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Abstract

Large pre-trained language models (LMs) are
capable of not only recovering linguistic but
also factual and commonsense knowledge. To
access the knowledge stored in mask-based
LMs, we can use cloze-style questions and
let the model fill in the blank. The flexibil-
ity advantage over structured knowledge bases
comes with the drawback of finding the right
query for a certain information need. Inspired
by human behavior to disambiguate a question,
we propose to query LMs by example. To clar-
ify the ambivalent question Who does Neuer
play for?, a successful strategy is to demon-
strate the relation using another subject, e.g.,
Ronaldo plays for Portugal. Who does Neuer
play for?. We apply this approach of query-
ing by example to the LAMA probe and obtain
substantial improvements of up to 37.8% for
BERT-large on the T-REx data when provid-
ing only 10 demonstrations—even outperform-
ing a baseline that queries the model with up
to 40 paraphrases of the question. The exam-
ples are provided through the model’s context
and thus require neither fine-tuning nor an ad-
ditional forward pass. This suggests that LMs
contain more factual and commonsense knowl-
edge than previously assumed—if we query
the model in the right way.

1 Introduction

Language Models (LM) are omnipresent in modern
NLP systems. In just a few years, they’ve been es-
tablished as the standard feature extractor for many
different language understanding tasks (Karpukhin
et al., 2020; Zhang et al., 2020; Wang et al., 2019;
He et al., 2020). Typically, they are used to create a
latent representation of natural language input and
then fine-tuned to the task at hand. However, recent
work (Petroni et al., 2019; Jiang et al., 2020; Brown
et al., 2020; Roberts et al., 2020) has shown that
off-the-shelve language models capture not only lin-
guistic features but also large amounts of relational
knowledge, not requiring any form of re-training.

No Example

George Robert Gray died in [MASK].
office
[MASK] = infancy

Example
Fritz Umgelter died in Frankfurt.
George Robert Gray died in [MASK].

34.0%
10.2%

[MASK] = { Frankfurt 7.9 %
Berlin 53%

Figure 1: BERT’s top-3 predictions with probabilites
when prompted with the cloze-style question (top) ver-
sus when prompted with one additional example of the
same relation (bottom).

The LAMA probe by Petroni et al. (2019) was
designed to quantify the amount of relational
knowledge present in (mask-based) language mod-
els. While the task of predicting the right object
for a subject-relation tuple remains the same as
for a standard knowledge base (KB) completion
query, the input is structured in a cloze-style sen-
tence. For example, a KB completion query of
the form (Dante, born-in, X) becomes "Dante was
born in [MASK].". Petroni et al. (2019) show that
BERT (Devlin et al., 2019) performs on par with
competitive specialized models on factual and com-
monsense knowledge. The performance on this
task can only be seen as a lower bound to the ac-
tual knowledge present in language models as the
choice of natural language template for a given re-
lation might be suboptimal (Petroni et al., 2019;
Jiang et al., 2020). The more general question here
is "How to query an LM for a specific information
need?"”. Jiang et al. (2020) propose to use multi-
ple paraphrases of the probe and then aggregate
the solutions. Petroni et al. (2020), on the other
hand, add relevant context. Both approaches can
be linked to common human behavior. In human



dialog, a question can be made more precise both
by paraphrasing or adding additional context infor-
mation. Since language models are trained on large
amounts of human-generated data, the intuition
of phrasing the information need most naturally
seems obvious. Humans excel at pattern recogni-
tion and pattern continuation for many different
modes of representation (Shugen, 2002). Concepts
embedded in language are no exception to this.
Therefore, another common way to probe a hu-
man’s knowledge is by providing examples and
asking them to transfer the relation provided to a
new object. For example, asking Who plays Neuer
for? is ambiguous as both Bayern Munich and Ger-
many would be correct answers. However, when
contextualizing the question with an example, the
answer is clear: I know Ronaldo plays for Portugal.
Who plays Neuer for?.

In this work, we apply the concept of querying
by example to probe language models. Additional
to the cloze-style question, we provide other exam-
ples of the same relation to the model’s input. The
previous example’s input then becomes "Ronaldo
plays for Portugal. Neuer plays for [MASK].". We
show that by providing only a few demonstrations,
standard language models’ prediction performance
improves drastically. So much so that for the TREx
dataset, it becomes an even more powerful tech-
nique to retrieve knowledge than using an ensem-
ble of up to 40 different paraphrases (Jiang et al.,
2020), while requiring only a single forward pass
instead of 40.

2 Related Work

Language Model Probes Petroni et al. (2019)
started to investigate how much factual and com-
monsense knowledge LMs posses. They released
the LAMA probe, which is a dataset consisting of
T-REx (Elsahar et al., 2018), Google-RE, Concept-
Net (Speer et al., 2018), and SQuAD (Rajpurkar
et al., 2016). Each dataset is transformed to be a
collection of (subject, relation, object)-triplets and
pruned to only contain single token objects present
in BERT’s vocabulary. Additionally, they provide
templates in natural language for each relation.
Their investigation reveals that BERT-large has re-
markable capabilities in recalling factual knowl-
edge, competitive to supervised baseline systems.

Since there is usually more than one way to ex-
press a relation, the LAMA probe score can only
be regarded as a lower bound (Petroni et al., 2019;

Jiang et al., 2020). To tighten this lower bound,
Jiang et al. (2020) propose an automatic discover-
ing mechanism for paraphrases together with an
aggregation scheme. By querying the LM with a
diverse set of prompts, they significantly improve
the LAMA probe’s baseline numbers for BERT
models. However, this approach incurs the cost of
additional queries to the LM, an optimization pro-
cedure to aggregate the results, and the extraction
of paraphrases.

Machine reading comprehension (MRC) and open-
domain question answering (QA) are fields in NLP
dominated by large pre-trained LMs. Here, the
premise typically is that the model is capable of
extracting the answer from the provided context,
rather than having it stored in its parameters’.
Petroni et al. (2020) extend this line of thought
to retrieve factual knowledge from LMs by pro-
viding relevant context but without fine-tuning the
model. Their experiments show that providing rel-
evant passages significantly improves the scores on
the LAMA probe for BERT models.

Few-Shot Learning The term few-shot learning
refers to the practice of only providing a few exam-
ples when training a model, compared to the typ-
ical approach of using large datasets (Wang et al.,
2020). In the NLP domain, recent work by Brown
et al. (2020) suggests to use these few examples
only in the context, as opposed to actually training
with it. Fittingly, they call this approach in-context
learning. Here, they condition the model on a natu-
ral language description of the task together with
a few demonstrations. Their experiments reveal
that the larger the model, the better its in-context
learning capabilities. Our approach is very simi-
lar to in-context learning, with the difference that
we do not provide a description of the task and
utilize natural language templates for the relations.
The motivation is that this should closely resem-
ble human behavior of providing examples of a
relation: instead of providing a list of subject and
objects and let the other person figure out the re-
lation, a human typically provides the subject and
objects embedded in the template relation. More-
over, we understand our approach not as a learning
method, but rather as a querying technique that dis-
ambiguates the information need.

Schick and Schiitze (2020b) argue that small LMs

'With the notable exception of the work of Roberts et al.
(2020), which uses a T-5 model without any access to an
additional knowledge base.



can be effective for few-shot learning too. How-
ever, they approach the problem of limited exam-
ples differently; instead of providing it as condi-
tioning in the input, they actually train with it. By
embedding the data into relation templates, they
obtain training data that is closer in style to the
pre-training data and, thus, can learn with fewer
samples. Gao et al. (2020) take this concept even
further and automate the template generation. Ad-
ditionally, they also find that—when fine-tuning
with few samples—providing good demonstrations
in the context improves the model’s performance.

3 Background
3.1 Language Models for cloze-style QA

In this work, we probe mask-based language mod-
els for their relational knowledge. The considered
facts are triplets consisting of a subject, a rela-
tion, and an object (s, r, 0). Language models are
trained to predict the most probable word given
the (surrounding) context. Hence, to test a model’s
factual knowledge, we feed it natural text with the
object masked out. This requires a mapping from
the relation r to a natural language prompt ¢, with
placeholders for subject and object, e.g., the re-
lation r = age becomes t, = [s] is [o] years old.
When probing for a single (s, r, o)-triplet, the in-
put to the language model is the natural language
prompt ¢, of the relation r together with the subject
s. It outputs a likelihood score Py for each token
in its vocabulary V which we use to construct a
top-k prediction subset V'’ for the object o:

V' = arg max 3" Pm(o]s,t) (D)

/ /
Vv Vi=k 5=,

The language model succeeds for the triplet @k if
o € V'. For example, we say that it knows the fact
(s = Tiger Woods, r = age, 0 = 45) @3, if for the
query "Tiger Woods is [MASK] years old" it ranks
the token "45" within the top-3 of the vocabulary.

3.2 Datasets

We use the LAMA probe in our experi-
ments (Petroni et al., 2019). It’s a collection of
factual and commonsense examples provided as
(s, 7, 0)-triplets® with single token objects. More-
over, it provides human-generated templates ¢,
for each relation r. The statistics about the three
considered corpora T-REx (Elsahar et al., 2018),

>We do not consider the SQuAD dataset of the probe as it
has no clear notion of relation.

. Statistics
Corpus Relation #Facts  #Relations
birth-place 2937 1
birth-date 1825 1
Google-RE death-place 765 1
Total 5527 3
1-1 937 2
N-1 20006 23
T-REx N-M 13096 16
Total 34039 41
ConceptNet  Total 11458 16

Table 1: Statistics for the corpora of the LAMA data.

Google-RE?, and ConceptNet (Speer et al., 2018)
are provided in Table 1.

3.3 Models

We investigate the usefulness of querying by
example, for three individual language models:
BERT-base, BERT-large (Devlin et al., 2019), and
ALBERT-xxI (Lan et al., 2020). These models are
among the most frequently used language mod-
els these days*. For both BERT models, we con-
sider the cased variant, unless explicitly noted oth-
erwise.

4 Method

Our proposed method for querying relational
knowledge from LMs is simple yet effective.
When we construct the query for the triplet (s, r, 0),
we provide the model with additional samples
{(s',7,0'),(s",7,0"),...} of the same relation
r. These additional examples are converted
to their natural language equivalent using the
template ¢, and prepend to the cloze-style sentence
representation of (s, r, 0). The intuition is that the
non-masked examples provide the model with an
idea of filling in the gap for the relation at hand. As
can be seen in Figure 1, providing a single example
in the same structure clarifies the object requested
for both humans and BERT. This is particularly
useful when the template ¢, does not capture the
desired relation r between subject s and object o
unambiguously, which in natural language is likely
to be the case for many relations. In this sense, it
tries to solve the same problem as paraphrasing. A

3
https://github.com/google-research-datasets/
relation-extraction-corpus

*According to the statistics from https:
//huggingface.co/models?filter=pytorch,
masked-1m.
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query is paraphrased multiple times to align the
model’s understanding of the query with the actual
information need. When we provide additional
examples, we do the same by showing the model
how to apply the relation to other instances and
ask it to generalize. Of course, the model does not
reason in this exact way; rather, through its training
data, it is biased towards completing patterns as
this is a ubiquitous behavior in human writing.

Query Predictions

No Example
Rodmarton’is a farmer (3.9%)

businessman (2.5%)

Random Example
M.S.I. Airport is a airport.
Rodmartonisa town (16.9%)
village (14.7%)
Close Example
Nantmor is a village.
Rodmartonisa village (75.5%)
hamlet (16.0%)
Arrow Operator
Totopara — village
The argument — album
Tisza — river
Rodmarton — village (21.4%)

town (8.7%)

Table 2: Example queries with predictions (from BERT-
large) for the different querying methods. The correct
answer is marked in bold.

Since we only adjust the context fed to the model,
we do not incur the cost of additional forward
passes. When paraphrasing, on the other hand,
each individual template requires another query
to the model. Moreover, our approach does not
require any learning, i.e., backward passes, and
hence is very different from the classic fine-tuning
approach and pattern-exploiting training (Schick
and Schiitze, 2020a,b).

In Table 2, we compare different approaches
of querying by example. The left column shows
the input to the model, i.e., the query. The right
column shows BERT-large’s top-2 prediction,
with its corresponding probabilities®. The first
row of the table shows that completing the is-a
relation for the village Rodmarton is tricky for the
model. Its top predictions are not even close to
the correct answer suggesting that BERT either
does not know about this particular village or that

5A village in South West England.
The probabilities are obtained by applying a softmax on
the logit output over the token vocabulary.

the information need is not well enough specified.
Interestingly, when prepending the query with
another random example of the same relation (2nd
row), the model’s top predictions are fown and
the ground-truth village. This proves that BERT
knows the type of instance Rodmarton is; only the
extraction method (the cloze-style template) was
not expressive enough.

Close Examples When humans use examples,
they typically do not use a completely random sub-
ject but use one that is, by some measure, close
to the subject at hand. In our introductory exam-
ple, we used Ronaldo to exemplify an information
need about Neuer. It would have been unnatural
to use a musician here, even when describing a
formally correct plays-for relation with them. We
extend our approach by only using examples for
which the subject is close in latent space to the
subject querying for. We use the cosine similarity
between the subject encodings using BERT-base.
More formally, we encode a subject s using

fo(s) = By([CLS] + s + [SEP))ES,  (2)

with B(x)®"S being the BERT encoding of the
CLS-token for the input z, and ¢ being the BERT
model’s parameters. We then obtain the top-k most
similar subjects to s in the dataset D through maxi-
mizing the cosine similarity, i.e.,

fo(s)" fo(s)
[ fo(s) Il fo ()l
3)

D =ar

max
& picp\ o) D=k 2

s'eD’!

From the top-k subset of most similar subjects
D', we randomly sample to obtain our priming ex-
amples. Table 2 (3rd row) shows the chosen close
example to Rodmarton, which is Nantmor, another
small village in the UK. Provided with this particu-
lar example, BERT-large predicts the ground-truth
label village with more than 75% probability.

Arrow Operator Brown et al. (2020) propose to
use LMs as in-context learners. They suggest pro-
viding "training" examples in the model’s context
using the arrow operator, i.e., to express an (s, 7, 0)
triplet they provide the model with s = 0. We can
apply this concept to the LAMA data by using the
same template ¢, =" [s] = [0]" Vr. In Table 2 (last
row), we see that by providing a few examples of



the is-a relation, BERT-large can rank the ground-
truth highest even though the relationship is never
explicitly described in natural language. However,
not using a natural language template makes the
model less confident in its prediction, as can be
seen by the lower probability mass it puts on the
target.

5 Results

We focus the reporting of the results on the mean
precision at k (P@k) metric. In line with previous
work (Petroni et al., 2019, 2020; Jiang et al., 2020)7,
we compute the results per relation and then aver-
age across all relations of the dataset. More for-
mally, for the dataset D = {R1,..., R, } that con-
sists of n relations where each relation has multiple
datapoints (x, y), we compute the P@k score as:

>y, @

1 1

POk = —
D) 2 Rl ,
(z,y)ER;

R;€D

where 1 denotes the indicator function that is 1 if
the ground truth y is in the top-k prediction set V'
for the input x and 0 otherwise.

Table 3 shows the P@1 scores of different mod-
els and querying approaches across the LAMA
probe’s corpora. While for the Google-RE data,
providing additional examples shows to be detri-
mental, we see massive prediction performance
gains for T-REx and ConceptNet. Most notably, the
P@1 score of BERT-large on T-REX increases by
37.8% to 44.8 when providing 10 close examples.
Similarly, the lower bound on Albert’s performance
for T-REx (ConceptNet) can be improved by up to
72.3% (25.0%) with 10 close examples.

Google-RE For the Google-RE subset of the
data, querying by example hurts the predictive ca-
pabilities of LMs. In the following, we provide an
intuition of why we think this is the case. Look-
ing at the baseline numbers of the individual rela-
tions for this data, we see that the performance is
largely driven by predicting a person’s birth and
death place; the birth-date relation doesn’t play a
significant role because BERT is incapable of ac-
curately predicting numbers (i.e., dates) (Lin et al.,
2020; Wallace et al., 2019). The birth and death
place of a person BERT-large predicts correctly

"The P@1 score corresponds to Jiang et al. (2020)’s micro-
averaged accuracy

16.1% and 14.0% of the time, respectively; signifi-
cantly lower than the 32.5% P@1 score among the
relations of the T-REx data. Recent work describes
that BERT has a bias to predict that a person with,
e.g., an Italian sounding name is Italian (Rogers
et al., 2020; Poerner et al., 2020). We suspect that
this bias helps BERT predict birth and death places
without knowing the actual person, and therefore it
is not an adequate test of probing an LMs factual
knowledge. As a consequence, the predictions it
makes are more prone to errors when influenced by
previous examples.

T-REx Figure 2 depicts the mean precision at
1 on the T-REx corpus for a varying number of
examples provided. It shows that even a few ad-
ditional examples can significantly improve the
performance of the LMs. However, there is a satu-
ration of usefulness for more examples that seems
to be reached at around 10 examples already. In-
terestingly, with 10 examples, BERT-large even
slightly improves upon the optimized paraphrase
baseline from Jiang et al. (2020), while only requir-
ing a single forward pass.

Table 4 shows the improvement in P@1 score for
the individual relations that most (and least) bene-
fit from additional examples for BERT-large. The
relations for which demonstrations improve the
performance the most typically have one thing in
common: they are ambiguous. Prototypical am-
biguous relations like located-in or is-a are among
the top benefiting relations. One rather untypi-
cal improvement candidate is the top-scoring one
of religion-affiliation. Suspiciously, this is also
the most improved relation by the paraphrasing of
Jiang et al. (2020). A closer look at the examples
reveals the cause: the target object labels for the
religions are provided as nouns (e.g., Christianity,
Islam), while the template ([s] is affiliated with
the [o] religion) indicates to use the religion as an
adjective (e.g., Christian, Islamic). Hence, both
paraphrasing the sentence such that it is clear to
use a noun or providing example sentences that
complete the template with nouns alleviate this
problem. The relations that benefit the least from
demonstrations are unambiguous, like capital-of
or developed-by.

ConceptNet While T-REx probes for factual
knowledge, the ConceptNet corpus is concerned
with commonsense relations. The improvements
of querying by example are significant with



Corpus Relation Baselines LM
"pus Bb Bl Al Bbyy Bl,  Bb3 Bbl0 BbLO BI3 BIL BILY AIL

birth—place 14.9 16.1 6.3 - 10.5 +0.4 13.2 +0.3 11.7 +0.3 8.9 +0.5 11.5 +0.3 11.0 +0.3 7.0 +0.3
Google.rp  Pirth-date 16 15 15 - Llios Llgo2 12401  ldaos  ldigo 15401 ldios
s dealh—place 13.1 - 2.0 - 9.2 +0.5 11.8 +0.7 10.4 +1.0 7.2 +0.7 9.1 +0.5 8.5 +1.1 5.0 +0.6
Total 99 105 33 [ 104 113 69401 87102 78104 58104 T4io1 70104 45103
1-1 68.0 745 712 . 597106 620106 62.6 108 664109 67.6406 687 407 69.0 107
T-REx N-1 324 342 249 - 323401 379402 417404 388402 448102 479402 450402
N-M 24.7 24.8 17.2 - 279 +0.4 31.3 +0.2 34.8 +0.1 31.4 +0.4 35.0 +0.1 37.2 +0.3 33.5 +0.2
Total 31.1 325 24.2 39.6 439 31.9 +0.2 36.5 +0.2 40.0 +0.2 37.3 +0.2 42.1 +0.2 44.8 +0.1 41.7 +0.1
ConceptNet Total 15.9 19.5 21.2 - 15.2 +0.2 16.2 +0.2 17.1 +0.2 19.6 +0.3 21.2 +0.2 22.0 +0.3 26.5 +0.2

Table 3: Mean precision at one (P@1) in percent across the different corpora of the LAMA probe. The baseline
models shown are BERT-base (Bb), BERT-large (Bl), Albert-xxlarge-v2 (Al), and the best versions of BERT-large
and BERT-base by Jiang et al. (2020) that are optimized across multiple paraphrasesS(Bbopt and Bl,,;). The LM
section on the right shows the results for different querying by example approaches. Here, the superscript denotes
the number of examples used and the subscript ce denotes that only close examples have been used. Since the
choice of examples alters the predictions of the model and thus introduces randomness, we provide the standard

deviation measured over 10 evaluations.

TREX

—e— bert-large
bert-base
—— albert-xxlarge

0.0

0 5 10

# Examples

15 20

Figure 2: P@1 score for TREx over the number of ex-
amples provided. The dashed line shows the baseline
value for when no additional example is given.

12%, 7.5%, and 25% relative improvement for
BERT-base, BERT-large, and Albert-xxlarge.

More detailed plots for all the corpora and sev-
eral metrics are provided in Appendix A.4.

5.1 The Change of Embedding

To further investigate the disambiguation effect
of additional examples, we take a look at the
latent space. In particular, we’re interested in
how the clusters of particular relations, formed by
the queries’ embeddings, change when providing
the context with additional examples. Figure 3
visualizes BERT-large’s [CLS]-token embedding
for queries from the T-REx corpus, using t-SNE
(van der Maaten and Hinton, 2008). The individ-
ual colors represent the relations of the queries.
The first two images depict the clustering when

AP@1
ID Template o=l 1n=3 n=5
P140  [s]is affiliated with the [o] religion. 51.0 67.4 70.0
P30 [s] is located in [0] . 47.8 553 558
P136  [s] plays [o] music . 128 440 545
P31 [s]isalo]. 8.2 203 244
P178 [s] is developed by [o] . -83 42 -68
P1376 [s]is the capital of [0] . -16.3 -8.2 -8.6

Table 4: List of relations of T-REXx that benefit the most
(least) by additional examples. The right column pro-
vides the improvement in precision at 1 score when {1,
3, 5} examples are provided for BERT-large.

using the natural language template without addi-
tional demonstrations (left) and ten demonstrations
(right). The fact that the clusters become better
separated is visual proof that providing examples
disambiguates the information need expressed by
the queries. The two plots on the right show the
clustering when instead of a natural language tem-
plate, the subject and object are only separated by
the arrow operator "=-". Here, we see an even more
significant change in separability when providing
additional demonstrations, as the actual informa-
tion need is more ambiguous.

5.2 TextWorld Commonsense Evaluation

An emerging field of interest inside the NLP com-
munity is text-based games (TBG). An agent is
placed inside an interactive text environment in
these games and tries to complete specified goals—
only using language commands. To succeed, it

8These models involve one query to the model per para-
phrase.



NL Template w/ 0 Examples NL Template w/ 10 Examples

{3

=> {} Template w/ 0 Examples {} => {} Template w/ 10 Examples

x  [s] was bornin [o] .
[s] died in [o] .

[s]is [o] citizen .
[s]is a subclass of [0] .

—100 0 100

[s]is located in [0] .
[slisa[o].

[s]is @ member of [0] .
[s] shares border with [0] .

Figure 3: BERT-large’s [CLS]-token embedding of a subset of T-REx queries visualized in two dimensions using
t-SNE (van der Maaten and Hinton, 2008). Each point is a single query and the color represents the corresponding
relation class. The ellipses depict the 2-std confidence intervals. The individual images show the clustering for
both the natural language and the ([s]; [0]) template with either no examples or ten examples provided.

requires a deep language understanding to decide
what are reasonable actions to take in the scene that
move it closer to its final goal. These environments
are often modeled on real-world scenes to foster
the commonsense-learning capabilities of an agent.
The TextWolrd Commonsense (TWC) game world
by Murugesan et al. (2020) focus specifically on
this aspect. There, the agent is placed in a typical
modern-house environment to tidy up the room.
This involves moving all the objects in the scene to
their commonsense location, e.g., the dirty dishes
belong in the dishwasher and not in the cupboard.
Murugesan et al. (2020) approach this problem by
equipping the agent with access to a commonsense
knowledge base. Replacing a traditional KB with
an LM for this task is very intriguing as the LM has
relational knowledge stored implicitly and is capa-
ble of generalizing to similar objects. To test the
feasibility of using LMs as commonsense knowl-
edge source in the TWC environment, we design the
following experiment’: We use a static agent that
picks up any misplaced object o at random and puts
it to one of the possible locations [ in the scene ac-
cording to a specific prior p(l|o). This prior p(l|o)
is computed at the start of an episode for all object-
location combinations in the scene, using an LM.
We use the arrow operator as described in Table 2
and vary the number of examples provided. In Fig-
ure 4, we show the result for albert-xxlarge on the
hard games of TWC, compared to a simple uniform
prior (i.e., p(l;|o) = const. Vi), and Murugesan
et al. (2020)’s RL agent with access to a common-
sense KB. We see the same trend as in the LAMA
experiments: providing additional examples of the
same relation boosts performance significantly and
saturates after 10-15 instances.

%Details and the pseudocode are provided in Apendix A.3

TextWorld Commonsense

© 0.60 : —_
g __________ |t A
055 < e T
IS uniform prior
TEU 0.50 —e— albert-xxlarge
5 oL
S 045

0.40

0 5 10 15 20
# Examples

Figure 4: Normalized score for the hard games of the
TWC environment over the number of examples pro-
vided for albert-xxlarge. The dashed baselines are
the static agent with a uniform prior and the TWC
commonsense agent by Murugesan et al. (2020). The
shaded regions depict the standard deviation over 10
runs.

5.3 Word Analogy Evaluation

To evaluate the usefulness of querying pre-trained
language models by examples for linguistic knowl-
edge, we move to the word analogy task—a stan-
dard benchmark for non-contextual word embed-
dings. This evaluation is based on the premise
that a good global word embedding defines a latent
space in which basic arithmetic operations corre-
spond to linguistic relations (Mikolov et al., 2013b).
With the rise of contextual word embeddings and
large pre-trained language models, this evaluation
has lost significance. However, we consider ap-
proaching this task from the angle of querying
linguistic knowledge from an LM instead of per-
forming arithmetics in latent space. By providing
examples of the linguistic relation with a regular
pattern in the context of the LM, we prime it to
apply the relation to the final word with its masked
out correspondence.



BATS ([s]; [o])
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Figure 5: P@1 score on BATS over the number of ex-
amples provided. The performance of the GloVe and
SVD benchmark models by Gladkova et al. is shown
with the black, dashed lines.

We consider the Bigger Analogy Test Set (BATS)
(Gladkova et al.) for our experiments. BATS con-
sists of 40 different relations covering inflectional
and derivational morphology, as well as lexico-
graphic and encyclopedic semantics. Each rela-
tion consists of 50 unique word pairs. However,
since most pre-trained LMs, including BERT and
Albert, use subword-level tokens for their vocab-
ulary, not all examples can be solved. In particu-
lar, 76.1% and 76.2% of the targets are contained
in BERT’s and Albert’s vocabulary, respectively—
upper bounding their P@1 performance.

Figure 5 depicts the P@1 score'” for the individual
LMs on BATS. Noticeably, also on this task, the
LMs benefit from additional examples up to a cer-
tain threshold for which the usefulness stagnates.
Both BERT models do not beat Gladkova et al.’s
GloVe (Pennington et al., 2014) benchmark. This
is in part because not all targets are present in the
token vocabulary. Considering only the solvable
word pairs, BERT-large achieves a P@1 score of
30.6% with 15 examples—beating the GloVe base-
line achieving 28.5%. Interestingly, Albert-xxlarge
outperforms all other models, including the base-
lines, by a large margin. Figure 7 in Appendix A.4
breaks down the LM’s performance across the dif-
ferent relations of BATS and compares it against
the GloVe baseline. Albert beats GloVe on almost
all relations where its vocabulary does not limit it;
the most significant improvements are in the deriva-
tional morphology and lexicographic semantics cat-
egories. It is outperformed by GloVe only on two
relations: country:capital and UK city:county. Es-

!The P@1 score corresponds to Gladkova et al.’s reported
accuracy score.

pecially the former country:capital category is very
prominent and constituted 56.7% of all semantic
questions of the original Google test set (Mikolov
et al., 2013a)—potentially influencing the design
and tuning of non-contextual word embeddings.

6 Discussion

Augmenting the context of LMs with demonstra-
tions is a very successful strategy to disambiguate
the query. Notably, it is as successful, on TRE-x,
as using an ensemble of multiple paraphrases. The
benefit of additional examples decreases when the
information need is clear to the model; this is the
case for unambiguous prompts or when enough
(around 10) demonstrations are provided. Even in
the extreme case of ambiguity, for example, when
the arrow operator (/s] => [o]) is used to indicate
a relation, providing only a handful of examples
clarifies the relation sufficiently in many cases. We
showed that the usefulness of providing additional
demonstrations quickly vanishes. Hence, when
having access to more labeled data and the option
to re-train the model, a fine-tuning strategy is still
better suited to maximize the performance on a
given task. Moreover, casting NLP problems as
language modeling tasks only works as long as the
target is a single-token word of the LM’s vocabu-
lary. While technically large generation-based LMs
as GPT (Brown et al., 2020; Radford et al., 2018)
or TS5 (Raffel et al., 2019) can generate longer se-
quences, it is not clear how to compare solutions
of varying length.

7 Conclusion

In this work, we explored the effect of providing
examples to probing LMs relational knowledge.
We showed that already a few demonstrations—
supplied in the context of the LM—disambiguate
the query to the same extent as using an optimized
ensemble of multiple paraphrases. We base our
findings on experimental results of the LAMA
probe, the BATS word analogy test, and a TBG
commonsense evaluation. On the T-REx corpus’
factual relations, providing 10 demonstrations im-
proves BERT’s P@1 performance by 37.8%. Simi-
larly, on ConceptNet’s commonsense relations, Al-
bert’s performance improves by 25% with access to
10 examples. We conclude that providing demon-
strations is a simple yet effective strategy to clarify
ambiguous prompts to a language model.
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A Appendices

A.1 Implementation Details

The source code to reproduce all the experiments is provided in the supplementary material. All individual
runs reported in the paper can be carried out on a single GPU (TESLA P100 16GB), though speedups can
be realized when using multiple GPUs in parallel. The wall-clock runtime for the corpora of the LAMA
probe is shown in Table 5.

All models used in this work are accessed from the Huggingface’s list of pre-trained models for PyTorch
(Wolf et al., 2019). Further details about these models are provided on the following webpage: https:
//huggingface.co/transformers/pretrained_models.html.

Corpus Model # Parameters Avg. Input Length Runtime [s]
bert-base-cased 5.5 12.8
bert-base-cased'’ 109M 60.3 36.1
bert-base-cased’) 60.1 39.6

Gooel bert-large-cased 5.5 20.5

00gle-RE o1 Jarge-cased!? 335M 60.3 85.5
bert-large-cased’) 60.1 99.7
albert-xxlarge-v2 5.5 85.4
albert-xxlarge-v2'0 223M 60.3 466.0
albert-xxlarge-v2.? 60.1 544.9
bert-base-cased 7.6 72.6
bert-base-cased '’ 109M 83.2 239.0
bert-base-cased.? 82.7 234.1

T.RE bert-large-cased 7.6 119.3

TREX bert-large-cased '’ 335M 83.2 747.5
bert-large-cased’) 82.7 596.5
albert-xxlarge-v2 7.6 504.1
albert-xxlarge-v21° 223M 83.2 32274
albert-xxlarge-v2.? 82.7 3340.9
bert-base-cased 94 38.5
bert-base-cased '’ 109M 102.8 121.9
bert-base-cased!) 104.5 124.6

c bert-large-cased 9.4 80.4

onceptNet o Jarge-cased!? 335M 102.8 311.4
bert-large-casedl? 104.5 324.3
albert-xxlarge-v2 9.4 408.0
albert-xxlarge-v2'° 223M 102.8 1760.8
albert-xxlarge-v21? 104.5 1853.6

Table 5: The runtime in seconds to go once through the full data from the LAMA probe on a single TESLA P100
GPU with a batch size of 32. The superscript of the model represents the number of examples used for querying
and the subscript of ce indicates that close examples are used.

A.2 The Choice of Template

When providing examples, we give the model the chance to understand the relationship for which we
query without providing additional instructions. This naturally raises the question of whether or not
natural language templates are even necessary to query LMs. Most prominently, the in-context learning
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Figure 6: P@1 score for BERT-large on TREXx over the number of examples provided. Each line corresponds to
one template determining how the examples are provided: (i) with the natural language templates from the LAMA
probe (NL Template), (ii) separated by a semicolon (([s]; [0])), (iii) separated by a one-lined arrow ([s] -> [o]),
or (iv) separated by a double-lined arrow ([s] => [0]). The dashed line shows the baseline value for when no
additional example is given.

of Brown et al. (2020) shows that large LMs can complete patterns even when not provided in natural
language. In particular, they use the "=>"-operator to express the relation between input and output.
In Figure 6, we compare the natural language cloze-style template against three different non-language
templates: (i) [s] => [o], (i) [s] -> [o], (iii) ([s]; [o]). Surprisingly, Brown et al. (2020)’s "=>"-operator
performs the worst for BERT-large on T-TREX, while separating the subject and objects by a semicolon
works best—almost on par with the performance of the natural language template after providing just a
single example. This result underlines BERT’s remarkable pattern-matching capabilities and suggests that
a natural language description of the relation is not always needed—even when querying relatively small
LMs.

A.3 Details TextWorld Commonsense Evaluation

Text-based games (TBG) are computer games where the sole modality of interaction is text. Classic
games like Zork (Infocom, 1980) used to be played by a large fan base worldwide. Today, they provide
interesting challenges for the research field of interactive NLP. With the TextWorld framework by Co6té
et al. (2018), it is possible to design custom TBGs; allowing to adapt the objects, locations, and goals
around the investigated research objectives. TBGs of this framework can vary from treasure hunting
(Coté et al., 2018) to cooking recipes (Adhikari et al., 2021; Adolphs and Hofmann, 2019), or—as in the
experiment at hand—tidying up a room (Murugesan et al., 2020). Murugesan et al. (2020) designed the
TextWorld Commonsense environment TWC around the task of cleaning up a modern house environment
to probe an agent about its commonsense abilities. For example, a successful agent should understand
that dirty dishes belong in the dishwasher while clean dishes in the cupboard. Murugesan et al. (2020)
approach this problem by developing an agent that, through a graph-based network, has access to relevant
facts from the ConceptNet (Speer et al., 2018) commonsense knowledge base. Here, the obvious downside
of static KBs for commonsense knowledge extraction becomes apparent: it does not generalize to not
listed object-location pairs. Hence, slight deviations of typical entities require additional processing to be
able to query the KB. A large pre-trained LM seems to be better suited for this task due to its querying
flexibility and generalization capabilities. We test these abilities by designing a static agent as described
in the following Algorithm 1, that has access to a large pre-trained LM.
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Algorithm 1: LM-prior Agent

Input: TWC game G, pre-trained language model LM

05 — objects in the scene
ls < locations in the scene
o + large list of all possible objects across all games

Function GetPrior (0s,ls,0, LM) :

/+ Function to determine a probability distribution over the
locations [l for each object in o0s using the language model
LM. */

p < empty array of size |os| X |ls|

forall object o; € 05 do

d < Randomly sample demonstrations for objects € o\ os with locations € I

/* Use demonstrations d to build context for LM, e.g.: */
/* milk = fridge */
/* dirty dishes = sink x/
/* 0; = [MASK] */

¢ < build_context(d)

/+* Compute MASK-token probabilities for the locations in I
using LM */

Do, < LM(c,l)

p-append(p,,)

end

return p

prior + GetPrior(os, ls, 0, LM)
while G not finished & max steps not exhausted do
if agent holds an object o; then
l; < sample location according to prior|o;]
if [; correct location for o; then
| remove o; from og
else
| prior[o;] <+ 0
end

else
| 0; < random_choice(os)
end

end
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A.4 Omitted Figures
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Table 6: P@1 score for the different corpora of the LAMA probe over the number of examples provided. The
dashed line shows the baseline values for when no additional example is given. The upper row depicts the scores
for when the examples are chosen randomly among the same relation, while the lower row only considers examples
from close subjects as defined in Section 4.
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Table 7: Mean reciprocal rank (MRR) score for the different corpora of the LAMA probe over the number of

examples provided. The dashed line shows the baseline values for when no additional example is given. The upper
row depicts the scores for when the examples are chosen randomly among the same relation, while the lower row
only considers examples from close subjects as defined in Section 4.
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Table 8: Probability assigned to the ground-truth object for the different corpora of the LAMA probe over the
number of examples provided. The dashed line shows the baseline values for when no additional example is given.
The upper row depicts the scores for when the examples are chosen randomly among the same relation, while the
lower row only considers examples from close subjects as defined in Section 4.
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Figure 7: P@1 score on BATS for Albert-xxlarge with 10 examples that use the "([s]; [0])"-template. The x-axis

breaks down the performance for the individual relations of the BATS dataset. As a benchmark, we use the GloVe
model from Gladkova et al.. The frame around the bar indicates the maximum possible score that the Albert model

could have scored because not all targets are tokens in its vocabulary.
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