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Abstract

Non-autoregressive (NAR) machine transla-001
tion has recently achieved significant improve-002
ments, and now outperforms autoregressive003
(AR) models on some benchmarks, provid-004
ing an efficient alternative to AR inference.005
However, while AR translation is often imple-006
mented using multilingual models that benefit007
from transfer between languages and from im-008
proved serving efficiency, multilingual NAR009
models remain relatively unexplored. Taking010
Connectionist Temporal Classification (CTC)011
as an example NAR model and Imputer as a012
semi-NAR model (Saharia et al., 2020), we013
present a comprehensive empirical study of014
multilingual NAR. We test its capabilities with015
respect to positive transfer between related lan-016
guages and negative transfer under capacity017
constraints. As NAR models require distilled018
training sets, we carefully study the impact of019
bilingual versus multilingual teachers. Finally,020
we fit a scaling law for multilingual NAR,021
which quantifies its performance relative to the022
AR model as model scale increases.023

1 Introduction024

Non-autoregressive (NAR) models generate output025

tokens in parallel instead of sequentially, achiev-026

ing significantly faster inference speed that no027

longer depends on sequence length. They rely on028

sequence-level knowledge distillation to reach the029

quality of autoregressive (AR) models (Gu et al.,030

2018). As the notion of NAR has expanded to031

include semi-NAR models that generate their out-032

puts in multiple steps, each time generating sev-033

eral tokens non-autoregressively (Lee et al., 2018;034

Ghazvininejad et al., 2019), we have begun to see035

NAR matching the quality of AR. Prior works036

have benchmarked NAR models for machine trans-037

lation (MT) on a handful of selected languages like038

German, Chinese, and Romanian. To efficiently039

expand this set of languages, it makes sense to040

explore multilingual NAR translation models.041

Multilingual MT models (Dong et al., 2015; Fi- 042

rat et al., 2017; Johnson et al., 2017) translate be- 043

tween multiple source and target languages. They 044

offer better parameter efficiency than bilingual 045

models, and they are able to transfer knowledge 046

from high-resource languages to low-resource ones. 047

Therefore they have become an attractive solu- 048

tion for expanding the language coverage of AR 049

MT (Aharoni et al., 2019; Fan et al., 2021). The 050

capability of multilingual modeling is a major fea- 051

ture of the AR regime, and it is one that we should 052

seek to maintain in NAR models. 053

However, it is unclear to what extent the benefits 054

of multilingual AR models transfer to NAR model- 055

ing (Caruana, 1997; Arivazhagan et al., 2019). Do 056

related languages help each other as easily (positive 057

transfer)? Do unrelated languages interfere with 058

one another more (negative transfer)? Since NAR 059

models tend to trade target-side modeling for im- 060

proved modeling of the source, the answer to both 061

questions is unclear. Furthermore, NAR modeling 062

raises a new issue of multilingual distillation. To 063

retain the training-time efficiency of multilingual 064

modeling, it is crucial that NAR works well with 065

multilingual teachers; otherwise, the prospect of 066

training many bilingual teachers would greatly in- 067

crease the effective training cost. It may actually be 068

the case that multilingual teachers are better suited 069

than bilingual ones, as the effective capacity reduc- 070

tion may result in less complex (Zhou et al., 2019) 071

and less multimodal outputs (Gu et al., 2018). 072

We present an empirical study of multilingual 073

NAR modeling. Taking CTC (Libovický and Helcl, 074

2018) as our canonical NAR method, and Im- 075

puter (Saharia et al., 2020) as our canonical semi- 076

NAR model, we study how they respond to multi- 077

linguality in a 6-language scenario designed to em- 078

phasize negative transfer, as well as two-language 079

scenarios designed to emphasize positive transfer. 080

In doing so, we make the following contributions: 081

1. We show that multilingual NAR models suffer 082
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more from negative transfer and benefit less083

from positive transfer than AR models.084

2. We fit a scaling law for our 6-language NAR085

scenario, demonstrating that this trend contin-086

ues as model size increases.087

3. We find that multilingual NAR performs088

equally well with multilingual and bilingual089

teachers, even in scenarios where the multilin-090

gual teacher has lower BLEU.091

Our results indicate that scaling up is not going092

solve the challenges of multilingual NAR, at least093

for the models studied here, but our analysis points094

to promising directions for future work.095

2 Non-Autoregressive Multilingual NMT096

Let, Dl = (x, y) ∈X × Y denote the bilingual cor-097

pus of a language pair, l. Given an input sequence x098

of length T ′, an AR model (Bahdanau et al., 2015;099

Vaswani et al., 2017) predicts the target y with100

length T sequentially based on the conditional dis-101

tribution p(yt ∣ y<t, x1∶T ′ ; θ). NAR models assume102

conditional independence in the output token space;103

that is, they model p(yt ∣ x1∶T ′ ;φ). Due to this con-104

ditional independence assumption, training NAR105

models directly on the true target distribution leads106

to degraded performance (Gu et al., 2018). Hence,107

NAR models are typically trained with sequence-108

level knowledge distillation (Kim and Rush, 2016)109

to reduce the modeling difficulty.110

2.1 Non-Autoregressive NMT with CTC111

In this work, we focus on NAR modelling via112

CTC (Graves et al., 2006) due to its superior per-113

formance on NAR generation and the flexibility114

of variable length prediction (Libovický and Helcl,115

2018; Saharia et al., 2020; Gu and Kong, 2021).116

CTC models an alignment a that provides a map-117

ping between a sequence of predicted and target118

tokens. Alignments can be constructed by inserting119

special blank tokens ("_") and token repetitions into120

the target sequence. The alignment is monotonic121

with respect to the target sequence and is always122

the same length as the source sequence x. How-123

ever, in MT, the target sequence y can be longer124

than the source sequence x. This is handled via125

upsampling the source sequence x, to s times its126

original length. An alignment is valid only if when127

collapsed, i.e., merging repeated tokens and remov-128

ing blank tokens, it results in the original target129

sequence. The CTC loss marginalizes over all pos- 130

sible valid alignments Γ(y) compatible with the 131

target y and is defined as: 132

p(y ∣ x) = ∑
a∈Γ(y)

∏
1≤t′≤T ′

p(at′ ∣ x1∶T ′ ;φ). 133

Note that each alignment token at′ is modeled inde- 134

pendently. This conditional independence allows 135

CTC to predict the single most likely alignment 136

non-autoregressively at inference time, which can 137

then be efficiently collapsed to an output sequence. 138

This same independence assumption enables effi- 139

cient minimization of the CTC loss via dynamic 140

programming (Graves et al., 2006). While CTC 141

enforces monotonicity between the alignment and 142

the target, it does not require any cross- or self- 143

attention layers inside the model to be monotonic. 144

Hence, CTC should still be able to model language 145

pairs with different word orders between the source 146

and the target sequence. Following Saharia et al. 147

(2020), we train encoder-only CTC models, using 148

a stack of self-attention layers to map the source 149

sequence directly to the alignments. 150

2.2 Iterative Decoding with Imputer 151

IMPUTER (Saharia et al., 2020) extends NAR 152

CTC modeling by iterative refinement (Lee et al., 153

2018). At each inference step, it conditions on 154

a previous partially generated alignment to emit 155

a new alignment. While IMPUTER, like CTC, 156

generates all tokens at each inference step, only 157

a subset of these tokens are selected to generate 158

a partial alignment, similar to iterative masking 159

approaches (Ghazvininejad et al., 2019). This is 160

achieved by training with marginalization over par- 161

tial alignments: 162

p(y ∣ x) = ∑
a∈Γ(a)

p(a ∣ aMask, x;φ), 163

where aMask is a partially masked input-alignment. 164

At training time, the aMask alignment is generated 165

using a CTC model trained on the same dataset, 166

and its masked positions are selected randomly. 167

This training procedure enables IMPUTER to it- 168

eratively refine a partial alignment over multiple 169

decoding steps at inference time — consuming its 170

own alignments as input to the next iteration. With 171

k > 1 decoding steps, the IMPUTER becomes semi- 172

autoregressive, requiring k times more inference 173

passes than pure CTC models. 174

IMPUTER differs from Conditional Masked Lan- 175

guage Modeling (CMLM) (Ghazvininejad et al., 176
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TGT WORD ORDER SIZE SCRIPT DIFFERENCE WHITE SPACE SRC LENGTH TGT LENGTH

EN-KK SOV 150K 3 3 26.7 20.0

EN-DE SVO/SOV 4.6M 7 3 25.7 24.3
EN-PL SVO 5M 7 3 16.2 14.6
EN-HI SOV 8.6M 3 3 18.3 19.8

EN-JA SOV 17.9M 3 7 21.4 25.9
EN-RU Free 33.5M 3 3 23.2 21.5
EN-FR SVO 38.1M 7 3 29.2 32.8

Table 1: Details on training data used. Target word orders are the ones that are dominating within the language
according to (Dryer and Haspelmath, 2013), but there may be sentence-specific variations. English follows pre-
dominantly SVO (Subject-Verb-Object) order. Size is measured as the number of parallel sentences in the training
data. Source (Src) and Target (Tgt) length are averaged across sentences after word-based tokenization.

2019) in that it utilizes the CTC loss instead of177

the standard cross-entropy loss, removing the need178

for explicit output length prediction. Also, IM-179

PUTER is an encoder-only model that makes one180

prediction per source token, just like CTC. The181

cross-attention component from encoder-decoder is182

replaced by a simple sum between the embeddings183

of the source sequence and the input alignment184

(aMask) before the first self-attention layer.1185

2.3 Multilingual Modeling186

Multilingual AR and NAR models are trained on187

datasets from multiple language pairs, {Dl}
L
l=1. We188

prepend each source sequence with the desired tar-189

get language tag (<2tgt>) and generate a shared190

vocabulary across all languages (Johnson et al.,191

2017). The models encode this tag as any other192

token, and uses it to guide the generation of the193

output sequence in the desired target language.194

2.4 Efficiency195

Inference We refrain from wallclock inference196

time measurements since these are dependent on197

implementation, low-level optimization and ma-198

chines (Dehghani et al., 2021). We instead com-199

pare generation speed in terms of the number of to-200

kens that get generated per iterationNgen (Kreutzer201

et al., 2020), which is < 1 for AR models,2 T for202

fully non-autoregressive models like CTC and T
k203

for iterative semi-autoregressive models like IM-204

PUTER. We acknowledge that other factors like205

model-depth play a role for inference time, but206

we assume that both NAR and AR models can be207

optimized for this aspect (Kasai et al., 2020).208

1We experimented with an encoder-decoder variant of IM-
PUTER but it did not change the overall output quality in
multilingual scenarios or otherwise.

21 for greedy search, < 1 to account for scoring and expan-
sion of multiple hypotheses in beam search.

Training At training time, NAR models are less 209

efficient than AR models because their quality de- 210

pends on distillation (Gu and Kong, 2021). Extra 211

cost is incurred to train a teacher model (usually 212

AR) and to use it to decode the training set. 213

Multilinguality Multilingual models multi-task 214

over language pairs, so that a single multilin- 215

gual model can replace several bilingual models. 216

Thanks to transfer across languages, model size 217

needs to be increased less than m-fold for model- 218

ing m language pairs instead of a single one. 219

Considering all of the above factors, an ideal 220

model needs only a few iterations (decoder passes 221

or steps), requires no teacher, and covers several 222

languages, while incurring the smallest drop in 223

quality compared to less efficient models. CTC is 224

desirable as it uses only one pass, while IMPUTER 225

gives up some efficiency to improve quality. Both 226

require a teacher, but we can try to reduce the cost 227

by training fewer teachers. 228

3 Experimental Setup 229

Data We perform our main experiments on six 230

language pairs, translating from English into WMT- 231

14 German (DE) (Bojar et al., 2014), WMT-15 232

French (FR) (Bojar et al., 2015), WMT-19 Russian 233

(RU) (Barrault et al., 2019), WMT-20 Japanese 234

(JA), WMT-20 Polish (PL) (Barrault et al., 2020) 235

and Samanantar Hindi (HI) (Ramesh et al., 2021). 236

The lower-resourced WMT-19 English-Kazakh 237

(KK) (Barrault et al., 2019) is used for an additional 238

transfer experiment in Section 5. The properties 239

of the datasets are listed in Table 1. Target word 240

order and writing script notably differ across these 241

languages, so we focus on translating into these 242

languages as this is the more challenging direction. 243

A shared sub-word vocabulary of 32k is trained 244

with SentencePiece (Kudo and Richardson, 2018). 245

3



MODEL TEACHER Ngen EN-FR EN-DE EN-PL EN-RU EN-HI EN-JA AVG.

AR-big < 1 38.8 29.0 21.4 27.2 34.6 35.4 31.1
multi-AR-big 38.5 27.0 21.6 25.3 32.6 33.6 29.3

Bilingual Models

AR-base < 1 38.2 27.6 21.2 26.2 33.8 34.8 30.3

CTC
AR-big

T
35.7 25.2 18.0 21.4 31.6 31.6 27.3

multi-AR-big 35.1 24.0 17.7 20.8 30.8 28.9 26.2

IMPUTER AR-big T
8 38.5 27.2 21.2 25.6 32.0 32.0 29.4

Multilingual Models

multi-AR-base < 1 35.2 24.8 19.7 23.2 30.8 31.2 27.5

CTC
AR-big

T
31.6 20.5 13.0 17.7 28.2 28.1 23.2

multi-AR-big 31.2 20.5 13.7 18.0 27.8 27.5 23.1

IMPUTER
AR-big T

8

34.4 22.8 14.9 21.3 29.9 29.6 25.5
multi-AR-big 34.1 21.2 16.4 21.7 29.9 27.9 25.2

Table 2: Test BLEU scores for multilingual and bilingual AR and NAR models.

The proportion of sub-words allocated for each246

language is proportional to its data size.247

Evaluation Metrics Translation quality is eval-248

uated with BLEU (Papineni et al., 2002) as cal-249

culated by Sacrebleu (Post, 2018) with default250

tokenization except for EN-JA, where we use251

character-level tokenization.252

Architecture We train the IMPUTER model us-253

ing the same setup as described in Saharia et al.254

(2020): We follow their base model with dmodel =255

512, dhidden = 2048, nheads = 8, nlayers = 12, and256

pdropout = 0.1. AR models follow Transformer-257

base (Vaswani et al., 2017) and have similar pa-258

rameter counts. We train both models using Adam259

with learning rate of 0.0001. We train CTC mod-260

els with a batch size of 2048 and 8192 sentences261

for 300K steps for the bilingual and multilingual262

models respectively. We train the IMPUTER us-263

ing CTC loss using a Bernoulli masking policy for264

next 300K steps with a batch size of 1024 and 2048265

sentences for the bilingual and multilingual models266

respectively. We upsample the source sequence267

by a factor of 2 for all our experiments.3 We pick268

the best checkpoint based on validation BLEU for269

bilingual models, and the last checkpoint for multi-270

lingual models.271

Distillation We apply sequence-level knowledge272

distillation (Kim and Rush, 2016) from AR teacher273

3We do not vary the upsampling ratio due to small differ-
ence in the performance of the resulting NAR models (see
Table 6, Gu and Kong (2021)).

models as widely used in NAR generation (Gu 274

et al., 2018). Specifically, when training the NAR 275

models, we replace the reference sequences during 276

training with translation outputs from Transformer- 277

Big AR teacher model with a beam width of four. 278

We also report the quality of the AR teacher mod- 279

els, both bilingual and multilingual. 280

4 Negative Transfer Scenario 281

Our main experiment compares English-to-X mod- 282

els for the six high-resource languages in Table 1. 283

These languages are typologically diverse, and each 284

have enough data so that we do not expect them to 285

benefit substantially from joint modeling. We use 286

this challenging scenario to test the impact of mul- 287

tilingual teachers, and to measure each paradigm’s 288

ability to model several unrelated languages. Re- 289

sults are shown in Table 2. 290

4.1 Multilingual Teacher Comparison 291

The top two rows of Table 2 show that in this neg- 292

ative transfer scenario, multilingual teachers have 293

substantially reduced BLEU compared to bilingual 294

teachers. However, as we look at the impact on 295

bilingual students, we see that CTC models trained 296

from the multilingual teacher, multi-AR-big, 297

do not reflect the entirety of this drop in teacher 298

quality when compared to training with the bilin- 299

gual AR-big. An average teacher gap of −1.8 300

BLEU is mapped to −1.1 in the corresponding 301

students. The comparison becomes more inter- 302

esting as we shift to multilingual students: mul- 303
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tilingual CTC does not suffer at all from having a304

multilingual teacher (average BLEU gap of −0.1),305

and multilingual Imputer likewise suffers very lit-306

tle (−0.3). These three results taken together sug-307

gest that datasets distilled from multilingual mod-308

els are likely simpler and easier to model non-309

autoregressively, which makes up for their lower310

BLEU. Our analysis in Section 4.3 supports this311

hypothesis. We hope that highly multilingual mod-312

els, trained with similar target language pairs to en-313

hance positive transfer (Tan et al., 2019), are even314

better suited to serve as teachers for multilingual315

NAR models, which we leave to future work.316

4.2 Multilingual Model Comparison317

Returning to the “Bilingual Models” section of Ta-318

ble 2 with AR-big teachers, we can see that we319

have reproduced the expected results of Saharia320

et al. (2020). Bilingual CTC performs well for a321

fully NAR method, but does not reach AR quality.322

IMPUTER ably closes the gap with AR, surpassing323

or coming within 0.2 BLEU of the AR-base mod-324

els on 3/6 language pairs, with the largest gap in325

performance for the distant EN-JA. Does this story326

hold as we move to multilingual NAR students?327

To understand each model’s multilingual capa-328

bilities, we can compare its bilingual performance329

to its multilingual performance. Comparing AR-330

base to multilingual AR-base gives us a baseline331

average drop of −2.8 BLEU, confirming that this332

is indeed a difficult multilingual scenario that leads333

to negative transfer. Comparing bilingual CTC to334

multilingual CTC, both with AR-big teachers, we335

see an average drop of −4.1. This larger drop indi-336

cates that CTC suffers more from negative interfer-337

ence than its AR counterpart. We hypothesize that338

CTC models need more capacity than AR models339

to achieve similar multilingual performance, mo-340

tivating our scaling law experiments in Section 6.341

Performing the same bilingual-to-multilingual com-342

parison for IMPUTER shows a similar −3.9 average343

drop due to negative transfer. So although IM-344

PUTER is indeed substantially better than CTC, it345

does not seem to be necessarily better suited for346

multilingual modeling in this difficult scenario.347

4.3 How do the distilled datasets differ?348

Table 3 summarizes different statistics for the orig-349

inal (R) and distilled datasets from both multilin-350

gual (M ) and bilingual (B) AR teacher models.351

We report the number of types and average se-352

quence length (in tokens) for the target side of353

PROPERTY R B M

EN-FR

# TYPES 522K 430K 396K
AVG. LENGTH 32.8 31.2 29.2
COMPLEXITY 1.529 1.167 0.944
FRS 0.463 0.541 0.536
BLEU (Train) - 40.8 37.8

EN-DE

# TYPES 812K 616K 573K
AVG. LENGTH 24.3 23.4 22.2
COMPLEXITY 1.243 0.819 0.709
FRS 0.490 0.606 0.605
BLEU (Train) - 35.0 26.4

EN-PL

# TYPES 636K 516K 503K
AVG. LENGTH 14.6 13.4 12.7
COMPLEXITY 1.435 0.942 0.591
FRS 0.590 0.678 0.695
BLEU (Train) - 26.3 22.0

EN-RU

# TYPES 636K 516K 503K
AVG. LENGTH 21.5 20.5 19.5
COMPLEXITY 1.083 0.882 0.819
FRS 0.640 0.719 0.716
BLEU (Train) - 43.2 40.0

EN-HI

# TYPES 346K 200K 185K
AVG. LENGTH 19.8 18.8 17.8
COMPLEXITY 1.438 1.256 1.138
FRS 0.347 0.363 0.366
BLEU (Train) - 34.6 28.0

EN-JA

# TYPES 547K 440K 402K
AVG. LENGTH 25.9 23.5 22.2
COMPLEXITY 1.541 1.369 1.338
FRS 0.344 0.337 0.340
BLEU (Train) - 35.9 30.6

Table 3: Comparison of datasets distilled from bilin-
gual (B) or multilingual (M ) AR models on a subset of
1M samples: Multilingual distilled datasets have fewer
types, are less complex and more monotonic than bilin-
gual distilled datasets.

the dataset. We compute the complexity of the 354

dataset based on probabilities from a statistical 355

word aligner (Zhou et al., 2019). The FRS (Talbot 356

et al., 2011) score represents the average fuzzy re- 357

ordering score over all the sentence pairs for the 358

respective language pair as measured in Xu et al. 359

(2021), with higher values suggesting that the target 360
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is more monotonic with the source sequence. We361

also report BLEU for the distilled datasets relative362

to the original training references.363

The datasets distilled from the bilingual AR364

models (B) are shorter, less complex, have reduced365

lexical diversity (in number of types) and are more366

monotonic compared to the original corpora (R),367

which corroborates findings from prior work (Zhou368

et al., 2019; Xu et al., 2021). One exception is EN-369

JA, where the distilled translations are slightly less370

monotonic than the original references. Moving to371

multilingual teachers (M ), the resulting datasets372

have further reduced types, are shorter and less373

complex than those distilled from bilingual teach-374

ers. In particular, their monotonicity increased375

(FRS) for the more distant language pairs, EN-JA376

and EN-HI. As shown in Xu et al. (2021), re-377

duced lexical diversity and reordering complexity378

can help NAR models to learn better alignments be-379

tween source and target, improving the translation380

quality of the outputs.381

4.4 Which translation errors are made?382

In this section, we analyze quantitatively how the383

output quality of NAR models differs across lan-384

guage pairs when trained in isolation (bilingual) or385

with other language pairs (multilingual).386

Figure 1: Brevity penalty scores for bilingual (-B) and
multilingual (-M) models, the closer to 1 the better.

Effect of Length Figure 1 shows the brevity387

penalty (BP) scores (Papineni et al., 2002) for388

all languages. EN-PL and EN-JA have lowest BP389

scores across the board, meaning that their trans-390

lations are shorter than the references. Manual391

inspection reveals that this could be attributed to392

the subject pronouns being dropped in both of these393

target languages. Multilingual modeling results in394

shorter outputs relative to bilingual models for both395

AR and NAR models and most language pairs.396

While IMPUTER models tend to have fewer issues397

with output length compared to CTC models, they398

still lag behind AR models, suggesting that the399

length might need to be controlled explicitly for400

these language pairs (Gu and Kong, 2021). 401

Invalid Words CTC frequently generates in- 402

valid words, i.e. tokens that are not present in 403

the target side of the bitext but are being composed 404

from multiple sub-words. These sub-words repre- 405

sent alternative translations that the model fails to 406

distinguish. In the Hindi example below, the in- 407

valid (or made-up) word in the sentence is marked 408

in red. The correct word should be jhrFl� as the 409

dependent vowel “ F” can only be used once. 410

Hindi: iss� g}AmFZ mEhlAao\ ko jhrFFl�
D� e\ s� m� EÄ EmlF h{\।

English: This has relieved the rural women
from the poisonous smoke.

Figure 2 reports the percentage of sequences 411

that include at least one invalid word in the test set. 412

CTC generates many invalid words compared to 413

both AR and IMPUTER, with multilingual model- 414

ing leading to an average increase in invalid words 415

by 37%. The shared vocabulary of the multilingual 416

model results in shorter sub-words, hence longer 417

sequences, and the conditionally independent gen- 418

eration leads to more clashing adjacent sub-words.4 419

IMPUTER’s iterative decoding alleviates this for 420

some languages. Increasing the number of itera- 421

tions could help, but would also erode the efficiency 422

arguments that make NAR models attractive. 423

Figure 2: % of outputs with invalid words for bilingual
(-B) and multilingual (-M) models, the lower the better.

5 Positive Transfer Scenario 424

In this section we present two experimental setups 425

designed to emphasize positive transfer, where lan- 426

guages are related and training data is limited. 427

English→{German, French} To isolate the ef- 428

fect of transfer via multilingual modelling, we relax 429

the capacity bottleneck and competition for param- 430

eters: We combine the two most related languages 431

4One might hope to alleviate this by increasing vocabulary
size, but preliminary experiments showed that an increased
vocabulary was less efficient in improving quality than increas-
ing overall model size, which is explored in Section 6.
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(DE, FR) and give them smaller, balanced training432

sets (1M sentences). We compare bilingual and433

multilingual AR and NAR models trained on this434

reduced data.435

Table 4 shows that NAR models benefit from436

training with multiple language pairs in this re-437

laxed scenario — all models exhibit positive trans-438

fer (in green). IMPUTER achieves higher positive439

transfer than CTC for both languages, but lags be-440

hind the AR multilingual model in EN-FR. How-441

ever, for EN-FR the bilingual IMPUTER is already442

ahead of the bilingual AR model by 0.4 BLEU.443

MODEL EN-DE EN-FR

Bilingual Models

AR 22.8 27.7
CTC 21.5 26.5
IMPUTER 22.8 28.1

Multilingual Models
AR 24.3 +1.5 29.0 +1.3
CTC 22.1 +0.6 26.9 +0.4
IMPUTER 23.7 +1.3 28.5 +0.4

Table 4: Results on subsampled (1M) training data.

English→{Russian, Kazakh} Does this positive444

transfer survive data imbalance? We test the perfor-445

mance of the multilingual NAR model on the low-446

resource task of translating English into Kazakh,447

for which the size of clean training data is insuffi-448

cient to train a bilingual AR model from scratch.449

We instead distill translations from the publicly450

available multilingual AR model PRISM (Thomp-451

son and Post, 2020). We then pair it with the higher-452

resource but related language Russian to encourage453

positive transfer to Kazakh. Given the huge dif-454

ference in data sizes for Russian and Kazakh (see455

Table 1), we sample training data from the two456

languages based on the data size scaled by a tem-457

perature value τ , p1/τ
l (Arivazhagan et al., 2019),458

where, pl =
Dl

∑kDk
. We experiment with multiple459

temperature values (1, 3, 5, 10, 20) and pick the460

best value (τ = 5;p
1/τ
RU = 0.75, p

1/τ
KK = 0.25) based461

on the performance on the validation set.462

As can be seen in Table 5, both AR and463

CTC show positive transfer when translating into464

Kazakh when trained in combination with Rus-465

sian. The multilingual CTC model is able to im-466

prove over the bilingual CTC model, but the over-467

all quality of the outputs is very low compared to468

MODEL TEACHER EN-KK EN-RU

PRISM - 8.9 27.0

Bilingual Models
AR

PRISM
4.4 -

CTC 1.2 -
Multilingual Models
AR

PRISM
7.1 +2.7 26.0

CTC 2.8 +1.6 20.4

Table 5: Results on English→Kazakh,Russian.

the teacher model (BLEU: -5.3). This experiment 469

showcases that current NAR models do not per- 470

form well on very low-resource language pairs and 471

might need further data augmentation (Anonymous, 472

2022) or transfer from other similar languages.5 473

6 Impact of Model Scale 474

We hypothesized in Section 4 that CTC might re- 475

quire more capacity than AR models. If we in- 476

crease the parameters for NAR models sufficiently, 477

could we reach AR quality? Scaling laws can char- 478

acterize the relationship between MT output qual- 479

ity, the cross-entropy loss and the number of param- 480

eters used for training the model (Ghorbani et al., 481

2021; Gordon et al., 2021). 482

We derive the relationship between BLEU and 483

the number of parameters for our AR and CTC 484

models directly from the scaling laws proposed by 485

Gordon et al. (2021) and Ghorbani et al. (2021) as 486

follows: 487

L(N) ≈ L0 + αn(1/N)
αk (Ghorbani et al., 2021)

BLEU(L) ≈ Ce−kL (Gordon et al., 2021)

BLEU(N) ≈ ae−b(1/N)
c

(this work)

488

where L is the test loss, {αn, αk, L0,C, k} are 489

fitted parameters from previous power laws, and 490

{a, b, c} are the collapsed fitted parameters of our 491

power law. Ghorbani et al. (2021)’s L0 corresponds 492

to the irreducible loss of the data, which becomes 493

a in our formulation. 494

Setup We train seven different models with vary- 495

ing capacity for AR and CTC models. The number 496

of layers and model size are varied as: (6, 128), 497

(6, 256), (12, 256), (12, 512),6 (24, 512), (12, 498

1024), (24, 1024). The feed-forward size is 4× 499

the model size. AR models have equal numbers 500

5We do not train IMPUTER for KK as the quality of the
distilled dataset and alignments from CTC is very low.

6Size for experiments in Section 4.
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of encoder and decoder layers. The number of at-501

tention heads is given by (8/(512/Model Size)).502

For a fair comparison, we use the same number of503

layers and dimensions and train both AR and CTC504

models on distilled outputs from a bilingual teacher505

(AR-big).506

Results Figure 3 shows the fitted parameters us-507

ing the scaling law, which can almost perfectly508

describe the relationship between the number of509

parameters and the development BLEU (R2: 0.99)510

averaged across all language pairs from Section 4.511

When the number of parameters is below 10M,512

AR and CTC model yield similar translation qual-513

ity. However, the gap in BLEU increases with the514

number of parameters. We can also see that CTC515

needs many more parameters to achieve compara-516

ble BLEU to AR models and plateaus early at a517

BLEU of 26.7, while AR models plateau at 30.8.518

By projecting the curves out to 1 billion parameters,519

we show that increasing the capacity of NAR is520

insufficient to reach the quality of AR models.521

Figure 3: BLEU versus number of parameters and fit-
ted power-law curves (R2 AR: 0.99, R2 CTC: 0.99).

7 Related Work522

Multiple approaches with varying architectures523

(Gu et al., 2018, 2019; Chan et al., 2020; Xu and524

Carpuat, 2021), custom loss functions (Ghazvinine-525

jad et al., 2020; Du et al., 2021) and training strate-526

gies (Ghazvininejad et al., 2019; Qian et al., 2021)527

have been used to enable parallel generation of528

output tokens for MT with sequence-level knowl-529

edge distillation as one of the key ingredient in the530

training of NAR models. While most prior work531

focuses on bilingual NAR modeling, we investi-532

gate multilingual NAR MT models. One limitation533

of our study is that we choose one representative534

system for NAR and semi-NAR modeling, rather535

than exploring the full breadth of NAR options.536

Both supervised and unsupervised (Sun et al., 537

2020) MT have benefitted from training with multi- 538

ple languages, especially those that have very little 539

(Siddhant et al., 2020) to no training data (Zhang 540

et al., 2020). However, multilingual modelling has 541

not yet received any attention in the NAR literature. 542

Concurrent to our work, Anonymous (2022) inves- 543

tigate a non-autoregressive multilingual MT model 544

with a code-switch decoder. They show that adding 545

code-switched back-translation data to the training 546

of multilingual models improves performance. Our 547

work instead focuses on understanding multilin- 548

guality for both the student and the teacher model 549

in the context of NAR training, without using any 550

additional data augmentation strategies. 551

Recent works have derived empirical scaling 552

laws that govern the relationship between the per- 553

formance of language models or translation models 554

to the scale of the model or dataset (Kaplan et al., 555

2020; Hernandez et al., 2021; Bahri et al., 2021; 556

Gordon et al., 2021; Ghorbani et al., 2021). We 557

extend this work to examine the impact of model 558

scale on multilingual NAR MT. 559

8 Conclusion 560

The capability for multilingual MT is a valuable 561

feature of AR models, therefore, we have tested 562

NAR models for that same capability. We focus on 563

challenging scenarios to discover potential weak- 564

nesses and to identify areas for future work. In 565

a relaxed setting with little interference between 566

languages and balanced data, multilingual NAR 567

models nicely exhibit positive transfer, practically 568

closing the gap to AR models with a few decoding 569

iterations. However, we do not see the same posi- 570

tive transfer in a true low-resource scenario. Exper- 571

iments in a six-language scenario reveal that mul- 572

tilingual NAR models suffer proportionally more 573

from negative interference than AR models. Our 574

derived scaling laws show that scaling up CTC 575

model parameters is not a sufficient remedy. Our 576

analysis identified two issues that hurt translation 577

quality and worsen with multilinguality, namely 578

output length control and the generation of invalid 579

words. We have also shown beneficial properties 580

of using multilingual teachers for distillation. We 581

hope that this work will serve as a call for increased 582

focus on multilingual modeling in NAR research. 583
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