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ABSTRACT

One potential drawback of using aggregated performance measurement in ma-
chine learning is that models may learn to accept higher errors on some training
cases as compromises for lower errors on others, with the lower errors actually
being instances of overfitting. This can lead both to stagnation at local optima and
to poor generalization. Lexicase selection is an uncompromising method devel-
oped in evolutionary computation, which selects models on the basis of sequences
of individual training case errors instead of using aggregated metrics such as loss
and accuracy. In this paper, we investigate how the general idea of lexicase se-
lection can fit into the context of deep learning to improve generalization. We
propose Gradient Lexicase Selection, an optimization framework that combines
gradient descent and lexicase selection in an evolutionary fashion. Experimental
results show that the proposed method improves the generalization performance
of various popular deep neural network architectures on three image classifica-
tion benchmarks. Qualitative analysis also indicates that our method helps the
networks learn more diverse representations.

1 INTRODUCTION

Modern data-driven learning algorithms, in general, define an optimization objective, e.g., a fitness
function for parent selection in genetic algorithms (Holland, 1992) or a loss function for gradi-
ent descent in deep learning (LeCun et al., 2015), which computes the aggregate performance on
the training data to guide the optimization process. Taking the image classification problem as
an example, most recent approaches use Cross-Entropy loss with gradient descent (Bottou, 2010)
and backpropagation (Rumelhart et al., 1985) to train deep neural networks (DNNs) on batches of
training images. Despite the success that advanced DNNs can reach human-level performance on
the image recognition task (Russakovsky et al., 2015), one potential drawback for such aggregated
performance measurement is that the model may learn to seek “compromises” during the learning
procedure, e.g., optimizing model weights to intentionally keep some errors in order to gain higher
likelihood on correct predictions. To give an example, consider a situation that may happen during
the training phase of image classification for a batch of 10 images: 9 of them are correctly predicted
with high probabilities, but one is wrong. The aggregated loss may produce gradients that guide the
model weights to compromise the wrong case for higher probabilities on other cases, which may
lead to the optimization process getting stuck at local optima.

We refer to problems for which such compromises are undesirable as uncompromising prob-
lems (Helmuth et al., 2014), that is, as problems for which it is not acceptable for a solution to
perform sub-optimally on any one of the cases in exchange for better performance on others. In
deep learning, in order to improve the generalization (Zhang et al., 2017) of DNNs, it is important
to maintain the diversity and generality of the representations contributed by every training case.

From the literature, uncompromising problems have been recently explored in genetic programming
(GP) and genetic algorithms (GAs) for tasks such as program synthesis. Among many methods
that aim to mitigate this problem, lexicase selection (Helmuth et al., 2014; Spector, 2012) has been
shown to outperform many other methods (Fieldsend & Moraglio, 2015; Galvan-Lopez et al., 2013;
Krawiec & Liskowski, 2015) in a number of applications and benchmarks (Helmuth & Spector,
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2015; Helmuth & Kelly, 2021). Instead of using an aggregated fitness function for parent selec-
tion, lexicase selection gradually eliminates candidates as it proceeds to look at how the population
fares at each data point in the shuffled training dataset, in which way it can bolster the diversity and
generality in populations. Recent works also show that lexicase selection can be used in rule-based
learning systems (Aenugu & Spector, 2019), symbolic regression (La Cava et al., 2016), constraint
satisfaction problems (Metevier et al., 2019), machine learning (La Cava & Moore, 2020b;a), and
evolutionary robotics (Huizinga & Clune, 2018; La Cava & Moore, 2018) to improve model gen-
eralization, especially in situations of diverse and unbalanced data. It is reasonable to suspect that
for many deep learning problems such as image classification, due to natural variances in real-world
data collection, lexicase selection is likely to help improve the generalization of models.

In this work, we aim to explore the application of lexicase selection in the task of optimizing deep
neural networks. Taking advantage of the commonly-used gradient descent and backpropagation
methods, we introduce Gradient Lexicase Selection, an optimization framework for training deep
neural networks that not only benefit from the efficiency of gradient-based learning but also im-
proves the generalization of the networks using the outline of lexicase selection method in an evo-
lutionary fashion. We test the proposed method on the basic image classification task on three
benchmark datasets (CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
and SVHN (Netzer et al., 2011)). Experimental results show that gradient lexicase selection man-
ages to improve the performance of the DNNs consistently across six different popular architectures
(VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), DenseNet (Huang et al., 2017),
MobileNetV2 (Sandler et al., 2018), SENet (Hu et al., 2018), EfficientNet (Tan & Le, 2019)). In
addition, we perform further ablation studies to analyze the effectiveness and robustness of the pro-
posed method from various perspectives. We first introduce variants to our method by using random
selection and tournament selection, in order to validate the contribution of each component in the
framework. We also investigate the trade-offs between exploration and exploitation by analyzing the
effects of changing population size and momentum. Finally, the qualitative analysis shows that our
algorithm can produce better representation diversity, which is advantageous to the generalization
of DNNs.

2 BACKGROUND AND RELATED WORK

Preliminaries of Lexicase Selection

Lexicase selection is initially proposed as a parent selection method in population-based stochastic
search algorithms such as genetic programming (Helmuth et al., 2014; Spector, 2012). Follow-up
work has shown that lexicase selection can effectively improve behavioral diversity and the overall
performance and on a variety of genetic programming problems (Helmuth et al., 2016; Helmuth &
Spector, 2015; Helmuth et al., 2014; Liskowski et al., 2015). The key idea in lexicase selection is that
each selection event considers a randomly shuffled sequence of training cases. As a result, lexicase
selection sometimes selects specialist individuals that perform poorly on average but perform better
than many individuals on one or more other cases. A more detailed description of lexicase selection
is appended in Sec. A.

Unlike methods such as tournament selection that use a single fitness value and thus tend to always
select generalist individuals that have good average performance, lexicase selection does not base
selection on an aggregated measure of performance. Such a difference allows lexicase selection
to maintain higher population diversity by prioritizing different parts of the dataset during each
selection event through the ordering of the cases. It has been shown empirically on a number of
program synthesis benchmark problems that lexicase selection substantially outperforms standard
tournament selection and typically maintains higher levels of diversity (Helmuth et al., 2016).

In a more general context, lexicase selection can be used in any case where a selection proce-
dure occurs with regard to performance assessment of multiple candidates with a set of train-
ing cases. Recent work also explores the usage of lexicase selection in rule-based learning sys-
tems (Aenugu & Spector, 2019), symbolic regression (La Cava et al., 2016), constraint satisfaction
problems (Metevier et al., 2019), machine learning (La Cava & Moore, 2020b;a), and evolutionary
robotics (Huizinga & Clune, 2018; La Cava & Moore, 2018). In this work, we aim to explore the
effectiveness of lexicase selection in the context of deep learning optimization from the perspective
of improving the diversity of gradient-based representation learning for better generalization. While
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there are also other parent selection methods (Fieldsend & Moraglio, 2015; Galvan-Lopez et al.,
2013; Krawiec & Liskowski, 2015) that have been proposed to achieve similar goals, in this work
we focus on investigating the usage of lexicase selection in deep learning. Further discussion of
comparisons between lexicase selection to other selection methods are out of the scope of this work.

Deep Neuroevolution and Population-based Optimization

While backpropagation (Rumelhart et al., 1985) with gradient descent has been the most successful
method in training DNNs with fixed-topology in the past few decades (LeCun et al., 2015), there are
also attempts to train DNNs through evolutionary algorithms (EAs). Such et al. (2017) proposed a
gradient-free method to evolve the network weights by using a simple genetic algorithm, and was
able to evolve a relatively deep network (with 4 million parameters) and demonstrated competitive
results on several reinforcement learning benchmark problems. Jaderberg et al. (2017) proposed
population-based training to optimize both model and the hyperparameters. Cui et al. (2018) pro-
posed to alternate between the SGD step and evolution step to improve the average fitness of the
population. Ding & Spector (2021) demonstrate the usage of selection-inspired methods as regular-
ization of DNNs. The most relevant recent work is Pawełczyk et al. (2018), which did a pilot study
on combining simple GA schema with gradient-based learning, where gradient training is used as
part of the mutation process. Although the method was tested only on one dataset, the results were
encouraging and offered some insights on a deeper combination of GAs and gradient learning. Fol-
lowing this trend, this paper aims to explore a more efficient evolutionary framework that takes
advantage of both SGD and lexicase selection, to improve the network generalization by treating
image recognition as an uncompromising problem.

From a broader perspective that is also closely related to this work, there has been a surge of in-
terest in methods for Neural Architecture Search (NAS) (Elsken et al., 2019), where evolutionary
algorithms gain high popularity. A majority of methods (Floreano et al., 2008; Liu et al., 2017;
Miikkulainen et al., 2019; Real et al., 2019; 2017; Stanley & Miikkulainen, 2002; Xie & Yuille,
2017) use EA to search neural network topologies and use backpropagation to optimize network
weights, and some others (Stanley & Miikkulainen, 2002) use EA to co-evolve topologies along
with weights. While our method can be easily extended to the NAS problem, this work focuses on
training various fixed-topology networks in order to make fair comparisons to show the significance
of using lexicase selection to improve model generalization.

3 GRADIENT LEXICASE SELECTION

Our goal is to integrate lexicase selection to improve the generalization of DNNs, while at the same
time to the greatest extent keep the efficiency of the popular gradient-based learning. We propose
Gradient Lexicase Selection as an optimization framework to combine the strength of these two
methods. The algorithm is outlined in Alg. 1. An overview of the algorithm is also depicted in
Fig. 1. The proposed algorithm has two main components, Subset Gradient Descent (SubGD) and
Lexicase Selection, which we describe in details in this section as follows.

3.1 EVOLUTION WITH SUBSET GRADIENT DESCENT (SUBGD)

First, we introduce the general evolutionary framework that uses a combination of stochastic gra-
dient descent and evolution. Given the network topology, we first initialize all the parameters
W0 as the initial parent weights. For each generation, given a population size of p, we gener-
ate p instances of the model as p offspring with the same weights as the parent weights, namely,
W(0) = W(1) = · · · = W(p−1) = W0. We then perform mutation on these offspring and use
lexicase selection to select the parent for the next generation.

For each generation, we have p instances of the model starting with the exact same weights. In-
stead of random mutations such as adding gaussian noise as commonly used in neuroevolution, we
propose a gradient-based mutation method called subset gradient descent (SubGD).

Given the whole training dataset Strain, we divided it into p subsets with random sampling, as
S(0)train,S

(1)
train, · · · ,S

(p−1)
train . We then train each model instance accordingly on one of the subsets

using the normal mini-batch stochastic gradient descent. The mutation is done when all the training
data is consumed, which is one epoch in traditional deep learning.
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Figure 1: Overview of the proposed gradient lexicase selection. Given the parent model, we first
generate candidates by running subset gradient descent (SubGD), then perform lexicase selection by
assessing candidates on each individual case to obtain the parent model for the next generation.

There are several advantages of the proposed mutation method. First, since all the offspring are
trained with different non-overlapping training samples, they are likely to evolve diversely, espe-
cially when data augmentation is also included. Secondly, each off-spring is trained using gradient
descent, meaning they will be optimized efficiently towards the objective, comparing to random
mutation methods such as gaussian noise. Thirdly, if implemented with distributed training, all the
offspring can be trained simultaneously to further reduce computation time. In general, the subset
gradient descent aims to find a balance between exploration and exploitation during the evolution
process for more efficient optimization.

3.2 LEXICASE SELECTION FOR DNNS

After mutation, the offspring become candidates and we use lexicase selection to select a parent from
them for the next generation. First, a randomly shuffled sequence of training data points (without
data augmentation) is used for selection. Starting from the first training sample, we evaluate all the
candidates on each case individually and remove the candidate from the selection pool if it does
not make the correct prediction. This process is repeated until if 1) there is only one candidate
left, which will be selected as the parent for the next generation, or 2) all the training samples are
exhausted and more than one candidates survive, in which case we randomly pick a candidate from
the selection pool.

For the selection process, we do not hold out another validation set because 1) if we choose to use
a validation set, the validation set should have an adequate size in order to ensure its diversity and
generality, which means the training set will be noticeably smaller, and thus the training performance
is likely to degrade; 2) since each model instance only gets access to part of the (augmented) training
data, the selection performed on the original training data is still effective, since the exact same data
was never used in the mutation (training).

An important feature of lexicase selection is that it treats all the cases equally and thus there is
no way to modify its selection pressure. The motivation behind lexicase selection is to allow the
survival of those models which may not perform best overall but were able to solve the given testing
cases. Such a model is likely to learn essential feature representations that allow it to make correct
predictions on specific cases where all others fail. By letting lexicase selection guide the training
process, the neural network can potentially learn more diverse representations that finally contribute
to better generalization.

To better accommodate the situation of training deep models on large-scale datasets, we also make
some slight modifications to the original lexicase selection algorithm in regard to the tie situations,
i.e., when all the remaining candidates fail to make the correct prediction on one case. The original
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Algorithm 1: Gradient Lexicase Selection
Data:

• data - the whole training dataset
• candidates - set of p instances of the DNN model initialized with the same

parameters
Result:

• an optimized DNN model
// K training epochs
for epoch = 1 : K do

subsets← p equal-size subsets obtained through random sampling from the
entire data without replacement

Use gradient descent and backpropagation to optimize each of the p
candidates on each of the p subsets respectively
cases← randomly shuffled sequence of data to be used in lexicase selection
parent← None
for case in cases do

Evaluate all the candidates on case.
candidates← the subset of the current candidates that have exactly

best performance on case
if candidates contains only one single candidate then

parent← candidate
break

end
end
if parent is None then

parent← a randomly selected individual in candidates
end
candidates← set of p instances of the DNN model copied with the same

parameters as parent
end
return parent

lexicase selection lets all the candidates survive because they all have the same “best” performance,
which is failure. However, in the early stages of DNN training, while all the candidates are unable
to predict correctly on any case, the original lexicase selection will proceed to evaluate them until
someone happens to get a correct prediction by chance, which is inefficient especially on large
datasets. So we modify the algorithm to randomly select a candidate from the remaining candidates
if they all fail. The modification improves the efficiency of early-stage training and has not shown
any noticeable effect on the final model performance.

4 EXPERIMENTAL RESULTS

The proposed Gradient Lexicase Selection is tested on the task of image classification, which is
one of the most common benchmark problems in computer vision and deep learning in general.
We implement the algorithm on six popular DNN architectures (VGG (Simonyan & Zisserman,
2015), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), MobileNetV2 (Sandler et al., 2018),
SENet (Hu et al., 2018), EfficientNet (Tan & Le, 2019)). To show the significance of our method,
we also implement the original momentum-SGD training as baselines for all the architectures.

Three benchmark datasets (CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), and SVHN (Netzer et al., 2011)) are used for evaluation. These datasets comprise 32 × 32
pixel real-world RGB images of common objects (CIFAR-10, CIFAR-100) and street scene digits
(SVHN). The training is done using the training set only and we evaluate the methods on the test
set after the training process is finished. Note that for illustration purposes, we only use the training
dataset of SVHN without the large extra set, so the results are not comparable to other work.
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Table 1: Image classification results. We report the mean percentage accuracy (acc.) with standard
deviation (std.) obtained by running the same experiment with three different random seeds. The
last column (acc. ↑) calculates the difference of accuracy by using our method compared to baseline,
where positive numbers indicate improvement.

Dataset Architecture Baseline Lexicase

acc. std. acc. std. acc. ↑

CIFAR-10

VGG16 92.85 0.10 93.40 0.13 0.55
ResNet18 94.82 0.10 95.35 0.06 0.53
ResNet50 94.63 0.46 94.98 0.18 0.34
DenseNet121 95.06 0.31 95.38 0.04 0.32
MobileNetV2 94.37 0.19 93.97 0.12 -0.39
SENet18 94.69 0.14 95.37 0.23 0.68
EfficientNetB0 92.60 0.18 93.00 0.22 0.40

CIFAR-100

VGG16 72.09 0.52 72.53 0.20 0.44
ResNet18 76.33 0.29 76.68 0.40 0.35
ResNet50 76.82 0.96 77.44 0.25 0.63
DenseNet121 78.72 0.82 79.08 0.26 0.36
MobileNetV2 75.87 0.28 75.57 0.30 -0.30
SENet18 76.97 0.06 77.22 0.29 0.25
EfficientNetB0 71.03 0.86 71.36 0.87 0.33

SVHN

VGG16 96.27 0.06 96.29 0.08 0.02
ResNet18 96.43 0.14 96.62 0.08 0.19
ResNet50 96.69 0.21 96.74 0.07 0.04
DenseNet121 96.82 0.16 96.87 0.03 0.05
MobileNetV2 96.23 0.13 96.26 0.07 0.03
SENet18 96.62 0.19 96.59 0.11 -0.03
EfficientNetB0 96.14 0.12 95.94 0.10 -0.20

4.1 IMAGE CLASSIFICATION RESULTS

The image classification results are shown in Tab. 1. We report the mean percentage accuracy
(acc.) with standard deviation (std.) obtained by running the same experiment with three different
random seeds. The last column (acc. ↑) calculates the difference of accuracy by using our method
compared to baseline, where positive numbers indicate improvement. We can first see that by using
our method, most of the architectures show significant improvement on the testing result. On the
easier SVHN dataset, we can still observe moderate and consistent improvement. To show the
robustness of our algorithm, we use the same population size of 4 for lexicase in all the experiments,
meaning the performance may be further improved if extra tuning is performed. The ablation study
on the effect of population size is described later in Sec.5.1.

Beyond those improvements, we also find that among all the architectures, our method surprisingly
fails to improve MobileNetV2 on both CIFAR-10 and CIFAR-100. The main difference between
MobileNetV2 and other architectures is that it is a highly optimized architecture with over an order
of magnitude less parameters compared to other architectures. Sandler et al. (2018) stated that they
tailor the architecture to different performance points, which can be adjusted depending on desired
accuracy/performance trade-of. As a result, it is likely that the accuracy is restricted by the model
size, and even with better training strategies the performance is not going to improve. Such results
indicate that our method may not work directly with architectures that have been optimized by using
other training methods. But for other more general architectures our method work directly out-of-
the-box without further tuning.

4.2 COMPARING DIFFERENT SELECTION METHODS

The proposed method has two major components, SubGD and Lexicase Selection. To further val-
idate the contribution of each component, we introduce two other selection methods for compari-
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Table 2: Comparing gradient lexicase selection to other selection methods on CIFAR-10. We report
the mean percentage accuracy (acc.) with standard deviation (std.) obtained by running the same
experiment with three different random seeds.

Architecture SGD Random Tournament Lexicase

acc. std. acc. std. acc. std. acc. std.

VGG16 92.85 0.10 92.97 0.15 93.12 0.12 93.40 0.13
ResNet18 94.82 0.10 94.99 0.12 94.90 0.14 95.35 0.06
ResNet50 94.63 0.46 94.75 0.13 94.77 0.04 94.98 0.18
DenseNet121 95.06 0.31 95.13 0.04 95.12 0.02 95.38 0.04
MobileNetV2 94.37 0.19 94.02 0.14 93.91 0.09 93.97 0.12
SENet18 94.69 0.14 95.04 0.15 95.01 0.23 95.37 0.23
EfficientNetB0 92.60 0.18 92.77 0.11 92.83 0.12 93.00 0.22

son: random selection and tournament selection (Miller et al., 1995). Using the same evolutionary
framework with SubGD, random selection simply selects a random offspring for each generation,
and tournament selection uses the average accuracy as the fitness function for selection, which is an
aggregated metric as oppose to lexicase selection. The results are shown in Tab. 2.

We can observe that both random selection and tournament selection perform slightly better than the
SGD baseline in most cases, but the proposed gradient lexicase selection is consistently better than
both methods with a significant margin. Random selection can be viewed as a baseline method that
uses SGD with the same amount of computation as gradient lexicase selection, which indicates that
the proposed method outperforms SGD even at the same level of computation. Tournament selection
is one of the most commonly used selection method in evolutionary algorithms, which select parents
based on an aggregated fitness evaluation. As the performance of tournament selection is similar to
random selection, indicating that the mechanism of lexicase selection has the major contribution to
the improvement.

5 ABLATION STUDIES

In this section, we design several ablation studies to further analyze and validate the effectiveness of
the proposed method. Unless specifically mentioned, all the implementation details follow the same
practices in Sec. B.

5.1 POPULATION SIZE

Population size is an essential hyperparameter for evolutionary algorithms. In this work, the pop-
ulation size of DNNs has more constraints such as computation cost and total GPU memory, so it
has to be much smaller comparing to those for classic GP problems. We test lexicase gradient se-
lection with population sizes of 2, 4, 6, 8. For illustration purposes, two architectures (VGG16 and
ResNet18) are evaluated on the CIFAR-10 dataset. The results are shown in Tab. 3.

First, we can see that lexicase is relatively robust to different population size p. Under all the pop-
ulation size configurations lexicase manages to outperform baseline significantly. Since there have
not been a trend of increased accuracy with larger population size, the generalization performance
does not seem to increase with a larger population. This observation aligns well with the behavior
of lexicase selection in GP problems (Helmuth et al., 2018; La Cava et al., 2019), where there seems
to be an optimal population size through the trade-off between exploration and exploitation.

For our method, having a larger population size not only adds more offspring for each generation,
but also reduces the size of each subset used for training each offspring by SubGD. In either way,
the exploration is reduced and the exploitation is increased. There is no conflict between the two
effects, so we do not control the size of each subset when increasing the population size. If the
population gets too large, the individuals may not evolve different-enough behaviors from each
other, and thus the diversity of population may become lower. In general, we find that with relatively
small population size, we can get good results for gradient lexicase selection.

7



Published as a conference paper at ICLR 2022

Table 3: Comparing different population sizes on CIFAR-10. Lexicase is relatively robust to dif-
ferent population size p, and it manages to outperform baseline with all the configurations in this
experiment. The generalization performance does not seem to increase with larger population size.

Architecture Lexicase with population size p

Baseline p = 2 p = 4 p = 6 p = 8

VGG16 92.85 93.61 93.40 93.92 93.37
ResNet18 94.82 95.50 95.35 95.27 95.38

Table 4: Comparing different momentum configurations on CIFAR-10. Resetting momentum after
each selection event avoids too much aggregation of gradients, which results in a higher diversity of
offspring and thus better generalization performance.

Architecture Lexicase with different momentum options

Baseline No Momentum Reset Momentum Inherit Momentum

VGG16 92.85 92.95 93.40 93.13
ResNet18 94.82 94.77 95.35 95.23

5.2 MOMENTUM

In deep learning, SGD with momentum (Sutskever et al., 2013; Liu et al., 2020) has been one of
the most widely adopted methods for training DNNs. Momentum accelerates gradient descent by
accumulating a velocity vector in directions of persistent reduction in the objective across iterations.
This accumulating behavior actually interferes with the proposed gradient lexicase selection algo-
rithm, because model instances in the population get different gradient updates, and thus will have
different momentum parameters.

To solve this issue, we propose three options: 1) No Momentum: do not use momentum at all; 2)
Reset Momentum: use high momentum rate and re-initialize the momentum parameters every epoch
for each model instance; 3) Inherit Momentum: when selecting the parent model, also copy the
momentum parameters along with the model parameters to all the instances in the next generation.
For this study, we also test two architectures (VGG16 and ResNet18) with population size of 4 on
the CIFAR-10 dataset. The results are shown in Tab. 4.

The key idea of lexicase selection is to select parent by using a sequence of training cases that are pri-
oritized lexicographically for each generation. In this way, the population can maintain a high level
of diversity. On the other hand, momentum tends to find an aggregated direction of gradient update
accumulated through time. From the results, we can see that the Reset Momentum option works the
best, indicating that if we inherit momentum, it will influence the mutation over generations and thus
the selection strength of lexicase will be negatively affected. By resetting momentum each epoch,
only the mutation in the current generation is accelerated by using momentum SGD, which results
in a higher diversity of offspring. In general, the momentum options can also be viewed as different
trade-offs of exploration and exploitation.

5.3 REPRESENTATION DIVERSITY

While quantitative results have shown that the proposed method manages to improve the gener-
alization of DNNs, we would like to further investigate the reasons behind this in order to better
understand the behavior of the algorithm. One hypothesis is that since lexicase selection is able to
increase the diversity and generality of the population in GP, it may as well help DNNs learn more
diverse representations, which improves the overall model generalization. To validate this, we ana-
lyze and compare the feature representations in ResNet-18 trained using normal SGD and gradient
lexicase selection. We take the first 100 samples from the CIFAR-10 test set and use global max
pooling to obtain the channel-wise activations of conv 4x and conv 5x layers (as defined in He
et al. (2016)). Fig. 2 shows the results.
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Figure 2: Comparing representation diversity of normal SGD (Baseline in red) and gradient lexicase
selection (lexicase in blue). The flatter distribution shows that our method produces more diverse
representations.

We can observe that our method produces a flatter distribution of activations with less frequency
on 0s and more frequency on other values. Ioffe & Szegedy (2015); Wu & He (2018) shows that
normalized distribution of layer activations can help reduce the internal covariate shift of DNNs
during training, and thus improves the training efficiency and model generalization. Similarly, our
method manages to learn more diverse representations by incorporating lexicase selection into the
training framework, which is advantageous to the generalization of DNNs.

6 CONCLUSION AND FUTURE WORK

In this work, efficient adaption of lexicase selection in the task of optimizing deep neural networks
is explored. We propose gradient lexicase selection, an evolutionary algorithm that incorporates
lexicase selection with stochastic gradient descent to help DNNs learn more diverse representa-
tions for better generalization. Experimental results show that the proposed method can improve
the performance of several popular DNN architectures on benchmark image classification datasets.
Several ablation studies further validate the robustness and advantages of our method from different
perspectives. More specifically, we investigate the trade-offs between exploration and exploitation
by analyzing the effects of population size and momentum. We also show that our algorithm can
produce better representation diversity, which is advantageous to the generalization of DNNs.

The goal of our method is to improve the generalization performance rather than speed up the opti-
mization. Our method is potentially valuable to many real-world problems, especially those safety-
critical applications like autonomous vehicles, where higher cost of computation during training is
acceptable for better generalization performance. There are also several factors to consider regard-
ing the computation cost: 1) our method expects parallel training of model instances, so the optimal
training time can be reduced to naive SGD training with modern cloud computing facilities; 2)
we have shown that with relatively small population sizes (4× naive SGD), our method can already
achieve significantly better performance; 3) with the same amount of computation, the naive method
(random selection baseline in Sec.4.2) can not achieve the same performance as ours.

There are several limitations of our work. As described in Sec. 4.1, the current gradient lexicase
selection method may not work with architectures that have been highly optimized, indicating a
potential correlation between network architecture and lexicase selection. For future directions, we
look forward to explorations on how lexicase selection can be used in optimizing neural architectures
along with the parameters, and the integration of lexicase selection in neural architecture search in
general.
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A LEXICASE SELECTION

Lexicase selection is a parent selection method in population-based stochastic search algorithms
such as genetic programming (Helmuth et al., 2014; Spector, 2012). The lexicase selection algorithm
is outlined in Alg. 2.

Algorithm 2: Lexicase selection to select one parent program in genetic programming
Data:

• cases - randomly shuffled sequence of data samples to be used in selection
• candidates - the entire population of programs

Result:
• an individual program to be used as a parent

for case in cases do
candidates← the subset of the current candidates that have exactly best

performance on case
if candidates contains only one single candidate then

return candidate
end

end
return a randomly selected candidate in candidates

The key idea of lexicase selection is that each selection event considers a randomly shuffled sequence
of training cases. With the specific ordering, only individuals whose error is minimal among all the
already-considered cases are allowed to survive. Moving forward through the sequence of cases, the
selection is done when there is only one candidate left or until all the training cases have been gone
through, in which case we select randomly from the remaining candidates.

Since the ordering of training cases is randomized for each selection event, every training case gets
the opportunity to be prioritized when being put at the beginning of the sequence. As a result, lex-
icase selection sometimes selects specialist individuals that perform poorly on average but perform
better than many individuals on one or more other cases.

B IMPLEMENTATION DETAILS

Each network architecture with baseline SGD training and its corresponding counterpart with gra-
dient lexicase selection are trained with identical experimental schemes. We use SGD with momen-
tum instead of the popular adaptive methods (such as Adam) because, despite the popularity of those
methods, some recent works (Luo et al., 2018; Wilson et al., 2017) observe that the solutions found
by those methods actually generalize worse (often significantly worse) than SGD. We did experi-
ments with Adam and tuned the learning rate for several trials, but the results are significantly worse
than the SGD counterpart. This work focuses more on the generalization performance rather than
the training speed, so we follow the common practice to use SGD with momentum for both baseline
training and SubGD. However, it is very likely that some most recent optimization methods, such
as Luo et al. (2018), can achieve faster training as well as the same generalization performance as
SGD.

We follow standard practices and perform data augmentation with random cropping with padding
and perform random horizontal flipping during the training phase (no augmentation is used during
selection phase). The input images are normalized through mean RGB-channel subtraction for all
the phases. For both baseline and lexicase, we use SGD with momentum of 0.9. For lexicase, we
use the Reset Momentum option that re-initialize the momentum parameters for each epoch, which
is explained in detail later in Sec. 5.2.

The batch size is set to 128 for CIFAR-10 and 64 for CIFAR-100 and SVHN. The initial learning
rate is set to 0.1 and tuned by using Cosine Annealing (Loshchilov & Hutter, 2017).
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We set the total number of epochs as 200 for baseline training and as 200(p+1) for gradient lexicase
selection, where p is the size of population. For each epoch in lexicase, the mutation only uses 1/p
of the training data to train each model instance, so we keep the total iterations of weight update of
lexicase training similar to baseline training to ensure convergence.
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