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Abstract

Stein variational gradient descent (SVGD) is a particle based approximate inference algo-
rithm. Many variants of SVGD have been proposed in recent years, including the hybrid
kernel variant (h-SVGD), which has demonstrated promising results on image classification
with deep neural network ensembles. By framing h-SVGD as a kernelised Wasserstein gra-
dient flow on a functional that is not the Kullback-Leibler divergence, we demonstrate that
h-SVGD does not converge to the target distribution in the mean field limit. Despite this
theoretical result, we provide intuition and experimental support for the ability of h-SVGD
to improve variance estimation in high dimensions. Unlike other SVGD variants that also
alleviate variance collapse, this is achieved at no additional computational cost and without
further assumptions on the posterior.

1 Introduction

Stein variational gradient descent (SVGD) is a variational inference algorithm that generates samples from
a target probability density (Liu & Wang, 2016). It has proven useful in many tasks in Bayesian inference
and machine learning. SVGD evolves an interacting particle system until the particles resemble a sample
from a target density. The dynamics of this system include a driving term that moves particles to regions of
high probability, and a repulsive term that repels particles from one another. This repulsive term prevents
particles from converging to the same mode. It has been shown that within a unit ball of a reproducing kernel
Hilbert space (RKHS), the SVGD update direction optimally reduces the Kullback-Leibler (KL) divergence
between the target density and the approximating density (Liu & Wang, 2016). The reproducing kernel of
this RKHS appears in both the driving and repulsive terms, making the choice of kernel a key ingredient for
SVGD.

The theoretical properties of vanilla SVGD have been studied extensively. Liu showed that the empirical
measure of the particles converges weakly to the target distribution (Liu, 2017). SVGD in the mean field
regime has been described as a gradient flow on the KL divergence (Liu & Wang, 2016) and the chi-squared
divergence (Chewi et al., 2020). Furthering this geometric point of view, Duncan et al. developed the Stein
geometry along with its associated tangent spaces and geodesics, leading to guidelines for choosing kernels
to improve convergence (Duncan et al., 2023). The existence and uniqueness of the solution to the Stein
partial differential equation (PDE) has been established (Lu et al., 2019) along with various descent lemmas
bounding the decrease in KL divergence at each iteration (Liu, 2017; Korba et al., 2020; Salim et al., 2022).

SVGD is known to suffer from the curse of dimensionality through variance collapse (Wang et al., 2018; Ba
et al., 2019) whereby the marginal variances of the particles underestimate the true marginal variances of
the target in high dimensions. Zhou et al. explained that this phenomenon is due to the size of the repulsive
term of the update direction scaling inversely with dimension (Zhuo et al., 2018). This enables the driving
term to dominate in high dimensions, thereby forcing particles to converge to the mode(s) of the target. This
insight suggests that strengthening the repulsive term in SVGD should lead to better variance estimation,
an idea which we explore in Sections 3 and 4.

Many variants of SVGD have also been proposed in recent years, some offering improvements and others
providing generalisations. Riemannian SVGD (Liu & Zhu, 2018) generalises SVGD by allowing for target
densities on Riemannian manifolds, not just Euclidean spaces. Matrix SVGD (Wang et al., 2019) replaces
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the scalar valued kernel with a matrix valued kernel to incorporate preconditioning information and speed
up particle exploration. Message passing SVGD (Zhuo et al., 2018) and graphical SVGD (Wang et al.,
2018) focus on target densities that factorise according to a graph structure. This approach reduces variance
collapse in high dimensions by converting the problem to a collection of low dimensional problems. Projected
SVGD (Chen & Ghattas, 2020), sliced SVGD (Gong et al., 2021) and Grassman SVGD (Liu et al., 2022)
also mitigate the issue of variance collapse by updating particles within lower dimensional subspaces, which
comes at the expense of additional computation.

In this work, we study a variant called hybrid kernel Stein variational gradient descent (h-SVGD). The name
comes from its use of two distinct kernels for the driving and repulsive terms with the aim of mitigating
variance collapse. This variant was originally proposed by D’Angelo et al. (2021) in the context of training
deep neural network ensembles by sampling from the distribution of network parameters. In that setting, two
particles may parameterise networks with very similar outputs despite being far apart in the weight space.
Their insight was to encourage functional diversity between networks in the ensemble by using a standard
kernel in the driving term, but a functional kernel in the repulsive term. In this neural network ensemble
setting, h-SVGD demonstrated better performance than other variants on image classification. Annealed
SVGD (D’Angelo & Fortuin, 2021) may also be considered an example of h-SVGD. In this variant, the
driving kernel is a scalar multiple γ(ℓ) ∈ [0, 1] of the repulsive kernel, and this factor γ(ℓ) gradually increases
to 1 as the iteration ℓ increases. Numerical experiments show that annealed SVGD improves the ability
of particles to escape local modes. Scaling one of the update terms has also been used as a computational
technique to aid other SVGD variants when training Bayesian neural networks (Gong et al., 2021).

Although preliminary numerical experiments have shown the benefits of h-SVGD (D’Angelo et al., 2021),
the theoretical results for SVGD do not directly apply in the hybrid kernel setting due to the presence of a
second kernel. In this paper, we address this theoretical gap and reinforce the practical benefits of h-SVGD
through the following contributions.

• We establish existence of a solution to the hybrid Stein PDE and a kernelised Wasserstein gradient
flow interpretation. Through the study of this gradient flow, we demonstrate that h-SVGD does not
converge to the target distribution in the mean field limit.

• We also quantify the rate of dissipation of the gradient flow functional and develop a discrete time
version of this result, otherwise known as a descent lemma.

• Despite not converging to the target distribution, we demonstrate through numerical experiments
that h-SVGD can mitigate variance collapse in the finite particle regime at negligible additional cost,
whilst remaining competitive at high dimensional inference tasks.

In Section 2 we clarify notation, recall necessary theory, and outline the vanilla and hybrid SVGD algorithms.
Section 3 contains the theoretical contributions, with proofs relegated to Appendix A. Numerical experiments
are in Section 4 with additional experiments and details in Appendix B.

2 Background

2.1 Notation

Let X ⊆ Rd. Let π denote the target probability density on X and let sπ(x) = ∇x log π(x). We will often
write π for the corresponding measure. Assume that π(x) = e−V (x) for some potential V . Let P(X ) be the set
of probability measures on X and let PV (X ) denote the subset where ‖µ‖PV

:=
∫

X (1+V (x))dµ(x) <∞. For
each p ≥ 1, let Pp(X ) denote the subset satisfying ‖µ‖Pp :=

∫
X ‖x‖

pdµ(x) <∞ and define the Wasserstein
p-distance between the two measures µ, ν ∈ Pp(X ) as Wp(µ, ν) :=

(
infγ∈Γ(µ,ν)

∫
‖x− y‖pdγ(µ, ν)

)1/p, where
Γ(µ, ν) is the set of couplings between µ and ν. Let L∞

c (X ) denote the set of probability densities bounded
almost everywhere with compact support. Let L2(µ) denote the set of functions that are square integrable
with respect to the measure µ. Given µ ∈ P(X ) and a smooth, invertible transform T : X → X , let T#µ
denote the pushforward measure of µ through T . The KL divergence between two measures µ, ν ∈ P(X ) is
denoted by KL(µ ‖ ν).
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Algorithm 1 Stein Variational Gradient Descent (Liu & Wang, 2016)

Input: A target probability distribution π, a kernel k, an initial set of particles (xi
0)N

i=1 in X , and a
sequence of step sizes (ϵℓ).
Output: A set of particles (xi)N

i=1 in X whose empirical distribution approximates π.
for iteration ℓ do

xi
ℓ+1 ← xi

ℓ + ϵℓϕ̂
∗
µℓ,π(xi

ℓ), ∀ i = 1, . . . , N

ϕ̂∗
µℓ,π(x) = 1

N

N∑
j=1

k(xj
ℓ ,x)sπ(xj

ℓ) +∇xj
ℓ
k(xj

ℓ ,x) (4)

2.2 Reproducing Kernel Hilbert Spaces

A function k : X × X → R is positive definite if
∑

i,j aik(xi,xj)aj > 0 for any choice of a1, . . . , ad ∈ R and
x1, . . . ,xd ∈ X . Given a Hilbert space H of functions ϕ : X → R, a function k : X × X → R is said to
be a reproducing kernel for H if it satisfies the reproducing property, ϕ(x) = 〈ϕ, k(x, ·)〉H for all ϕ ∈ H. A
positive definite k : X × X → R admits a unique Hilbert space H of functions ϕ : X → R for which the
Dirac functionals δx : H → R, δxϕ = ϕ(x) are all continuous and k is a reproducing kernel. This Hilbert
space is called the reproducing kernel Hilbert space (RKHS) of k and it is equal to the closure of the span
of {k(x, ·) : x ∈ R}. Let Hd = H × · · · × H denote the Hilbert space of functions ϕ : X → Rd whose
components are all in H, and equip it with the usual inner product 〈ϕ, ψ〉Hd =

∑d
i=1〈ϕi, ψi〉H. Given two

kernels k1, k2 : X ×X → R, let H1,H2 denote their respective RKHS. An important kernel used throughout
this paper is the radial basis function (RBF) kernel kRBF(x,y;h) := exp(−‖x− y‖2

2 /(2h)) with bandwidth
h > 0. For a thorough treatment of RKHS we refer the reader to Aronszajn (1950), Steinwart & Christmann
(2008) and Berlinet & Thomas-Agnan (2011).

2.3 Stein Variational Gradient Descent

The key result from Liu & Wang (2016) identifies a transform T : X → X that optimally decreases the
KL divergence from an arbitrary probability measure to π. More precisely, let H be an RKHS with kernel
k : X ×X → R and consider transforms of the form T (x) = x + ϵϕ(x) where ϵ > 0 and ϕ is in the unit ball
{ϕ ∈ Hd : ‖ϕ‖Hd ≤ 1}. The maximum value of

−∇ϵKL(T#µ ‖ π)|ϵ=0 (1)

occurs at ϕk
µ,π/

∥∥ϕk
µ,π

∥∥
Hd , where

ϕk
µ,π(·) := Ex∼µ [k(x, ·)sπ(x) +∇xk(x, ·)] . (2)

When µ is an empirical distribution (i.e. a sum of Dirac measures), the expectation in (2) can be computed
exactly by summing over the particles of each Dirac measure. Using this observation, the SVGD algorithm
starts with an initial set of N particles (xi

0)N
i=1 and iteratively applies the transform T with (2) as the update

direction. At each iteration ℓ, this yields a set of particles (xi
ℓ)N

i=1 and a corresponding empirical distribution
µℓ = 1

N

∑
i δxi

ℓ
. This is captured in Algorithm 1. The intention is that after sufficiently many iterations, the

set of particles will resemble samples from π and expectations of the form Ex∼πh(x) can be approximated
by Ex∼µℓ

h(x) = 1
N

∑
i h(xi

ℓ). We also recall the definition of the kernelised Stein discrepancy (KSD) from
Liu et al. (2016),

Sk(µ, π) := Ex,y∼µ

[
δπ,µ(x)>k(x,y)δπ,µ(x)

]
(3)

where δπ,µ := sπ(x)− sµ(x).
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Algorithm 2 Hybrid Kernel Stein Variational Gradient Descent
Input: A target probability distribution π, two kernels k1, k2, an initial set of particles (xi

0)N
i=1 in X , and

a sequence of step sizes (ϵℓ).
Output: A set of particles (xi)N

i=1 in X whose empirical distribution approximates π.
for iteration ℓ do

xi
ℓ+1 ← xi

ℓ + ϵℓϕ̂
∗
µℓ,π(xi

ℓ), ∀i = 1, . . . , N

ϕ̂∗
µℓ,π(x) = 1

N

N∑
j=1

k1(xj
ℓ ,x)sπ(xj

ℓ) +∇xj
ℓ
k2(xj

ℓ ,x) (5)

2.4 Hybrid Kernel Stein Variational Gradient Descent

The SVGD update in (4) contains two terms, each using the same kernel. The first term, often
referred to as the driving term, uses the score function to move particles towards regions of high
probability density, and the repulsive term prevents particles from collapsing at the modes. The
h-SVGD variant proposed by D’Angelo et al. (2021) uses a different kernel in each term. Let k1 denote
the kernel that appears alongside the score function, and let k2 denote the repulsive kernel. For the remain-
der of this paper, k1 and k2 will both be positive definite. We present h-SVGD in Algorithm 2.

3 Theoretical Results

3.1 Definitions and Assumptions

A function f : X → R is in the Stein class of π if it is smooth and satisfies
∫

x∈X ∇x (f(x)π(x)) dx = 0. A
function f = (f1, . . . , fd) : X → Rd is in the Stein class of π if each fi belongs to the Stein class of π. A
kernel k : X ×X → R is in the Stein class of π if it has continuous second order partial derivatives and both
k(x, ·) and k(·,y) are in the Stein class of π for all x,y ∈ X . The hybrid Stein operator acts on a pair of
kernels k1, k2 : X × X → R by

Sπ ⊗ (k1, k2)(x, ·) := k1(x, ·)sπ(x) +∇xk2(x, ·),

provided k1 and k2 both belong to the Stein class of π. This reduces to the Stein operator defined in Liu
et al. (2016) when k1 = k2. Motivated by the h-SVGD update in (5), define the update direction

ϕk1,k2
µ,π (·) := Ex∼µ [Sπ ⊗ (k1, k2)(·,x)] , (6)

and write ϕ∗ = ϕk1,k2
µ,π /

∥∥ϕk1,k2
µ,π (·)

∥∥
H1

for the normalised direction. Let G( · ; k1, µ, π) := Ex∼µ [k1(x, ·)sπ(x)]
and R( · ; k2, µ) := Ex∼µ [∇xk2(x, ·)] denote the gradient term and the repulsive term respectively. We can
then write ϕk1,k2

µ,π (·) = G( · ; k1, µ, π) + R( · ; k2, µ). The update transform

T k1,k2
µ,π (x) = x + ϵϕk1,k2

µ,π (x) (7)

and the map Φk1,k2
π : µ 7→

(
T k1,k2

µ,π

)
# µ characterise the h-SVGD dynamics. For each ℓ, define

µN
ℓ+1 := Φk1,k2

π (µN
ℓ ), µ∞

ℓ+1 := Φk1,k2
π (µ∞

ℓ ), (8)

where µN
0 is the empirical measure of the initial particles (xi

0)N
i=1 drawn i.i.d. from some µ∞

0 .

All technical assumptions required in the theorems throughout this section are detailed here for completeness.
The first set of assumptions relate to the potential of the target distribution.

(A1) V ∈ C∞(X ), V ≥ 0, and lim|x|→∞ V (x) = +∞.
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(A2) There exist constants CV > 0 and q > 1 such that for all x,y ∈ X ,

|V (x)|q ≤ CV (1 + V (x))

and

sup
θ∈[0,1]

∣∣∇2V (θx + (1− θ)y)
∣∣q ≤ CV (1 + V (x) + V (y)).

(A3) For any α, β > 0, there exists a constant Cα,β > 0 such that

(1 + |x|)(|∇V (y)|+
∣∣∇2V (y)

∣∣) ≤ Cα,β(1 + V (x))

whenever |y| ≤ α |x|+ β.

(A4) The Hessian HV of V is well-defined and satisfies ‖HV ‖op ≤M for some M > 0.

Assumptions (A1), (A2) and (A3) are identical to those from Lu et al. (2019). Assumption (A4) is identical
to Assumption (A2) from Korba et al. (2020), and Assumption 2.1 from Salim et al. (2022). Assumptions
on the kernels are also required.

(B1) There exist symmetric functions K1,K2 : X → R such that ki(x,y) = Ki(x− y) for i = 1, 2, K1 is
C2 with bounded derivatives, and K2 is C4 with bounded derivatives. We use B > 0 as a bound for
all derivatives in the proofs.

(B2) There exists a constant D > 0 such that both k1 and ∇k2 and are D-Lipschitz, and such that
∇V (·)k1(·, z) is D-Lipschitz for each z. That is,

|k1(x,x′)− k1(y,y′)| ≤ D (‖x− y‖2 + ‖x′ − y′‖2) ,
‖∇xk2(x,x′)−∇yk2(y,y′)‖ ≤ D (‖x− y‖2 + ‖x′ − y′‖2) ,

‖∇V (x)k1(x, z)−∇V (y)k1(y, z)‖ ≤ D (‖x− y‖2)

for all x,x′,y,y′, z ∈ X .

Assumption (B1) is a slight relaxation of Assumption 2.1 from Lu et al. (2019), and contains Assumption 2.6
from Salim et al. (2022). The first two parts of Assumption (B2) are hybrid kernel versions of Assumption
(B2) from Korba et al. (2020), and the third part of Assumption (B2) relaxes the restrictive Assumption
(B1) from Korba et al. (2020).

3.2 Large Particle Limit

We begin our theoretical study with a result on the deviation of the empirical distributions of h-SVGD to the
large particle limit. The single kernel version (Korba et al., 2020) of the following result uses an assumption
that is quite restrictive. It requires |V (x)| ≤ CV for some constant CV > 0, which rules out even a normal
target distribution. We relax this with the third part of Assumption (B2) and provide an updated proof in
the appendix.
Proposition 3.1. Assume (A1), (A4), (B1) and (B2), and let T > 0. For any 0 ≤ ℓ ≤ T

ϵℓ
, there exists a

constant L depending on k1, k2 and p such that

E
[
W 2

2 (µN
ℓ , µ

∞
ℓ )

]
≤ 1

2
√
N

√
var(µ∞

0 )eLT (e2LT − 1).

3.3 Hybrid Stein PDE

In the continuous time limit, equation (5) becomes a coupled system of differential equations,

dxi

dt
= 1
N

N∑
j=1

k1(xj ,xi)sπ(xj) +∇xj
k2(xj ,xi) (9)
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for i = 1, . . . , N . In the mean field limit, integration by parts yields
dx

dt
=

∫ (
k1(x′,x)sπ(x′) +∇x′k2(x′,x)

)
ρ(x′)dx′ (10)

= Tk1,ρ (∇ log π) (x)− Tk2,ρ (∇ log ρ) (x) (11)

where Tk,ρ : L2(ρ)d → Hd
k is the Hilbert-Schmidt operator (Tk,ρf)(·) =

∫
k(·,x)f(x)dρ(x) for a kernel k.

Recalling that V is the potential of π and so V = − log π, this mean field limit can be described by the
hybrid Stein partial differential equation

∂tρt = ∇ · (ρt (K1 ∗ ∇V ρt +K2 ∗ ∇ρt)) . (12)

Definition 3.2. Given a probability measure ν on Rd, a map X(t,x; ν) : [0,∞)×Rd → Rd that is C1 with
respect to t and satisfies

∂tX(t,x; ν) = − (K1 ∗ (∇V ρt)) (X(t,x; ν))− (∇K2 ∗ ρt) (X(t,x; ν))
ρt = X(t, ·, ν)#ν (13)

X(0,x; ν) = x

is called a mean field characteristic flow of (10) or of (12).

We now generalise Theorem 2.4 from Lu et al. (2019), ensuring the existence of a solution to the hybrid Stein
PDE. First, define Y := {u ∈ C(X ,X ) : supx∈X |u(x)− x| <∞} with dY (u, v) = supx∈X |u(x)− v(x)| and
note that (Y, dY ) is a complete metric space.
Proposition 3.3. Assume (A1), (A2), (A3) and (B1), and let T > 0. Then there exists a unique solution
X(·, ·, ν) ∈ C1([0, T ];Y ) to (13) and the corresponding ρt is a weak solution to (12) satisfying

‖ρt‖PV
≤ ‖π‖PV

exp (C min (‖∇K1‖∞ , ‖∇K2‖∞) t) (14)

for some constant C > 0 depending on K1, K2 and V .

The second kernel enables a stronger bound than Theorem 2.4 from Lu et al. (2019) by careful modification
of the telescoping section of the proof (see Appendix A and Equation (3.8)). In particular, ensuring that
‖∇K1‖∞ < ‖∇K2‖∞ when choosing K2 yields a stronger bound in (14) than if K1 were used for both kernels.
We remark that this bound describes regularity of the solution to the PDE, not a rate of convergence.

3.4 Kernelised Wasserstein Gradient Flow and Asymptotic Density: k2 = ck1

Zhuo et al. (2018) uncovered a correlation between dimension and the magnitude of the repulsive force.
Under some technical conditions, for any α, δ ∈ (0, 1), they show that with probability at least 1− δ, SVGD
under an RBF kernel yields ‖R( · ; k, µ)‖∞ = O(d−α). This suggests that simply scaling the repulsive
force by dα for some α ∈ (0, 1) should offset the decrease in ‖R( · ; k2, µ)‖∞ in high dimensions, thereby
alleviating variance collapse at negligible additional computational cost. Scaling the repulsive kernel in this
way corresponds to h-SVGD where k1 is an RBF kernel and k2 = dαk1. This motivates our study of the
h-SVGD gradient flow under the special case k2 = ck1.

In the case where k = k1 = k2, equations (10) and (12) describe a kernelised Wasserstein gradient flow of
the form ∂tρt = ∇ · (ρtTk,ρt∇WF(ρt)), where

F(ρ) = KL(ρ ‖ π) = Ex∼ρ [log ρ(x)− log π(x)]

is the KL divergence functional (Liu, 2017). This has functional derivative δF
δρ = log ρ − log π + 1 up to a

constant, and Wasserstein gradient ∇WF(ρ) = ∇ δF
δρ (ρ) = ∇ log ρ−∇ log π. Using (11) and the linearity of

Tk,ρ, the corresponding Fokker-Planck equation is then

∂tρt = ∇ · (ρtTk,ρt (∇ log ρt −∇ log π)) (15)

where {ρt : t ≥ 0} is a curve of probability densities. The following result generalises this gradient flow
interpretation to the case where k2 = ck1. Note that it applies to any positive definite kernel k1.
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Proposition 3.4. Given a positive definite kernel k1 and constant c > 0, let k2 = ck1. Then the mean field
dynamics of h-SVGD describe a kernelised Wasserstein gradient flow on the functional

F(ρ) = Ex∼ρ [c log ρ− log π(x)] . (16)

The corresponding continuity equation is

∂tρt = ∇ · (ρtTk1,ρt
(c∇ log ρt −∇ log π)) . (17)

Even in this simple hybrid kernel setting, the following result establishes that the limiting distribution ρ∗ of
the mean field regime is not equal to the target distribution π.
Corollary 3.5. If k2 = ck1 for some constant c > 0 where k1 is a positive definite kernel, then the mean
field h-SVGD has a fixed point ρ∗(x) ∝ π(x)1/c.

Although Corollary 3.5 applies to any target density π satisfying (A1), it is especially insightful to consider a
normal target. If π(x) = N (x; µ,Σ), then ρ∗(x) = N (x; µ, cΣ). So scaling the repulsive kernel k2 will adjust
the variance of the target by the same factor. This supports the motivation that scaling the repulsive kernel
should offset the variance underestimation in the finite particle regime in high dimensions at a negligible
additional cost. This idea will be revisited in Section 4.

We now generalise an existing result (Korba et al., 2020) that describes the dissipation of the KL divergence
along the SVGD gradient flow. The result below describes the dissipation of the functional in (16) along the
h-SVGD gradient flow, ensuring that the functional always decreases. It also describes the dissipation of the
KL divergence with respect to the mean field limiting distribution ρ∗, which we emphasise is not equal to
the target distribution π, as per Corollary 3.5.
Proposition 3.6. Under the assumptions of Proposition 3.4,

d

dt
F(ρt) = −c2 ‖Tk1,ρt

(∇ log ρ−∇ log ρ∗)‖2
Hd

1
+ c

∫
ρt(x) ∂

∂t
log ρt(x)dx, (18)

d

dt
KL(ρt ‖ ρ∗) = −c ‖Tk1,ρt

(∇ log ρ−∇ log ρ∗)‖2
Hd

1
+

∫
ρt(x) ∂

∂t
log ρt(x)dx, (19)

where ρ∗(x) ∝ π(x)1/c is the mean field fixed point. Furthermore,∫
ρt(x) ∂

∂t
log ρt(x)dx ≤ 0,

so d
dtF(ρt) ≤ 0 and d

dt KL(ρ ‖ ρ∗) ≤ 0 for t ≥ 0, and d
dtF(ρ∗) = 0.

The following descent lemma is adapted from Liu (2017) and it provides a discrete time version of Proposition
3.6. We use µℓ to denote discrete time steps of the algorithm, as defined in (8), as opposed to ρt for the
continuous time analysis. We remark that other descent lemmas for SVGD have been established (Korba
et al., 2020; Salim et al., 2022).
Proposition 3.7. Under the assumptions of Proposition 3.4, let σ(·) denote the spectral radius and set
ϵℓ ≤ (2 supx σ(∇ϕ∗(x) + ∇ϕ∗(x)>))−1. Define R := supx{ 1

2 ‖∇ log π‖Lip k1(x,x) + 2∇x,yk1(x,x)} where
‖f‖Lip := supx6=y

|f(x)−f(y)|
‖x−y‖2

is the Lipschitz norm and ∇x,yk(x,x) :=
∑

i ∂xi
∂yi

k(x,y)|x=y. Then

1
ϵℓ

(
F(µ∞

ℓ+1)−F(µ∞
ℓ )

)
≤ −c(1− ϵℓR) S(µℓ, ρ

∗).

3.5 Kernelised Wasserstein Gradient Flow: The General Case

In this section, we present a generalisation of Proposition (3.4) and discuss some difficulties in finding kernels
that satisfy the required conditions. For ease of presentation, we restrict our attention to d = 1. Throughout,
we assume (B1) and that any required Fourier transforms exist. Define the function r : X → R by

r(x; ρ) := F −1
(

F (K2)
F (K1)

·F (∇ρ)
)

(x) (20)

where F denotes the Fourier transform, and let R : X → R be a function satisfying ∇R(x; ρ) = r(x; ρ)/ρ(x).
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Proposition 3.8. Assume that both r and R exist. Then the corresponding continuity equation is

∂tρt = ∇ · (ρtTk1,ρt
(∇R(· ; ρt)−∇ log π)) . (21)

If in addition ∫
∂

∂ϵ
R(x; ρ+ ϵχ)d(ρ+ ϵχ)(x)

∣∣∣∣
ϵ=0

= 0 (22)

for any measure χ = ρ̃ − ρ with ρ̃ ∈ L∞
c (X ) ∩ P(X ), then the mean field dynamics of h-SVGD describe a

kernelised Wasserstein gradient flow on the functional

F(ρ) = Ex∼ρ [R(x; ρ)− log π(x)] . (23)

Note that k2 = ck1 implies F (K2)/F (K1) = c and so r(x; ρ) = c∇ρ(x). Therefore, R(x; ρ) = c log ρ(x), and
so (21) reduces to (17). Furthermore, the left hand side of (22) is equal to c

∫
dχ(x) = c

∫
dρ̃(x)− c

∫
dρ(x),

which is zero because ρ̃, ρ are both probability measures. So (22) is satisfied in this special case. We remark
that verifying (22) remains a challenge in general hybrid kernel settings. However, under this assumption,
the mean field dynamics of h-SVGD converges to a distribution that is not the target distribution.
Proposition 3.9. If k1 6= k2, both r and R exist, and (22) is satisfied, then any fixed point ρ∗ of the gradient
flow in Proposition (3.8) is not equal to π.

We present a specific example below to demonstrate the behaviour of SVGD in the general hybrid kernel
setting. In particular, the form of the target π and the mean field steady state ρ∗ can look quite different.
Example 3.10. Let h1, h2, σ > 0 and assume that ∆h := h2 − h1 6= 0. Let ki(x, y) = kRBF(x, y;hi) for
i = 1, 2, and let π(x) ∝ exp(−α exp( x2

2β )) be the target on X = R where

α =
√
h2

h1
·
√

σ2

σ2 + ∆h
· σ

2

∆h
, β = σ2(σ2 + ∆h)

∆h
.

Then ρ∗(x) = N (x; 0, σ2) is a fixed point of the h-SVGD mean field dynamics.

We remark that Section 4 focuses on experimental results with the k2 = ck1 case from the previous section
due to its capacity to improve variance estimation. We leave a more detailed study of the general hybrid
setting for future work.

4 Experiments

Although Corollary 3.5 shows that h-SVGD does not converge to the target distribution, we demonstrate in
this section that it has the ability to improve variance estimation when compared to SVGD. Furthermore,
it does this at no extra computational cost, and without any assumptions on the structure of the posterior,
as is common in other SVGD variants that alleviate variance collapse. We measure variance collapse using
dimension averaged marginal variance (DAMV), 1

d

∑d
j=1 Varj

(
{xi}N

i=1
)
, as is standard in the literature

(Zhuo et al., 2018; Ba et al., 2019; 2021; Gong et al., 2021). Further details on the the experimental details
can be found in Appendix B.

Before describing the first numerical example, we reiterate the intuition behind the ability of h-SVGD to
improve variance estimation. In high dimensions, with a finite number of particles, SVGD is well known to
suffer from variance collapse (Wang et al., 2018; Ba et al., 2019). Corollary 3.5 shows that with a normal
target distribution, in the infinite particle limit, choosing kernels k2 = ck1 with c > 0 will scale the variance
of the limiting distribution by c. Following the discussion in Section 3.4, we suggest a scale factor of c = dα

for some α ∈ (0, 1) to compensate for the decreasing repulsive force with increasing dimension. This intuition
provides a heuristic for choosing k1 and k2 in the following examples.

8
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4.1 Multivariate Gaussian Mixture

In this first example, we sample from a high-dimensional mixture of Gaussians with 10 equally weighted
components. The mean vectors are randomly initialised from N (0, Id), and the covariance matrices are cId,
where c > 0 is a factor that makes the DAMV equal to 1. We repeat this for dimensions up to d = 1000 at
intervals of 100. We choose to sample N = 50 particles in order to demonstrate the performance of h-SVGD
when d is much greater than N , as is often the case in high dimensional Bayesian inference. Particles are
initialised from N (0, Id) and each SVGD variant is run for 2000 iterations with an initial step size of ϵ = 0.01,
adapted using AdaGrad. We run SVGD and SSVGD with the RBF kernel kRBF and compare against h-
SVGD with kernels k1 = kRBF and k2 =

√
d · kRBF. All algorithms use h = med2/ log(N) as the bandwidth,

where med is the median pairwise distance between particles (Liu & Wang, 2016). For SSVGD, there is
one bandwidth per dimension, so the median distances are computed along each projection, as described in
Gong et al. (2021). All configurations are run 10 times with a different particle initialisation and results
for each configuration are averaged. Figure 1 demonstrates that h-SVGD provides an uplift in marginal
variance estimation when compared to SVGD. An interesting avenue for future research would be to develop
a more principled method of choosing such a a repulsive factor. The techniques in Zhuo et al. (2018) offer a
promising direction. Although SSVGD estimates the variance fairly consistently as the dimension increases,
Figure 1 shows that this comes at a significant increase in runtime, whereas there is no noticeable difference
between the runtimes of SVGD and h-SVGD.

(a) DAMV (b) Time (seconds)

Figure 1: DAMV and runtime for different SVGD variants sampling from N (0, Id).

4.2 Bayesian Neural Network

In this section, we sample weights from a Bayesian neural network. Aside from scaling the repulsive kernel by√
d, as described in the previous experiment, our setup is identical to Liu & Wang (2016). For completeness,

details are included in Appendix B. Table 1 shows that with no additional computational cost, the problem
of variance collapse is mitigated under h-SVGD through an increased DAMV. Table 2 demonstrates that
it remains competitive at inference through improved test log-likelihood (LL) for all datasets and improved
root mean squared error (RMSE) for all but one dataset. Appendix B includes a comparison of the same
metrics between h-SVGD and sliced SVGD (SSVGD) to emphasise that the alleviation of variance collapse
under h-SVGD comes at a lower cost.

9
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Table 1: DAMV and runtime in seconds of SVGD and h-SVGD. Ranges indicate one standard deviation
above and below the mean over repeated trials.

DAMV Runtime (seconds)
Dataset SVGD h-SVGD SVGD h-SVGD
Boston 0.051 ± 0.011 0.112 ± 0.0150.112 ± 0.0150.112 ± 0.015 28.9 ± 1.4 28.6 ± 0.828.6 ± 0.828.6 ± 0.8
Concrete 0.084 ± 0.01 0.120 ± 0.0100.120 ± 0.0100.120 ± 0.010 28.7 ± 1.328.7 ± 1.328.7 ± 1.3 28.8 ± 1.8
Energy 0.065 ± 0.015 0.154 ± 0.0230.154 ± 0.0230.154 ± 0.023 30.8 ± 2.830.8 ± 2.830.8 ± 2.8 30.9 ± 2.5
Kin8nm 0.105 ± 0.0030.105 ± 0.0030.105 ± 0.003 0.102 ± 0.003 35.9 ± 1.335.9 ± 1.335.9 ± 1.3 36.2 ± 1.3
Naval 0.059 ± 0.004 0.091 ± 0.0190.091 ± 0.0190.091 ± 0.019 33.4 ± 0.8 33.1 ± 1.533.1 ± 1.533.1 ± 1.5
Combined 0.128 ± 0.008 0.145 ± 0.0070.145 ± 0.0070.145 ± 0.007 36.3 ± 1.536.3 ± 1.536.3 ± 1.5 36.8 ± 2.7
Protein 0.089 ± 0.0010.089 ± 0.0010.089 ± 0.001 0.087 ± 0.001 72.7 ± 1.072.7 ± 1.072.7 ± 1.0 72.8 ± 1.7
Wine 0.068 ± 0.005 0.090 ± 0.0030.090 ± 0.0030.090 ± 0.003 29.5 ± 1.429.5 ± 1.429.5 ± 1.4 29.8 ± 1.1
Yacht 0.060 ± 0.020 0.194 ± 0.0340.194 ± 0.0340.194 ± 0.034 29.3 ± 0.429.3 ± 0.429.3 ± 0.4 29.6 ± 0.4
Year 0.011 ± 0.000 0.012 ± 0.0000.012 ± 0.0000.012 ± 0.000 592 ± 24 563 ± 23563 ± 23563 ± 23

Table 2: Average RMSE and LL of SGVD and h-SVGD evaluated on the test dataset. Ranges indicate one
standard deviation above and below the mean over repeated trials.

Test RMSE Test LL
Dataset SVGD h-SVGD SVGD h-SVGD
Boston 3.094 ± 0.579 3.034 ± 0.5873.034 ± 0.5873.034 ± 0.587 -2.123 ± 0.116 -1.959 ± 0.148-1.959 ± 0.148-1.959 ± 0.148
Concrete 5.857 ± 0.468 5.384 ± 0.5045.384 ± 0.5045.384 ± 0.504 -2.616 ± 0.099 -2.499 ± 0.128-2.499 ± 0.128-2.499 ± 0.128
Energy 1.528 ± 0.169 1.157 ± 0.1381.157 ± 0.1381.157 ± 0.138 -1.702 ± 0.094 -1.072 ± 0.096-1.072 ± 0.096-1.072 ± 0.096
Kin8nm 0.124 ± 0.005 0.100 ± 0.0030.100 ± 0.0030.100 ± 0.003 -1.293 ± 0.108 -0.314 ± 0.104-0.314 ± 0.104-0.314 ± 0.104
Naval 0.006 ± 0.000 0.004 ± 0.0000.004 ± 0.0000.004 ± 0.000 -1.353 ± 0.161 -0.404 ± 0.140-0.404 ± 0.140-0.404 ± 0.140
Combined 4.105 ± 0.220 4.072 ± 0.2204.072 ± 0.2204.072 ± 0.220 -2.459 ± 0.051 -2.367 ± 0.050-2.367 ± 0.050-2.367 ± 0.050
Protein 4.791 ± 0.025 4.679 ± 0.0254.679 ± 0.0254.679 ± 0.025 -2.633 ± 0.035 -2.511 ± 0.023-2.511 ± 0.023-2.511 ± 0.023
Wine 0.637 ± 0.044 0.631 ± 0.0450.631 ± 0.0450.631 ± 0.045 -1.463 ± 0.120 -0.819 ± 0.080-0.819 ± 0.080-0.819 ± 0.080
Yacht 1.677 ± 0.5711.677 ± 0.5711.677 ± 0.571 1.886 ± 0.664 -1.587 ± 0.120 -1.045 ± 0.160-1.045 ± 0.160-1.045 ± 0.160
Year 8.882 ± 0.043 8.804 ± 0.0398.804 ± 0.0398.804 ± 0.039 -2.908 ± 0.031 -2.890 ± 0.019-2.890 ± 0.019-2.890 ± 0.019

5 Conclusion

We developed the mean field theory of h-SVGD by proving the existence of a solution to the hybrid Stein PDE
and identifying it as a gradient flow on a functional other than the KL divergence. We characterised the mean
field fixed point for the special case k2 = ck1 and demonstrated that h-SVGD does not converge to the target
in the mean field limit. We provided a result on the dissipation of the new functional, as well as a discrete
time version, otherwise known as a descent lemma. We also highlighted the complexities of the gradient
flow in the general hybrid kernel setting. Experimental results demonstrated that h-SVGD can alleviate
variance collapse in high dimensions at a much lower cost than other SVGD variants. We also showed that
h-SVGD maintains its performance on high dimensional inference tasks, whilst improving variance estimation
without the additional computational cost required of other SVGD variants. One interesting direction for
future research is to find a principled method of scaling the repulsive kernel. Another avenue is to further
develop the theory of h-SVGD in the general hybrid kernel setting.
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A Proofs

Lemma A.1. Under assumptions (A1), (A4), (B1), (B2) the map

(z, µ) 7→ E(z, µ) :=
∫

X
−k1(x, z)∇V (x) +∇xk2(x, z)dµ(x)

is L-Lipschitz. That is,

‖E(z, µ)− E(z′, µ′)‖2 ≤ L(‖z − z′‖2 +W2(µ, µ′))

where L > 0 depends on k1, k2 and V .

Proof. Largely following the proof of Lemma 14 Korba et al. (2020), choosing an optimal coupling γ of µ
and µ′,

‖E(z, µ)− E(z′, µ′)‖2 ≤
∣∣∣∣Eγ [∇V (x)(k1(x, z)− k1(x′, z′))]

+ Eγ [(∇V (x′)−∇V (x))k1(x′, z′)]
+ Eγ [∇xk2(x, z)−∇x′k2(x′, z′)]

∣∣∣∣
≤ DEγ [‖x− x′‖2 + ‖z − z′‖2]
+BMEγ [‖x− x′‖2]
+DEγ [‖x− x′‖2 + ‖z − z′‖2]
≤ (2D +BM) (‖z − z′‖2 +W2(µ, µ′)) .

Note that the second term is bounded using the relaxed Assumption (B2) and there is no need to require
that |V | is bounded by a constant.

Proof of Proposition 3.1. This follows identically to the proof of Proposition 7 in Korba et al. (2020) with
Lemma A.1 in place of Lemma 14.

Proof of Proposition 3.3. The proof largely follows those of Theorems 2.4 and 3.2 in Lu et al. (2019) with
some minor adjustments. Notably, after fixing r > 0 and defining

Yr :=
{
u ∈ Y : sup

x∈X
|u(x)− x| < r

}
and the complete metric space

Sr := C([0, T0];Yr),
dS(u, v) := sup

t∈[0,T0]
dY (u(t), v(t))

for some sufficiently small T0 (to be determined later), the operator G : u(t, ·) 7→ G(u)(t, ·) must be modified
to act on u ∈ Sr via

G(u)(t,x) = x−
∫ t

0

∫
X
∇K2(u(s,x)− u(s,x′))ν(dx′)ds

−
∫ t

0

∫
X
K1(u(s,x)− u(s,x′))∇V (u(s,x′))ν(dx′)ds.

12
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Note that we use G instead of the F used in Lu et al. (2019) to avoid confusion between the functional F
defined in (16). The same techniques of Lu et al. (2019) are sufficient to establish the required bounds to
show that G is a contraction on Sr for sufficiently small T0. Note that Assumptions (B1), (A2) and (A3)
are used to establish this. So the unique fixed point X(·, ·; ν) ∈ Sr of G solves (13) in the interval [0, T0].

The min (‖∇K1‖∞ , ‖∇K2‖∞) term emerges because the telescoping in Equation (3.8) of Lu et al. (2019)
can be performed with either kernel. The remainder of the proof follows Theorems 2.4 and 3.2 of Lu et al.
(2019).

Proof of Proposition 3.4. Following Definition 7.12 in Santambrogio (2015), a functional derivative of F is
a measurable function δF

δρ (ρ) satisfying

d

dϵ
F(ρ+ ϵχ)

∣∣∣∣
ϵ=0

=
∫
δF
δρ

(ρ)dχ

for all perturbations χ = ρ̃−ρ with ρ̃ ∈ L∞
c (X )∩P(X ). If it exists, δF

δρ (ρ) is unique up to additive constants.

We first compute

d

dϵ
F(ρ+ ϵχ)

∣∣∣∣
ϵ=0

= d

dϵ

( ∫
c log(ρ(x) + ϵχ(x))ρ(x)dx + ϵ

∫
c log(ρ(x) + ϵχ(x))χ(x)dx

−
∫

log π(x)ρ(x)dx− ϵ
∫

log π(x)χ(x)dx

)∣∣∣∣
ϵ=0

=
( ∫

c
χ(x)

ρ(x) + ϵχ(x)
ρ(x)dx +

∫
c log(ρ(x) + ϵχ(x))χ(x)dx

+ ϵ

∫
c

χ(x)
ρ(x) + ϵχ(x)

χ(x)dx−
∫

log π(x)χ(x)dx

)∣∣∣∣
ϵ=0

=
∫
c log ρ(x)− log π(x)χ(x)dx + c

∫
χ(x)dx. (24)

Since ρ, ρ̃ ∈ P(X ), the final integral is zero. So the functional gradient of F is

δF
δρ

(ρ) = c log ρ− log π.

Its Wasserstein gradient is then ∇WF(ρ) = c∇ log ρ−∇ log π. Since k2 = ck1, equation (10) can be written
as

dx

dt
=

∫ (
k1(x′,x)∇x′ log π(x′) + c∇x′k1(x′,x)

)
ρ(x′)dx′

=
∫
k1(x′,x)∇x′ log π(x′)ρ(x′)− ck1(x′,x)∇x′ρ(x′)dx′

=
∫
k1(x′,x)∇x′ log π(x′)ρ(x′)− ck1(x′,x)∇x′ log ρ(x′)ρ(x′)dx′

= Tk1,ρ(∇ log π − c∇ log ρ)(x)
= −Tk1,ρ(∇WF(ρ))(x).

The continuity equation ∂tρt +∇ ·
(
ρt

dx
dt

)
= 0 then becomes

∂tρt = ∇ · (ρtTk1,ρ(∇WF(ρ))(x))
= ∇ · (ρtTk1,ρt (c∇ log ρt −∇ log π)) .
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Proof of Corollary (3.5). A measure ρ∗ satisfying c∇ log ρ∗ = ∇ log π will be a fixed point because this would
imply ∇WF(ρ) = 0. Solving this for ρ∗, we have

c∇ log ρ∗(x) = ∇ log π(x)
c log ρ∗(x) = log π(x) +A

log(ρ∗(x)c) = log(eAπ(x))
ρ∗(x)c = eAπ(x)
ρ∗(x) = eA/cπ(x)1/c

for some A ∈ R.

Proof of Proposition 3.6. Using (17), integration by parts, and the fact that Tk1,ρ : L2(ρt)d → Hd
1 is the

adjoint of the inclusion ı : Hd
1 → L2(ρt)d,

d

dt
F(ρt) = d

dt

∫
ρt(x) (c log ρt(x)− log π(x)) dx

=
∫

(c log ρt(x)− log π(x)) ∂
∂t
ρt(x) + cρt(x) ∂

∂t
log ρt(x)dx

=
∫

(c log ρt(x)− log π(x))∇ · (ρt(x)Tk1,ρt
(c∇ log ρt(x)−∇ log π)(x)) dx

+
∫
cρt(x) ∂

∂t
log ρt(x)dx

= −
∫
∇ (c log ρt(x)− log π(x)) · Tk1,ρt

(c∇ log ρt −∇ log π)(x)ρt(x)dx

+
∫
cρt(x) ∂

∂t
log ρt(x)dx

= −〈c∇ log ρt −∇ log π, Tk1,ρt
(c∇ log ρt −∇ log π)〉L2(ρt)d

+
∫
cρt(x) ∂

∂t
log ρt(x)dx

= −‖Tk1,ρt
(c∇ log ρt −∇ log π)‖2

Hd
1

+ c

∫
ρt(x) ∂

∂t
log ρt(x)dx

= −c2 ‖Tk1,ρt
(∇ log ρt −∇ log ρ∗)‖2

Hd
1

+ c

∫
ρt(x) ∂

∂t
log ρt(x)dx. (25)

Also,

F(ρt) = Ex∼ρt [c log ρt(x)− log π(x)]
= Ex∼ρt [c log ρt(x)− log (Aρ∗(x)c)]
= cEx∼ρt [log ρt(x)− log ρ∗(x)] + log(A)
= cKL(ρt ‖ ρ∗) + log(A) (26)

for some A ∈ R, we have 1
c

d
dtF(ρt) = d

dt KL(ρt ‖ ρ∗). Therefore,

d

dt
KL(ρt ‖ ρ∗) = −1

c
‖Tk1,ρt

(c∇ log ρt −∇ log π)‖2
Hd

1
+

∫
ρt(x) ∂

∂t
log ρt(x)dx

= −c
∥∥∥Tk1,ρt(∇ log ρt −∇ log π1/c)

∥∥∥2

Hd
1

+
∫
ρt(x) ∂

∂t
log ρt(x)dx

= −c ‖Tk1,ρt(∇ log ρt −∇ log ρ∗)‖2
Hd

1
+

∫
ρt(x) ∂

∂t
log ρt(x)dx.
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To simplify notation in the calculations below, set u = Tk1,ρt
(c∇ log ρt) and v = Tk1,ρt

(∇ log π). Recall the
identity

〈u, u− v〉 = 1
2

(
‖u‖2 + ‖u− v‖2 − ‖v‖2

)
. (27)

Now we apply the multivariate chain rule to the remainder term along with the fact about the adjoint of
Tk1,ρt , the identity in (27), and the triangle inequality. This gives∫

ρt(x) ∂
∂t

log ρt(x)dx =
∫
ρt(x)∇ log ρt(x) · dx

dt
dx

= −
∫
ρt(x)∇ log ρt(x) · Tk1,ρt

(c∇ log ρt −∇ log π)(x)dx (28)

= −〈∇ log ρt, Tk1,ρt(c∇ log ρt −∇ log π)〉L2(ρt)d

= −〈Tk1,ρt
(∇ log ρt), Tk1,ρt

(c∇ log ρt −∇ log π)〉Hd
1

= −1
c
〈u, u− v〉Hd

1

= 1
2c

(
−‖u‖2

Hd
1

+ ‖v‖2
Hd

1
− ‖u− v‖2

Hd
1

)
≤ 1

2c

(
−‖u‖2

Hd
1

+ ‖u− v‖2
Hd

1
+ ‖u‖2

Hd
1
− ‖u− v‖2

Hd
1

)
= 0.

The final statement that d
dtF(ρ∗) = 0 follows from equations (25) and (28) by observing that c∇ log ρ∗ −

∇ log π = 0.

Proof of Proposition 3.7. This follows from applying Theorem 3.3 Liu (2017) with ρ∗ instead of the target,
then substituting in (26).

Proof of Proposition 3.8. To recover the continuity equation, apply the convolution theorem to (20)

F −1
(

F (K2)
F (K1)

·F (∇ρ)
)

(x) = r(x; ρ)

F (K2)(ω) ·F (∇ρ)(ω) = F (K1)(ω) ·F (r)(ω)
F (K2 ∗ ∇ρ)(ω) = F (K1 ∗ r)(ω)

(K2 ∗ ∇ρ)(x) = (K1 ∗ r)(x)∫
K2(x− y)∇ log ρ(y)ρ(y)dy =

∫
K1(x− y) r(y)

ρ(y)
ρ(y)dy

(Tk2,ρ∇ log ρ) (x) = (Tk1,ρ(r/ρ)) (x)

Equation (10) can now be rewritten as

dx

dt
=

∫ (
k1(x′, x)∇x′ log π(x′) +∇x′k2(x′, x)

)
ρ(x′)dx′

=
∫
k1(x′, x)∇x′ log π(x′)ρ(x′)− k2(x′, x)∇x′ρ(x′)dx′

=
∫ (

k1(x′, x)∇x′ log π(x′)− k2(x′, x)∇x′ log ρ(x′)
)
ρ(x′)dx′

= (Tk1,ρ∇ log π) (x)− (Tk2,ρ∇ log ρ) (x)
= (Tk1,ρ (∇ log π −∇R(· ; ρ))) (x),

where ∇R(x; ρ) := r(x;ρ)
ρ(x) , yielding the continuity equation (21).
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As in the proof of Proposition 3.4, let χ = ρ̃− ρ with ρ̃ ∈ L∞
c (X ) ∩ P(X ). We first compute

d

dϵ
F(ρ+ ϵχ)

∣∣∣∣
ϵ=0

= d

dϵ

( ∫
R(x; ρ+ ϵχ)dρ(x) + ϵ

∫
R(x; ρ+ ϵχ)dχ(x)

−
∫

log π(x)dρ(x)− ϵ
∫

log π(x)dχ(x)
)∣∣∣∣

ϵ=0

=
(
d

dϵ

∫
R(x; ρ+ ϵχ)dρ(x) +

∫
R(x; ρ+ ϵχ)dχ(x) + ϵ

d

dϵ

∫
R(x; ρ+ ϵχ)dχ(x)

−
∫

log π(x)dχ(x)
)∣∣∣∣

ϵ=0

=
∫
R(x; ρ)− log π(x)dχ(x)

+
(∫

∂

∂ϵ
R(x; ρ+ ϵχ)dρ(x) + ϵ

∫
∂

∂ϵ
R(x; ρ+ ϵχ)dχ(x)

) ∣∣∣∣
ϵ=0

=
∫
R(x; ρ)− log π(x)dχ(x) +

∫
∂

∂ϵ
R(x; ρ+ ϵχ)d(ρ+ ϵχ)(x)

∣∣∣∣
ϵ=0

. (29)

By assumption, the remainder term above is equal to zero and the functional derivative of F is therefore

δF
δρ

(ρ) = R1(x; ρ)− log π(x),

so its Wasserstein gradient is

∇WF(ρ) = ∇δF
δρ

(ρ)

= ∇R1(x; ρ)−∇ log π(x).

Proof of Proposition 3.9. To show that ρ∗ is not the target, assume for the sake of a contradiction that
ρ∗ = π. So ∇WF(π) = 0, and Proposition 3.8 gives

r(x;π)
π(x)

= ∇ log π(x)

r(x;π) = ∇π(x)
F (K2)
F (K1)

F (∇π) = F (∇π)

F (K2) = F (K1)
K2 = K1.

Therefore, it cannot be the case that ρ∗ = π.
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Proof of Proposition 3.10. A direct computation of (20) along with the definitions of r and R yields

F (K2)(ω)
F (K1)(ω)

·F (∇ρ∗)(ω) =
√
h2

h1
· exp(−2π2ω2∆h) · 2πiω exp(−2π2ω2σ2)

=
√
h2

h1
· 2πiω · exp(−2π2ω2(σ2 + ∆h))

r(x; ρ∗) = −
√
h2

h1
· 1√

2π
· x

(σ2 + ∆h)3/2 · exp
(
− x2

2(σ2 + ∆h)

)
∇R(x; ρ∗) = −

√
h2

h1
· σ

(σ2 + ∆h)3/2 · x exp
(
− x2

2(σ2 + ∆h)

)
· exp

(
x2

2σ2

)
= −

√
h2

h1
· σ

(σ2 + ∆h)3/2 · x exp
(
− ∆hx2

2σ2(σ2 + ∆h)

)
.

Now computing ∇ log π, using some A ∈ R for the normalising constant, we have

π(x) = A exp
(
−α exp

(
x2

2β

))
log π(x) = log(A)− α exp

(
x2

2β

)
∇ log π(x) = −αx

β
exp

(
x2

2β

)
= −

√
h2

h1
· σ

(σ2 + ∆h)3/2 · x exp
(
− ∆hx2

2σ2(σ2 + ∆h)

)
.

Since ∇R(x; ρ∗) = ∇ log π(x), equation (21) implies that ρ∗ is a fixed point.

B Additional Experimental Results and Details

B.1 Bayesian Neural Network

The results presented in Section 4.2 follow the settings of (Liu & Wang, 2016). In particular, we use normal
priors for the network weights and Gamma priors for the inverse covariances. There is one hidden layer with
50 units for most datasets, Protein and Year being the exceptions with 100 units each. The datasets are
randomly partitioned into 90% for training and 10% for testing with results averaged over 20 trials, Protein
and Year being the exceptions with 5 trials and 3 trials respectively. The number of particles in each case
is 20, the activation function is RELU(x) = max(0, x), the number of iterations is 2000, and the mini-batch
size is 100 for all datasets except for Year, which uses a mini-batch size of 1000.

We recreate Tables 1 and 2 below, this time comparing h-SVGD against SSVGD (Gong et al., 2021). Table
3 shows that h-SVGD outperforms SSVGD in mitigation of variance collapse on all but one dataset. We
note that h-SVGD achieves this with a significantly faster runtime for all datasets, which is due to SSVGD
requiring additional optimistaion of the projection matrix. Table 4 shows that SSVGD and h-SVGD are
comparable in both RMSE and LL metrics. The h-SVGD algorithm achieves a better LL score on more
datasets, but SSVGD achieves a better RMSE score on more datasets.
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Table 3: DAMV and runtime in seconds of SSVGD and h-SVGD.

DAMV Runtime (seconds)
Dataset SSVGD h-SVGD SSVGD h-SVGD
Boston 0.035 ± 0.002 0.087 ± 0.0100.087 ± 0.0100.087 ± 0.010 208 ± 13 28.5 ± 0.928.5 ± 0.928.5 ± 0.9
Concrete 0.070 ± 0.004 0.102 ± 0.0060.102 ± 0.0060.102 ± 0.006 148 ± 56 28.7 ± 1.328.7 ± 1.328.7 ± 1.3
Energy 0.053 ± 0.005 0.106 ± 0.0110.106 ± 0.0110.106 ± 0.011 156 ± 28 30.7 ± 2.230.7 ± 2.230.7 ± 2.2
Kin8nm 0.083 ± 0.002 0.093 ± 0.0030.093 ± 0.0030.093 ± 0.003 141 ± 3.9 36.0 ± 1.336.0 ± 1.336.0 ± 1.3
Naval 0.070 ± 0.0210.070 ± 0.0210.070 ± 0.021 0.068 ± 0.011 237 ± 11 34.5 ± 0.934.5 ± 0.934.5 ± 0.9
Combined 0.118 ± 0.005 0.138 ± 0.0060.138 ± 0.0060.138 ± 0.006 116 ± 18 36.7 ± 2.436.7 ± 2.436.7 ± 2.4
Protein 0.057 ± 0.006 0.084 ± 0.0010.084 ± 0.0010.084 ± 0.001 390 ± 20 72.8 ± 1.772.8 ± 1.772.8 ± 1.7
Wine 0.029 ± 0.002 0.075 ± 0.0050.075 ± 0.0050.075 ± 0.005 210 ± 10 29.8 ± 1.129.8 ± 1.129.8 ± 1.1
Yacht 0.066 ± 0.009 0.121 ± 0.0120.121 ± 0.0120.121 ± 0.012 97.9 ± 1.2 30.0 ± 1.330.0 ± 1.330.0 ± 1.3
Year 0.012±NA 0.012±NA 12488±NA 666±NA666±NA666±NA

Table 4: Average RMSE and LL of SSGVD and h-SVGD evaluated on the test dataset.

Test RMSE Test LL
Dataset SSVGD h-SVGD SSVGD h-SVGD
Boston 3.024 ± 0.604 3.001 ± 0.5843.001 ± 0.5843.001 ± 0.584 -2.088 ± 0.322 -1.988 ± 0.221-1.988 ± 0.221-1.988 ± 0.221
Concrete 5.073 ± 0.5225.073 ± 0.5225.073 ± 0.522 5.210 ± 0.529 -2.563 ± 0.239 -2.535 ± 0.179-2.535 ± 0.179-2.535 ± 0.179
Energy 0.923 ± 0.1230.923 ± 0.1230.923 ± 0.123 1.040 ± 0.128 -0.631 ± 0.162-0.631 ± 0.162-0.631 ± 0.162 -0.805 ± 0.104
Kin8nm 0.084 ± 0.0030.084 ± 0.0030.084 ± 0.003 0.090 ± 0.003 0.232 ± 0.135 0.468 ± 0.0900.468 ± 0.0900.468 ± 0.090
Naval 0.003 ± 0.000 0.004 ± 0.0000.004 ± 0.0000.004 ± 0.000 -0.624 ± 0.161 -0.090 ± 0.105-0.090 ± 0.105-0.090 ± 0.105
Combined 4.028 ± 0.224.028 ± 0.224.028 ± 0.22 4.057 ± 0.218 -2.335 ± 0.066-2.335 ± 0.066-2.335 ± 0.066 -2.354 ± 0.052
Protein 4.581 ± 0.0264.581 ± 0.0264.581 ± 0.026 4.600 ± 0.026 -2.526 ± 0.045 -2.456 ± 0.017-2.456 ± 0.017-2.456 ± 0.017
Wine 0.676 ± 0.051 0.626 ± 0.0450.626 ± 0.0450.626 ± 0.045 -1.261 ± 0.172 -0.750 ± 0.097-0.750 ± 0.097-0.750 ± 0.097
Yacht 1.664 ± 0.6071.664 ± 0.6071.664 ± 0.607 1.861 ± 0.662 -0.788 ± 0.511-0.788 ± 0.511-0.788 ± 0.511 -0.813 ± 0.227
Year 8.922±NA 8.689±NA8.689±NA8.689±NA -2.940±NA -2.872±NA-2.872±NA-2.872±NA
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