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Abstract

Stein variational gradient descent (SVGD) is a particle-based approximate inference algo-
rithm. Many variants of SVGD have been proposed in recent years, including the hybrid
kernel variant (h-SVGD), which has demonstrated promising results on image classification
with deep neural network ensembles. By framing h-SVGD as a kernelised Wasserstein gra-
dient flow on a functional that is not the Kullback-Leibler divergence, we demonstrate that
h-SVGD does not converge to the target distribution in the mean field limit. Despite this
theoretical result, we provide intuition and experimental support for the ability of h-SVGD
to improve variance estimation in high dimensions. Unlike other SVGD variants that also
alleviate variance collapse, this is achieved at no additional computational cost and without
further assumptions on the posterior.

1 Introduction

Stein variational gradient descent (SVGD) is a variational inference algorithm that generates samples from
a target probability density (Liu & Wang|, PIIi6). It has proven useful in many tasks in Bayesian inference
and machine learning. SVGD evolves an interacting particle system until the particles resemble a sample
from a target density. The dynamics of this system include a driving term that moves particles to regions of
high probability, and a repulsive term that repels particles from one another. This repulsive term prevents
particles from converging to the same mode. It has been shown that within a unit ball of a reproducing kernel
Hilbert space (RKHS), the SVGD update direction optimally reduces the Kullback-Leibler (KL) divergence
between the target density and the approximating density (Liu & Wang, 2016). The reproducing kernel of
this RKHS appears in both the driving and repulsive terms, making the choice of kernel a key ingredient for
SVGD.

The theoretical properties of vanilla SVGD have been studied extensively. Liu showed that the empirical
measure of the particles converges weakly to the target distribution (ILid, 2017). SVGD in the mean field
regime has been described as a gradient flow on the KL divergence (Liu & Wang|, 2016) and the chi-squared
divergence (Chewi et all, P020). Furthering this geometric point of view, Duncan et all (2023) developed
the Stein geometry along with its associated tangent spaces and geodesics, leading to guidelines for choosing
kernels to improve convergence. The existence and uniqueness of the solution to the Stein partial differential
equation (PDE) has been established ([Cui“efall, P019) along with various descent lemmas bounding the
decrease in KL divergence at each iteration (ILiu, POT7; Korba ef all, 2020; Salim ef all, 2022).
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SVGD is known to suffer from the curse of dimensionality through variance collapse (Wang et all, 2UTR; Ba
ef_all, PO19) whereby the marginal variances of the particles underestimate the true marginal variances of
the target in high dimensions. Zhua ef all (2018) explained that this phenomenon is due to the size of the
repulsive term of the update direction scaling inversely with dimension. This enables the driving term to
dominate in high dimensions, thereby forcing particles to converge to the mode(s) of the target. This insight
suggests that strengthening the repulsive term in SVGD should lead to better variance estimation, an idea
which we explore in Sections B and .

Many variants of SVGD have also been proposed in recent years, some offering improvements and others
providing generalisations. Riemannian SVGD (Liu-& Zhi, 2018) generalises SVGD by allowing for target
densities on Riemannian manifolds, not just Euclidean spaces. Matrix SVGD (Wang_ et all, PUT9) replaces
the scalar valued kernel with a matrix valued kernel to incorporate preconditioning information and speed
up particle exploration. Message passing SVGD (Zhno ef"all, 2OIR) and graphical SVGD (Wang_ et all,
POIR) focus on target densities that factorise according to a graph structure. This approach reduces variance
collapse in high dimensions by converting the problem to a collection of low dimensional problems. Projected
SVGD (Chen & Ghaftfas, 2020), sliced SVGD (Gong et all, 2021) and Grassman SVGD (Lin“ef all, 2022)
also mitigate the issue of variance collapse by updating particles within lower dimensional subspaces, which
comes at the expense of additional computation.

In this work, we study a variant called hybrid kernel Stein variational gradient descent (h-SVGD). The name
comes from its use of two distinct kernels for the driving and repulsive terms with the aim of mitigating
variance collapse. This variant was originally proposed by [D"Angelo et all (2021) in the context of training
deep neural network ensembles by sampling from the distribution of network parameters. In that setting, two
particles may parameterise networks with very similar outputs despite being far apart in the weight space.
Their insight was to encourage functional diversity between networks in the ensemble by using a standard
kernel in the driving term, but a functional kernel in the repulsive term. In this neural network ensemble
setting, h-SVGD demonstrated better performance than other variants on image classification. Annealed
SVGD (D’Angelo & Fortuin, 2021) may also be considered an example of h-SVGD. In this variant, the
driving kernel is a scalar multiple v(¢) € [0, 1] of the repulsive kernel, and this factor v(¢) gradually increases
to 1 as the iteration ¢ increases. Numerical experiments show that annealed SVGD improves the ability
of particles to escape local modes. Scaling one of the update terms has also been used as a computational
technique to aid other SVGD variants when training Bayesian neural networks (Gong et all, 2021).

Although preliminary numerical experiments have shown the benefits of h-SVGD (ID"Angelo et all, 2021),
the theoretical results for SVGD do not directly apply in the hybrid kernel setting due to the presence of a
second kernel. In this paper, we address this theoretical gap and reinforce the practical benefits of h-SVGD
through the following contributions.

o We establish existence of a solution to the hybrid Stein PDE and a kernelised Wasserstein gradient
flow interpretation. Through the study of this gradient flow, we demonstrate that h-SVGD does not
converge to the target distribution in the mean field limit.

e We also quantify the rate of dissipation of the gradient flow functional and develop a discrete time
version of this result, otherwise known as a descent lemma.

e Despite not converging to the target distribution, we demonstrate through numerical experiments
that h-SVGD can mitigate variance collapse in the finite particle regime at negligible additional cost,
whilst remaining competitive at high dimensional inference tasks.

In Section B we clarify notation, recall necessary theory, and outline the vanilla and hybrid SVGD algorithms.
Section B contains the theoretical contributions, with proofs relegated to Appendix Al Numerical experiments
are in Section B with additional experiments and details in Appendix B.
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2 Background

2.1 Notation

Let X C R Let 7 denote the target probability density on X and let s;(x) = Vg logm(x). We will often
write 7 for the corresponding measure. Assume that 7(z) = e~V (®) for some potential V. Let P(X) be the set
of probability measures on X and let Py (X) denote the subset where ||p|p, = [, (1+V(x))du(z) < co. For
each p > 1, let P,(X) denote the subset satisfying ||u|p, := [, [|z|[Pdu(x) < co and define the Wasserstein

p-distance between the two measures i, v € Pp(X) as W, (u,v) == (inferu [ |z — yl[Pdy(p, V))l/p7 where
T'(u,v) is the set of couplings between p and v. Let L (X) denote the set of probability densities bounded
almost everywhere with compact support. Let L?(u) denote the set of functions that are square integrable
with respect to the measure p. Given p € P(X) and a smooth, invertible transform T : X — X, let Typ
denote the pushforward measure of p through T. The KL divergence between two measures u,v € P(X) is
denoted by KL(u || v).

2.2 Reproducing Kernel Hilbert Spaces

A function k : X x X — R is positive definite if Zi,j a;k(x;, x;)a; > 0 for any choice of ai,...,aq € R and
Ti,...,xq € X. Given a Hilbert space H of functions ¢ : X — R, a function k : X x X — R is said to
be a reproducing kernel for # if it satisfies the reproducing property, ¢(x) = (¢, k(x, )y for all ¢ € H. A
positive definite k£ : X x X — R admits a unique Hilbert space H of functions ¢ : X — R for which the
Dirac functionals d5 : H — R, dz¢ = ¢(x) are all continuous and k is a reproducing kernel. This Hilbert
space is called the reproducing kernel Hilbert space (RKHS) of k and it is equal to the closure of the span
of {k(z,-) : * € R}. Let H¢ = H x --- x H denote the Hilbert space of functions ¢ : X — R¢ whose
components are all in #H, and equip it with the usual inner product (¢, v)ya = E?lei, ;). Given two
kernels k1, ks : X X X — R, let H1, Ho denote their respective RKHS. An important kernel used throughout
this paper is the radial basis function (RBF) kernel krpr(x, y; h) := exp(— || — y||§ /(2h)) with bandwidth
h > 0. For a thorough treatment of RKHS we refer the reader to [Aronszajn (1950), Steinwarf & Christmann
(200R) and Berlinet & Thomas-Agnarn (2011).

2.3 Stein Variational Gradient Descent

The key result from Liu & Wang (2018) identifies a transform T : X — X that optimally decreases the
KL divergence from an arbitrary probability measure to w. More precisely, let H be an RKHS with kernel
k: X x X = R and consider transforms of the form T'(x) = « + ep(x) where € > 0 and ¢ is in the unit ball
{¢ € H?: ||§]lja <1}. The maximum value of

—VeKL(Typ || 7)le=0 (1)

occurs at ¢F _/ ||¢/’j7ﬂ||Hd, where

() = By [K(2, )82 (2) + Vak(z, )] (2)
When g is an empirical distribution (i.e. a sum of Dirac measures), the expectation in (B) can be computed
exactly by summing over the particles of each Dirac measure. Using this observation, the SVGD algorithm
starts with an initial set of N particles (z{)X.; and iteratively applies the transform T with (B) as the update
direction. At each iteration £, this yields a set of particles (3’3%){\;1 and a corresponding empirical distribution
e = % > 593; . This is captured in Algorithm m. The intention is that after sufficiently many iterations, the
set of particles will resemble samples from 7 and expectations of the form Ex~rh(x) can be approximated
by Eg~p h(z) = 3 >, h(x}). We also recall the definition of the kernelised Stein discrepancy (KSD) from
L1 ef all (70]6)’

Sk(p, ) = Egy~p [5ﬂ,u(m)Tk(m,y)6ﬂ7u(m)} (3)

where 0, := sx(x) — su(x).
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Algorithm 1 Stein Variational Gradient Descent (Liu & Wang|, 2UI6)

Input: A target probability distribution 7, a kernel k, an initial set of particles ()X, in X, and a

sequence of step sizes (e;).
Output: A set of particles (%)Y, in X whose empirical distribution approximates 7.
for iteration ¢ do

Ty, <—$2+6M§L,W(CB2), Vi=1,...,N
1N
Pruen(T) = 5 > k@), @)sx (@) + V i k(a), ) (4)
=1
! driving force repulsive force

Algorithm 2 Hybrid Kernel Stein Variational Gradient Descent

Input: A target probability distribution 7, two kernels k1, ko, an initial set of particles (z{)Y ; in X, and
a sequence of step sizes (¢f).

Output: A set of particles (%)Y, in X whose empirical distribution approximates 7.

for iteration ¢ do

w2+1<—w2+em§:}£m(a§é), Vi=1,...,N
1 & : - :
Do (@) = 7 D ki(ag, @)sa (@) + V ko (), @) ()
j=1
! driving force repulsive force

2.4 Hybrid Kernel Stein Variational Gradient Descent

The SVGD update in (#) contains two terms, each using the same kernel. The first term, often
referred to as the driving term, uses the score function to move particles towards regions of high
probability density, and the repulsive term prevents particles from collapsing at the modes. The
h-SVGD variant proposed by D’Angelo et all (2021) uses a different kernel in each term. Let k; denote
the kernel that appears alongside the score function, and let ko denote the repulsive kernel. For the remain-
der of this paper, k1 and ko will both be positive definite. We present h-SVGD in Algorithm B.

3 Theoretical Results

3.1 Definitions and Assumptions

A function f: X — R is in the Stein class of 7 if it is smooth and satisfies [, _, Vi (f(z)7(x))de = 0. A

function f = (f1,..., fa) : X — R% is in the Stein class of 7 if each f; belongs to the Stein class of 7. A
kernel k : X x X — R is in the Stein class of 7 if it has continuous second order partial derivatives and both
k(x,-) and k(-,y) are in the Stein class of 7 for all &,y € X. The hybrid Stein operator acts on a pair of
kernels k1,ko : X x X — R by

Sr @ (k1,k2)(x, ) == k1 (=, )sx(x) + Vgka(z, ),

provided k; and ko both belong to the Stein class of . This reduces to the Stein operator defined in i
ef_all (2006) when ky = ky. Motivated by the h-SVGD update in (B), define the update direction

2 () = Eanp [Se ® (k1 ko) ()], (6)

and write ¢* = ¢ﬁ1wk2/ ||q5ﬁ};,"“2(-)”7{1 for the normalised direction. Let G( - ; k1, pt, m) := Eqny, [k1 (2, )85 ()]
and R( - ; ko, 1) := Egny [Vaka(z, )] denote the driving (or gradient) term and the repulsive term respec-
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tively. We can then write d)ﬁ};fz() =G( - ;ki,pu,m)+ R( - ;ka, ). The update transform

T, (2) = @ + e (x) (7)

and the map ®F1k2 ;1 (T l’f;;’“?) uh characterise the h-SVGD dynamics. For each ¢, define

figy = ®EF2 (), [15e, = ER2 (g, (8)

where pY is the empirical measure of the initial particles (z{)Y ; drawn i.i.d. from some pug°.

All technical assumptions required in the theorems throughout this section are detailed here for completeness.
The first set of assumptions relate to the potential of the target distribution.

(A1) V € C®(X), V >0, and lim|g|o V(x) = +00.
(A2) There exist constants Cy > 0 and ¢ > 1 such that for all x,y € X,
V()| < Cv(1+V(x))
and

o |V2V (0 + (1 - 0)y)|* < Cv(1+ V() + V(y)).

A3) For any «a, 8 > 0, there exists a constant C,_ s > 0 such that
B
AL+ [2))(IVV ()| + V2V (y)]) < Cap(l+V(2))

whenever |y| < al|z|+ 5.

(A4) The Hessian Hy of V is well-defined and satisfies || Hy ||, < M for some M > 0.

Assumptions [AT], [A2] and [A3] are identical to those from Cuefall (2019). Assumption is identical
to Assumption (A2) from Korba et all (2020), and Assumption 2.1 from Salim_ef_all (2022). Assumptions
on the kernels are also required.

(B1) There exist symmetric functions Ky, Ko : X — R such that k;(z,y) = K;j(x —y) for i = 1,2, K; is
C? with bounded derivatives, and Ky is C* with bounded derivatives. We use B > 0 as a bound for
all derivatives in the proofs.

(B2) There exists a constant D > 0 such that both k; and Vke are D-Lipschitz, and such that
VV(-)ki(, z) is D-Lipschitz for each z. That is,

ki (2, 2") — k1(y, y')
||vmk2(:c7 :13/) - V'ka(ya y/)
IVV(@)ki (2, 2) — VV(y)ki(y, )

[ <Dl —yly+ 2" = y'll),
[ <Dl —yly+llz" = y'll),
| < D([le - yll,)

for all z, o', y,y’,z € X.

Assumption is a slight relaxation of Assumption 2.1 from Carefall (2019), and contains Assumption 2.6
from Salim et all (2022). The first two parts of Assumption are hybrid kernel versions of Assumption
(B2) from Korba et all (2020), and the third part of Assumption relaxes the restrictive Assumption
(Bl) from Korba_ef_all ('20'2!]),
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3.2 Large Particle Limit

We begin our theoretical study with a result on the deviation of the empirical distributions of h-SVGD to the
large particle limit. The single kernel version (Korba et all, 2020) of the following result uses an assumption
that is quite restrictive. It requires |V (z)| < Cy for some constant Cy > 0, which rules out even a Gaussian
target distribution. We relax this with the third part of Assumption and provide an updated proof in
the appendix.

Proposition 3.1. Assume [[AT1), [A7], [BI) and [[BZ], and let T > 0. For any 0 < £ < , there exists a
constant L depending on ki, ks and p such that

[Wz (Mz s Mg )] T var(ug®)e

3.3 Hybrid Stein PDE

In the continuous time limit, equation () becomes a coupled system of differential equations,

N
d;”ti _ %Zkl(xj,mi)sﬂ(mj) Vo, k(e @) )
j=1
fori=1,...,N. In the mean field limit, integration by parts and the identity Vp = pV log p yields
Z—j :/ (kv(x', @) s (x") + Vo ko2, @) p(a’ (10)
:/kl(m’,w)VIng( /kg ', @)V p(x')dz'
= Th, o (Vlogm) (&) — T, ,, (V1ogp) (), (11)
where T}, , : L?(p)? — H¢ is the Hilbert-Schmidt operator given by (T ,f)(z) = [ k(z', ) f(z')p(z')dx’ for

a kernel k. Recalling that V' is the potential of m and so V = — log 7, this mean field hmlt can be described
by the hybrid Stein partial differential equation

Btpt =V- (Pt (Kl *Vth +K2*th)). (12)

Definition 3.2. Given a probability measure v on R%, a map X (t,z;v) : [0,00) x R? — R that is C' with
respect to t and satisfies
WX(t,x;v) = — (K1« (VVp)) (X(t,x;v)) — (VKo x pp) (X (¢, x;v))
Pt :X(t,~,l/)#V (13)
X(0,z;v) ==

is called a mean field characteristic flow of (I0) or of (I2).

We now generalise Theorem 2.4 from Luef all (P0019), ensuring the existence of a solution to the hybrid Stein
PDE. First, define Y := {u € C(X, X) : supcx [u(x) — x| < 0o} with dy (u,v) = supgecy |u(x) — v(x)| and
note that (Y, dy) is a complete metric space.

Proposition 3.3. Assume [[AT1), [[A2), [A3) and [BI)}, and let T > 0. Then there exists a unique solution
X(-,-,v) € CY[0,T);Y) to (I3) and the corresponding p; is a weak solution to (I2) satisfying

lodlp, < lmllp, exp (Cmin (VK| [VE2ll,)t) (14)
for some constant C > 0 depending on Ky, Ko and V.

The second kernel enables a stronger bound than Theorem 2.4 from Cuefall (2009) by careful modification
of the telescoping section of the proof (see Appendix Bl and Equation (3.8)). In particular, ensuring that
VK|, < ||VK3|l,, when choosing K yields a stronger bound in (@) than if K were used for both kernels.
We remark that this bound describes regularity of the solution to the PDE, not a rate of convergence.



Published in Transactions on Machine Learning Research (12/2025)

3.4 Kernelised Wasserstein Gradient Flow and Asymptotic Density: ky = ck;

Zhuo ef all (PO1R) uncovered a correlation between dimension and the magnitude of the repulsive force R, as
defined at the beginning of Section B. Under some technical conditions, for any «, § € (0, 1), they show that
with probability at least 1 — ¢, SVGD under an RBF kernel yields ||[R( - ; %, )|, = O(d™®). This suggests
that simply scaling the repulsive force by d* for some a € (0,1) should offset the decrease in || R( - ; k2, 1t)||
in high dimensions, thereby alleviating variance collapse at negligible additional computational cost. Scaling
the repulsive kernel in this way corresponds to h-SVGD where k; is an RBF kernel and ko = d“k;. This
motivates our study of the h-SVGD gradient flow under the special case ko = cky.

In the case where k = k1 = kg, equations () and () describe a kernelised Wasserstein gradient flow of
the form Oipr =V - (ptTk,p, Viw F(pt)), where

F(p) = KL(p || m) = Egny [log p(z) — log7(z)]

is the KL divergence functional (ILin, 2007). Recall that a functional derivative of F is a measurable function

% (p) satisfying

= [ (pyax

d
—F(p+ex = | —
( ) . 5

de

for all perturbations x = p— p with g € L (X)NP(X) (Santambrogid, 2015, Definition 7.12). In particular
% = logp —logm + 1 up to a constant, and Vy F(p) = V%(p) = Vlogp — Vlog  is the Wasserstein
gradient of F. Using () and the linearity of T ,, the corresponding Fokker-Planck equation is then

Ope =V - (piTk,p, (Vog py — Vlogm)) (15)

where {p; : t > 0} is a curve of probability densities. The following result generalises this gradient flow
interpretation to the case where ko = cki. Note that it applies to any positive definite kernel k;.

Proposition 3.4. Given a positive definite kernel k1 and constant ¢ > 0, let ko = cky. Then the mean field
dynamics of h-SVGD describe a kernelised Wasserstein gradient flow on the functional

F(p) = Eanp lclog p — log (). (16)
The corresponding continuity equation is

Ope =V - (piThy p, (cVlog py — Vlogm)) . (17)

Even in this simple hybrid kernel setting, the following result establishes that the limiting distribution p* of
the mean field regime is not equal to the target distribution .

Corollary 3.5. If ky = cky for some constant ¢ > 0 where k1 is a positive definite kernel, then the mean
field h-SVGD has a fized point p*(x) oc w(x)'/°.

Although Corollary B3 applies to any target density 7 satisfying [AT], it is insightful to consider a Gaussian
target. If w(x) = N(z;p,X), then p*(x) = N(x;,cX). So scaling the repulsive kernel ko adjusts the
variance of the target by the same factor. This supports the motivation that scaling the repulsive kernel
should offset the variance underestimation in the finite particle regime in high dimensions at a negligible
additional cost. This idea will be revisited in Section B. Note that Corollary B extends the ¢ = 1 case
where SVGD converges to the target 7 in the mean field limit (Liu & Wang|, PI1R).

We now generalise an existing result (Korba“ef all, 2020) that describes the dissipation of the KL divergence
along the SVGD gradient flow. The result below describes the dissipation of the functional in (IB) along the
h-SVGD gradient flow, ensuring that the functional always decreases. It also describes the dissipation of the
KL divergence with respect to the mean field limiting distribution p*, which we emphasise is not equal to
the target distribution 7, as per Corollary B3A.
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Proposition 3.6. Under the assumptions of Proposition B4,

d . o

) = —c|| Tk, p,(V1og p — Vlog p )IIZ;L + c/pt(w)alog pi(x)d, (18)
d i} . o
5 KL || p7) = =Tk, . (V1og p — Vog p 3 + /m(@alogpt(w)dw, (19)

where p*(x) o< w(x)'/¢ is the mean field fived point. Furthermore,

0
[ @) 5 10w @) <

50 G F(pr) <0 and FKL(p || p*) <0 fort >0, and §F(p*) =0.

The following descent lemma is adapted from Liu (2017) and provides a discrete time version of Proposition
BW@. We use py to denote discrete time steps, as in (B), as opposed to p; for the continuous time analysis.
We remark that other descent lemmas for SVGD have been proved (Korba ef all, 2020; Salim et all, 2022).

Proposition 3.7. Under the assumptions of Proposition B4, let o(-) denote the spectral radius and set
e < (2sup, 0(Vo*(x) + Vo*(x)T))~!. Define R = sup, {1 [Viog 7|, ki(z, ) + 2Va yki(z, )} where

[ fllLip = SUPgy W is the Lipschitz norm and Vg yk(x, ) := ", 0,0y, k(T,Y)|z=y. Then

L (Fuy) - Fu)) < —e(1 - e0R) S(us, 7).

€r
3.5 Kernelised Wasserstein Gradient Flow: The General Case

In this section, we present a generalisation of Proposition B4 and discuss some difficulties in finding kernels
that satisfy the required conditions. For ease of presentation, we restrict our attention to d = 1. Throughout,
we assume and that any required Fourier transforms exist. Define the function r : X — R by

e =77 (G F0) @) (20)

where .7 denotes the Fourier transform (see proof in Appendix @A), and let R : X — R be a function
satisfying VR(z; p) = r(x; p)/p(x).
Proposition 3.8. Assume that both r and R exist. Then the corresponding continuity equation is

dpr =V - (piThy p, (VR(- 3 1) — Vog)). (21)

If in addition

/ %R(x; p+ex)dp+ex)(z)] =0 (22)
e=0

for any measure x = p— p with p € L°(X) NP(X), then the mean field dynamics of h-SVGD describe a
kernelised Wasserstein gradient flow on the functional

F(p) = Eonp [R(z; p) — logm()]. (23)

Note that ko = cky implies .7 (K3)/.% (K1) = c and so r(x; p) = c¢Vp(x). Therefore, R(z; p) = clog p(z), and
so (21) reduces to (7). Furthermore, the left hand side of (22) is equal to ¢ [ dx(x) = ¢ [ dp(z) — ¢ [ dp(x),
which is zero because p, p are both probability measures. So (E2) is satisfied in this special case. We remark
that verifying (22) remains a challenge in general hybrid kernel settings. However, under this assumption,
the mean field dynamics of h-SVGD converges to a distribution that is not the target distribution.

Proposition 3.9. If ki # ks, both r and R exist, and (23) is satisfied, then any fixed point p* of the gradient
flow in Proposition (@38) is not equal to .
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The example below demonstrates some behaviour of SVGD in the general hybrid kernel setting. In particular,
the form of the target m and the mean field steady state p* can look quite different.

Example 3.10. Let hy, ho,0 > 0 and assume that Ah := hy — hy # 0. Let ki(x,y) = krr(x,y; hi) for
1=1,2, and let n(z) x exp(—« exp(%)) be the target on X = R where

[ho | o2 o? 5 o%(0? + Ah)
o= —= . - . =~ 7
hy o2+ Ah AR’ Ah

Then p*(z) = N(z;0,0?) is a fived point of the h-SVGD mean field dynamics.

We briefly remark that the right hand side of Equation (BO) exists in this setting of two RBF kernels with
bandwidths hy > h; provided p decays sufficiently fast. In particular,

Z(K3)(w) : [ o 2 2

- F(V =12 —. —271%(hg — h F .

ﬁ(Kl)(w) ( p)(UJ) 1LTW hl €xXp ( ™ ( 2 1)W ) (p)(UJ)

We also remark that Section B focuses on experimental results in the ko = cky case due to its capacity to
improve variance estimation. We leave a more detailed study of the general hybrid setting for future work.

4 Experiments

Although Corollary B3 shows that h-SVGD does not converge to the target distribution, we demonstrate in
this section that it has the ability to improve variance estimation when compared to SVGD. Furthermore,
it does this at no extra computational cost, and without any assumptions on the structure of the posterior,
as is common in other SVGD variants that alleviate variance collapse. We measure variance collapse using
dimension averaged marginal variance (DAMYV), 52?21 Var; ({mz}fvzl), as is standard in the literature
(Zhuo“ef all, POTR; Ba et all, PO19; 2021; Gong et all, 2021). Further details on the the experimental details
can be found in Appendix B.7

Before describing the first numerical example, we reiterate the intuition behind the ability of h-SVGD to
improve variance estimation. In high dimensions, with a finite number of particles, SVGD is well known to
suffer from variance collapse (Wang_ et all, 201IR; Ba“ef-all, 2019). Indeed, for any «,é € (0, 1), the repulsive
force of SVGD under an RBF kernel decreases as ||R( - ;k, )|, = O(d™®) with probability at least 1 — ¢
(Zhuoet all, 2018). By Corollary BH, under a Gaussian target distribution, a repulsive kernel ko = ck; with
¢ > 0 will scale the variance of the limiting distribution by c¢ in the infinite particle limit. So scaling the
repulsive kernel by ¢ = d for some « € (0, 1) should compensate for the decrease in |R( - ; k2, 1), and
as a consequence offset the variance collapse in high dimensions in the finite particle regime. The factor «
should be tuned and we expect that a suitable choice of o will depend on the number of particles N, the
target distribution 7 and the kernel k;. We leave a more detailed theoretical analysis guiding the choice of
« for future work. In the experiments that follow, we found that a = 0.5 provided a good balance between
variance estimation and inference.

4.1 Multivariate Gaussian Mixture

In this first example, we sample from a high-dimensional mixture of Gaussians with 10 equally weighted
components. The mean vectors are randomly initialised from N(0, I;), and the covariance matrices are clg,
where ¢ > 0 is a factor that makes the DAMV equal to 1. We repeat this for dimensions up to d = 1000
at intervals of 100. We choose to sample N = 50 particles in order to demonstrate the performance of h-
SVGD when d is much greater than N, as is often the case in high dimensional Bayesian inference. Particles
are initialised from N(0, I;) and each SVGD variant is run for 2000 iterations with an initial step size of
e = 0.01, adapted using AdaGrad. We run SVGD and sliced SVGD (SSVGD) (Gong et all, 20Z1) with the
RBF kernel krpr and compare against h-SVGD with kernels k1 = krpr and ko = Vd - krpr. All algorithms
use h = med?/log(N) as the bandwidth, where med is the median pairwise distance between particles (Liui

"The python code for reproducing these experiments is available at https://github.com/anson-macdonald-unsw/h-SVGD
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& Wang, 2016). For SSVGD, there is one bandwidth per dimension, so the median distances are computed
along each projection, as described in (2021). We also compute the energy distance between the
samples generated by each method and the target distribution as described in (poi3). All
configurations are run 10 times with a different initialisation and results for each configuration are averaged.

Figure @ demonstrates that h-SVGD provides an uplift in marginal variance estimation and an improved
energy distance when compared to SVGD. Although SSVGD estimates the variance fairly consistently as
the dimension increases, Figure M shows that this comes at a significant increase in runtime, whereas there
is no noticeable difference between the runtimes of SVGD and h-SVGD. Furthermore, h-SVGD outperforms
SSVGD in terms of the energy distance. Figure B shows projections of the N = 50 particles onto the first
two two dimensions along with a contour plot of the marginal density along those two dimensions. This
visual representation emphasises the extent to which both h-SVGD and SSVGD offset variance collapse in
the finite particle setting. Further figures are included in Appendix B.

—— SVGD

h-SVGD
—— SSVGD
---- Target

w0 N ®
-
2

Energy Distance
iy
Time (sec)

o N w
=
o

e W

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
d d d

(a) DAMV (b) Energy Distance (c) Time (seconds)

Figure 1: DAMYV, energy distance, and runtime of different SVGD variants sampling from high-dimensional
Gaussian mixtures.

SVGD h-SVGD S-SVGD

.@ , ;i : ‘7@:

o o (&= 5 i

o0 oe
°
®

Figure 2: Projections onto the first two dimensions of particles sampled from a high-dimensional Gaussian
mixture using different SVGD variants. The contour plot of the corresponding marginal density is overlaid.

4.2 Bayesian Neural Network

In this section, we sample weights from a Bayesian neural network (BNN). Aside from scaling the repulsive
kernel by v/d, as described in the previous experiment, our setup is identical to (e0IB). For
completeness, details are included in Appendix B. Using the no-U-turn sampler (NUTS) (Hoffman et all,
poid) with 10 parallel chains, we generated 10000 ground truth samples for 8 of the 10 datasets. The
Protein and Year datasets were large enough to make NUTS prohibitively slow. We then use these ground

10
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Figure 3: Energy distance of BNN samples generated by each SVGD variant as compared against ground
truth samples generated by NUTS. Ranges indicate one standard deviation above and below the mean over
repeated trials.

truth samples to compute the energy distance (Székely & Rizzd, PUT3) of samples generated by each variant.
Table @ shows that with no additional computational cost, the problem of variance collapse is mitigated
under h-SVGD through an increased DAMYV. Table B demonstrates that it remains competitive at inference
through improved test log-likelihood (LL) for all datasets and improved root mean squared error (RMSE) for
all but one dataset. Appendix B includes a comparison of the same metrics between h-SVGD and SSVGD
to emphasise that the alleviation of variance collapse under h-SVGD comes at a lower cost. Figure B shows
that across all datasets except Wine, the samples generated by h-SVGD are closer to the ground truth than
those generated by SVGD, as measured by the energy distance. The h-SVGD samples are also closer to the
ground truth than the SSVGD samples for all but two datasets.

Table 1: DAMV and runtime in seconds of SVGD and h-SVGD. Ranges indicate one standard deviation
above and below the mean over repeated trials. NUTS runtime is included for those datasets where it was
computationally feasible.

DAMV Runtime (seconds)

Dataset SVGD h-SVGD SVGD h-SVGD NUTS
Boston 0.051 £ 0.011 0.112 £0.015 | 289 + 1.4 28.6 + 0.8 133
Concrete | 0.084 £ 0.010 0.120 + 0.010 | 28.7 £ 1.3 28.8 +£1.8 189
Energy 0.065 £ 0.015 0.154 + 0.023 | 30.8 £ 2.8 309 + 25 167
Kin8nm 0.105 + 0.003 0.102 £ 0.003 | 359 £1.3 36.2+ 13 1748
Naval 0.059 £ 0.004 0.091 +0.019 | 334+ 0.8 33.1+1.5 51
Combined | 0.128 £+ 0.008 0.145 + 0.007 | 36.3 £ 1.5 36.8 + 2.7 954
Protein 0.089 + 0.001 0.087 £ 0.001 | 72.7 £ 1.0 728 +£1.7 NA
Wine 0.068 = 0.005 0.090 + 0.003 | 29.5 £ 1.4 29.8 £1.1 393
Yacht 0.060 £ 0.020 0.194 + 0.034 | 29.3 £ 04 29.6 + 04 83
Year 0.011 £ 0.000 0.012 £ 0.000 | 592 + 24 563 + 23 NA

5 Conclusion

In this paper we have developed the mean field theory of h-SVGD by proving the existence of a solution to
the hybrid Stein PDE and identifying it as a gradient flow on a functional other than the KL divergence.
We characterised the mean field fixed point for the special case ks = ck; and demonstrated that h-SVGD
does not converge to the target in the mean field limit unless ¢ = 1. This suggests that h-SVGD may

11
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Table 2: Average RMSE and LL of SGVD and h-SVGD evaluated on the test dataset. Ranges indicate one
standard deviation above and below the mean over repeated trials.

Test RMSE Test LL

Dataset SVGD h-SVGD SVGD h-SVGD

Boston 3.094 + 0.579 3.034 £+ 0.587 | -2.123 + 0.116 -1.959 + 0.148
Concrete | 5.857 & 0.468 5.384 £ 0.504 | -2.616 + 0.099 -2.499 + 0.128
Energy 1.528 £ 0.169 1.157 £ 0.138 | -1.702 4+ 0.094 -1.072 £ 0.096
Kin8nm 0.124 4+ 0.005 0.100 £+ 0.003 | -1.293 + 0.108 -0.314 + 0.104
Naval 0.006 £ 0.000 0.004 = 0.000 | -1.353 + 0.161 -0.404 + 0.140
Combined | 4.105 4+ 0.220 4.072 £ 0.220 | -2.459 + 0.051 -2.367 £ 0.050
Protein 4.791 + 0.025 4.679 £ 0.025 | -2.633 + 0.035 -2.511 £+ 0.023
Wine 0.637 £+ 0.044 0.631 + 0.045 | -1.463 + 0.120 -0.819 + 0.080
Yacht 1.677 £ 0.571 1.886 &+ 0.664 | -1.587 & 0.120 -1.045 % 0.160
Year 8.882 + 0.043 8.804 £ 0.039 | -2.908 &+ 0.031 -2.890 + 0.019

not converge to the target more generally, even in its continuous time, mean-field form. We provided a
result on the dissipation of the new functional, as well as a discrete time version, otherwise known as a
descent lemma. We also highlighted the complexities of the gradient flow in the general hybrid kernel
setting. Despite non-convergence to the target, experimental results demonstrated that h-SVGD can alleviate
variance collapse in high dimensions observed in finite-particle SVGD at a much lower cost than other SVGD
variants. We also showed that h-SVGD maintains its performance on high dimensional inference tasks, whilst
improving variance estimation without the additional computational cost required of other SVGD variants.
One interesting direction for future research is to find a principled method of scaling the repulsive kernel.
Another avenue is to further develop the theory of h-SVGD in the general hybrid kernel setting. It would
also be interesting to incorporate tempered target densities, as considered in (Chehab efall, 2024).
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A Proofs

Lemma A.1. Under assumptions [[A1), [[A4), [BI), [B2] the map

(z,p) = E(z,u) = / —k1(z, 2)VV(x) + Vgkao(x, 2)du(x)
X
is L-Lipschitz. That is,

IE(z, 1) — E(', 1)y < L[|z — 2'[|5 + Wa(p, 1))
where L > 0 depends on ki, ko and V.

Proof. Largely following the proof of Lemma 14 Korba“ef all (2020), choosing an optimal coupling v of u
and g/,
1E(z, 1) = E(Z',1)|ly < [[E, [VV (@) (ki (2, 2) — ka (2, 2))]

+E, [(VV(2') — VV(2))ki (2, 2')]

+Ey [Veka(x, 2) — Varka (', 2)] ||

< DE, [[lz — a'|], + [z — 2]

+ BME, [|lz — 2|,

+ DE, [[lz — a'||, + [z = 2'[,]

< (2D + BM) (|l — /||, + Walu 1))

Note that the second term is bounded using the relaxed Assumption and there is no need to require
that |V is bounded by a constant. O

Proof of Proposition E. This follows identically to the proof of Proposition 7 in Korba et all (2020) with
Lemma BT in place of Lemma 14. O

Proof of Proposition 3. The proof largely follows those of Theorems 2.4 and 3.2 in Lu“efall (2019) with
some minor adjustments. Notably, after fixing r > 0 and defining

Y, = {u €Y :sup |u(x) —x| < r}
reX

and the complete metric space

Sy = C([0, To]; Y7),
dS(u7U) ‘= sup dY(u(t)a/U(t))
t€[0,Tp]

for some sufficiently small Ty (to be determined later), the operator G : u(t, ) — G(u)(¢, ) must be modified
to act on u € S, via

Gu)(t,z) =z —/0 /X VEKs(u(s,z) — u(s,x"))v(dz')ds
—/ / Ki(u(s,z) —u(s, ")) VV (u(s,x"))v(dz")ds.
Y

Note that we use G instead of the F used in Lu_et all (2019) to avoid confusion between the functional F
defined in (M). The same techniques of Lu_ef all (2019) are sufficient to establish the required bounds to
show that G is a contraction on S, for sufficiently small Ty. Note that Assumptions [BI), [A2) and [A3]
are used to establish this. So the unique fixed point X (-,;v) € S, of G solves (3) in the interval [0, Tp].

The min (|VK.|| ,||VK2|, ) term emerges because the telescoping in Equation (3.8) of Lu_ef-all (2019)
can be performed with either kernel. The remainder of the proof follows Theorems 2.4 and 3.2 of Laief all
(P019). O
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Proof of Proposition 5. Following Definition 7.12 in Sanfambrogid (2015), a functional derivative of F is

a measurable function %(p) satisfying

§F
— [ 2 (pd
5p(p)x

il (p+ex)

e=0

for all perturbations x = p—p with p € L¥(X)NP(X). If it exists, %(p) is unique up to additive constants.
We first compute

d
def(p+ €x)

e=0

d

— 5o [ erostota) + ex@ptaian + ¢ [ clogtoie) + ex(e)r(ia
- [osn@pie)in - ¢ [logn@(e)iz )
([ et ot@pie+ [ clos(oia) + ext@x(e)iz
+€/c[mx(m)dm - /logw(m)x(m)dm)

e=0

e=0
= /clog p(x) —logm(x)x(x)dx + c/x(a:)d:v. (24)
Since p, p € P(X), the final integral is zero. So the functional gradient of F is
(2"70: (p) = clogp — logm.
Its Wasserstein gradient is then
VwF(p) =cVlogp— Viogm.
Since ko = cki, equation (I) can be written as
dz o ’ ’ / / ’
E - (kl(w 7w)vm’ IOgﬂ—(w ) + Cvm’kl(w ,w))p(w )dil)
— [ i@ @) Varlogn(a)p(a') ~ ch (&' 2) Varpla)
= /k1 (2',2)Va logm(x')p(x') — cki(®', 2)Var log p(z') p(z’)da’
=Ty, p(Viogm — cVlogp)(x)
= T, o(VwF(p)) ().
The continuity equation Oyp; + V - (pt%) = 0 then becomes
Oepe =V - (ptThy o (Vw F(p)) ()
=V (piTk, p, (cVIog py — Vlogm)).
[
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Proof of Corollary (83). A measure p* satisfying ¢V log p* = V log 7 will be a fixed point because this would

imply Vi F(p) = 0. Solving this for p*, we have

c¢Vlog p*(x) = Vlogn(x)
clog p*(x) =logm(x) + A
log(p*(x)°) = log(e"n ()
o ()" = ()
(@) = eNem(a) /e

for some A € R.

Proof of Proposition BA. Using (1), integration by parts, and the fact that Ty, , : L%(ps)? — HY

adjoint of the inclusion 2 : H{ — L?(p;)?,

d

GFo0 =5 [ @) clogpu(a) - ogn(@) da

= [ (clog @) ~ oga(e) 5 pl@) + epule) 5 log pu(e)de
= / (clog pt(w) —logm(x)) V- (pe(a)Thy p, (cV1og pi(x) — Viogm)(x)) dx
+ [ cp(x log pi(x)dx

/ (clog py(x) —logm(x)) - T, ,p, (¢V log py — Vlogm)(x)py(x)da
/Cﬂt 10gpt( )dx

— (c¢Vlog py — Vdogm, Tk, p, (cV log p; — Vlog 7T)>L2(p,,)d
9
+/Cpt( >8t log p(z)dz
:—||T;€1)pt(cV10gpt—Vlogﬂ)”?_l?+c/ (@) o 1o ()

. B
= || T . (Vlog p1, — V1og p*) |3, + C/pt(fv)a log pi(x)dx.

Also,

F(pt) = Banp, [clog pi(x) — log ()]
= Egnp, [clog pi(x) — log (Ap*(x)°)]
= cEanp, [log pi(x) —log p*(z)] + log(A)
= cKL(p; || p*) + log(A)

for some A € R, we have 14 F(p,) = SKL(p, || p*). Therefore,

d i} 1 )
SKL(pu || p) = = [Ty (eV log pr — vmgmnyﬁ / pu() 5 log py()d

dt
= —CHTk (Vlogp: — Vlog 711/6) + /Pt( )A; ) log pi(x)dx
1,Pt {11 +

0
= | Thy (V1o pi = Vog ") 3y + [ @) g pu(a)de

16

O

is the

(26)



Published in Transactions on Machine Learning Research (12/2025)

To simplify notation in the calculations below, set u = Ty, ,, (cVlog p;) and v = Ty, ,,(Vlogm). Recall the
identity

(= v) = 5 ([l + = ol = o). (27)

Now we apply the multivariate chain rule to the remainder term along with the fact about the adjoint of
Tk, p,, the identity in (22), and the triangle inequality. This gives

0 d
[out@) g 1o8@)iz = [ p@)V0gpu(a) - e

- [ 5@V 108 1(@) Ty (5 hog 1~ Vlog) () (28)

—(Vlog pt, Tk, p, (cV log p — Vlog w))LQ(pt)d
— (Thoy,p. (V10g pt), They p, (¢V 10g py — Vlog 7T)>H‘f

1
= (u,u — U>H(11
1 ) , ,
= 5o (= s 1ol — I = w1l
1 9 5 ) )
<5 <— Jull3g + [lu = vl + llullze — llu - v””‘f)
=0.

'é Iie final statement that %.7-' (p*) = 0 follows from equations (Z3) and (28) by observing that ¢V log p* E]
ogm = 0.

Proof of Proposition 1. This follows from applying Theorem 3.3 Liul (2007) with p* instead of the target,
then substituting in (PH). O

Proof of Proposition B3. We first define the Fourier transform of a real-valued function f to be the function

Z(f) defined by

F(f)w) = / f() exp(—i2mw)d,

given that the integral exists. Similarly, the inverse Fourier transform of a real-valued function F' is the
function .# ~1(F) defined by

FHF)(x) = /F(w) exp(i2rwx)dw,

where the integral exists. To recover the continuity equation, apply the convolution theorem to (20)

17



Published in Transactions on Machine Learning Research (12/2025)

Equation (M) can now be rewritten as

% B / (k1(a/,2) Vo log m(2') + Varks (2, 7)) p(a) dee’

= /k1 (2, 2)V logm(x' ) p(a') — ka(2', 2)V p p(z')dz’'

- / (k1 (2!, ) Vs log (a”) — k(& 2)V s log p(a')) pla')da’

= (Tk, pVlogm) (z) = (Th, )V log p) (x)
= (Tk:lvp (V IOgT{' - VR( 7p))) (LE),

where VR(z;p) := T;g&g), yielding the continuity equation (E1).

As in the proof of Proposition B3, let x = p — p with p € L (X) NP(X). We first compute

d
p) F(p+ex)
€

e=0

= i(/R(m;p+ex)dp(w) +6/R(w;p+ex)dx(w)
- [1ogn@yin(o) - ¢ [togra)in(o))

= <56/R(z;p+ex)dp(:c)+/R(:c;p+ex)dx(x)+6d/R(m;PJrﬁX)dX(l’)

de
_ / logw(x)dx(x)) B

_ / R(x; p) — log w(z)dx(z)
T (/ %R(w;p—i—ex)dp(m) +6/iR($;P+€X)dX($))

= [ Riawsp) ~togr()ina) + [ 5 Rwip+ exd(p+ (@)

e=0

e=0

(29)
e=0

By assumption, the remainder term above is equal to zero and the functional derivative of F is therefore

oOF

5, (p) = Ri(x;p) —logn(z),
p

so its Wasserstein gradient is

Vi F(p) = V%@)

= VR (z;p) — Vlogm(x).
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Proof of Proposition 0. To show that p* is not the target, assume for the sake of a contradiction that
p* =m. So Vi F(r) =0, and Proposition B gives

F(Ka) . P
9(1{1)‘/(%) =.7(Vn)
F(Ky) = F (K1)
Ky =K,
Therefore, it cannot be the case that p* = . O

Proof of Example 3I0. A direct computation of (20) along with the definitions of r and R yields

F (K1) (w) - F(Vp)(w) = h71 ~exp(72ﬂ-2w2Ah) . Qmiw exp(—27r2w202)
ho

=/ = - 27miw - exp(—272w? (0? 4+ Ah))

T(:E' *) _ @ 1 x . B 22
Py hl V2r (02 + Ah)3/2 P (02 + Ah)

. * xz
VR(z;p*) = — . e Ah)3/2 - T exp (02 AR exp (55

_ /7 o __ Aha?
Vi (02+Ah)3/2 TP\ To2(02 1 AR) )

Now computing V log 7, using some A € R for the normalising constant, we have

) o (-aeen (22))

logm(z) = log(A) — avexp (2;)

22
Viegm(z) = 5 exp (25>

_ e A
TV (@ ranEz TP\ T 202(02 + AR

Since VR(z; p*) = Vlog m(x), equation (E1) implies that p* is a fixed point. O

B Additional Experimental Results and Details

B.1 Multivariate Gaussian Mixture

Figure B in Section B shows the projection onto the first two dimensions of particles sampled from high-
dimensional Gaussian mixtures using different SVGD variants. The marginal density of the corresponding
projection of the target density is overlaid. We extend this here with Figure @, showing 5 additional projection
plots of randomly selected pairs of dimensions between 1 and 1000.
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Figure 4: Projections onto 5 pairs of randomly selected dimensions of particles sampled from a high-
dimensional Gaussian mixture using different SVGD variants.

marginal density are overlaid.
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B.2 Bayesian Neural Network

The results presented in Section B2 follow the settings of (Liu & Wang|, POI6). In particular, we use Gaussian
priors for the network weights and Gamma priors for the inverse covariances. There is one hidden layer with
50 units for most datasets, Protein and Year being the exceptions with 100 units each. The datasets are
randomly partitioned into 90% for training and 10% for testing with results averaged over 20 trials, Protein
and Year being the exceptions with 5 trials and 3 trials respectively. The number of particles in each case
is 20, the activation function is RELU(z) = max(0, z), the number of iterations is 2000, and the mini-batch
size is 100 for all datasets except for Year, which uses a mini-batch size of 1000.

We recreate Tables [ and B below, this time comparing h-SVGD against SSVGD (Gong et all, 2021). Table
B shows that h-SVGD outperforms SSVGD in mitigation of variance collapse on all but one dataset. We
note that h-SVGD achieves this with a significantly faster runtime for all datasets, which is due to SSVGD
requiring additional optimistaion of the projection matrix. Table B shows that SSVGD and h-SVGD are
comparable in both RMSE and LL metrics. The h-SVGD algorithm achieves a better LL score on more

datasets, but SSVGD achieves a better RMSE score on more datasets.

Table 3: DAMV and runtime in seconds of SSVGD and h-SVGD.

DAMV Runtime (seconds)
Dataset SSVGD h-SVGD SSVGD h-SVGD
Boston 0.035 + 0.002  0.087 £ 0.010 208 + 13 28.5 +£ 0.9
Concrete 0.070 £ 0.004 0.102 £ 0.006 148 + 56 28.7 £ 1.3
Energy 0.053 £ 0.005 0.106 + 0.011 156 + 28 30.7 £ 2.2
Kin8nm 0.083 £ 0.002 0.093 £ 0.003 141 £ 3.9 36.0 + 1.3
Naval 0.070 + 0.021  0.068 + 0.011 237 £ 11 345+ 0.9
Combined | 0.118 &+ 0.005 0.138 + 0.006 116 + 18 36.7 + 24
Protein 0.057 £ 0.006 0.084 + 0.001 390 £ 20 728 £ 1.7
Wine 0.029 &+ 0.002 0.075 £ 0.005 210 £ 10 208 £ 1.1
Yacht 0.066 = 0.009 0.121 £0.012 | 97.9 + 1.2 30.0 +1.3
Year 0.012 £ NA 0.012 £ NA 12488 + NA 666 + NA

Table 4: Average RMSE and LL of SSGVD and h-SVGD evaluated on the test dataset.

Test RMSE Test LL

Dataset SSVGD h-SVGD SSVGD h-SVGD

Boston 3.024 £+ 0.604 3.001 £ 0.584 | -2.088 £ 0.322 -1.988 + 0.221
Concrete 5.073 £ 0.522 5.210 4+ 0.529 | -2.563 £ 0.239 -2.535 &+ 0.179
Energy 0.923 + 0.123 1.040 + 0.128 | -0.631 £ 0.162 -0.805 =+ 0.104
Kin8nm 0.084 £+ 0.003 0.090 + 0.003 | 0.232 + 0.135  0.468 £ 0.090
Naval 0.003 £ 0.000 0.004 + 0.000 | -0.624 + 0.161 -0.090 £ 0.105
Combined | 4.028 + 0.220 4.057 £ 0.218 | -2.335 &+ 0.066 -2.354 + 0.052
Protein 4.581 + 0.026 4.600 £ 0.026 | -2.526 + 0.045 -2.456 + 0.017
Wine 0.676 £ 0.051 0.626 £ 0.045 | -1.261 £ 0.172 -0.750 = 0.097
Yacht 1.664 + 0.607 1.861 &+ 0.662 | -0.788 £ 0.511 -0.813 + 0.227
Year 8.922 + NA 8.689 + NA -2.940 + NA -2.872 + NA
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