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ABSTRACT

Label noise is verified seriously harmful to deep neural networks (DNNs). A simple
and scalable strategy to handle this problem is to design robust loss functions,
which improve generalization in the presence of label noise by reconciling fitting
ability with robustness. However, the widely-used static trade-off between the
two contradicts the dynamics of DNNs learning with label noise, leading to an
inferior performance. Therefore, in this paper, we propose a dynamic loss function
to solve this problem. Specifically, DNNs tend to first learn generalized patterns,
then gradually overfit label noise. In light of this, we make fitting ability stronger
initially, then gradually increase the weight of robustness. Moreover, we let DNNs
put more emphasis on easy examples than hard ones at the later stage since the
former are correctly labeled with a higher probability, further reducing the negative
impact of label noise. Extensive experimental results on various benchmark datasets
demonstrate the state-of-the-art performance of our method. We will open-source
our code very soon.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved tremendous success in a variety of tasks, particularly
in supervised learning. However, their superior performance relies heavily on correctly annotated
large-scale datasets. Considering that it is pretty expensive and time-consuming to manually label a
big dataset without any error, one may prefer some cheap but imperfect methods such as querying
search engines to collect labeled data, which inevitably introduce label noise. Unfortunately, DNNs
can easily fit an entire training dataset with any ratio of noisy labels (Zhang et al., 2021a), which
eventually results in poor generalization performance. Therefore, developing robust algorithms
against label noise for DNNs is of great practical importance.

A simple and scalable way of handling label noise is to devise robust loss functions (Zhang &
Sabuncu, 2018; Wang et al., 2019b; Amid et al., 2019; Ma et al., 2020; Feng et al., 2021; Zhou et al.,
2021b;c). They typically cause no changes to the training process, require no extra information such
as the noise rate or a clean validation set, and incur no additional memory burden or computational
cost. It is widely observed that cross entropy (CE) often leads to serious overfitting in the presence
of label noise due to its strong fitting ability. Meanwhile, although Ghosh et al. (2017) theoretically
proved that mean absolute error (MAE) is robust against label noise, it suffers from severe underfitting
in practice, especially on complex datasets. In light of this, many robust loss functions have been
proposed to improve generalization by reconciling fitting ability with robustness, among which the
generalized cross entropy (GCE) (Zhang & Sabuncu, 2018) is the most representative method. It is
an interpolation between CE and MAE with a hyper-parameter q ∈ (0, 1). As shown in Figure 1,
selecting a suitable value for q such as 0.7, GCE ourperforms both CE and MAE significantly.

Besides devising robust learning algorithms, some recent work focused on delving deep into the
dynamics of DNNs learning with label noise. Arpit et al. (2017) observed that while DNNs are
capable of memorizing noisy labels perfectly, there are noticeable differences in DNNs’ learning
status at different time steps of the training process. Specifically, DNNs tend to first learn generalized
patterns shared by the majority of training examples, then gradually overfit label noise. Further
evidence is provided by Ma et al. (2018) that DNNs first learn simple representations via subspace
dimensionality compression, then memorize noisy labels through subspace dimensionality expansion.
This phenomenon is also verified by Figure 1 that the training accuracy on correctly label data always
increases earlier than that on wrongly labeled data.
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Figure 1: Performance of ResNet18 on CIFAR-100 with 60% symmetric noise, where the training
accuracy calculation is based on the noisy labels. GCE with q = 0.7 achieves the highest test
accuracy, outperforming both CE and MAE significantly, but the figure still declines remarkably at
the later stage of the training process. Increasing q to 0.8, the training accuracy on wrongly labeled
data remains low and the test accuracy grows steadily throughout the training process, but the training
accuracy on correctly labeled data also remains at a low level, leading to a worse generalization.
Decreasing q to 0.6, both the training accuracy on correctly labeled data and the test accuracy increase
quickly at the early stage, but the training accuracy on wrongly labeled data also experiences a
substantial rise immediately, leading to a dramatic drop in the test accuracy.

Considering both the above views, it is clear that there exists a mismatch between the statics of robust
loss functions and the dynamics of DNNs learning with label noise, leading to an inferior performance.
Specifically, with a static trade-off between fitting ability and robustness, the classification accuracy
fails to both rise quickly at the early stage and grow steadily afterwards. As shown in Figure 1,
although GCE with q = 0.7 achieves the highest test accuracy finally, the figure still experiences
a remarkable drop at the later stage of the training process. If we slightly improve robustness by
increasing q to 0.8, although the test accuracy grows steadily throughout the training process, it
always remains at a lower level. By contrast, if we slightly improve fitting ability by decreasing q
to 0.6, although the test accuracy reaches a higher level quickly at the early stage, it drops more
dramatically afterwards.

Fortunately, a loss function with a dynamic trade-off between fitting ability and robustness can solve
the above problem. Specifically, according to DNNs’ learning status at different time steps, we
make fitting ability stronger initially such that the classification accuracy rises quickly at the early
stage, then we gradually increase the weight of robustness to make sure a steady performance growth
afterwards. Moreover, to further reduce the negative impact of label noise, we let DNNs put more
emphasis on easy examples than hard ones at the later stage because the easy examples are more
likely to be those with correct labels (Han et al., 2018; Yu et al., 2019). We exhibit the performance
of GCE with a dynamic q (DGCE) in Figure 1. At the early stage, the test accuracy of DGCE is
comparable to that of GCE with q = 0.6. At the later stage, the figure grows steadily as GCE with
q = 0.8. Therefore, it outperforms GCE by a remarkable margin finally.

In summary, to solve the mismatch between the static robust loss functions and the dynamic learning
status of DNNs, in this paper, we propose a dynamic loss function which provides strong fitting
ability initially and gradually improves robustness afterwards. The rest of the paper is organized
as follows. In Section 2, we give a brief review of related work on learning with label noise. In
Section 4, we introduce our proposed DGCE in detail and analyze why it achieves better performance.
In Section 5, we provide extensive experimental results on various benchmark datasets. Finally, we
conclude the paper in Section 6.

2 RELATED WORK

In this section, we briefly review related work on learning with label noise.

Noise transition matrix estimation In theory, the clean class posterior can be inferred by com-
bining the noisy class posterior and the noise transition matrix that reflects the label flipping process.
With an accurately estimated noise transition matrix, one can build statistically consistent classifiers,
which converge to the optimal classifiers defined by using clean data. Considering that a large estima-
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tion error of the noise transition matrix would degenerate the classification accuracy significantly,
numerous studies (Menon et al., 2015; Patrini et al., 2017; Yao et al., 2020; Yang et al., 2022; Zhu
et al., 2022) focused on reduce this error.

Loss adjustment These methods adjust the loss of each training example before back-propagation,
which could be further divided into loss reweighting (Liu & Tao, 2015; Jiang et al., 2018; Shu et al.,
2020; Zhang et al., 2021b) and label correction (Tanaka et al., 2018; Yi & Wu, 2019; Song et al.,
2019; Huang et al., 2020; Wang et al., 2021). The former assigns smaller weights to the potentially
incorrect labels, which is usually realized by meta-learning that trains a meta DNN on a clean dataset
to assign weights to each sample. The latter uses model predictions to correct the provided labels.

Sample selection These approaches attempted to select correctly labeled examples from a noisy
training dataset. While small-loss trick is widely used for selecting clean labels, some recent stud-
ies (Song et al., 2021; Xia et al., 2022; Wang et al., 2022) proposed more advanced approaches. After
selecting correct labels, some approaches (Han et al., 2018; Yu et al., 2019; Wei et al., 2020) directly
remove wrong labeled examples and train DNNs on the remained data, while others (Nguyen et al.,
2020; Li et al., 2020; Zhou et al., 2021a) only discard wrong labels but preserve the corresponding
instances, then they leverage semi-supervised learning to train DNNs. To reduce the accumulated
error caused by incorrect selection, this type of approaches usually maintains multiple DNNs or
refines the selected set iteratively.

Regularization Many regularization methods introduce regularizers into loss functions. To name
a few, Liu & Guo (2020) randomly pair an instance and another label to construct a peer sample,
then uses a peer regularizer to punish DNNs from overly agreeing with the peer sample. Generalized
Jenson-Shannon Divergence (GJS) (Englesson & Azizpour, 2021) introduces a consistency regularizer
forcing DNNs to make consistent predictions given two augmented versions of a single input. Early
learning regularization (ELR) (Liu et al., 2020) encourages the predictions of DNNs to agree with the
exponential moving average of the past outputs. There are also other types of regularizations such as
data augmentation (Zhang et al., 2018), gradient clipping (Menon et al., 2020), model pruning (Xia
et al., 2021), over-parameterization (Liu et al., 2022), and so on.

Robust loss function While the commonly used CE easily overfits label noise due to its strong
fitting ability, MAE is theoretically noise-tolerant (Ghosh et al., 2017) but suffers from underfit-
ting due to its poor fitting ability. Subsequently, a large amount of work improves generalization
performance by reconciling fitting ability with robustness in different ways. While GCE (Zhang &
Sabuncu, 2018) is an interpolation between CE and MAE, symmetric cross entropy (SCE) (Wang
et al., 2019b) equals a convex combination of CE and MAE, and active passive loss (Ma et al., 2020)
just replaces CE in SCE with normalized CE. Taylor cross entropy (Feng et al., 2021) realizes an
interpolation between CE and MAE through Taylor Series, while the work of (Englesson & Azizpour,
2021) scales the Jensen-Shannon Divergence to construct the interpolation. Robust loss functions
typically cause no changes to the training process, require no extra information such as the noise rate
or a clean validation set, and incur no additional memory burden or computational cost.

3 PRELIMINARIES

Risk minimization Denote the feature space by X ⊂ Rd and the class space by Y = [k] =
{1, ...k} where k ≥ 2. In a typical classfication problem without label noise, the training data
{xi, yi}Ni=1 is drawn i.i.d. from an unknown distributionD over X ×Y . The classifier argmaxi f(·)i
is a function that maps feature space to class space, where f : X → C, C ⊆ [0, 1]k, ∀c ∈ C, 1T c = 1.
Generally, f is a DNN with a softmax output layer. For brevity, we call f as the classifier in the
following. Given a loss function L : C × Y → R+ and a classifier f , the L-risk of f is defined as

RL(f) = ED[L(f(x), y)] = Ex,y[L(f(x), y)], (1)

where E represents expectation. Under the risk minimization framework, our objective is to learn
f∗ = argminf∈HRL(f) whereH refers to the hypothesis space.

In the presence of label noise, we can only access the noisy training data {xi, ỹi}Ni=1 drawn i.i.d.
from a noisy distribution D̃. In this case, the L-risk of f is defined as

R̃L(f) = ED̃[L(f(x), ỹ)] = Ex,ỹ[L(f(x), ỹ)]. (2)
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Figure 2: Gradient of GCE w.r.t the posterior probability. The left subfigure shows that when q = 0,
GCE is equivalent to CE putting more weights on hard examples. When q = 1, GCE becomes MAE
treating all examples equally. When 0 < q < 1, GCE is an interpolation between CE and MAE,
which puts less emphasis on hard examples compared to CE, yet still pays more attention to them
compared to MAE. The right subfigure exhibits that when q > 1, GCE assigns more weights to easy
examples instead.

Similarly, we denote the global minimizer of R̃L(f) by f̃∗.

Label noise model The label noise model is formulated as

ỹi =

{
yi with probability (1− ηxi

)

j, j ∈ [k], j 6= yi with probability ηxi,j
, (3)

where ηxi =
∑
j 6=yi ηxi,j is called noise ratio of xi. This formulation corresponds to the most

generic label noise termed instance-dependent noise, where the noise ratio depends on both features
and labels. A special case is the asymmetric noise, where the noise ratio depends only on labels.
In this case, we write ηxi

= ηyi , ηxi,j = ηyi,j . In addition, the most ideal label noise is called
symmetric noise, where each true label is flipped into other labels with equal probability. Formally,
for symmetric noise we have ηxi

= η where η is a constant and ηxi,j =
η
k−1 ,∀j 6= yi.

Robust loss functions The commonly used CE and MAE can be represented as

LCE(f(x), y) = − log fy(x), (4)
LMAE(f(x), y) = 1− fy(x). (5)

Ghosh et al. (2017) has proved that under symmetric label noise with 1− η > 1
k , or asymmetric label

noise with 1− ηy > ηy,j ,∀j 6= y and RL(f∗) = 0, MAE is noise-tolerant, i.e., RL(f∗) = RL(f̃
∗).

However, MAE suffers from servere underfitting on complicated datasets in practice due to its poor
fitting ability. Generalized cross entropy (GCE) is the most representative method among robust loss
functions, which is defined as

LGCE(f(x), y) =
1− fqy (x)

q
, (6)

where q ∈ (0, 1). GCE is an interpolation between CE and MAE, it becomes MAE when q = 1 while
it is equivalent to CE when q → 0 based on box-cox transformation (Atkinson et al., 2021).

4 METHOD

Gradient analysis Following Zhang & Sabuncu (2018); Feng et al. (2021), we first derive the
gradients of CE, MAE, and GCE w.r.t the model parameters to demonstrate how their learning
processes differ from each other. Their gradients can be represented as

∂LCE(f(x), y)

∂θ
= − 1

fy(x)
∇θfy(x), (7)

∂LMAE(f(x), y)

∂θ
= −∇θfy(x), (8)

∂LGCE(f(x), y)

∂θ
= −fq−1y (x)∇θfy(x), (9)
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where θ is the set of parameters of f . A smaller fy(x) means that the model prediction on x is less
consistent with the given labels, so the loss value of (x, y) is larger, i.e., (x, y) is a harder example.
As shown in the left subfigure of Figure 2, CE puts more weights on hard examples, which leads
to serious overfitting in the presence of label noise, since hard examples may exactly be those with
wrong labels. By contrast, MAE treats all examples equally, which avoids overfitting effectively
but suffers from severe underfitting. GCE is equivalent to CE if q = 0 and becomes MAE if q = 1.
When q ∈ (0, 1), compared with CE, GCE puts less emphasis on hard examples. Relative to MAE,
GCE still pays more attention to hard examples.

Dynamic GCE Although the recently proposed robust loss functions vary from each other in
formulation, the common belief behind them is to reconcile fitting ability with robustness. With a
static trade-off between the two, their classification accuracy fails to both rise quickly at the early stage
and grow steadily at the later stage, which hinders them from achieving better generalization. Arpit
et al. (2017) empirically proved that DNNs first memorize correct labels and subsequently memorize
wrong labels. Therefore, it may solve the dilemma to provide a stronger fitting ability at the early
stage, and then increase the weight of robustness gradually. Following this principle, we dynamically
adjust q according to DNNs’ learning status at different time steps. Formally, inspired by the
commonly used cosine annealing learning rate schedule, we define q(t) as

q(t) = qs +
1

2
(qe − qs)(1− cos(

πt

T
)), (10)

where t and T respectively denote the current and total epoch, qs and qe respectively represent the
start and end value of q(t). Intuitively, Equation (10) represents a cosinusoidal increase from qs to
qe. We use cosine annealing since it makes q stay relatively stable at the outset and the end of the
training process.

Range of q Based on the gradient analysis, smaller q provides stronger fitting ability. Consequently,
we set qs to a small value for a quick performance rise at the early stage. Moreover, we think the
range of q should not be limited within (0,1) and let qe > 1. As shown in the right subfigure of
Figure 2, when q > 1 GCE puts more emphasis on easy examples. According to the widely-used
small-loss trick, the labels of easy examples are more likely to be correct. Therefore, DGCE with
qe > 1 can further reduce the negative impact of label noise and guarantee a steady performance
growth at the later stage. Inspired by Wang et al. (2019a) which reveal the connection between
loss functions and example weighting, we find that GCE with q > 1 plays a similar role to some
reweighting methods (Majidi et al., 2021; Kumar & Amid, 2021). The main difference is that they
explicitly assign more weights to potentially correctly labeled examples while DGCE implicitly
realizes reweighting based on the agreement between model predictions and given labels.

Theoretical Analysis In the following, we theoretically prove that under risk minimization frame-
work, GCE with q > 1 can obtain noise tolerance even under instance-dependent noise.

Definition. The noisy loss L̃(f(x), y) is defined as

L̃(f(x), y) = (1− ηx)L(f(x), y) +
∑
j 6=y

ηx,jL(f(x), j), (11)

such that the L-risk of f with label noise R̃L(f) can be formulated as

R̃L(f) = Ex,ỹ[L(f(x), ỹ)] = Ex,yEỹ|x,y[L(f(x), ỹ)] = Ex,y[L̃(f(x), y)]. (12)

Lemma. ∀ q > 1 and (x, y), under instance-dependent noise with 1− ηx > ηx,j ,∀j 6= y,

arg min
f(x)∈C

L̃(f(x), y) = arg min
f(x)∈C

L(f(x), y) = ey, (13)

where ey denotes a one-hot vector with eyj = 1 if j = y.

Proof. Since q > 1 and 1− ηx > ηx,j , we have

(1− ηx) ≥ (1− ηx)
∑
j

fqj (x) ≥ (1− ηx)fqy (x) +
∑
j 6=y

ηx,jf
q
j (x) = 1− qL̃(f(x), y), (14)

with equality holds iff f(x) = ey .

5



Under review as a conference paper at ICLR 2023

Table 1: Test accuracies (%) on CIFAR-10 datasets with different levels of label noise. The best
results are boldfaced while the second best results are underlined.

Method Publication # Hyper- Symmetric Asymmetric Instance

parameters 20% 40% 60% 80% 20% 40% 20% 40%

CE 0 83.30±0.19 67.85±0.53 47.79±0.42 25.80±0.20 86.00±0.15 74.98±0.09 80.86±0.11 61.40±0.28
GCE NeurIPS 2018 1 90.68±0.08 87.33±0.15 81.29±0.28 61.93±0.24 88.96±0.15 58.79±0.14 89.40±0.17 78.60±3.67
SCE ICCV 2019 2 89.24±0.43 85.37±0.36 79.20±0.26 55.65±1.36 88.05±0.07 77.38±0.15 87.91±0.19 78.62±0.64
NLNL ICCV 2019 1 82.25±0.16 72.66±0.08 59.97±1.33 44.03±0.51 84.94±0.17 82.13±0.03 81.58±0.41 69.80±0.73
BTL NeurIPS 2019 2 89.93±0.30 78.22±0.24 58.00±0.20 29.01±0.50 86.51±0.14 74.58±0.43 86.58±0.41 64.72±0.74
NCE+RCE ICML 2020 2 90.37±0.14 87.13±0.28 80.77±0.41 64.84±0.66 88.64±0.29 76.53±0.22 89.11±0.05 77.39±0.04
TCE IJCAI 2020 1 90.50±0.11 86.30±0.24 77.42±0.13 46.91±0.08 87.87±0.21 58.07±0.28 88.88±0.18 73.15±0.26
NCE+AGCE ICML 2021 4 90.49±0.09 87.24±0.08 80.98±0.20 66.47±1.12 89.05±0.32 76.67±0.24 89.23±0.37 78.96±0.29
CE+SR ICCV 2021 5 91.40±0.13 88.03±0.19 82.82±0.21 71.34±0.45 88.19±0.36 75.33±0.23 87.96±0.09 68.36±0.32
JS NeurIPS 2021 1 90.62±0.06 86.28±0.28 77.04±0.54 43.04±0.34 88.30±0.16 68.73±0.50 88.27±0.56 73.92±0.33
Poly-1 ICLR 2022 1 84.89±0.08 68.25±0.67 47.87±0.56 25.14±0.32 86.19±0.20 75.52±0.42 81.37±0.23 61.50±0.60
DGCE 2 90.80±0.18 88.02±0.07 83.11±0.27 66.04±0.39 89.74±0.14 72.14±0.30 90.02±0.15 83.68±0.17

Table 2: Test accuracies (%) on CIFAR-100 datasets with different levels of label noise. The best
results are boldfaced while the second best results are underlined.

Method Publication # Hyper- Symmetric Asymmetric Instance

parameters 20% 40% 60% 80% 20% 40% 20% 40%

CE 0 60.41±0.19 43.78±0.44 25.03±0.13 8.45±0.32 60.89±0.25 43.74±0.51 60.73±0.36 45.31±0.36
GCE NeurIPS 2018 1 68.37±0.27 61.94±0.44 49.91±0.25 22.22±0.51 62.21±0.32 41.19±0.89 67.22±0.28 54.37±0.29
SCE ICCV 2019 2 59.60±0.25 43.54±0.69 25.66±0.35 8.61±0.12 60.78±0.46 43.81±0.70 59.79±0.18 44.62±0.41
NLNL ICCV 2019 1 58.01±0.30 43.66±0.75 26.64±0.29 11.62±0.36 57.25±0.04 39.31±0.37 57.73±0.20 42.92±1.17
BTL NeurIPS 2019 2 61.83±0.13 47.54±0.16 30.47±0.54 13.73±0.38 58.70±0.14 42.91±0.32 59.31±0.40 44.18±0.44
NCE+RCE ICML 2020 2 67.04±0.24 61.15±0.41 50.43±0.25 25.44±0.26 63.39±0.19 43.55±0.37 66.09±0.25 54.16±0.31
TCE IJCAI 2020 1 63.97±0.65 57.40±0.63 41.46±0.67 15.12±0.27 54.97±0.49 39.73±0.19 59.42±0.40 36.48±1.38
NCE+AGCE ICML 2021 4 67.06±0.22 60.93±0.17 49.09±0.35 20.10±0.61 64.87±0.29 46.87±0.28 66.38±0.46 56.35±0.10
CE+SR ICCV 2021 5 68.84±0.23 62.03±0.39 50.28±0.25 9.82±1.39 59.16±0.62 41.80±0.23 63.19±0.06 47.45±0.51
JS NeurIPS 2021 1 67.58±0.52 61.01±0.31 47.95±0.38 20.03±0.27 59.67±0.89 41.23±0.50 64.44±0.81 49.12±1.11
Poly-1 ICLR 2022 1 60.13±0.16 44.20±0.65 25.84±0.15 8.44±0.27 60.81±0.22 43.63±0.60 60.76±0.45 45.65±0.03
DGCE 2 68.77±0.35 63.88±0.57 54.89±0.20 30.05±0.10 65.14±0.28 43.08±0.18 68.51±0.38 57.93±0.24

Theorem. For any q > 1, under instance-dependent label noise with 1 − ηx > ηx,j ,∀j 6= y, if
RL(f

∗) = 0, we have RL(f̃∗) = 0.

Proof. Since we assume that RL(f∗) = 0, we have f∗(x) = ey,∀(x, y). Based on Lemma, we also
obtain f̃∗(x) = ey,∀(x, y). Therefore, RL(f̃∗) = RL(f

∗) = 0.

5 EXPERIMENT

5.1 SETUP

Datasets We conduct a thorough empirical evaluation on CIFAR datasets with synthetic label
noise and two real-world noisy datasets Clothing1M (Xiao et al., 2015) and Webvision (Li et al.,
2017). For CIFAR, the synthetic label noise includes symmetric, asymmetric (Englesson & Azizpour,
2021), and instance(-dependent) (Xia et al., 2020) noise. For Clothing1M, we follow Liu et al. (2020)
who sample 2000 mini-batches (with batch size 64) from the training data ensuring that the classes
of the noisy labels are balanced. For Webvision, we follow the “Mini” setting in (Jiang et al., 2018;
Ma et al., 2020) which takes only the first 50 classes of the Google resized images as the training
dataset. Then we evaluate the classification performance on the same 50 classes of both Webvision
and ILSVRC2012 validation set.

Baselines We first compare DGCE with Cross Entropy (CE) and several state-of-the-art loss
functions causing no changes to the training process: Generalized Cross Entropy (GCE) (Zhang
& Sabuncu, 2018), Negative Learning for Noisy Labels (NLNL) (Kim et al., 2019), Symmetric
Cross Entropy (SCE) (Wang et al., 2019b), Bi-Tempered Logistic Loss (BTL) (Amid et al., 2019),
Normalized Cross Entropy with Reverse Cross Entropy (NCE+RCE) (Ma et al., 2020), Taylor Cross
Entropy (Feng et al., 2021), Normalized Cross Entropy with Asymmetric Generalized Cross Entropy
(NCE+AGCE) (Zhou et al., 2021b), Cross Entropy with Sparse Regularization (CE+SR) (Zhou et al.,
2021c), Jensen-Shannon Divergence Loss (JS) (Englesson & Azizpour, 2021), and Poly-1 (Leng
et al., 2022). Following previous work (Zhou et al., 2021b;c; Englesson & Azizpour, 2021) we do
not directly compare DGCE with either other types of methods or robust loss functions requiring
pretraining such as DMI (Xu et al., 2019).
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Table 3: Test accuracies (%) on Clothing1M.
CE SCE NCE+RCE AGCE CE+SR JS DGCE

70.30±0.12 71.38±0.12 71.44±0.15 71.49±0.16 71.47±0.18 71.45±0.24 72.00±0.20

Table 4: Top-1 validation accuracies (%) on WebVision and ILSVRC2012 validation set.
Dataset CE SCE NCE+RCE AGCE CE+SR JS DGCE

Webvision 61.13±0.74 67.35±0.17 64.92±0.41 68.47±0.53 68.41±0.43 65.60±0.46 70.09±0.33
ILSVRC2012 56.53±0.43 62.13±1.05 61.75±0.42 64.56±0.14 64.87±0.34 62.16±0.16 65.41±0.25

In addition, to verify that DGCE can provide performance boosts for other types of methods, we
integrate DGCE with the following methods: mixup (Zhang et al., 2018), early learning regularization
(ELR) (Liu et al., 2020), generailized Jensen-Shannon Divergence (GJS) (Englesson & Azizpour,
2021), co-teaching (Han et al., 2018), JoCoR (Wei et al., 2020), f-divergence (Wei & Liu, 2021),
Self-adaptive traing (SAT) (Huang et al., 2020), and DivideMix (Li et al., 2020).

Experimental details When comparing DGCE with other robust loss functions, we use a single
shared learning setup for all approaches. For CIFAR dataset, we train a ResNet18 (He et al., 2016)
using SGD for 150 epochs with momentum 0.9, weight decay 10−4, batch size 128, initial learning
rate 0.01, and cosine learning rate annealing. We also apply typical data augmentations including
random crop and horizontal flip. For Clothing1M, we train a ResNet50 (He et al., 2016) pretrained on
ImageNet using SGD for 30 epochs with momentum 0.9, weight decay 1× 10−4, batch size 64, and
initial learning rate 0.01. The learning rate is divided by 10 at the 10th and 20th epoch. For Webvision,
we train a ResNet50 (He et al., 2016) using SGD for 250 epochs with nesterov momentum 0.9, weight
decay 3× 10−5, batch size 512, and initial learning rate 0.4. The learning rate is multiplied by 0.97
after each epoch. Typical data augmentations including random crop, color jittering, and horizontal
flip are applied to both clothing1M and Webvision. More details about hyper-parameter settings can
be found in Appendix A.1. When integrating DGCE with other methods, for each method we use
the training setup reported in official codes unless otherwise specified. For more details, please refer
to the Appendix A.2. Following most recent work (Ma et al., 2020; Feng et al., 2021; Zhou et al.,
2021b;c), unless otherwise sepcified, we always report accuracies of the last epoch and all results
(mean±std) are reported over 3 random runs.

5.2 COMPARISON WITH ROBUST LOSS FUNCTIONS

The experimental results on CIFAR with label noise are summarized in Table 1 and Table 2. On
CIFAR-10 dataset, DGCE achieves the best performance in 4 settings and the second best performance
in 2 settings. Particularly, it outperforms all counterparts under the most complex instance-dependent
label noise, and the performance gap between DGCE and the second best NCE+AGCE reaches about
5% when the noise rate is 40%. The most competitive counterparts are NCE+AGCE and CE+SR,
the former achieves the second best performance in 3 settings while the latter achieves the best
performance in 3 settings and the second best performance in 1 setting. However, they both have
far more hyper-parameters. On more complex dataset CIFAR-100, DGCE exhibits more remarkable
superiority, which reaches the best performance in 6 settings and the second best performance in
1 setting. When the noise rate is high, i.e., 60% and 80% symmetric noise, DGCE overtakes the
second best method NCE+RCE by more than 4%. The evaluation on the real-world noisy datasets
Clothing1M and Webvision is shown in Table 3 and Table 4, where DGCE also outperforms other
approaches by a clear margin.

In summary, DGCE demonstrates a significant and consistent improvement under both synthetic and
realistic label noise across various datasets. The remarkable performance validates the effectiveness
of the dynamic trade-off between fitting ability and robustness.

5.3 IMPACT OF HYPER-PARAMETERS

We summarize the performance of DGCE with different hyper-parameters in Table 5. When qs = qe,
DGCE degenerates to GCE, which serves as the baseline. As shown in Table 5, DGCE with qe = 1
overtakes static GCE in most cases, especially on the more complex dataset CIFAR-100, which
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Table 5: Performance of DGCE with different hyper-parameters.

Dataset (qs, qe)
Symmetric Asymmetric Instance

20% 40% 60% 80% 20% 40% 20% 40%

CIFAR-10
(0.9,0.9) 90.68±0.08 87.33±0.15 81.29±0.28 61.93±0.24 88.96±0.15 58.79±0.14 89.40±0.17 78.60±3.67
(0.8,1.0) 90.72±0.06 87.05±0.02 80.01±0.25 54.63±1.41 88.86±0.05 69.47±0.06 89.07±0.14 79.04±0.49
(0.8,2.0) 90.80±0.18 88.02±0.07 83.11±0.27 66.04±0.39 89.74±0.14 72.14±0.30 90.02±0.15 83.68±0.17

CIFAR-100
(0.7,0.7) 68.37±0.27 61.94±0.44 49.91±0.25 22.22±0.51 62.21±0.32 41.19±0.89 67.22±0.28 54.37±0.29
(0.6,1.0) 68.75±0.26 63.59±0.16 52.38±0.22 24.16±0.49 63.95±0.30 41.95±0.30 68.24±0.29 55.04±0.69
(0.6,1.5) 68.77±0.35 63.88±0.57 54.89±0.20 30.05±0.10 65.14±0.28 43.08±0.18 68.51±0.38 57.93±0.24
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Figure 3: Hyper-parameter sensitivity of GCE and DGCE on CIFAR-100 with 60% symmetric noise.

verifies the importance of the dynamic trade-off between fitting ability and robustness. However,
DGCE with qe = 1 stills lags behind GCE in some settings on CIFAR-10. Since CIFAR-10 is a
relatively simple dataset, qe = 1 is not enough to offset the strong ability provided by a smaller qs.
By contrast, DGCE with qe > 1 achieves the best performance consistently, its superiority is more
remarkable with a higher noise rate.

Moreover, we investigate the hyper-parameter sensitivity of DGCE on CIFAR-100 with 60% sym-
metric noise. For comparison we firstly vary q for GCE from 0.5 to 0.9 (see Figure 3 (a)). Then
we fix qe = 1.5 and vary qs for DGCE from 0.4 to 0.8 (see Figure 3 (b)). We finally fix qs = 0.6
and vary qe for DGCE from 1.3 to 1.7 (see Figure 3 (c)). It is clear from Figure 3 (a) that GCE is
pretty sensitive to q, its test accuracy ranges from 20% to 50%. By contrast, the performance gap of
DGCE with different qs is much narrower. If we limit qs within [0.5, 0.7], the gap is even less than
2%. Moreover, varying qe within a reasonable range almost has no impact as shown in Figure 3 (c).
Overall, DGCE is pretty robust to its hyper-parameters.

5.4 INTEGRATING DGCE WITH OTHER TYPES OF ALGORITHMS

Robust loss functions have been an independent research line of handling label noise in most previous
work (Ma et al., 2020; Feng et al., 2021; Zhou et al., 2021b;c). In this section, we integrate our
proposed DGCE with other types of algorithms. Experimental results are summarized in Table 6. In
the following, we roughly describe how we incorporate DGCE into existing frameworks. For more
details please refer to Appendix A.2.

Mixup is a type of data augmentation, which can be integrated with DGCE naturally. ELR and GJS
both improve robustness against label noise through regularizers. For simplicity, we directly combine
DGCE with these regularizers. Co-teaching and JoCoR both select examples based on the small-loss
trick during the training process, we replace CE in these frameworks with DGCE. Overall, DGCE
can give large performance boosts to the above methods because its dynamic q reduces the negative
impact of label noise gradually.

F-divergence is a successor to peer loss (Liu & Guo, 2020) achieving better performance. SAT uses
model predictions to correct the provided labels. DivideMix is an aggregation of multiple techniques
based on a sophisticated semi-supervised learning framework MixMatch (Berthelot et al., 2019). The
above methods all have a warmup stage at the outset during which they train DNNs with CE without
any modification. We replace CE with DGCE during the warmup stage, then for DivideMix we
particularly use examples whose predictions agree with their labels to train DNNs with CE for another
several epochs. Compared to CE, DGCE can provide a better initialization for the subsequent process,
which can both make more reliable predictions and better discriminate correctly from wrongly labeled
examples, so it also give performance gains to both of them in most cases.
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Table 6: Test accuracies (%) on CIFAR-100 datasets with different levels of label noise.

Method Symmetric Asymmetric Instance

20% 40% 60% 80% 20% 40% 20% 40%

mixup 65.90±0.32 51.21±0.61 32.71±0.14 13.82±0.07 65.79±0.67 47.31±0.27 66.18±0.14 51.02±0.40
+DGCE 71.57±0.11 68.03±0.28 61.22±0.10 44.76±0.49 70.12±0.09 48.19±0.37 71.64±0.32 65.07±0.23
ELR 72.81±0.16 69.54±0.18 62.98±0.48 29.04±0.74 74.25±0.18 68.41±0.11 73.69±0.08 72.10±0.21
+DGCE 73.42±0.20 71.16±0.44 65.90±0.18 42.83±1.41 74.14±0.15 70.33±0.20 73.30±0.28 72.13±0.29
GJS 76.05±0.10 72.52±0.12 63.15±0.23 33.47±0.49 73.98±0.32 56.83±0.37 75.46±0.23 67.53±0.35
+DGCE 75.78±0.11 73.31±0.14 65.44±0.19 32.14±0.22 75.44±0.32 62.69±0.41 75.79±0.10 71.36±0.23
Co-teaching 66.26±0.44 59.93±0.27 48.40±0.32 19.92±0.24 64.10±0.07 46.74±0.06 65.46±0.28 53.71±0.43
+DGCE 68.00±0.30 62.31±0.27 51.78±0.27 27.42±0.20 64.45±0.10 48.22±0.63 65.97±0.09 54.41±0.33
JoCoR 63.36±0.21 59.30±0.19 51.88±0.20 27.59±1.09 56.85±0.32 40.76±0.18 61.33±0.14 52.40±0.65
+DGCE 64.83±0.23 60.68±0.24 53.59±0.44 32.61±0.28 60.20±0.40 41.61±0.70 63.09±0.49 52.74±0.40
f-divergence 69.97±0.10 65.04±0.06 57.55±0.16 28.06±0.08 68.74±0.08 54.17±0.12 69.85±0.10 60.39±0.15
+DGCE 71.17±0.12 66.74±0.06 59.94±0.27 28.72±0.08 70.44±0.11 52.24±0.41 70.93±0.07 61.33±0.07
SAT 75.82±0.06 71.05±0.12 63.23±0.45 37.10±0.29 77.57±0.07 70.87±0.61 77.19±0.40 73.43±0.55
+DGCE 76.32±0.12 73.61±0.17 68.37±0.68 41.99±0.95 77.18±0.20 69.96±0.37 76.62±0.19 73.89±0.13
DivideMix 76.72±0.09 74.88±0.38 70.20±0.20 54.12±0.19 76.01±0.17 52.96±0.72 76.53±0.07 69.39±0.23
+DGCE 77.65±0.03 76.14±0.10 71.77±0.09 56.67±0.14 76.51±0.08 53.30±0.51 77.43±0.14 69.87±0.56

5.5 ROBUSTNESS AGAINST BACKDOOR ATTACKS

vanilla local trigger global trigger

Figure 4: Illustration of backdoor triggers.

Besides label noise, we observe that DGCE also helps
to improve robustness against backdoor attacks. Typ-
ical backdoor attacks (Liu et al., 2018; Nguyen & Tran,
2021) inject triggers into a small part of training ex-
amples and change their labels into a specific target
class, such that the target model performs well on be-
nign samples whereas consistently classifies any input
containing the backdoor trigger into the target class.
Following Weng et al. (2020), we use two types of backdoor triggers as shown in Figure 4, which are
added into 0.2% randomly selected training examples whose labels are converted into the target class.
We first feed clean test samples into the target model to calculate the test accuracy, then remove test
samples which are classified into the target class and add triggers into all remained test images to
compute the backdoor success rate.

Table 7: Backdoor Attack on DNNs trained with different loss functions.

Dataset Method Local Trigger Global Trigger

Test Accuracy Success Rate Test Accuracy Success Rate

CIFAR-10
CE 93.54±0.17 99.96±0.04 93.46±0.21 64.99±1.01
GCE 92.41±0.13 0.68±0.71 92.37±0.07 38.55±2.35
DGCE 92.28±0.20 0.29±0.15 92.18±0.18 36.49±0.46

CIFAR-100
CE 73.52±0.30 95.90±2.29 73.67±0.43 47.58±0.59
GCE 71.32±0.20 100.00±0.00 71.81±0.17 29.45±4.35
DGCE 72.16±0.23 0.17±0.05 72.01±0.24 22.65±3.41

As shown in Table 7,
test accuracies of
DNNs trained with
different loss functions
are comparable to
each other. Moreover,
GCE exhibits stronger
robustness against
backdoor attacks than
CE while DGCE can
further improve backdoor robustness. Based on the dynamics of DNNs, they firstly learn patterns
shared by most training examples and eventually memorize the correlation between backdoor triggers
and target class because the poisoned examples only account for a small proportion (0.2%). Since
DGCE reduces fitting ability gradually, it also helps to improve backdoor robustness.

6 CONCLUSION

In this paper, we propose a dynamic loss function DGCE to handle the mismatch between the
statics of robust loss functions and dynamics of DNNs learning with label noise. At the early stage,
since DNNs tend to learn generalized patterns, DGCE provides strong ability to achieve a high test
accuracy quickly. Subsequently, as DNNs overfit label noise gradually, DGCE improves the weight
of robustness to guarantee a steady performance growth at the later stage. Our extensive experimental
results show that the simple DGCE achieves state-of-the-art performance on various benchmark
datasets. Moreover, we also empirically prove that DGCE is complementary to other types of robust
learning algorithms and help to improve robustness against backdoor attacks.
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A APPENDIX

A.1 COMPARISON WITH ROBUST LOSS FUNCTION

We randomly select 10% examples from the noisy training set as the validation set for hyper-parameter
search. We slightly tune the hyper-parameters of some baseline methods for better performance under
our experimental setup. For DGCE, we set qs to q − 0.1 where q is the hyper-parameter of GCE or
AGCE, then we tune qe ∈ {1.2, 1.5, 1.7, 2.0}. The best hyper-parameters are then used to train on
the full training set. The final hyper-parameters that were used to get the results are shown in Table 8
and Table 9.

Table 8: Hyper-parameters on CIFAR.

Method Publication Hyper-parameter CIFAR-10 CIFAR-100

GCE NeurIPS 2018 (q) (0.9) (0.7)
SCE ICCV 2019 (α, β) (0.1, 10.0) (5.0, 1.0)
NLNL ICCV 2019 (N ) (1) (110)
BTL NeurIPS 2019 (t1, t2) (0.7, 1.5) (0.7, 3.0)
NCE+RCE ICML 2020 (α, β) (1.0, 0.1) (10.0, 0.1)
TCE IJCAI 2020 (t) (3) (18)
NCE+AGCE ICML 2021 (α, β, a, q) (1.0, 0.4, 6, 1.5) (10.0, 0.1, 3, 3)
CE+SR ICCV 2021 (τ , λ0, r, p, ρ) (0.5, 1.5, 1, 0.1, 1.02) (0.5, 8.0, 1, 0.01, 1.02)
JS NeurIPS 2021 (π1) (0.9) (0.5)
Poly-1 ICLR 2022 (ε1) (5) (2)
DGCE (qs, qe) (0.8, 2,0) (0.6, 1.5)

Table 9: Hyper-parameters on Clothing1M and Webvision.

SCE NCE+RCE AGCE CE+SR JS DAL
(α, β) (α, β) (a, q) (τ , λ0, r, p, ρ) (π1) (qs, qe)

Clothing1M (1.0, 1.0) (10.0, 0.1) (1e-5, 0.8) (0.5, 5.0, 1, 0.01, 1.02) (0.7) (0.7, 1.7)
Webvision (10.0, 1.0) (50.0, 0.1) (1e-5, 0.5) (0.5, 2.0, 1, 0.01, 1.02) (0.1) (0.4, 1.5)

A.2 INTEGRATING DGCE WITH OTHER TYPES OF ALGORITHMS

Mixup (Zhang et al., 2018) is a type of data augmentation. To integrate DGCE with mixup, we
replace CE with DGCE and let λ ∼ Beta(10,1). (qs, qe) for DGCE is set to (0.6, 1.5).

ELR (Liu et al., 2020) and GJS (Englesson & Azizpour, 2021) both introduce regularizers into loss
funtions. To integrate DGCE with ELR, we combine DGCE with (qs, qe) = (0.1, 0.5) and ELR
with (λ, β) = (2.0, 0.9). For GJS, we set (π1, π2, π3) to (0.3, 0.35, 0.35) on CIFAR-100, then we
combine DGCE with JS Divergence as follows:

(1− α)(1− (
f(x(1))y + f(x(2))y

2
)q(t)) + αJS(f(x(1))‖f(x(2))), (15)

where x(1) and x(2) are two versions generated from x by RandAugment. We set (qs, qe) to (0.2, 1.0)
and increases α from 0 to 0.6 also based on cosine annealing.

Co-teaching (Han et al., 2018) and JoCoR (Wei et al., 2020) both use small-loss trick to eliminate
examples potentially with wrong labels. To integrate DGCE with them, we replace CE with DGCE
and set Tk to 50. (qs, qe) for DGCE is set to (0.2, 1.0).

F-divergence (Wei & Liu, 2021), SAT (Huang et al., 2020), and DivideMix (Li et al., 2020) all
have a warmup stage at the outset during which they train DNNs with CE without any modification.
To incorporate DGCE into them, we replace CE with DGCE during the warmup stage. We use
Total Variation divergence in this paper, and report its test accuracies of the epoch where validation
accuracy is maximum since it relies on a noisy validation set for model selection. For DivideMix, we
first train DNNs with DGCE for 50 epochs, then use examples whose predictions agree with their
labels to train DNNs with CE for another 10 epochs. (qs, qe) is set to (0.1, 0.5) for f-divergence and
SAT while the figures are (0.2, 0.8) for DivideMix.
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