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ABSTRACT

3D Affordance detection is a challenging problem with broad applications on var-
ious robotic tasks. Existing methods typically formulate the detection paradigm
as a label-based semantic segmentation task. This paradigm relies on predefined
labels and lacks the ability to comprehend complex natural language, resulting
in limited generalization in open-world scene. To address these limitations, we
reformulate the traditional affordance detection paradigm into Instruction Rea-
soning Affordance Segmentation (IRAS) task. This task is designed to output
a affordance mask region given a query reasoning text, which avoids fixed cat-
egories of input labels. We accordingly propose the 3D-AffordanceLLM (3D-
ADLLM), a framework designed for reasoning affordance detection in 3D open-
scene. Specifically, 3D-ADLLM introduces large language models (LLMs) to 3D
affordance perception with a custom-designed decoder for generating affordance
masks, thus achieving open-world reasoning affordance detection. In addition,
given the scarcity of 3D affordance datasets for training large models, we seek to
extract knowledge from general segmentation data and transfer it to affordance de-
tection. Thus, we propose a multi-stage training strategy that begins with a novel
pre-training task, i.e., Referring Object Part Segmentation (ROPS). This stage is
designed to equip the model with general recognition and segmentation capabil-
ities at the object-part level. Then followed by fine-tuning with the IRAS task,
3D-ADLLM obtains the reasoning ability for affordance detection. In summary,
3D-ADLLM leverages the rich world knowledge and human-object interaction
reasoning ability of LLMs, achieving approximately an 8% improvement in mIoU
on open-vocabulary affordance detection tasks.

1 INTRODUCTION

Robots are increasingly integrating into various aspects of our daily life (Matheson et al., 2019). As
we progress toward developing the next generation of more advanced robotic agents, it is essential
to enable robots to comprehend natural language instructions within context and to perceive task-
relevant information in their surroundings. This skill is particularly vital for seamless interactions
in unstructured environments, such as homes, where adaptability to diverse situations is crucial.
Specifically, the robots need to not only identify the objects in the environments but also locate the
specific regions of each object that are suitable for interaction: affordance.

The concept of affordance was introduced by ecological psychologist James Gibson (Gibson, 1966)
and has since played a significant role in various robotic applications, including object recogni-
tion (Hong et al., 2023a; Hou et al., 2021), action anticipation (Roy & Fernando, 2021), agent activ-
ity recognition (Chen et al., 2023), and object functionality understanding (Li et al., 2023). In these
applications, affordance describes the potential interactions between the robot and its surrounding
environments. For instance, in a general cutting task, the knife’s affordance can guide the robot to
utilize the blade effectively for tasks such as mincing vegetables or carving wood. While affordance
detection has received significant research interests in robotics, it poses significant challenges due
to the inherent complexity, diverse shapes and functionalities of different objects (Min et al., 2016).
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Classical affordance detection approaches have primarily focused on identifying affordances from
2D images (Nguyen et al., 2016; Do et al., 2018; Pacheco-Ortega & Mayol-Cuervas, 2022). These
methods often employ techniques such as convolutional neural networks (CNNs) (Krizhevsky et al.,
2012) to extract visual features and classify the potential affordances regions in the environments.
However, relying solely on 2D information limits the robot’s interaction capabilities since it lacks
crucial depth information necessary for accurate physical manipulation. In practice, detecting object
affordances from images requires an additional step for downstream robotic tasks: transforming the
detected results from 2D to 3D using depth information (Deng et al., 2021).

With the growing accessibility of advanced depth cameras, 3D point clouds have become a widely
used modality in robotic applications (Liu et al., 2019). Unlike conventional images, 3D point
clouds offer robots direct and detailed 3D information about surrounding objects and environments.
Hence, the 3D affordance detection has been deemed as a critical step in bridging perception and
manipulation in the physical world for an embodied agent, thus has shown substantial impact on
practical applications such as robotic manipulation (Geng et al., 2023; Moldovan et al., 2012). While
existing methods have successfully extracted 3D features and predicted affordance regions to pro-
vide operational details, they remain constrained by fixed label sets designed for specific tasks (Deng
et al., 2021; Mo et al., 2022). This limitation reduces their flexibility, restricting supports for broader
or unsupervised queries, thereby hindering more generalizable affordance detection in dynamic en-
vironments.

To overcome the fixed label set problem in affordance detection, Nguyen et al. (Nguyen et al.,
2023) have incorporated a text encoder to enable models to handle certain levels of open-vocabulary
detection, but these algorithms still rely on a classification based training paradigm. As a result,
they lack the ability for rapid and continuous learning when presented with new affordance label
data. Furthermore, current affordance detection methods also heavily rely on the predefined labels
and lack the ability to understand and reason over long contextual text. Additionally, the scarcity of
3D affordance datasets (Deng et al., 2021; Nguyen et al., 2023) constrains the effective training of
large-scale models.

Towards these issues, we redefine the 3D affordance detection as an Instruction Reasoning Affor-
dance Segmentation (IRAS) task and accordingly propose 3D-AffordanceLLM (3D-ADLLM). The
IRAS task is designed to output an affordance mask region in response to complex, reasoning-based
query text, overcoming the limitations of fixed affordance labels and the difficulty of understand-
ing complex instructions. Our 3D-ADLLM framework introduces large language models (LLMs)
to 3D affordance perception with a specifically designed decoder for generating affordance masks,
thus achieving open-world reasoning affordance detection. Specifically, we introduce an additional
token, <AFF>, into the original LLM vocabulary. When the <AFF> token is generated, its hid-
den embedding is further decoded into the corresponding segmentation mask. By representing the
segmentation mask as an embedding, 3D-ADLLM not only gains segmentation capability but also
benefits from end-to-end training. However, due to the scarcity of 3D affordance datasets for training
large models, we propose a multi-stage training strategy to extract knowledge from general segmen-
tation data and transfer it to affordance detection. This process involves pre-training on PartNet (Mo
et al., 2019) with Referring Object Part Segmentation (ROPS) tasks to acquire the object-part level
general recognition and segmentation knowledge. Subsequently, we fine-tune the model with the
IRAS task to achieve context-aware reasoning ability and robust performance in open-set zero-shot
affordance detection.

Our main contributions are summarized as follows:

• Different from the existing affordance detection methods that rely on fixed sets of labels,
we address this limitation by introducing a new detection paradigm based on the Instruc-
tion Reasoning Affordance Segmentation (IRAS) task. By reforming the label-based se-
mantic segmentation task in the traditional affordance detection paradigm into a natural
language-driven reasoning affordance segmentation task, our model enables more flexible
and context-aware reasoning, facilitating effective zero-shot learning capabilities.

• To address the IRAS tasks driven by semantic complex natural language, we consequently
propose the 3D AffordanceLLM (3D-ADLLM) model, combining a large language model
(LLM) with a carefully designed Affordance Decoder. Our 3D-ADLLM framework can
understand semantically-rich, long-context instructions and leverages the LLM’s world
knowledge for superior open-vocabulary affordance detection.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Due to the scarcity of 3D affordance datasets for training large models, we propose a multi-
stage training strategy to transfer general segmentation knowledge into affordance detec-
tion. First, the model is equipped with general recognition and segmentation knowledge
through a novel pretraining task, i.e., the Referring Object Part Segmentation (ROPS). Sub-
sequently, the model is fine-tuned with the IRAS task to handle context-aware reasoning
and affordance region prediction.

2 RELATED WORK

Affordance Detection. Originating from the 2D domain, initial work in affordance detection pri-
marily focused on identifying objects with affordances (Do et al., 2018). Building on this foundation,
later studies (Lu et al., 2022) introduced linguistic descriptions to improve detection, but they contin-
ued to emphasize object-level affordances, lacking fine-grained analysis. Addressing this problem,
subsequent research (Chen et al., 2023; Li et al., 2023; Luo et al., 2022; Nagarajan et al., 2019; Mi
et al., 2020) has focused on detecting specific affordance parts, establishing a new benchmark for
precision in the field. With the advancement of embodied AI, the scope of affordance learning has
expanded into 3D domain. 3D AffordanceNet (Deng et al., 2021) introduces the first benchmark
dataset for learning affordance from object point clouds. IAGNet (Yang et al., 2023) propose a
setting for learning 3D affordance parts guided by image queries. Recently, some work (Nguyen
et al., 2023) also explores the open-vocabulay affordance detection in point clouds. However, these
methods primarily focus on linking object geometric features with fixed affordance labels, over-
looking the semantic aspect. This limitation makes it challenging to understand natural language
instructions and hampers the ability to generalize affordance detection to unseen scenarios. In con-
trast, the proposed 3D-ADLLM overcomes the limitations of fixed label sets and enhance the ability
to comprehend semantic complex description. Specifically, we shift the detection paradigm from
label-based semantic segmentation into Instruction Reasoning Affordance Segmentation (IRAS).

3D Large Multi-Modal Models. 3D object-level LMMs (Yu et al., 2022; Xue et al., 2023; Zhou
et al., 2023) have successfully bridged the gap between 3D vision and text by leveraging large-scale
3D object datasets like (Deitke et al., 2023; Vishwanath et al., 2009). ShapeLLM (Qi et al., 2024)
further advances the embodied interaction and referring expression grounding through its novel
and powerful point encoder. However, despite these advances, such models still face challenges
in interpreting complex spatial relationships within 3D scenes. For scene-level LMMs, models
like Chat-3D (Wang et al., 2023) and LL3DA (Chen et al., 2024) enable interaction with scene
objects using pre-selection mechanisms. Building on this foundation, Chat-3D v2 (Huang et al.,
2023) enhances referencing and grounding accuracy by incorporating object identifiers, while 3D-
LLM (Hong et al., 2023b) improves scene comprehension by integrating positional embeddings and
location tokens. Unlike previous works that primarily focus on 3D grounding and understanding, our
method introduces a specialized token, <AFF>, which enables LLMs to directly detect affordances
and generate affordance masks within 3D open-world scene.

3 METHOD

3.1 PARADIGM REFORMULATION

Affordance detection aims to identify specific regions of objects that are suitable for interaction. It
has been deemed as a critical step in bridging perception and manipulation in the physical world
for embodied agents. As illustrated in Fig. 1 (a), the traditional paradigm uses a shared point back-
bone (Qi et al., 2017; Zhao et al., 2021; Wang et al., 2019) to extract point-wise features, and gen-
erates masks with a predefined type semantic segmentation head. Alternatively, they leverage a text
encoder like CLIP (Radford et al., 2021) to associate point-wise features with text embeddings of
affordance labels using cosine similarity, achieving limited open-vocabulary detection on the phrase
level. This paradigm relies on predefined labels and has a limited ability to understand complex
natural language, which restricts its generalization in 3D open-world scene.

To address these limitations, we introduce a new paradigm formulated as an Instruction Reasoning
Affordance Segmentation (IRAS) task as depicted in Fig. 1 (b). This paradigm is designed to estab-
lish a robust connection between language context and object affordance, avoiding the overreliance
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Figure 1: The comparison of the affordance detection paradigm based on our IRAS or traditional
label-based segmentation tasks. (a) shows that label-based paradigm can only detect the fixed set
of affordance regions through the predefined label and seg-head; (b) demonstrates the IRAS based
paradigm forges a link between semantic complex instruction and object affordance, enabling open-
world reasoning affordance detection.

on auxiliary affordance label prediction. This approach facilitates a significant improvement in our
ability to understand and interact with the physical world.

IRAS Definition. Given a query reasoning instruction Qa and an object point cloud Pc ∈ Rn×3

with N points, the goal of IRAS is to predict a binary mask of Ma ∈ RN that delineates the functional
regions pertinent to the query, affordance regions:

FModel(Qa, Pc) ⇒ Ma

3.2 3D-AFFORDANCELLM

To the traditional methods that rely on fixed label sets and are limited to short-text detection, IRAS
demands robust language comprehension and reasoning to associate the potential affordance in in-
put query with 3D objects areas. Thus, we incorporate large language models (LLMs) into 3D
affordance perception. LLMs, trained on trillions of tokens, excel in understanding and reasoning
about instructions and possess extensive world knowledge. For instance, when asked where to in-
teract with a mug to grasp it, LLMs suggests using the handle for a firm grip to avoid spilling. This
demonstrates LLMs’ world knowledge and the capability in understanding human-object interac-
tions. To harness this capability for 3D affordance perception, we introduce the 3D AffordanceLLM
Model, aiming to improve affordance detection in previously unseen contexts.

Our framework, 3D AffordanceLLM, as illustrated in Fig. 2, primarily consists of two main com-
ponents: (1) a point cloud multimodal model which is trained to accept point cloud and text inputs
and generate response, including a special token, <AFF>; (2) an Affordance Decoder (AFD), which
extracts hidden layer features from these <AFF> tokens and combines them with segmentation point
features to generate affordance masks.

3.2.1 MODEL ARCHITECTURE

As is shown in Fig. 2, our 3D AffordanceLLM consists of the following modules: a pre-trained
point cloud encoder fpe,a projector fproj, a point backbone fPB, an affordance decoder fAFD and a
pre-trained large language model (LLM) backbone fllm.

Point Encoder. The point cloud encoder fpe, takes a point cloud Pcloud ∈ Rn×d as input, where n
represents the number of points and d denotes the feature dimension of each point. The output of the
encoder is a sequence of point features X = (x1, x2, . . . , xm) ∈ Rm×c, where m is the number of
point features and c is the feature dimension. Similarly, the point backbone fPB, also processes input
point cloud Pcloud ∈ Rn×d, extracting the dense point cloud features X ′ = (x′

1, x
′
2, . . . , x

′
n) ∈

Rn×c′ , specifically tailored for segmentation tasks. These features are subsequently fed into the
Affordance Decoder.
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Instruction:
Please locate the areas 
on this mug that are ideal 
for grasping it?

Sure, it is <AFF>.Text
Embedding

Projector       LoRA      

LLM

Point 
Encoder

Point
Backbone

Affordance 
Decoder

ℎ௔௙௙
<AFF> Feature Point Feature

Learned Affordance query Frozen

Trainable

Figure 2: The Pipeline of 3D-ADLLM. Given the input point cloud and query reasoning instruction,
the point cloud multimodal model is trained with lora to predict special token <AFF>. Finally,
the special token and dense point features from fPB is fed into our designed affordance decoder to
generate the final affordance mask.

Projector. The projector fproj is a MLP layer that maps the point features X to point tokens Y =

(y1, y2, . . . , ym) ∈ Rm×c′′ , where c′′ is the dimension of the point tokens, matching the dimension
of the text tokens.

Large Language Model. The LLM backbone fllm is a decoder-only Transformer model (Vaswani
et al., 2017), which processes a sequence of tokens comprising text and point tokens. This mixed
token sequence is denoted as Z = (z1, z2, . . . , zk) ∈ Rk×c′′ , where k is the total number of
tokens. Leveraging a self-attention mechanism, the LLM backbone captures contextual relation-
ships between different token types, enabling it to generate responses based on both text and point
cloud inputs. Formally, the output of the LLM backbone fllm is a sequence of predicted tokens
Ẑ = (ẑ1, ẑ2, . . . , ẑk) ∈ Rk×c′′ . The prediction of the i-th token, ẑi, is conditioned on all previous
tokens, Z<i = (z1, . . . , zi−1), which can be expressed mathematically as:

ẑi = fllm(Z<i).

Each ẑi is passed through a final linear layer followed by a softmax operation, which maps the hidden
states to a probability distribution over the vocabulary. This layer is denoted as fvocab : Rc′ → RV ,
where V is the size of the vocabulary. The final prediction z̃i for the i-th token is the word in the
vocabulary with the highest probability, expressed as:

z̃i = arg max
w∈vocab

fvocab(ẑi)[w].

Affordance Decoder. Building on the success of learnable query-based methods in object segmen-
tation, we introduce an Affordance Decoder Module (AFD) that leverages a set of learnable output
queries conditioned on input questions, termed affordance queries Ta to decode segmentation masks.
A two-layer decoder updates both the point features and the question features via cross-attention.
Then, the updated query tokens and point features are used to dynamically predict affordance masks.

3.2.2 EMBEDDING AS AFFORDANCE

Unlike conventional tasks such as grounding, question answering, etc., within the realm of 3D large
multi-modal models (LMMs), the IRAS task is depicted to generate a affordance segmentation mask
directly given a reasoning query. Most current 3D LLM (such as 3D-LLM (Hong et al., 2023a),
ShapeLLM (Qi et al., 2024) support 3D scenes or objects and text as input, but they can only output
text or bbox and cannot directly output fine-grained segmentation masks. Inspired by the LISA
model (Lai et al., 2024), which directly outputs the segmentation mask in the 2D domain, we adopt
a similar idea in 3D affordance detection. To achieve that, we propose the embedding-as-affordance
paradigm to inject new affordance segmentation capabilities into the 3D LMM. The pipeline of our
method is illustrated in Fig. 2. Specifically, we expand the original LLM vocabulary by adding a
new token, <AFF>, which signals a request for an affordance output. Given a complex reasoning
instruction query Qaff and a point cloud input Pcloud, we feed them into the multimodal point clouds
LLM F3D−ADLLM, which outputs a text response ŷtxt. This process can be formulated as:

ŷtxt = F3D−ADLLM(Pcloud,Qaff).
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(b) Specific Task Finetuning:  Transferring Knowledge to Affordance Detection Knowledge      Transfer     

(a) Pre-training Stage:  Extracting General Segmentation Knowledge
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Where is the 
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Figure 3: Multi-stage training strategy. Illustration of transferring general segmentation knowledge
to affordance detection. (a) depicts the process of extracting general segmentation knowledge, while
(b) illustrates the framework for transferring this knowledge to affordance detection

When the LLM intends to generate a binary affordance mask, the output ŷtxt would include a
<AFF> token. We then extract the LLM last-layer embedding h̃aff corresponding to the <AFF>
token and apply an MLP projection layer Proj to obtain haff . Simultaneously, the point cloud
backbone fPB extracts the dense point clouds features f from the points input pclouds. Finally, haff

and f are fed to the decoder fAFD to produce the final affordance mask M̂aff . The process can be
formulated as

haff = Proj(h̃aff)

f = fPB(pcloud), M̂aff = fAFD(haff , f).

3.3 MULTI-STAGE TRAINING

Existing 3D affordance datasets, such as 3D AffordanceNet datasets, OpenAD datasets in (Deng
et al., 2021; Nguyen et al., 2023), are constrained in availability and dataset sizes. Thus, given
the scarcity of 3D affordance datasets for training large models, we devise a multi-stage training
strategy which extracts knowledge from general segmentation data and transfers it to IRAS affor-
dance detection. In addition, due to the varying scales of target affordance regions, we propose a
sample unbalanced loss factor to enhance the model’s learning effectiveness and adaptability across
different region scales.

3.3.1 EXTRACTING GENERAL SEGMENTATION KNOWLEDGE

Considering the limited amounts of affordance datasets for training large models, this stage aims to
leverage general datasets to equip the model with general recognition and segmentation capabilities
at the object-part level. Thus, we introduce Referring Object Part Segmentation (ROPS) task to
acquire the general knowledge.

ROPS Definition. Given a referring expression that denotes the name of the object’s components
Q and an object point cloud Pc ∈ Rn×3 consisting of N points, the objective of ROPS is to predict
a binary mask for Mp ∈ RN that corresponds to the query:

FModel(Qp, Pc) ⇒ Mp

In the pre-training phase, we employ the framework in Fig. 3 (a) to train the ROPS task on the
PartNet dataset (Mo et al., 2019). As depicted in Fig. 3 (a), the object point cloud is processed by a
trainable backbone to extract point features fPcloud

.The object part descriptions are encoded using a
frozen text encoder to generate text features fQpart , which are then mapped via an offline MLP layer
to produce f ′Qpart . Finally, f ′Qpart and fPcloud

are passed into the Mask Decoder to generate the final
part mask Mpart, formulated as:

Mpart = MaskDecoder(f ′Qpart , fPcloud
)

6
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Training Objectives. Unlike (Mo et al., 2019), which uses a multi-class head for prediction, our
stragety seeks to extract the knowledge relationship between referring object part description and the
corresponding mask regions. Thus, we solely employ Dice Loss and Binary CrossEntropy (BCE)
loss to guide the segmentation mask prediction.

L = λ1LBCE + λ2LDice.

3.3.2 TRANSFERRING KNOWLEDGE TO AFFORDANCE DETECTION

Building upon the extensive segmentation knowledge acquired from the ROPS task, we transfer this
knowledge to affordance detection by IRAS finetuning to enhance the model’s generalization. We
also propose a sample unbalanced loss factor to address the learning strategies for affordance regions
of different scales. Specifically, during IRAS fine-tuning: we use the pretrained checkpoint WfPB

and WfMD to initialize the modules fPB and fAFD in our framework 3D-ADLLM as shown in Fig. 2.
We then use the Lora method to fine-tune a pre-trained LLM for affordance segmentation.

Training Objectives. The model is trained end-to-end using text generation loss Ltxt and segmen-
tation mask loss Lmask. The overall objective L is the weighted sum of these losses, determined by
λtxt and λmask

L = λtxtLtxt + λmaskLmask.

Specifically, Ltxt is the auto-regressive cross-entropy loss for text generation, and Lmask is the mask
loss for high-quality segmentation. To compute Lmask, we use a combination of per-pixel BCE loss
and DICE Loss, with weights λbce and λdice. Given the ground-truth targets ytxt and M, these
losses are formulated as:

Ltxt = CE(ŷtxt,ytxt),

Lmask = λbceBCE(M̂,M) + λdiceDICE(M̂,M).

Sample Unbalanced Loss Factor. Due to the varying scales of target affordance regions, our model
3D-ADLLM naturally challenges model’s adaptiveness at different scales. This variability will re-
sults in an imbalance in the difficulty of learning samples between different affordance types during
the training process. To mitigate the issue of sample imbalance across different affordance types
during training, we apply weights to the mask losses for each class. The weighted loss is defined as:
Lmask =

∑n
i=1 ωiLi

mask. The weight ωi is calculated as:

ωi =

(
max{c1, c2, . . . , cm, c0}

ci

)1/4

where ci is the number of ground truth points for class i, and c0 denotes background points.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Network Architecture. We use Phi-3.5-mini-instruct (fllm) (Abdin et al., 2024) as our base LLM.
For the point encoder (fpe), we adopt Point-BERT (Yu et al., 2022), pre-trained with ULIP-2 (Xue
et al., 2024) in the ModelNet dataset (Vishwanath et al., 2009). The projector layer (fproj) between
the point encoder fpe and the LLM fllm is a linear layer. Additionally, we utilize the Point Trans-
former (Zhao et al., 2021)as the backbone for our point segmentation model (fPB).

Datasets. As is mentioned in Sec. 3.3, our training data is made up of two types of task data: (1)
Referring Object Part Segmentation Dataset: we build this dataset on PartNet (Mo et al., 2019),
which contains 573,585 part instances across 25,571 3D models and 24 object categories. For pre-
training, we split it into single-part segmentation instances. (2) Instruction Reasoning Affordance
Segmentation Dataset: we meticulously compile a question-point affordance dataset with 42119
paired samples from 3D AffordanceNet dataset (Deng et al., 2021), covering 23 classes and 18
affordance types. Detailed dataset visualization analysis can be seen in Appendix Sect. A.3.

Baseline Models. We compare our method with the following recent methods for zero-shot learn-
ing in 3D point clouds: ZSLPC (Cheraghian et al., 2019), TZSLPC (Cheraghian et al., 2020),
3DGenZ (Michele et al., 2021), OpenAD (Nguyen et al., 2023), IAGNet (Yang et al., 2023),
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Table 1: Main results of 3D-ADLLM on zero-short open vocabulary detection. The result is calcu-
lated over all classes. The overall results of all comparative methods, the best results are in bold. ∗
The method of ShapeLLM is tested without finetuning.

Method Full-view Partial-view
mIoUc Accc mAccc mIoUc Accc mAccc

TZSLPC (Cheraghian et al., 2020) 3.86 – 10.37 4.14 – 8.49
3DGenZ (Michele et al., 2021) 6.46 – 18.33 6.03 – 15.86
ZSLPC (Cheraghian et al., 2019) 9.97 – 18.70 9.52 – 17.16

ShapeLLM∗ (Qi et al., 2024) 0.88 0.28 0.99 1.49 1.35 1.70
OpenAD-PointNet++ (Nguyen et al., 2023) 13.53 3.97 16.40 11.29 2.41 13.88
OpenAD-DGCNN (Nguyen et al., 2023) 11.15 3.84 13.86 8.04 1.58 9.85
IAGNet (Yang et al., 2023) 16.16 19.07 23.92 14.36 16.90 21.73
LASO (Li et al., 2024) 22.41 15.90 30.22 20.06 8.80 26.84

Ours-Qwen 24.43 23.90 35.45 26.25 29.5 41.57
Ours-Phi 30.43 29.36 47.78 27.25 27.87 39.04

LASO (Li et al., 2024) and ShapeLLM (Qi et al., 2024). Detailed baseline model explanation for
experiments can be found in Appendix Sect. A.1.

Evaluation metrics. We divide the IRAS dataset following the split of OpenAD and evaluate the
close-set and open-set of IRAS. According to Nguyen et al. (2023), we use three metrics to evaluate
the results over all classes: mIoUc (mean IoU over all classes), Accc (overall accuracy over all
points), and mAccc (mean accuracy over all classes). However, unlike OpenAD, which includes the
”none” category in the calculation of metrics, we only compute the 36 affordance types, excluding
”none,” as it has little comparative significance. For a comprehensive evaluation versus existing
methods, we additionally assess each instance across the entire dataset. The specific evaluation
metrics over all instances: mIoUi (mean IoU over all instance data), mAcci (mean accuracy of
points over all instance data), mPreci (mean precision of points over all instance data), mReci

(mean recall of points over all instance data), mAPi
50 (mean average precision at 50% intersection

over union).

4.2 EXPERIMENT RESULTS

4.2.1 COMPARISON RESULTS

3D-ADLLM vs. Other Models. Table 1 demonstrates that our 3D-ADLLM achieves superior per-
formance across both full and partial view tasks, as well as on all three evaluation metrics. Notably,
3D AffordanceLLM significantly outperforms the runner-up model (LASO) in terms of mIoU, with
improvements of 8.02% and 7.19% on the full and partial view tasks, respectively. Compared to
OpenAD, which predicts regions based on a fixed set of affordance labels, our method utilizes long-
context understanding and reasoning for segmentation. In experiment results, our method surpasses
OpenAD in terms of mIoU 16.9% (full-view) and 15.96% (partial-view) separately across 18 affor-
dance types. Additionally, for metrics over all instance, we surpass the sota model (LASO) 23.38%
(full-view) and 24.93% (partial-view) in mAP50. The comparison results on close-set detection can
be found in Appendix Sect. A.2.

4.2.2 OUT-OF-DISTRIBUTION RESULTS

The test in out-of-distribution (ood) datasets is essential to assess the generalization capability of
the model. Thus, we constructed a new test dataset consisting of approximately 559 entries by
filtering out some combinations of affordance-object that already existed in our IRAS dataset from
the AffordPose dataset (Jian et al., 2023). Compared to existing datasets, this new dataset includes
different types of affordances as well as unique affordance-object pairs, such as (twist, faucet), (lever,
faucet), (press, dispenser), etc. As is shown in Table 3, our approach achieved the best zero-shot
performance on this ood data.
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Table 2: Zero-shot Open-vocabulary detection results on over all instances.

Method mIoUi mAcci mPreci mReci mApi50

Fu
ll-

vi
ew

OpenAD-PointNet++ 3.46 74.59 11.84 5.84 0.02
OpenAD-DGCNN 3.79 74.42 11.13 6.67 0.04
LASO 20.47 71.47 37.95 34.93 2.42
3D-ADLLM (ours) 30.28 70.66 40.89 55.93 27.80

Pa
rt

ia
l-

vi
ew OpenAD-PointNet++ 2.17 71.97 5.64 3.74 0.02

OpenAD-DGCNN 2.08 72.00 6.65 3.40 0.02
LASO 11.46 72.14 32.70 16.49 0.70
3D-ADLLM (ours) 28.72 68.28 41.71 47.73 25.63

Table 3: Zero-shot Open-vocabulary detection results on AffordPose data over all instances.

Method mIoUi mAcci mPreci mReci mApi50

OpenAD-PointNet++ 7.61 65.13 22.47 13.01 0.37
OpenAD-DGCNN 8.02 66.76 15.83 13.52 0.39
LASO 34.49 77.12 56.04 37.88 8.40
3D-ADLLM (ours) 36.33 74.79 55.46 46.80 36.33

4.3 ABLATION STUDY

Effects of Different Components. To investigate the effectiveness of each component in 3D-
ADLLM, we conduct experiments with different variants of 3D-ADLLM. In particular, we compare
2 different implementations: (1) w/o PC removes the pre-trained weights fPB and fAFD, directly
training our 3D-ADLLM; (2) w/o UL removes the sample unbalanced factor. As is shown in Table 6,
the performance of 3D-ADLLM drops significantly without either of these components. Notably,
the most substantial performance degradation with about 6% occurs in mIoU when the PC module
is removed. UL is also critical for our framework. Once it is removed, the performance, there is a
noticeable reduction in the model’s performance.

Effects of Different Backbones. As shown in Table 1, we experimented with different LLM
backbones to evaluate the effectiveness of our framework. Specifically, we chose Phi-3.5-
mini-instruct (Abdin et al., 2024) and Qwen2-1.5B (Yang et al., 2024) as the LLM backbone.

Table 4: The efforts with different
point encoder fpe in 3D-ADLLM.(Full-
View)
fpe mIoUc Accc mAccc

ULIP2 30.43 29.36 47.78
Uni3D 30.26 26.21 48.16

In terms of experimental results, Phi outperforms Qwen
in the full-view setting. However, in the partial-view
setting, the performance of Phi shows no significant
difference compared to Qwen. Based on these find-
ings, 3D-ADLLM adopts Phi as the default LLM back-
bone. In addition to testing different LLM backbones,
we also explored different point encoders. Table 4 sum-
marizes the performance of ULIP2 (Xue et al., 2024) and
Uni3D (Zhou et al., 2023) as point encoders, while ULIP2
obtained slightly better mean accuracy.

Effects of Different Learning Objectives. We define the Affordance Region Ratio (Arr) as
paff/pcloud, representing the proportion of affordance regions relative to the point cloud. In the
IRAS task, the average Arr is approximately 18%. However, for specific categories like ”pull” and
”listen,” it is around 5%, while for ”wear” it reaches about 40%. Variations in Arr across different
predictions lead to class imbalances. Dice Loss, a segmentation loss function, measures the similar-
ity between predictions and ground truth. Unlike Binary Cross-Entropy Loss (BCE), which focuses
on pixel-level differences, Dice Loss emphasizes global region similarity, making it more effective
for handling data imbalance. As shown in Table 5, the model utilizing Dice Loss achieves superior
mIoU metrics in both seen and unseen settings. Table 5 demonstrates that while the exclusive appli-
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cation of Dice Loss yields a marginal improvement on unseen data, it does not perform as well on
seen data when compared to the combined usage of Dice Loss and BCE Loss.

Table 5: The comparison results regarding differ-
ent settings of loss.(full-view)

Openset-mIoUc Closeset-mIoUc

DICE & BCE 30.43 42.35
DICE 31.00 38.65
BCE 15.99 31.14

Table 6: Results of 3D-ADLLM variants with
removing different components.(full-view)

Model mIoUc Accc mAccc

3D-ADLLM 30.43 29.36 47.78
3D-ADLLM w/o PC 24.82 20.54 36.73
3D-ADLLM w/o UL 25.35 26.84 40.69

4.4 QUALITATIVE RESULTS

As shown in Fig. 4, our model demonstrates the capacity to accurately comprehend object affor-
dance given the complex reasoning instruction. It is noteworthy that even when dealing with small
affordance components, such as the switch of faucet, our model still exhibits decent ability. More-
over, our 3D-ADLLM surpasses other models by employing a multi-stage training strategy that
facilitates knowledge transfer and extraction of world knowledge from LLMs. For example, when
identifying areas on a chair that can take a seat Fig. 4 (e) or areas that can wrap around a cup
Fig. 4 (g), our model significantly outperforms other models.

Please 
find...grab..

(a)

Can 
you...grab..

Please...take 
a seat..

Where 
is...grab.. If I ...wrap... Can 

you...raise..
Please 

help ...wrap...
(b) (d)

Where 
is...unlock...

(c) (e) (f) (g) (h)

OpenAD
(DGCNN)

Ours 
3D-ADLLM

GT

LASO

OpenAD
(PointNet++)

Figure 4: The visualization results of our 3D-ADLLM compared with others.

5 CONCLUSION

In this work, we reformulate the traditional affordance detection paradigm into Instruction Rea-
soning Affordance Segmentation (IRAS) task, enabling open-world affordance detection. Then, we
propose the multi-stage learning strategy with a novel defined Referring Object Part Segmentation
(ROPS) task to extract general segmentation knowledge to affordance detection. Finally, we accord-
ingly proposed the 3D-AffordanceLLM (3D-ADLLM), firstly injecting LLM into 3D affordance
perception, a framework designed for query reasoning affordance segmentation in 3D open scenar-
ios. Experimental results demonstrate the effectiveness of 3D-ADLLM, we hope our work can shed
new light on the direction of affordance detection in open-world scene in the future.
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A APPENDIX

A.1 BASELINE MODELS DETAILS

We compare our method with the following recent methods for zero-shot learning in 3D point clouds:
ZSLPC (Cheraghian et al., 2019), TZSLPC (Cheraghian et al., 2020), and 3DGenZ (Michele et al.,
2021). For these baselines, we change their original text encoders with CLIP and retain the same
settings in OpenAD (Nguyen et al., 2023). Furthermore, we incorporate two affordance detection
works (IAGNet (Yang et al., 2023) and LASO (Li et al., 2024)) to provide a more comprehensive
comparison of our approach. For IAGNet (Yang et al., 2023), an affordance detection method that
utilizes paired image-point cloud data as input. To tailor IAGNet (Yang et al., 2023) to our require-
ments, we seamlessly integrate a language model in place of its original image backbone, while
maintaining the rest of its architecture unchanged. ShapeLLM-7B (Qi et al., 2024) is a large-scale
point cloud model that accepts point cloud and natural language inputs and possesses grounding
capabilities. Consequently, we leverage its grounding abilities to perform zero-shot detection and
calculate masks for comparison.

A.2 COMPARISON RESULTS ON CLOSE SET

In this work, we primarily focus on enhancing affordance detection capabilities in open-world scene.
However, our model still performs well in closed-set affordance detection tasks. As is shown in
Fig. 7, Fig. 8, our 3D-ADLLM achieves optimal performance on nearly all metrics in both the over-
all-classes and over-all-instances settings.

Table 7: Main results of 3D-ADLLM compared with other methods on close-set detection over all
class.

Method Full-view Partial-view
mIoU Acc mAcc mIoU Acc mAcc

Point Transformer (Zhao et al., 2021) 41.26 – 67.03 40.51 – 65.34
PointNet++ (Qi et al., 2017) 41.26 – 68.14 41.10 – 66.74
DGCNN (Wang et al., 2019) 42.09 – 61.47 41.93 – 63.12

OpenAD-PointNet++ (Nguyen et al., 2023) 40.17 38.61 66.83 40.44 38.92 65.84
OpenAD-DGCNN (Nguyen et al., 2023) 41.17 35.71 59.17 39.87 35.15 59.27
IAGNet (Yang et al., 2023) 40.04 35.12 53.05 41.24 34.68 52.58
LASO (Li et al., 2024) 41.31 35.02 53.96 40.11 35.21 52.68

3D-ADLLM 42.85 41.84 66.35 41.92 43.40 61.93

Table 8: The performance of close set affordance detection over all instances.

Method mIoU mAcc mPrec mRec mAP50

Fu
ll-

vi
ew

OpenAD-PointNet++ 28.34 64.11 33.91 61.45 5.12
OpenAD-DGCNN 26.98 65.94 34.38 54.76 4.77
LASO 44.43 83.80 62.73 60.25 21.13
3D-ADLLM (ours) 46.29 81.24 57.90 64.27 46.38

Pa
rt

ia
l-

vi
ew OpenAD-PointNet++ 29.50 63.26 35.21 61.34 6.77

OpenAD-DGCNN 17.07 67.11 27.96 30.15 1.87
LASO 43.35 82.31 60.27 59.57 20.85
3D-ADLLM (ours) 44.06 79.64 56.23 64.21 46.60

A.3 DATA ANALYSIS
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Figure 5: The analysis of IRAS task.

Figure 6: The analysis of extensive test dataset in sec. 4.2.2.
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Figure 7: The analysis of ROPS task.
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