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Abstract

Multi-task learning is being increasingly adopted in applications domains like1

computer vision and reinforcement learning. However, optimally exploiting its ad-2

vantages remains a major challenge due to the effect of negative transfer. Previous3

works have tracked down this issue to the disparities in gradient magnitudes and4

directions across tasks, when optimizing the shared network parameters. While5

recent work has acknowledged that negative transfer is a two-fold problem, exist-6

ing approaches fall short as they focus only on either homogenizing the gradient7

magnitude across tasks; or greedily change the gradient directions, overlooking8

future conflicts. In this work, we introduce RotoGrad, an algorithm that tackles9

negative transfer as a whole: it jointly homogenizes gradient magnitudes and direc-10

tions, while ensuring training convergence. We show that RotoGrad outperforms11

competing methods in complex problems, including multi-label classification in12

CelebA and computer vision tasks in the NYUv2 dataset.13

1 Introduction14

As neural network architectures get larger in order to solve increasingly more complex tasks, the15

idea of jointly learning multiple tasks (for example, depth estimation and semantic segmentation in16

computer vision) with a single network is becoming more and more appealing. This is precisely the17

idea of multi-task learning (MTL) [3], which promises higher performance in the individual tasks18

and better generalization to unseen data, while drastically reducing the number of parameters [27].19

Unfortunately, sharing parameters between tasks may also lead to difficulties during training as20

tasks compete for shared resources, often resulting in poorer results than solving individual tasks, a21

phenomenon known as negative transfer [27]. Previous works have tracked down this issue to the22

two types of differences between task gradients. First, differences in magnitude across tasks can make23

some tasks dominate the others during the learning process. Several methods have been proposed to24

homogenize gradient magnitudes such as MGDA [28], GradNorm [6], or IMTL-G [18]. However,25

little attention has been put towards the second source of the problem: conflicting directions of the26

gradients for different tasks. Due to the way gradients are added up, gradients of different tasks may27

cancel each other out if they point to opposite directions of the parameter space, thus leading to a poor28

update direction for a subset or even all tasks. Only very recently a handful of works have started to29

propose methods to mitigate the conflicting gradients problem, for example, by removing conflicting30

parts of the gradients [33], or randomly ‘dropping’ some elements of the gradient vector [7].31

In this work we propose RotoGrad, an algorithm that tackles negative transfer as a whole by ho-32

mogenizing both gradient magnitudes and directions across tasks. RotoGrad addresses the gradient33

magnitude discrepancies by re-weighting task gradients at each step of the learning, while encourag-34

ing learning those tasks that have converged the least thus far. In that way, it makes sure that no task is35

overlooked during training. Additionally, instead of directly modifying gradient directions, RotoGrad36
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(a) Convex avocado-shaped experiment. (b) Non-convex experiment.

Figure 1: Level plots showing the evolution of two regression MTL problems with/without RotoGrad,
see Section 4. RotoGrad is able to reach the optimum (�) for both tasks. (a) In the space of z,
RotoGrad rotates the function-spaces to align task gradients (blue/orange arrows), finding shared
features z (green arrow) closer to the (matched) optima. (b) In the space of rk, RotoGrad rotates the
shared feature z, providing per-task features rk that better fit each task.

smoothly rotates the shared feature space differently for each task, seamlessly aligning gradients in37

the long run. As shown by our theoretical insights, the cooperation between gradient magnitude-38

and direction-homogenization ensures the stability of the overall learning process. Finally, we run39

extensive experiments to empirically demonstrate that RotoGrad leads to stable (convergent) learning,40

scales up to complex network architectures, and outperforms competing methods in multi-label41

classification settings in CIFAR10 and CelebA, as well as in computer vision tasks using the NYUv242

dataset. Alongside this paper, we will provide a simple-to-use library to include RotoGrad in any43

Pytorch pipeline with a few lines of code.44

2 Multi-task learning and negative transfer45

The goal of MTL is to simultaneously learn K different tasks, that is, finding K mappings from a46

common input datasetX ∈ RN×D to a task-specific set of labels Yk ∈ YN
k . Most settings consider47

a hard-parameter sharing architecture, which is characterized by two components: the backbone and48

heads networks. The backbone uses a set of shared parameters, θ, to transform each input x ∈X49

into a shared intermediate representation z = f(x;θ) ∈ Rd, where d is the dimensionality of z.50

Additionally, each task k = 1, 2, . . . ,K has a head network hk, with exclusive parameters φk, that51

takes this intermediate feature z and outputs the prediction hk(x) = hk(z;φk) for the corresponding52

task. This architecture is illustrated in Figure 2, where we have added task-specific rotation matrices53

Rk that will be necessary for the proposed approach, RotoGrad. Note that the general architecture54

described above is equivalent to the one in Figure 2 when all rotations Rk correspond to identity55

matrices, such that rk = z for all k.56

r1 L1(h1(r1),y1)

x z r2 L2(h2(r2),y2)

rK LK(hK(rK),yK)

hφ1

fθ

R1

R2

RK

...

hφ2

...
hφK

Figure 2: Hard-parameter sharing architecture in-
cluding the rotation matricesRk of RotoGrad.

MTL aims to learn the architecture parameters57

θ,φ1,φ2, . . . ,φK by simultaneously minimiz-58

ing all task losses, that is, Lk(hk(x),yk) for59

k = 1, . . . ,K. Although this is a priori a multi-60

objective optimization problem [28], in practice61

a single surrogate loss consisting of a linear com-62

bination of the task losses, L =
∑

k ωkLk, is op-63

timized. While this approach leads to a simpler64

optimization problem, it may also trigger nega-65

tive transfer between tasks, hurting the overall66

MTL performance due to an imbalanced competition among tasks for the shared parameters [27].67

The negative transfer problem can be studied through the updates of the shared parameters θ. At each68

training step, θ is updated according to a linear combination of task gradients,∇θL =
∑

k ωk∇θLk,69

which may suffer from two problems. First, magnitude differences of the gradients across tasks70

may lead to a subset of tasks dominating the total gradient, and therefore to the model prioritizing71

them over the others. Second, conflicting directions of the gradients across tasks may lead to update72
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directions that do not improve any of the tasks. Figure 1 shows an example of poor direction updates73

(left) as well as magnitude dominance (right).74

In this work, we tackle negative transfer as a whole by homogenizing tasks gradients both in magnitude75

and direction. Note that homogenizing gradients with respect to θ is equivalent to homogenizing76

gradients with respect to the shared feature z due to the chain rule, ∇θLk = ∇θz · ∇zLk. Thus,77

from now on we focus on homogenizing the feature-level task gradients∇zLk.78

3 RotoGrad79

In this section we introduce RotoGrad, a novel algorithm that addresses the negative transfer problem80

as a whole. RotoGrad consists of two building blocks which, respectively, homogenize task-gradient81

magnitudes and directions. Moreover, these blocks complement each other and provide convergence82

guarantees of the network training. Next, we detail each of these building blocks and show how they83

are combined towards an effective MTL learning process.84

3.1 Gradient-magnitude homogenization85

As discussed in Section 2, we aim to homogenize gradient magnitudes across tasks, as large magnitude86

disparities can lead to a subset of tasks dominating the learning process. Thus, the first goal of87

RotoGrad is to homogenize the magnitude of the gradients across tasks at each step of the training.88

Let us denote the feature-level task gradient of the k-th task for the n-th datapoint, at iteration t, by89

gn,k := ∇zLk(hk(xn),yn,k), and its batch versions by G>k := [g1,k, g2,k, . . . , gB,k], where B is90

the batch size. Then, equalizing gradient magnitudes amounts to finding weights ωk that normalize91

and scale each gradientGk, that is,92

||ωkGk|| = ||ωiGi|| ∀i ⇐⇒ ωkGk =
C

||Gk||
Gk = CUk ∀k, (1)

where Uk := Gk

||Gk|| denotes the normalized task gradient and C is the target magnitude for all tasks.93

Note that, in the above expression, C is a free parameter that we need to select.94

In RotoGrad, we select C such that all tasks converge at a similar rate. We motivate this choice95

by the fact that, by scaling all gradients, we change their individual step size, interfering with the96

convergence guarantees provided by their Lipschitz-smoothness (for an introduction to non-convex97

optimization see, for example, [25]). Therefore, we seek for the value of C providing the best98

step-size for those tasks that have converged the least up to iteration t. Specifically, we set C to be a99

convex combination of the task-wise gradient magnitudes, C :=
∑

k αk||Gk||, where the weights100

α1, α2, . . . , αK measure the relative convergence of each task and sum up to one, that is,101

αk =
||Gk||/||G0

k||∑
i ||Gi||/||G0

i ||
, (2)

withG0
k being the initial gradient of the k-th task, i.e., the gradient at iteration t = 0 of the training.102

As a result, we obtain a (hyper)parameter-free approach that equalizes the gradient magnitude across103

tasks to encourage learning slow-converging tasks. Note that the resulting approach resembles104

Normalized Gradient Descent (NGD) [8] for single-task learning, which has been proved to quickly105

escape saddle points during optimization [24]. Thus, we expect a similar behavior for RotoGrad,106

where slow-converging tasks will force quick-converging tasks to escape from saddle points.107

The resulting training algorithm may however diverge as a consequence of constantly oscillating108

between (slow-converging) tasks. For example, in scenarios where one task improves, there is always109

another task(s) that deteriorates. Fortunately, as shown in the following result (proof in Appendix A),110

such a phenomenon does not appear in the absence of conflicting gradients.111

Proposition 3.1. LetG1,G2, . . . ,GK be the task gradients with respect to Z as defined above. If112

K = 2; or cos_sim(Gi,Gj) ≥ 0 pairwise; then there exists a small-enough step size ε > 0 such113

that, for all tasks, we have that Lk(hk(Z − ε · C
∑

kUk;φk);Yk) < Lk(hk(Z;φk);Yk).114

In other words, Proposition 3.1 shows that, when gradients do not conflict in direction with each115

other, following the feature-level gradient C
∑

kUk improves all (lower-bounded) task losses for116

3



the given batch. This result, while restricted to the given batch and to the gradient with respect to117

the shared representation Z, still provides useful insights in favor of having as desideratum of an118

efficient MTL pipeline the absence of conflicting gradients.119

3.2 Gradient-direction homogenization120

In the previous subsection, we have shown that avoiding conflicting gradients may not only be121

necessary to avoid negative transfer, but also to ensure the stability of the training. In this section122

we introduce the second building block of RotoGrad, an algorithm that homogenizes task-gradient123

directions. The main idea of this approach is to smoothly rotate the feature-space z in order to reduce124

the gradient conflict between tasks—in following iterations—of the training by bringing (local)125

optima for different tasks closer to each other (in the parameter space). As a result, it complements126

the previous magnitude-scaling approach and reduces the likelihood of the training to diverge.127

In order to homogenize gradients, for each task k = 1, . . . ,K, RotoGrad introduces a matrix Rk128

so that, instead of optimizing Lk(z) with z being the last shared representation, we optimize an129

equivalent loss function Lk(Rkz). As we are only interested in changing directions (not the gradient130

magnitudes), we choose Rk ∈ SO(d) to be a rotation matrix1 leading to per-task representations131

rk := Rkz. RotoGrad thus extends the standard MTL architecture by adding task-specific rotations132

before each head, as depicted in Figure 2.133

Unlike all other network parameters, matrices Rk do not seek to reduce their task’s loss. Instead,134

these additional parameters are optimized to reduce the direction conflict of the gradients across135

tasks. To this end, for each task we optimize Rk to maximize the batch-wise cosine similarity or,136

equivalently, to minimize137

Lk
rot := −

∑
n

〈R>k g̃n,k,vn〉, (3)

where g̃n,k := ∇rkLk(hk(xn),yn,k)) (which holds that gn,k = R>k g̃n,k) and vn is the target vector138

that we want all task gradients pointing towards. We set the target vector vn to be the gradient we139

would have followed if all task gradients weighted the same, that is, vn := 1
K

∑
k un,k, where un,k140

is a row vector of the normalized batch gradient matrix Uk, as defined before.141

As a result, in each training step of RotoGrad we simultaneously optimize the following two problems:142

143

N etwork: minimize
θ,{φ}k

∑
k

ωk Lk., Rotation: minimize
{Rk}k

∑
k

Lk
rot (4)

The above problem can be interpreted as a Stackelberg game: a two player-game in which leader144

and follower alternately make moves in order to minimize their respective losses, Ll and Lf , and the145

leader knows what will be the follower’s response to their moves. Such an interpretation allows us to146

derive simple guidelines to guarantee training convergence—that is, that the network loss does not147

oscillate as a result of optimizing the two different objectives in Equation 4. Specifically, following148

Fiez et al. [10], we can ensure that problem 4 converges as long as the rotations’ optimizer (leader)149

is a slow-learner compared with the network optimizer (follower). That is, as long as we make the150

rotations’ learning rate decrease faster than that of the network, we know that RotoGrad will converge151

to a local optimum for both objectives. A more extensive discussion can be found in Appendix B.152

3.3 RotoGrad: the full picture153

After the two main building blocks of RotoGrad, we can now summarize the overall proposed154

approach in Algorithm 1. At each step, RotoGrad first homogenizes the gradient magnitudes such155

that there is no dominant task and the step size is set by the slow-converging tasks. Additionally,156

RotoGrad smoothly updates the rotation matrices—using the local information given by the task157

gradients—to seamlessly align task gradients in the following steps, thus reducing direction conflicts.158

3.4 Practical considerations159

In this section, we discuss the main practical considerations to account for when implementing160

RotoGrad and propose efficient solutions.161

1The special orthogonal group, SO(d), denotes the set of all (proper) rotation matrices of dimension d.
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Algorithm 1 Training step with RotoGrad
Input input samplesX , task labels {Yk}, network’s (RotoGrad’s) learning rate η (ηroto)
Output backbone (heads) parameters θ ({φk}), RotoGrad’s parameters {Rk}

1: compute shared feature Z = f(X;θ)
2: for k = 1, 2, . . . ,K do
3: compute task-specific loss Lk =

∑
n Lk(hk(Rkzn;φk),yn,k)

4: compute gradient of shared featureGk = ∇zLk

5: compute gradient of task-specific feature G̃k = RkGk . Treated as constant w.r.t. Rk.
6: compute unitary gradients Uk = Gk/||Gk||
7: compute relative task convergence αk = ||Gk||/||G0

k||
8: end for
9: make {αk} sum up to one [α1, α2, . . . , αK ] = [α1, α2, . . . , αK ]/

∑
k αk

10: compute shared magnitude C =
∑

k αk||Gk||
11: update backbone parameters θ = θ − ηC

∑
kUk

12: compute target vector V = 1
K

∑
kUk

13: for k = 1, 2, . . . ,K do
14: compute RotoGrad’s loss Lroto

k = −
∑

n〈R>k g̃n,k,vn〉
15: update RotoGrad’s parametersRk = Rk − ηroto∇Rk

Lroto
k

16: update head’s parameters φk = φk − η∇φk
Lk

17: end for

Unconstrained optimization. As previously discussed, parameters Rk are defined as rotation162

matrices, and thus the Rotation optimization in problem 4 is a constrained problem. While this would163

typically imply using expensive algorithms like Riemannian gradient descent [1], we can leverage164

recent work on manifold parametrization [5] and, instead, apply unconstrained optimization methods165

by automatically2 parametrizingRk via exponential maps on the Lie algebra of SO(d).166

Memory efficiency and time complexity. Second, as we need one rotation matrix per task, we have167

to storeO(Kd2) additional parameters. In practice, we only needKd(d− 1)/2 parameters due to the168

aforementioned parametrization and, in most cases, this amounts to a small part of the total number169

of parameters. Moreover, as described by Casado et al. [5], parametrizing Rk enables efficient170

computations compared with traditional methods, with a time complexity of O(d3) independently of171

the batch size. In our case, the time complexity is of O(Kd3), which scales better with respect to the172

number of tasks than existing methods (for example, O(K2d) for PCGrad [33]). Moreover, caching173

Rk in the forward pass and GPU parallelization can further reduce training time.174

Scaling-up RotoGrad. Even though we can efficiently compute and optimize the rotation matrixRk,175

in some application domains, like computer vision, in which the size d of the shared representation z176

is large, the time complexity for updating the rotation matrix may become comparable to the one of177

the network updates. In those cases, we propose to only rotate a subspace of the feature space, that178

is, rotate only m << d dimensions of z. Then, we can simply apply a transformation of the form179

rk = [Rkz1:m, zm+1:d], where za:b denotes the elements of z with indexes a, a+ 1, . . . , b. While180

there exist other possible solutions, such as using block-diagonal rotation matricesRk, we defer them181

to future work.182

4 Illustrative examples183

In this section, we illustrate the behavior of RotoGrad in two synthetic scenarios, providing clean184

qualitative results about its effect on the optimization process. Appendix C.1 provides a detailed185

description of the experimental setups.186

To this end, we propose two different multi-task regression problems of the form187

L(x) = L1(x) + L2(x) = ϕ(R1f(x;θ), 0) + ϕ(R2f(x;θ), 1), (5)

where ϕ is a test function with a single global optimum whose position is parametrized by the second188

argument, that is, both tasks are identical (and thus related) up to a translation. We use a single input189

2For example, Geotorch [4] makes this transparent to the user.
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x ∈ R2 and drop task-specific network parameters. As backbone, we take a simple network of the190

form z = W2 max(W1x+ b1, 0) + b2 with b1 ∈ R10, b2 ∈ R2, andW1,W
>
2 ∈ R10×2.191

For the first experiment we choose a simple (avocado-shaped) convex objective function and, for192

the second one, we opt for a non-convex function with several local optima and a single global193

optimum. Figure 1 shows the training trajectories in the presence (and absence) of RotoGrad in both194

experiments, depicted as level plots in the space of z and rk, respectively. We can observe that in195

the first experiment (Figure 1a), RotoGrad finds both optima—which is in stark contrast to the vanilla196

case—by rotating the feature space and matching the (unique) local optima of the tasks. Similarly,197

the second experiment (Figure 1b) shows that, as we have two symmetric tasks and a non-equidistant198

starting point, in the vanilla case the optimization is dominated by the task with an optimum closest to199

the starting point. RotoGrad avoids this behavior by equalizing gradients and, by aligning gradients,200

is able to find the optima of both functions.201

5 Related Work202

Understanding and improving the interaction between tasks is one of the most fundamental problems203

of MTL, since any improvement in this regard would translate to all MTL systems. Consequently,204

several approaches to address this problem have been adopted in the literature. Among the different205

lines of work, the one most related to the present work is gradient homogenization.206

Gradient homogenization. Since the problem is two-fold, there are two main lines of work. On207

the one hand, we have task-weighting approaches that focus on alleviating magnitude differences.208

Similar to us, GradNorm [6] attempts to learn all tasks at a similar rate, yet they propose to learn209

these weights as parameters. Instead, we provide a closed-form solution in Equation 1, and so does210

IMTL-G [18]. However, IMTL-G scales all task gradients such that all projections ofG ontoGk are211

equal. MGDA [28], instead, adopts an iterative method based on the Frank-Wolfe algorithm in order212

to find the set of weights {ωk} (with
∑

k ωk = 1) such that
∑

k ωkGk has minimum norm. On the213

other hand, recent works have started to put attention on the conflicting direction problem. Maninis214

et al. [22] first proposed adversarial training to make task gradients statistically indistinguishable215

as part of a bigger image-tailored architecture. More recently, PCGrad [33] proposed to drop the216

projection of one task gradient onto another if they are in conflict, whereas GradDrop [7] randomly217

drops elements of the task gradients based on a sign-purity score.218

In the literature, we can also find other approaches which, while orthogonal to the gradient homoge-219

nization, are complementary to our work and thus could be used along with RotoGrad. Next, we220

provide a brief overview of them.221

A prominent approach for MTL is task clustering, that is, selecting which tasks should be learned222

together. This approach dates back to the original task-clustering algorithm [31], but new work in223

this direction keeps coming out [29, 35]. Alternative approaches, for example, scale the loss of each224

task differently based on different criteria such as task uncertainty [14], task prioritization [11], or225

similar loss magnitudes [18]. Moreover, while most models fall into the hard-parameter sharing226

umbrella, there exists other architectures in the literature. Soft-parameter sharing architectures [27],227

for example, do not have shared parameters but instead impose some kind of shared restrictions to the228

entire set of parameters. An interesting approach consists in letting the model itself learn which parts229

of the architecture should be used for each of the tasks [12, 23, 30, 32]. Other architectures, such230

as MTAN [19], make use of task-specific attention to select relevant features for each task. Finally,231

problems triggered by the differences between task gradients (in magnitude and direction) have also232

been studied in other domains like meta-learning [34] and continual learning [21].233

6 Experiments234

In this section we assess the performance of RotoGrad on a wide range of datasets and MTL235

architectures. First, we check the effect of the learning rates of the rotation and network updates236

on the stability of the learning process of RotoGrad. Then, with the goal of applying RotoGrad237

in scenarios with extremely large sizes of z, we explore the effect of rotating a subspace of z238

instead of the whole shared representation. Finally, we compare our approach with competing MTL239

solutions in the literature, showing that RotoGrad consistently outperforms all other methods. Refer240

to Appendix C for a more detailed description of the experimental setups and additional results.241
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Relative task improvement. Since MTL uses different metrics for different tasks, throughout this242

section we group results by means of the relative task improvement, first introduced in [22]. Given a243

task k, and the metrics obtained during test time by our model, Mk, and by a baseline model, Sk,244

which consists of K networks trained on each task individually, the relative task improvement for the245

k-th task is defined as246

∆k := 100 · (−1)lk
Mk − Sk

Sk
, (6)

where lk = 1 if Mk < Sk means that our model performs better than the baseline in the k-th task, and247

lk = 0 otherwise. We depict our results using different statistics of ∆k such as its mean (avgk ∆k),248

maximum (maxk ∆k), and median (medk ∆k) across tasks.249

6.1 Training stability250

Figure 3: Test error on the sum of digits
task for different values of RotoGrad’s
learning rate.

At the end of Section 3.2 we discussed that, by casting251

problem 4 as a Stackelberg game, we have convergence252

guarantees when the rotation optimizer is the slow-learner.253

Next, we empirically show this necessary condition.254

Experimental setup. Similar to [28], we use a multi-task255

version of MNIST [16] where each image is composed256

of a left and right digit, and use as backbone a reduced257

version of LeNet [17] with light-weight heads. Besides258

the left- and right-digit classification proposed in [28], we259

consider three other quantities to predict: i) sum of digits;260

ii) parity of the digit product; and iii) number of active261

pixels. The idea here is to enforce all digit-related tasks262

to cooperate (positive transfer), while the (orthogonal) image-related task should not disrupt these263

learning dynamics. We use negative cross-entropy and accuracy for the left- and right-digit tasks,264

binary cross-entropy and f1-score for the parity task, and mean squared error (MSE) as loss and265

metric for both regression tasks.266

Results. Figure 3 shows the effect averaged over ten independent runs—in terms of test error in the267

sum task, while the rest of tasks are shown in Appendix C.2—of changing the rotations’ learning rate.268

We can observe that, the bigger the learning rate is in comparison to that of the network’s parameters269

(1e−3), the higher and more noisy the test error becomes. MSE keeps decreasing as we lower the270

learning rate, reaching a sweet-spot at half the network’s learning rate (5e−4). For smaller values,271

the rotations’ learning is too slow and results start to resemble those of the vanilla case, in which no272

rotations are applied (leftmost box in Figure 3).273

6.2 Rotating a subspace274

Next, we evaluate the effect of subspace rotations as described at the end of Section 3.4, assessing the275

trade-off between avoiding negative transfer and size of the subspace considered by RotoGrad.276

Experimental setup. We test RotoGrad on a 10-task classification problem on CIFAR10 [15], using277

binary cross-entropy and f1-score as loss and metric, respectively, for all tasks. We use ResNet18 [13]278

without pre-training as backbone (d = 512), and linear layers with sigmoids as task-specific heads.279

Results are summarized at the bottom part of Table 1. We can observe that rotating the entire space280

provides the best results, and they worsen as we decrease the size ofRk. However, rotating only 64281

features (12.5 % of the shared feature space) still yields better results than vanilla optimization.282

6.3 Methods comparison283

We now proceed to compare RotoGrad with the different existing approaches to gradient conflict (for284

both magnitude and direction) in different real-world datasets, showing how RotoGrad outperforms285

existing methods while being on par with existing methods in training time.286

Experimental setup. In order to provide fair comparisons among methods, all experiments use287

identical configurations and random initializations. For all methods we performed a hyper-parameter288

search and chose the best ones based on validation error. Our results are reported using the median and289

standard deviation computed over 5-10 random seeds. Further details can be found in Appendix C.1.290
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Table 1: Task performance on CIFAR10 for different
competing methods (top) and RotoGrad with matrices
Rk of different sizes (bottom). Table shows median
and standard deviation over five runs.

Method avgk ∆k ↑ medk ∆k ↑ maxk ∆k ↑
Vanilla 2.58± 0.54 2.73± 1.37 11.14± 3.35

GradDrop 3.07± 0.48 3.18± 1.07 14.03± 2.83
PCGrad 2.86± 0.81 3.33± 1.68 12.01± 3.19
MGDA −1.75± 0.43 −4.48± 2.35 3.67± 0.98
GradNorm −0.08± 0.95 0.09± 2.23 8.82± 3.41
IMTL-G 2.73± 0.27 1.95± 2.21 10.20± 2.98
IMTL-G+Rk 3.02± 0.69 4.38± 1.11 12.76± 1.77

RotoGrad 64 2.90± 0.49 3.44± 1.51 13.16± 2.40
RotoGrad 128 2.97± 1.08 3.73± 2.14 12.64± 3.56
RotoGrad 256 3.68± 0.68 3.29± 2.18 14.01± 3.22
RotoGrad 512 4.48 ± 0.99 4.72 ± 2.84 15.57 ± 3.99

Figure 4: Task improvement (median over
five runs) of different methods on CI-
FAR10. RotoGrad outperforms competing
methods on all tasks.

Table 2: Test performance (median and standard deviation) on
two set of unrelated tasks, across ten different runs.

MNIST SVHN
Digits Act Pix Digits Act Pix

Method avgk ∆k ↑ MSE ↓ avgk ∆k ↑ MSE ↓
Single - 0.01± 0.01 - 0.17± 0.06
Vanilla −2.51± 3.01 0.11± 0.01 5.14± 0.83 2.75± 3.17

GradDrop −2.51± 1.73 0.13± 0.02 5.68± 1.05 1.91± 0.86
PCGrad −3.12± 3.88 0.12± 0.02 5.50± 0.75 2.26± 0.85
MGDA −12.57± 9.97 0.06± 0.02 5.99± 1.48 0.66± 0.75
GradNorm 0.13± 2.27 0.08± 0.01 6.67± 1.02 1.41± 0.74
IMTL-G 1.17± 2.77 0.07± 0.01 5.81± 0.85 2.47± 1.65
RotoGrad 2.12± 2.23 0.08± 0.02 6.08± 0.48 1.61± 2.72

MNIST and SVHN. We reuse291

the experimental setting from292

Section 6.1—now with multi-293

task versions of MNIST [16] and294

SVHN [26]—in order to evalu-295

ate how disruptive the orthogonal296

image-related task is for differ-297

ent methods. We can observe in298

the results from Table 2 that the299

effect of the image-related task300

is more disruptive in MNIST,301

in which MGDA utterly fails.302

Direction-aware methods (Grad-303

Drop and PCGrad) do not im-304

prove the vanilla results, whereas305

IMTL-G, GradNorm, and RotoGrad obtain the best results.306

CIFAR10. We reuse the setting in Section 6.2 and compare the different MTL methods using five307

different seeds. Results are shown in Table 1 and Figure 4. Unlike the previous setting, scaling308

gradients is not enough to solve the problem. Among existing methods, both direction-aware solutions309

(PCGrad and GradDrop) improve over the vanilla case on all the statistics, whereas most magnitude-310

aware solutions substantially worsen task performance. In stark contrast, RotoGrad improves task311

performance across all ten tasks, as it can be observed both in Table 1 and Figure 4. To further show312

that this is a consequence of gradient homogenization in terms of both magnitudes and directions, we313

introduced an extra-baseline, IMTL-G+Rk, which applies IMTL-G to the extended MTL architecture314

(Figure 2), that is, with matrixRk optimizing the k-th task loss (instead of Equation 3).315

NYUv2. Now, we test all methods using NYUv2 [9] on three different tasks: 13-class semantic316

segmentation; depth estimation; and surface normals. To speed up training, all images were resized317

to 288 × 384 resolution; and data augmentation was applied to alleviate overfitting. As MTL318

architecture, we use SegNet [2] where the decoder is splitted into three convolutational heads. We use319

the same setup as Liu et al. [19]. Like in previous experiments, we observe in Table 3 that RotoGrad320

results in a consistent improvement over all tasks with respect to the vanilla case. MGDA obtains321

the best results in surface normals at the expense of overlooking the other tasks, while GradDrop322

worsens all results and PCGrad obtains minor improvements in all tasks. GradNorm finds a trade-off323

solution instead, improving results in depth estimation and surface normals, yet with worse results in324

semantic segmentation. RotoGrad obtains the best results followed by IMTL-G and, more importantly,325

RotoGrad is the only method resulting in a average positive task improvement—across the three326

tasks—over training three single-task models independently. It is worth mentioning that, with only327
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Table 3: Results for different methods on the NYUv2 dataset with a SegNet model. RotoGrad obtains
the best performance in segmentation and depth tasks on all metrics, while significantly improving
the results on normal surfaces with respect to the vanilla case.

Semantic
Segmenation ↑

Depth
Estimation ↓

Surface Normal
Angle Distance ↓ Within t◦ ↑

Method mIoU Pix Acc avgk ∆k ↑ Abs Err Rel Err avgk ∆k ↑ Mean Median 11.25 22.5 30 avgk ∆k ↑ Hours

Single 0.38 0.63 - 0.59 0.23 - 24.76 18.99 30.11 57.81 69.90 - 11.37
Vanilla 0.37 0.64 −0.62 0.56 0.22 3.68 30.09 26.09 19.74 43.62 57.07 −27.26 3.45

GradDrop 0.37 0.63 −1.55 0.59 0.24 −2.22 30.81 27.19 17.68 41.44 55.15 −31.67 3.55
PCGrad 0.39 0.64 1.50 0.54 0.22 4.99 29.85 25.81 19.41 44.02 57.64 −26.68 3.51
MGDA 0.20 0.51 −32.75 0.73 0.28 −22.33 24.98 19.02 30.57 57.61 69.41 −0.11 3.55
GradNorm 0.36 0.64 −1.74 0.55 0.23 3.31 25.80 20.30 28.22 54.91 67.21 −5.25 3.54
IMTL-G 0.38 0.65 1.92 0.55 0.23 3.64 26.83 21.96 25.14 51.74 64.76 −11.67 3.60
RotoGrad 0.40 0.66 5.33 0.54 0.20 9.06 26.35 21.27 26.25 53.11 65.99 −8.99 3.85

Table 4: Task f1-score statistics and training hours in CelebA for all competing meth-
ods and two different architectures/settings. RotoGrad obtains the best performance in
both setups with comparable training time as existing methods.

Convolutional (d = 512) ResNet18 (d = 2048)
task f1-scores (%) ↑ task f1-scores (%) ↑

Method mink medk avgk stdk ↓ Hours mink medk avgk stdk ↓ Hours

Vanilla 1.62 54.74 58.69 24.18 4.06 15.45 61.52 61.25 22.09 1.49

GradDrop 3.94 55.80 58.62 23.98 4.42 4.46 63.52 63.61 21.79 1.60
PCGrad 2.69 60.30 59.83 23.85 17.03 17.23 61.82 62.74 20.84 5.90
GradNorm 1.83 52.17 54.68 24.94 11.02 14.43 64.10 63.51 21.20 3.59
IMTL-G 3.31 53.05 56.05 26.92 4.90 21.52 62.12 61.98 21.62 1.72
RotoGrad 9.11 62.31 62.45 22.14 11.00 25.72 63.84 65.17 18.99 6.90

three tasks, all methods trained in less than 4 hours; and that this result consolidates RotoGrad’s328

scalability, as we only rotate the first 1024 dimensions of z, out of a total of 7 millions.329

CelebA. Last, we apply all methods to a 40-class multi-classification problem in CelebA [20] on330

two different settings: one using a convolutional network as backbone (d = 512); and another using331

ResNet18 [13] as backbone (d = 2048). Similar to CIFAR10, we use binary cross-entropy and332

f1-score as loss and metric for all tasks. Even though we face two completely different architectures,333

results in Table 4 show that RotoGrad convincingly outperforms all competing methods in all f1-score334

statistics, independently of the model. Furthermore, since this is a computationally demanding task335

with 40 tasks—in fact, we omit MGDA as it takes several days to train—we also compare methods in336

terms of training time. On the one hand, GradDrop and IMTL-G produce little overhead compared337

with the vanilla case, as expected. On the other hand, GradNorm and PCGrad take, respectively, 2.5338

and 4 times longer to train than the vanilla setting. More importantly, RotoGrad outperforms existing339

methods while staying on par with them in training time, rotating 50 % and 75 % of the shared340

feature z for the convolutional and residual backbones, respectively, which further demonstrates that341

RotoGrad can scale-up to real-world settings.342

7 Conclusions343

In this work, we have introduced RotoGrad, an algorithm that tackles negative transfer in MTL by344

homogenizing task gradients in terms of both magnitudes and directions. RotoGrad enforces a similar345

convergence rate for all tasks, while at the same time smoothly rotates the shared representation346

differently for each task in order to avoid conflicting gradients. As a result, RotoGrad leads to347

stable and accurate MTL. Our empirical results have shown the effectiveness of RotoGrad in many348

scenarios, staying on top of all competing methods in performance, while being on par in terms of349

computational complexity with those that better scale to complex networks.350

We believe our work opens up interesting venues for future work. For example, it would be interesting351

to study alternative approaches to further scale up RotoGrad using, for example, diagonal-block or352

sparse rotation matrices; to rotate the feature space in application domains with structured features353

(e.g., channel-wise rotations in images); and to combine different methods, for example, by scaling354

gradients using the direction-awareness of IMTL-G and the “favor slow-learners” policy of RotoGrad.355
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Checklist470

1. For all authors...471

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s472

contributions and scope? [Yes] RotoGrad homogenizes both magnitudes (Equation 1)473

and direction (Equation 4), and empirical results in Section 6 and Appendix C demon-474

strate our claims.475

(b) Did you describe the limitations of your work? [Yes] In Section 6.1.476

(c) Did you discuss any potential negative societal impacts of your work? [N/A]477

(d) Have you read the ethics review guidelines and ensured that your paper conforms to478

them? [Yes]479

2. If you are including theoretical results...480

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Proposi-481

tion 3.1’s assumptions are stated in Appendix A, and those regarding RotoGrad’s482

stability appear in Appendix B.483

(b) Did you include complete proofs of all theoretical results? [Yes] Proof of Proposi-484

tion 3.1 appears in Appendix A. For the proofs related to Stackelberg games, which are485

not a direct contribution of our paper, please refer to [10].486

3. If you ran experiments...487

(a) Did you include the code, data, and instructions needed to reproduce the main exper-488

imental results (either in the supplemental material or as a URL)? [Yes] We provide489

instructions and code to reproduce our experiments in the supplemental material.490

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they491

were chosen)? [Yes] In Appendix C.1.492

(c) Did you report error bars (e.g., with respect to the random seed after running ex-493

periments multiple times)? [Yes] We provide statistics for most of our experiments494

computed over 5-10 independent runs. Due to time complexity required by larger495

datasets on NYUv2 and CelebA, we only report the results for a single random seed,496

but still compare the different methods using several performance metrics.497

(d) Did you include the total amount of compute and the type of resources used (e.g.,498

type of GPUs, internal cluster, or cloud provider)? [Yes] All details are provided in499

Appendix C.1.500

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...501

(a) If your work uses existing assets, did you cite the creators? [Yes]502

(b) Did you mention the license of the assets?[Yes] We only use code from previous503

research and licence MIT, which we inherit and acknowledge in our extended version504

of the code.505

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]506

We release the code implementation to reproduce our experiments together with the507

supplementary material, and will make it publicly available after the paper acceptance.508

(d) Did you discuss whether and how consent was obtained from people whose data509

you’re using/curating? [N/A] We only use publicly available datasets with no personal510

information. Moreover, our experiments only report statistics on the results.511

(e) Did you discuss whether the data you are using/curating contains personally identifiable512

information or offensive content? [N/A] We only use publicly available and broadly513

used image datasets.514

5. If you used crowdsourcing or conducted research with human subjects...515

(a) Did you include the full text of instructions given to participants and screenshots, if516

applicable? [N/A]517
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(b) Did you describe any potential participant risks, with links to Institutional Review518

Board (IRB) approvals, if applicable? [N/A]519

(c) Did you include the estimated hourly wage paid to participants and the total amount520

spent on participant compensation? [N/A]521
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