Mover Heads on IOl circuits is shown in Fig. 5.

Name Mover Heads Sentence Components

B 10 81 rpxe M S2 V ow E T Head's Intentional
Functionality Changes

Attention (Original Circuit doing TOI Task): After Finetune

Name M -

3 | I

g, a10.h10 ' - e ) N\
96,99100 “w )
= e

a10.h6

e
al1.h3 L - R e
AdaLoRA a10.h2 . ‘ —
Logits (Original Circuit do

it doing TOT Task)

10.10

Figure 5: A comparison of how different fine-tuning methods modify the cluster of Name Mover
Heads claimed by prior works. The Name Mover Heads significantly attend to and up-weight 10
over other components. All fine-tuning methods increase the number of these heads to enhance
prediction accuracy, shifting the functionalities of some particular heads in the original GPT-2 circuit
for better performance. While some fine-tuning methods share similarities in the additional Name
Mover Heads, variations are common.
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Therefore, the differences between circuits may help explain how fine-tuning enhances the perfor-
mance of LLMs on certain tasks. From our observations, fine-tuning increases the number of heads
that up-weight logits on IO compared to the original GPT-2 circuit. Specifically, the improvement
is primarily due to more “focused” up-weighting on IO relative to other components. As shown in
Fig. 5, all circuits from fine-tuned models enforce certain heads from the original circuit to func-
tion similarly to Name Mover Heads—those that primarily attend to and up-weight I0—Ieading to
improved task performance. Notably, all fine-tuning methods modify the functionality of al10.h10,
likely due to its high similarity to Name Mover Heads. However, PEFT requires a larger number
of functionality-shifted heads to achieve comparable performance, which is unsurprising since full
fine-tuning updates all weights and biases, thoroughly converting the functionalities of individual
heads. In contrast, PEFT only updates a small subset of parameters, necessitating more heads with
similar intentional functionalities to match the performance of fully fine-tuned circuits.

In conclusion, both PEFT methods and full fine-tuning improve performance not only by increasing
the presence of highly specialized heads, such as Name Mover and Induction Heads, but also by sim-
plifying and refining circuits through the pruning of irrelevant or less important components. This
dual effect—enhancing the specificity and accuracy of critical heads while reducing unnecessary
complexity—highlights the vital role of fine-tuning in optimizing circuit performance for specific
tasks. These adjustments lead to more efficient and interpretable circuits that maintain high levels
of task-specific accuracy.

4 CONCLUSIONS AND LIMITATIONS

Overall, our framework significantly reduces the reliance on manual efforts, enhancing the efficiency
of discovering the intended functionality of circuit components. Through our analysis of how the
circuits for the IOI and GT tasks vary across different fine-tuning methods and ablated prompts, we
found that while the overall structure of intended functionality is preserved, the specific components
responsible for these functions may change. This finding suggests that pre-identified circuits and
functionalities are subject to variations depending on the ablated prompts and fine-tuning methods
used. We hope that our findings and framework will inspire further exploration of circuit utilization
and its interpretability in LLMs.

As discussed in the paper, rather than estimating the direct effect of individual nodes on target logit
values, we focus on their intended functionalities. While exploring intended functionalities can pro-
vide a reasonable approximation of direct effects—since pre-identified heads with similar functions
are generally well-clustered—it is important to recognize that they are not equivalent. Drawing an
analogy to “correlation is not causation,” we emphasize that intended functionality does not nec-
essarily reflect the “true” functionality of circuit components. Furthermore, intended functionality
may depend on the performance of previous states, meaning it can become inconsistent if those ear-
lier states are perturbed. However, this challenge could also arise in causal exploration methods like
Patch patching.

10
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A MODEL PERFORMANCE

B BACKGROUND AND RELATED WORKS

Mechanistic Interpretability (MI) (Elhage et al., 2021; Olsson et al., 2022) aims to discover in-
terpretable components of an otherwise blackbox neural network. Such analyses are typically per-
formed via a series of input perturbations (also known as patching) to ablate the effect of individual
model components to its predictive behavior (Chan et al., 2022; Meng et al., 2022a;b; Goldowsky-
Dill et al., 2023). MI has been successfully applied to natural language tasks that feature a controlled
output space on small-scale pre-trained LMs (Wang et al., 2022; Hanna et al., 2024); it has also been
applied to study in-context learning and algorithmic behaviors on stylized transformers (Akyiirek
et al., 2022; Fu et al., 2023; Nanda et al., 2023). While early works put equal focus on circuit dis-
covery and interpretability, recent ones have emphasized scalable circuit discovery (Conmy et al.,
2023; Syed et al., 2023; Bhaskar et al., 2024) over extracting human-understandable algorithms,
which requires extensive manual effort to examine the computational behavior of model compo-
nents. Our work integrates recent best practices in circuit discovery to automate interpretability.

Parameter-Efficient Fine-tuning (Mangrulkar et al., 2022) aims to improve model performance on
downstream tasks by training only a small portion of parameter relative to the full model. Referring
to Ding et al. (2023) for a more detailed survey, most popular approaches exploits the low-rank
structure of projection matrices (Hu et al., 2021; Zhang et al., 2023) or introduce a fixed set of scaling
and/or bias parameters (Zaken et al., 2021; Liu et al., 2022). Other representative approaches include
prompt tuning (Lester et al., 2021; Li & Liang, 2021; Diao et al., 2022) and dynamically identifying
tuning parameters via influence functions (Sung et al., 2021). In this work, we primarily investigate
LoRA (Hu et al., 2021), AdalLora (Zhang et al., 2023), BitFit (Zaken et al., 2021), and IA3 (Liu
et al., 2022). These methods are broadly applied in many production settings, since they are more
scalable with commercial hardware and can be served with thousands of replicas simultaneously
(Sheng et al., 2023).

Bhaskar et al. has studied the change effects of circuits induced by fine-tuning on an entity tracking
task, and found that fine-tuning enhances existing mechanisms for billion-scale LMs. Our work
extends this study with a more diverse set of tasks and PEFT methods; and more importantly, we
have identified that fine-tuning modifies existing mechanisms for small LMs.

This section presents the evaluation results of all models across various tasks and ablated prompts.
Although the model performs well on the IOl ablated tasks after fine-tuning, GPT-2 small struggles
with indirect object identification when the main objects are replaced with colors and cities. Specif-
ically, the model’s ability to handle these ablations remains limited, indicating that fine-tuning has
not fully generalized the model to different types of input modifications. Moreover, even after fine-
tuning, the performance on the IOl task ablated with cities is still suboptimal, suggesting that the
model’s understanding of abstract entities such as locations remains insufficient. These findings
highlight the need for more targeted interventions or further fine-tuning strategies to improve model
robustness across diverse ablations.

C 10OI CIRCUITS ANALYSIS

This section documents the detailed qualitative results for IOI analysis. Sec. C.1 lists the visual-
ization of comparative circuit analysis. The overlapped nodes are in white colors while the unique
nodes to each cicuits are shown in either pink or blue. Sec. C.2 lists the results of logit clustering
and attention group visualizations.

C.1 CirculiT COMPARISON

Comparative circuit analysis on the original IOI tasks can be found in Fig. 6, Fig. 7, Fig. 8,Fig. 9,
Fig. 10, and Fig. 11. The analysis with ablated prompts with animals can be found in Fig. 12, Fig.
13, Fig. 14, and Fig. 17. The analysis with ableted prompts with cities can be found in Fig. 18 and
Fig. 19. Analysis on prompts ablated with colors can be found in Fig. 21.

14



Under review as a conference paper at ICLR 2025

‘tok_ombeds

(wos) (ox2) (on)
7 (mo)
(CD] aon a0 mo
— —
(w7) (o) (o) (o) (sa0) (132)
i N
(@20) (aas)  (@uan) (ssar) (wno)  (arino)(aan) (ns)  (wna) (sone
= @BEs 69
) )
(36) (w19)  (w30a) (s200)(a309) | [ (wa20) (sa) (s0m0) (s22)
(om9) (w) (ma ) D
(s16) (ns) (sam0) (o) (D)
A sN=T Y
(2610 (5.5 (ms)
(om2) (w500 (@D (sow)  (sona) | (sons) (somin) (D)
— — - ~
1010 7hs a7ho m6
(o) (o) (@D (=)
110} (so3) (@nn)(w) (a7 (w7m0)
)
(a1010) (s916) (a8ms) (807 (s8me) D)
a3
(ars me
T e A
(son)aronr) (s9m10) (awns) ()
(atone) " (mo )(m10) 1105) (alons
0 n ) ains) (a
G )
(m0m2) (w10 some) (wions)
attho Y(a10n7 (a11n2) (s1m10) (resia post)
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Figure 16: LoRA circuit difference between IOI and IOI-animals, where blue corresponds to 101

only and red corresponds to IOI-animals only circuit components. White refers to shared circuit
components.
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Figure 17: Original circuit difference between IOI and IOI-animals, where blue corresponds to 101

only and red corresponds to IOI-animals only circuit components. White refers to shared circuit
components.
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Figure 18: LoRA circuit difference between IOI and IOI-cities, where blue corresponds to 101 only
and red corresponds to IOI-cities only circuit components. White refers to shared circuit compo-

nents.
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Figure 19: Full finetune circuit difference between 10l and IOI-cities, where blue corresponds to
IOI only and red corresponds to IOI-cities only circuit components. White refers to shared circuit

components.
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Figure 20: LoRA circuit difference between 101 and IOI-colors, where blue corresponds to 101

only and red corresponds to IOI-colors only circuit components. White refers to shared circuit
components.
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Table 2: IOI circuit performances, rounded to the nearest hundredth. The original GPT-2 model,
due to poor accuracy on colors and cities ablated settings, is not satisfiable for meaningful circuit
investigations on these two tasks. Among fine-tuning methods, cities-ablated prompts pose the most
difficulty for the circuit to preserve full model performance.

Metric  Ablation = AdaLoRA BitFit Full 1A3 LoRA Original

Acc Names 095+0.01 099+0.00 098+0.00 0.97+0.00 094+0.00 0.73+0.01
Animals 096 £0.02 099+0.00 099+0.00 096+0.01 097+0.00 0.52+0.01
Colors 095+0.02 0994000 0.99+0.00 0.96+0.01 0.96+0.00 -
Cities 0.74+£0.02 097+0.01 093+£0.01 0.76+0.02 0.79+0.00 -

LD Names 595+£0.16 11.62+£0.15 11.63+0.12 6.154+0.10 583+0.12 3.24+0.18
Animals  4.61 £0.41 1232+043 11.03+0.34 4354+0.30 5.17+0.27 0.86+0.07
Colors 423 +042 11.504+0.39 1041+036 439+031 491+£0.20 -
Cities 257+£020 9.60+038 882+034 219+0.15 3.3740.08 -

KL Names 021 £0.01 0.05+0.00 0.06+0.01 0.16+0.01 0.20+0.01 0.30=+0.00
Animals  0.09 £0.02 0.06+£001 0.04=£001 0.08+0.01 0.06+£001 028=+0.01
Colors 0.10£0.03 0.05+0.01 0.04+0.00 0.094+0.02 0.07=+0.00 -
Cities 038004 0.114+£0.02 021+£0.03 039+0.03 0.37+0.01 -

EM Names 095+£0.00 0994+0.00 098+£0.00 0.96+0.00 094+0.00 0.76+0.01
Animals  0.96 £0.02 099+£000 099£0.00 09 +0.01 097+0.00 0.66=£0.01
Colors 095+£0.02 0994+£0.00 099+£0.00 0.96+0.01 0.9740.00 -
Cities 0.77£0.02 097+0.01 093+£0.01 0.77+0.02 0.82+0.00 -

Table 3: GT task performances

Finetune Method ES PD PD(10) KT KL

Original 099£0.00 0.72£0.00 0.33£001 0.78+0.01 0.23+0.02
AdaLoRA 099 £0.00 096=£0.00 0.62+001 0.84+0.01 0.38+0.02
BitFit 099 £0.00 1.00£0.00 0.02+£0.00 0.88=+0.00 0.20=£0.01
Full 099+0.00 098£0.00 0.53+£0.03 0.82+0.01 0.74=£0.05
1A3 099£0.00 092£0.00 0.55+£001 0.83£0.00 0.33£0.01
LoRA 099+0.00 092£0.00 0.58+0.01 0.83+0.01 0.30+0.02

C.2 LOGIT CLUSTERING AND ATTENTION GROUPING
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Figure 22: Attention grouping results for all components circuit. Grey cells indicate pruned nodes
of minimal attention.
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Figure 23: Attention grouping results for all finetuning methods circuit. Grey cells indicate pruned
nodes of minimal attention.

D GT CIRCUIT ANALYSIS

D.1 CIRCUIT COMPARISON

D.2 LOGIT CLUSTERING AND ATTENTION GROUPING
E REPRODUCIBILITY

The implementation of circuit discovery mainly depends on the code from Edge Pruning. More
details can be found in their github. The code to perform logit lens and attention grouping will be
released upon acceptance.
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Figure 24: AdaLLoRA Logit Clusters
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Bitfit Logit Lens Heatmap

Figure 25: BitFit Logit Clusters
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Figure 26: Full Logit Clusters
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Figure 28: LoRA Logit Clusters
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Figure 30: Circuit difference for GT task: LoRA vs Full. Blue indicates LoRA-specific components,
red indicates Full-specific components, and white represents shared components.
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Figure 31: Circuit difference for GT task: Original vs AdaLoRA. Blue indicates Original-specific
components, red indicates AdaLoRA-specific components, and white represents shared components.
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Figure 32: Circuit difference for GT task: Original vs BitFit. Blue indicates Original-specific com-
ponents, red indicates BitFit-specific components, and white represents shared components.
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Figure 33: Circuit difference for GT task: Original vs Full. Blue indicates Original-specific compo-
nents, red indicates Full-specific components, and white represents shared components.
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Figure 34: Circuit difference for GT task: Original vs IA3. Blue indicates Original-specific compo-
nents, red indicates [A3-specific components, and white represents shared components.
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Figure 35: Circuit difference for GT task: Original vs LoRA. Blue indicates Original-specific com-
ponents, red indicates LoRA-specific components, and white represents shared components.

Figure 36: Attention grouping results for all finetuning methods circuit on GT.
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