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ABSTRACT

Graph neural networks (GNNs) have been shown with superior performance in
various applications, but training dedicated GNNs can be costly for large-scale
graphs. Some recent work started to study the pre-training of GNNs. However,
none of them provide theoretical insights into the design of their frameworks, or
clear requirements and guarantees towards the transferability of GNNs. In this
work, we establish a theoretically grounded and practically useful framework for the
transfer learning of GNNs. Firstly, we propose a novel view towards the essential
graph information and advocate the capturing of it as the goal of transferable GNN
training, which motivates the design of EGI (ego-graph information maximization)
to analytically achieve this goal. Secondly, we specify the requirement of structure-
respecting node features as the GNN input, and conduct a rigorous analysis of
GNN transferability based on the difference between the local graph Laplacians of
the source and target graphs. Finally, we conduct controlled synthetic experiments
to directly justify our theoretical conclusions. Extensive experiments on real-
world networks towards role identification show consistent results in the rigorously
analyzed setting of direct-transfering (freezing parameters), while those towards
large-scale relation prediction show promising results in the more generalized and
practical setting of transfering with fine-tuning.

1 INTRODUCTION

Graph neural networks (GNNs) have been intensively studied recently (Kipf & Welling, 2017; Keriven
& Peyré, 2019; Chen et al., 2019; Oono & Suzuki, 2020; Huang et al., 2018), due to their established
performance towards various real-world tasks (Hamilton et al., 2017; Ying et al., 2018b; Velickovic
et al., 2018), as well as close connections to spectral graph theory (Defferrard et al., 2016; Bruna
et al., 2014; Hammond et al., 2011). While most GNN architectures are not very complicated, the
training of GNNs can still be costly regarding both memory and computation resources on real-world
large-scale graphs (Chen et al., 2018; Ying et al., 2018a). Moreover, it is intriguing to transfer learned
structural information across different graphs and even domains in settings like few-shot learning
(Vinyals et al., 2016; Finn et al., 2017; Ravi & Larochelle, 2017). Therefore, several very recent
studies have been conducted on the transferability of GNNs, which focus on the setting of pre-training
plus fine-tuning (Hu et al., 2019a,b, 2020; Wu et al., 2020). However, it is unclear in what situations
the models will excel or fail especially when the pre-training and fine-tuning tasks are different. To
provide rigorous analysis and guarantee on the transferability of GNNs, we focus on the setting
of direct-transfering between the source and target graphs, under an analogous setting of “domain
adaptation” (Ben-David et al., 2007).

In this work, we establish a theoretically grounded framework for the transfer learning of GNNs,
and leverage it to design a practically transferable GNN model. Figure 1 gives an overview of our
framework. It is based on a novel view of a graph as samples from the joint distribution of its k-hop
ego-graph structures and node features, which allows us to define graph information and similarity,
so as to analyze GNN transferability (§2). This view motivates us to design EGI, a novel GNN model
based on ego-graph information maximization, which is effective in capturing the graph information
as we define (§2.1). Then we further specify the requirement on transferable node features and
analyze the transferability of EGI that is dependent on the local graph Laplacians of source and target
graphs (§2.2).
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Figure 1: Overview of our GNN transfer learning framework: (1) we represent graph as a combination of its
1-hop ego-graph and node feature distributions; (2) we design a transferable GNN regarding the capturing of
such essential graph information; (3) we establish a rigorous guarantee of GNN transferability based on the
requirement on nodes features and difference between graph structures.

All of our theoretical conclusions have been directly validated through controlled synthetic experi-
ments (Table 1), where we use structural-equivalent role identification in a direct-transfering setting to
analyze the impacts of different model designs, node features and source-target structure similarities
on GNN transferability. In §3, we conduct real-world experiments on multiple publicly available
network datasets. On the Airport and Gene graphs (§3.1), we closely follow the settings of our
synthetic experiments and observe consistent but more detailed results supporting the design of EGI
and the utility of our theoretical analysis. On the YAGO graphs (§3.2), we further evaluate EGI on
the more generalized and practical setting of transfer learning with task-specific fine-tuning. We
find our theoretical insights still indicative in such scenarios, where EGI consistently outperforms
state-of-the-art GNN models and transfer learning frameworks with significant margins.

2 TRANSFERABLE GRAPH NEURAL NETWORKS

Based on the connection between GNN and spectral graph theory (Kipf & Welling, 2017), we describe
the output of a GNN as a combination of its input node features, fixed graph Laplacian and learnable
graph filters. The goal of training a GNN is then to improve its utility by learning the graph filters
that are compatible with the other two components towards specific tasks.

In the graph transfer learning setting where downstream tasks are often unknown during pre-training,
we argue that the general utility of a GNN should be optimized and quantified w.r.t. its ability of
capturing the essential graph information in terms of the joint distribution of its link structures and
node features, which motivates us to design a novel ego-graph information maximization model (EGI)
(§2.1). The general transferability of a GNN is then quantified by the gap between its abilities to model
the source and target graphs. Under reasonable requirements such as using structure-respecting node
features as the GNN input, we analyze this gap for EGI based on the structural difference between
two graphs w.r.t. their local graph Laplacians (§2.2).

2.1 TRANSFERABLE GNN VIA EGO-GRAPH INFORMATION MAXIMIZATION

In this work, we focus on the direct-transfering setting where a GNN is pre-trained on a source graph
Ga in an unsupervised fashion and applied on a target graph Gb without fine-tuning.1 Consider a
graph G = {V,E}, where the set of nodes V are associated with certain features and the set of links
E form certain structures. Intuitively, the transfer learning will be successful only if both the features
and structures of Ga and Gb are similar in some ways, so that the graph filters of a GNN learned on
Ga are compatible with the features and structures of Gb.

1In the experiments, we show our model to be generalizable to the more practical settings with task-specific
pre-training and fine-tuning, while the study of rigorous bound in such scenarios is left as future work.
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Motivated by the concept of k-layer expansion sub-graph in (Bai & Hancock, 2016), we introduce a
novel view of a graph as samples from the joint distribution of its k-hop ego-graph structures and node
features. This view allows us to give concrete definitions towards structural information of graphs in
the transfer learning setting, which facilitates the measuring of similarity (difference) among graphs.

Definition 2.1 (K-hop ego-graph). We call a graph gi = {V (gi), E(gi)} a k-hop ego-graph centered
at vi if it has a k-layer centroid expansion (Bai & Hancock, 2016) such that the greatest shortest
path rooted from vi has length k, i.e., k = maxvj∈V |S(vi, vj)|, where S(vi, vj) is the shortest path
between vi and vj .

For an ordered k-hop ego-graph, we denote vp,q as the q-th node in the p-th layer of the ego-graph
(i.e., |Si(vi, vp,q)| = p), where p = 0, . . . , k, and evv′ as the edge between vp,q and vp+1,q′ .

Definition 2.2 (Structural information). Let G be a topological space of sub-graphs (Verma & Zhang,
2019). We view a graph G as samples of k-hop ego-graphs G = {gi}ni=1 drawn i.i.d. from G with

probability µ, i.e., gi
i.i.d.∼ µ ∀i = 1, · · · , n. The structural information of G is then defined to be the

combination of the distribution µ and the set of spectrum of {gi}ni=1.

The structural information of a graph G can be characterized by {gi}vi∈V and its empirical distri-
bution, where each gi is a k-hop ego-graph of G centered at node vi with V (gi) = {u ∈ V (G) :
S(u, vi) ≤ k}, and edges E(gi) = {euv ∈ E(G) : u, v ∈ V (gi)}. As shown in Figure 1, three
graphsG0, G1 andG2 are characterized by a set of 1-hop ego-graphs and their empirical distributions,
which allows us to quantify the structural similarity among graphs as shown in §2.2 (i.e., G0 is more
similar to G1 than G2 under such characterization).

In practice, the nodes in a graph G are characterized not only by their k-hop ego-graph structures but
also their associated node features. Therefore, G should be regarded as samples {(gi, xi)}n ∈ G ×X ,
drawn with the joint distribution p on the product space of G and a node feature space X . To capture
such joint distributions of structural information and node features, we design ego-graph information
maximization (EGI), which recursively reconstructs the k-hop ego-graph of each node based on their
features in an unsupervised fashion.

Ego-Graph Information Maximization. Assume we are given a set of ego-graphs {(gi, xi)}i with
empirical joint distribution P. Similarly with the “local” version of DIM (Hjelm et al., 2019), we
define UΨ(gi,xi) as the empirical distribution of the embedding produced by the GNN encoder Ψ
for the the center node vi of ego-graph gi. Unlike DGI (Velickovic et al., 2019) that models the
local-global mutual information (MI), EGI optimizes Ψ to maximize the MI of I(gi,Ψ(gi, xi)),
which is directly between the structural input and output of GNN, with a focus on the structural
information gi. Specifically, we use the Jensen-Shannon MI estimator in (Hjelm et al., 2019),
LEGI = −I (JSD) (G,Ψ) = EP×Ũ [sp (TD,Ψ(gi,Ψ(g′i, x

′
i)))]−EP [−sp (−TD,Ψ(gi,Ψ(gi, xi)))] , (1)

TD,Ψ = D ◦ (gi,Ψ(gi, xi)), where D is a discriminator D : gi ×Ψ(gi, xi)→ R+. In Eq. 1, during
the training of D, the input space of D is at least as large as the number of graph permutations
|V (gi)|!. Instead of enumerating all possible graphs g′i, we fix gi and sample GNN’s output Ψ(g′i, x

′
i)

from the marginal distribution Ũ by uniformly sampling (g′i, x
′
i) ∼ P̃, P̃ = P. The correspondence

between sampling (g′i, x
′
i) ∼ P̃ and g′i ∼ G is discussed in Remark 2 when node features are

strcuture-respecting (Def. 2.3).

Formally, we characterize the decision process of D with a fixed graph ordering, i.e., BFS-ordering π
over edges E(gi). D is a GNN scoring function over an edge sequence Eπ : {e1, e2, ..., en}, which
makes predictions on BFS-ordered edges. Let zi = Ψ(gi, xi) , then we have,

D(gi, zi) =

k∑
p=0

|Vp(gi)|∑
q=1

logD(eṽv|hq̃p,q, xip,q, zi), (2)

where h is the hidden representation output by D, eṽv ∈ E(gi) is an edge between node ṽ in layer p
and v in layer p+ 1, following the notation defined below Def 2.1. More specifically, we have

D(eṽv|hq̃p,q, xip,q, zi) = σ
(
UT · τ

(
WT [hq̃p,q||xip,q||zi]

))
, (3)

where σ and τ are Sigmoid and ReLU activation functions, respectively. Thus, the discriminator is
asked to distinguish positive (eṽv,Ψ(gi, xi)) and negative pair (eṽv,Ψ(g′i, x

′
i)) that consists of an

observed edge and positive/negative center node embeddings Ψ(·).
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Due to the fact that the output of a k-layer GNN only depends on a k-hop ego-graphs, EGI can be
trained in parallel by sampling batches of gi’s. Besides, the training objective of EGI is transferable
as long as (gi, xi) across source graph Ga and Gb satisfies the conditions given in §2.2. More details
about the model are in Appendix §B and source code in the Supplementary Materials.

Connection with existing work. To provide more insights into the EGI objective, we also present it
as a dual problem of ego-graph reconstruction. Recall our definition of ego-graph mutual information
I(gi,Ψ(gi, xi)). It can be related to an ego-graph reconstruction loss R(gi|Ψ(gi, xi)) as

max I(gi,Ψ(gi, xi)) = H(gi)−H(gi|Ψ(gi, xi)) ≤ H(gi)−R(gi|Ψ(gi, xi)). (4)
When EGI is maximizing the mutual information, it simultaneously minimizes the upper error bound
of reconstructing an ego-graph gi. In this view, the key difference between EGI and GVAE (Kipf
& Welling, 2016) is they assume each edge in a graph to be observed independently during the
reconstruction, while we assume the edges in an ego-graph to be observed jointly. Moreover, existing
mutual information based GNNs such as DGI (Velickovic et al., 2019) and GMI (Peng et al., 2020)
explicitly measure the mutual information between node features x and GNN output Ψ. In this way,
they tend to capture node features instead of graph structures, which we deem more essential in graph
transfer learning as discussed in §2.2.

Supportive observations. In the first three columns of Table 1, in both cases of transfering GNNs
between similar graphs (F-F) and dissimilar graphs (B-F), EGI significantly outperforms all com-
petitors when using node degree one-hot encoding as transferable node features. In particular, the
performance gains over the untrained GIN and GCN show the effectiveness of training and transfering,
and our gains are always larger than the two state-of-the-art unsupervised GNNs. Such results clearly
indicate advantageous structure preserving capability and transferability of EGI.

2.2 TRANSFERABILITY ANALYSI BASED ON LOCAL GRAPH LAPLACIANS

We now study the transferability of a GNN (in particular, EGI) between the source graphGa and target
graph Gb based on the graph similarity between Ga and Gb. We firstly establish the requirement
towards node features, under which we then focus on analyzing the transferability of EGI w.r.t. the
structural information of Ga and Gb.

Recall our view of the GNN output as a combination of its input node features, fixed graph Laplacian
and learnable graph filters. The utility of a GNN is determined by the compatibility among the three.
In order to fulfill such compatibility, we require the node features to be structure-respecting:
Definition 2.3 (Structure-respecting node features). Let gi be an ordered ego-graph centered on
node vi with a set of node features {xip,q}

k,|Vp(gi)|
p=0,q=1 , where Vp(gi) is the set of nodes in p-th hop of gi.

Then we say the node features on gi are structure-respecting if xip,q = [f(gi)]p,q ∈ Rd for any node
vq ∈ Vp(gi), where f : G → Rd×|V (gi)| is a function. In the strict case, f should be injective.

In its essence, Def 2.3 requires the node features to be a function of the graph structures, which is
sensitive to changes in the graph structures, and in an ideal case, injective to the graph structures.
In this way, when the learned graph filters of a transfered GNN is compatible to the structure of G,
they are also compatible to the node features of G. As we will explain in Remark 2 of Theorem 2.1,
this requirement is also essential for the analysis of our GNN transferability which eventually only
depends on the structural difference between two graphs.

In practice, commonly used node features like node degrees, PageRank scores (Page et al., 1999),
spectral embeddings (Chung & Graham, 1997), and many pre-computed unsupervised network
embeddings (Perozzi et al., 2014; Tang et al., 2015; Grover & Leskovec, 2016) are all structure-
respecting in nature. However, other commonly used node features like random vectors (Yang et al.,
2019) or uniform vectors (Xu et al., 2019) are not and thus non-transferable. When organic node
attributes are available, they are transferable as long as the concept of homophily (McPherson et al.,
2001) applies, which also implies Def 2.3, but we do not have a rigorous analysis on it yet.

Supportive observations. In the fifth and sixth columns in Table 1, where we use uniform embedding
as non-transferable node features to contrast with the first three columns, there is almost no or even
negative transferability for all compared methods when non-transferable features are used, as the
performance of trained GNNs are similar to or worse than their untrained baselines.
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With our view of graphs and requirement on node features both established, now we derive the
following theorem by characterizing the performance difference of EGI on two graphs based on Eq. 1.

Theorem 2.1 (GNN transferability). Let Ga = {(gi, xi)}ni=1 and Gb = {(gi′ , xi′)}mi′=1 be two
graphs. Then denote Lgi as the (normalised) graph Laplacian of gi ∀i = 1, · · · , n, and let the node
features of gi be structure-respecting and normalized (similarly for gi′). Consider GNN Ψθ with k
layers and a 1-hop polynomial filter φθ. With reasonable assumptions on the local spectrum of Ga
and Gb, the empirical performance difference of Ψθ with φθ evaluated on LEGI satisfies

|LEGI(Ga)− LEGI(Gb)| ≤ O

(
M +

1

nm

n∑
i=1

m∑
i′=1

‖λ(Lgi)− λ(Lgi′ )‖2

)
, (5)

where M is a constant dependant on k, φθ, {Lgi}, {Lgi′}, {xi}, {xi′}, and finally λ(Lgi) denotes
the ordered eigenvalues of the graph Laplacian of gi ∈ Ga (similarly for gi′ ).

Proof. The full proof is detailed in Appendix §A.

Remark 1. Our view of a graph G as samples of k-hop ego-graphs is important, as it allows us to
make node-wise characterization of GNN similarly as in (Verma & Zhang, 2019). It also allows us to
set the depth of ego-graphs in the analysis to be the same as the number of GNN layers (k), since the
GNN embedding of each node mostly depends on its k-hop ego-graph instead of the whole graph.

Remark 2. For Eq. 1, Def 2.3 ensures the sampling of GNN embedding at a node always corresponds
to sampling an ego-graph from G, which reduces to uniformly sampling from G = {gi}ni=1 under
the setting of Theorem 2.1. Therefore, the requirement of Def 2.3 in the context of Theorem 2.1
guarantees the analysis to be only depending on the structural information of the graph.

The analysis in Theorem 2.1 naturally instantiates our insight about the correspondence between
structural similarity and GNN transferability. It tells us how well a GNN trained on Ga can work on
Gb by only checking the local graph Laplacians of Ga and Gb without actually training the model.

In practice, the computation of eigenvalues on the small ego-graphs can be rather efficient (Arora
et al., 2005), and we do not need to enumerate all pairs of ego-graphs. Suppose we need to sample
M pairs of k-hop ego-graphs to compare two large graphs, and the average size of ego-graphs are L,
then the overall complexity of computing Eq. 5 is O(ML2), where M is often less than 1K and L
less than 50.

Supportive observations. In Table 1, in the d̄ columns, we compute the average structural difference
between two Forest-fire graphs (d̄(F, F )) and between Barabasi and Forest-fire graphs (d̄(B,F )),
based on the RHS of Eq. 5. The results validate our usage of the two graph models to generate
structurally different graphs, while also verify our novel view of graphs and the way we propose
based on it to characterize structural information of graphs. We further highlight in the ∆ columns the
performance difference between the GNNs transfered from Forest-fire graphs and Barabasi graphs to
Forest-fire graphs. Since Forest-fire graphs are more similar to Forest-fire graphs than Barabasi graphs
(as verified in the d̄ columns), we expect ∆ to be positive and large, indicating more positive transfer
between the more similar graphs. Indeed, the behaviors of EGI align well with the expectation, which
indicates its well-understood transferability and the utility of our theoretical analysis.

Table 1: Synthetic experiments of identifying structural equivalent nodes. We randomly generate 40 graphs
with the Forest-fire model (F) (Leskovec et al., 2005) and 40 graphs with the Barabasi model (B) (Albert &
Barabási, 2002), The GNN models we use include the untrained encoders of GCN (Kipf & Welling, 2017) and
GIN (Xu et al., 2019) with random parameters (baselines with only the neighborhood aggregation function),
GVAE with GCN encoder (Kipf & Welling, 2016), DGI with GIN encoder (Velickovic et al., 2019), and EGI
with GIN encoder. We train GVAE, DGI and EGI on one graph from either set (F and B), and test them on the
rest of Forest-fire graphs (F). More details about the results and dataset can be found in Appendix §C.1.

Method transferable features non-transferable feature structural difference
F-F B-F ∆ F-F B-F ∆ d̄(F,F) d̄(B,F)

GCN (untrained) 0.478 0.478 / 0.229 0.229 /

1.78 2.17
GIN (untrained) 0.572 0.572 / 0.358 0.358 /
GVAE (GCN) 0.498 0.432 +0.066 0.240 0.239 0.001
DGI (GIN) 0.578 0.591 -0.013 0.394 0.213 +0.181
EGI (GIN) 0.710 0.616 +0.094 0.376 0.346 +0.03
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3 REAL DATA EXPERIMENTS

Baselines. We compare the proposed model with existing unsupervised GNNs and pre-training
GNN frameworks. The unsupervised GNNs are the same as used in our synthetic experiments, i.e.,
GVAE with GCN encoder (Kipf & Welling, 2016) and DGI with GIN encoder (Velickovic et al.,
2019). The pre-training GNN frameworks include Mask-GIN and ContextPred-GIN, two node-level
pre-training models proposed in (Hu et al., 2019a)2. Besides, Structural Pre-train (Hu et al., 2019b)
also conducts unsupervised node-level pre-training with structural features like node degrees and
clustering coefficients.

Protocols. By default, we use node degree one-hot encoding as the transferable feature across all
different graphs. As stated before, other transferable features like spectral and other pre-computed
node embeddings are also applicable. We focus on the setting where the downstream tasks on target
graphs are unspecified but assumed to be structure-relevant, and thus pre-train the GNNs on source
graphs in an unsupervised fashion.3 In terms of evaluation, we design two realistic experimental
settings: (1) Direct-transfering on the more structure-relevant task of role identification without given
node features to directly evaluate the utility and transferability of EGI. (2) Few-shot learning on
relation prediction with task-specific node features to evaluate the generalization ability of EGI.

3.1 DIRECT-TRANSFERING ON ROLE IDENTIFICATION

First, we use the role identification without node features in a direct-transfering setting as a reliable
proxy to evaluate transfer learning performance regarding different pre-training objectives. Role in
a network is defined as nodes with similar structural behaviors, such as clique members, hub and
bridge (Henderson et al., 2012). Across graphs in the same domain, we assume the definition of role
to be consistent, and the task of role identification is highly structure-relevant, which can directly
reflect the transferability of different methods and allows us to conduct the analysis according to
Theorem 2.1. Upon convergence of pre-training each model on the source graphs, we directly apply
them on the target graphs and further train a multi-layer perceptron (MLP) upon their outputs. The
GNN parameters are freezing during the MLP training. We refer to this strategy as direct-transfering
since there is no fine-tuning of the models after transfering to the target graphs.

We use two real-world network datasets with role-based node labels: (1) Airport (Ribeiro et al., 2017)
contains three networks from different regions– Brazil, USA and Europe. Each node is an airport and
each link is the flight between airports. The airports are assigned with external labels based on their
level of popularity. (2) Gene (Yang et al., 2019) contains the gene interactions regarding 50 different
cancers. Each gene has a binary label indicating whether it is a transcription factor.

The experimental setup on the Airport dataset closely resembles that of our synthetic experiments
in Table 1, but with real data and more detailed comparisons. We train all models (except for
the untrained ones) on the Europe network, and test them on all three networks. The results are
presented in Table 2. We notice that the node degree features themselves (with MLP) show reasonable
performance in all three networks, which is not surprising since the popularity-based airport role
labels are highly relevant to node degrees. The untrained GIN encoder yields a significant margin
over both node degrees and the untrained vanilla GCN encoder, indicating the importance of proper
aggregation mechanisms. While training of the GCN (through GVAE) and GIN (through DGI) can
further improve the performance on the source graph, EGI shows the best performance there with the
structure-respecting node degree features (59.15), corroborating the claimed effectiveness of EGI in
capturing the essential graph information as we stress in §2.

When transfering the models to USA and Brazil networks, EGI further achieves the best performance
compared with all baselines when node degree features are used (64.55 and 73.15), which reflects
the most significant positive transfer. Interestingly, direct application of GVAE and DGI without the
consideration of essential graph information as we stress leads to rather limited and even negative
transferrability (through comparison against the untrained GCN and GIN encoders). The recently

2We are not exploring graph-level tasks and but focusing on transfer knowledge between two graphs. Thus,
we drop the graph-level pre-training tasks in the paper since it is not applicable to our setting.

3The downstream tasks are unspecified because we aim to study the general transferability of GNNs that is
not bounded to specific tasks. Nevertheless, we assume the tasks to be relevant to graph structures.
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Figure 2: Role identification on the Gene dataset. Due to severe label imbalance that vanishes the performance
gaps, we only use the 7 brain cancer networks that have a more consistent balance of labels. We visualize the
source graph G0 and two example target graphs that are relatively more similar (G5) and different (G6) with G0.

proposed transfer learning frameworks for GNN like Mask-GIN and Structural Pre-train are able to
mitigate negative transfer to some extent, but their performances are still inferior to EGI. We believe
this is because their models do not aim to capture the underlying ego-graph distributions as we deem
important, so they are prune to learn the graph-specific information that is less transferable across
different graphs. Similarly as in Table 1, we also compute the structural difference among three
networks w.r.t. to RHS of Eq. 5. The structural difference is 12.03 between the Europe and USA
networks, and 12.14 between the Europe and Brazil datasets, which are pretty close. Consequently,
the transferability of EGI regarding its performance gain over the untrained GIN baseline is 4.8% on
the USA network and 4.4% on the Brazil network, which are also pretty close. Such observations
once again align well with our conclusion in Theorem 2.1 that the transferability of EGI is closely
related to the structural different between source and target graphs.

Table 2: Results of role identification with direct-transfering on the Airport dataset. The performance reported
(%) are the average over 100 runs. The scores marked with ∗∗ passed t-test with p < 0.01 over the second best
results. More details about the results and dataset can be found in Appendix §C.2.

Method Europe (source) USA (target) Brazil (target)
node degree uniform node degree uniform node degree uniform

MLP 52.81 20.59 55.67 20.22 67.11 19.63
GCN (untrained) 52.96 20.11 55.30 22.07 68.30 17.63
GIN (untrained) 55.75 53.88 61.56 58.32 70.04 70.37
GVAE (GCN) (Kipf & Welling, 2016) 53.90 21.12 55.51 22.39 66.33 17.70
DGI (GIN) (Velickovic et al., 2019) 57.75 22.13 54.90 21.76 67.93 18.78
Mask-GIN (Hu et al., 2019a) 56.37 55.53 60.82 54.64 66.71 74.54
ContextPred-GIN (Hu et al., 2019a) 52.69 49.95 50.38 54.75 62.11 70.66
Structural Pre-train (Hu et al., 2019b) 56.00 53.83 62.17 57.49 68.78 72.41
EGI (GIN) 59.15∗∗ 54.98 64.55∗∗ 57.40 73.15∗∗ 70.00

On the Gene dataset, with more graphs available, we focus on EGI to further analyze the utility of
Eq. 5 in Theorem 2.1, regarding the connection between the structural difference of two graphs and
the performance gap of EGI on them. As shown in Figure 2, we train EGI on one graph and test it
on six different graphs. The x-axis shows the structural difference measured w.r.t. the RHS of Eq. 5,
and y-axis shows the performance loss compared with an untrained GIN. The positive correlation
between two quantities is obvious. Specifically, when the structural difference is small, positive
transfer is observed as the performance of transfered EGI is better than untrained GIN, and when the
structural difference becomes large, negative transfer is observed. Note that, at its current stage, Eq. 5
in Theorem 5 mainly gives a relative indication on the transferability of EGI, because the absolute
values of structural difference may vary a lot across different datasets.

3.2 FEW-SHOT LEARNING ON RELATION PREDICTION

Here we evaluate EGI in the more generalized and practical setting of few-shot learning on the less
structure-relevant task of relation prediction, with task-specific node features and fine-tuning. The
source graph contains a cleaned full dump of 579K entities from YAGO (Suchanek et al., 2007),
and we investigate 20-shot relation prediction on a target graph with 24 relation types, which is
a sub-graph of 115K entities sampled from the same dump. In post-fine-tuning, the models are
pre-trained with an unsupervised loss on the source graph and fine-tuned with the task-specific loss
on the target graph. In joint-fine-tuning, the same pre-trained models are jointly optimized w.r.t. the
unsupervised pre-training loss and task-specific fine-tuning loss on the target graph. In Table 3,
we observe most of the existing models fail to transfer across pre-training and fine-tuning tasks,
especially in the joint-fine-tuning setting. In particular, both Mask-GIN and ContextPred-GIN rely a

7



Under review as a conference paper at ICLR 2021

lot on task-specific fine-tuning, while EGI focuses on the capturing of similar ego-graph structures
that are transferable across graphs. As a consequence, EGI significantly outperforms all compared
methods in both settings.
Table 3: Performance of few-shot relation prediction on YAGO. Structural Pre-train (Hu et al., 2019b) can not
scale to the YAGO graphs with 100K+ nodes. More details can be found in Appendix §C.3.

Method post-fine-tuning joint-fine-tuning
AUROC MRR AUROC MRR

No pre-train 0.6866 0.5962 N.A. N.A
GVAE (Kipf & Welling, 2016) 0.7009 0.6009 0.6786 0.5676
DGI (Velickovic et al., 2019) 0.6885 0.5861 0.6880 0.5366
Mask-GIN (Hu et al., 2019a) 0.7041 0.6242 0.6720 0.5603
ContextPred-GIN (Hu et al., 2019a) 0.6882 0.6589 0.5293 0.3367
EGI 0.7389∗∗ 0.6695 0.7870∗∗ 0.7289∗∗

4 RELATED WORK

Representation learning on graphs has been studied for decades, with earlier spectral-based methods
(Belkin & Niyogi, 2002; Roweis & Saul, 2000; Tenenbaum et al., 2000) theoretically grounded but
hardly scaling up to graphs with over a thousand of nodes. With the emergence of neural networks,
unsupervised network embedding methods based on the Skip-gram objective (Mikolov et al., 2013)
have replenished the field (Tang et al., 2015; Grover & Leskovec, 2016; Perozzi et al., 2014; Ribeiro
et al., 2017). Equipped with efficient structural sampling (random walk, neighborhood, etc.) and
negative sampling schemes, these methods are easily parallelizable and scalable to graphs with
thousands to millions of nodes. However, these models are essentially transductive as they compute
fully parameterized embeddings only for nodes seen during training, which are impossible to be
transfered to unseen graphs.

More recently, researchers introduce the family of graph neural networks (GNNs) that are capable
of inductive learning and generalizing to unseen nodes given meaningful node features (Kipf &
Welling, 2017; Defferrard et al., 2016; Hamilton et al., 2017). Yet, most existing GNNs require
task-specific labels for training in a semi-supervised fashion to achieve satisfactory performance (Kipf
& Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018; Chen et al., 2018), and their usage
is limited to single graphs where the downstream task is fixed. To this end, several unsupervised
GNNs are presented, such as the auto-encoder-based ones like GVAE (Kipf & Welling, 2016) and
GNFs (Liu et al., 2019), as well as the deep-infomax-based ones like DGI (Velickovic et al., 2019)
and InfoGraph (Sun et al., 2019). Their potential in the transfer learning of GNN remains unclear
when the node features and link structures vary across different graphs.

Although the architectures of GNNs are not very complicated, training a dedicated model for each
graph can still be cumbersome (Chen et al., 2018; Ying et al., 2018a). Moreover, as pre-training
neural networks are proven to be successful in other domains (Devlin et al., 2019; He et al., 2016),
the idea is intriguing to transfer well-trained GNNs from relevant source graphs to improve the
modeling of target graphs or enable few-shot learning (Vinyals et al., 2016; Finn et al., 2017; Ravi &
Larochelle, 2017) when labeled data are scarce. In the light of this, pioneering works have studied
both generative (Hu et al., 2020) and discriminative (Hu et al., 2019a,b) GNN pre-training schemes.
Among these work, though Graph Contrastive Coding (Qiu et al., 2020) shares similar structural
view as ours, it utilizes contrastive learning in the embedding space instead of structural space as
EGI. Unsupervised domain adaptive GCNs (Wu et al., 2020) study the domain adaption problem
while source and target tasks are homogenous. Previous pre-training and self-supervised GNNs lack
a rigorous analysis towards their transferability and thus have unpredictable effectiveness.

5 CONCLUSION

To the best of our knowledge, this is the first research effort towards establishing a theoretically
grounded framework to analyze GNN transferability, which we also demonstrate to be practically
useful for guiding the design and conduct of transfer learning with GNNs. For future work, it is
intriguing to further strengthen the bound with relaxed assumptions, rigorously extend it to the more
complicated and less restricted settings regarding node features and downstream tasks, as well as
analyze and improve the proposed framework over more transfer learning scenarios and datasets.
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A THEORY DETAILS

From the LEGI objective, we have assumed gi
i.i.d.∼ µ, xi

i.i.d.∼ ν, and (gi, xi)
i.i.d.∼ p. Then with graph G,

we have access to the empirical distributions of the three. So the sampling reduces to bootstrapping
in the procedure of evaluating the objective.

Note that, in Eq. 2 of the main paper, we used a d dimensional hidden state hq̃p,q , specified in Eq. 13
to denote an edge encoding derived from the structure of the ego-graph and the associated source
node feature from (p − 1)-th layer. For simplicity, we consider the concatenated vector f(xi)‖zi,
where f(xi) = hq̃p,q‖xip,q and hq̃p,q, x

i
p,q are as defined in the EGI model and in 13. Additionally,

since both of hq̃p,q and xip,q are normalised, f is bounded.

Finally, as we are considering GNN with k layers, its computation only depends on the k-hop ego-
graphs of G, which is an important consideration when unfolding the embedding of GNN at a centre
node.
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A.1 PROOF FOR THEOREM 3.1

Lemma A.1. For any A ∈ Rm×n, where m ≥ n, and A is a submatrix of B ∈ Rm′×n, where
m < m′, we have

‖A‖2 ≤ ‖B‖2.

Proof. Note that, AAT is a principle matrix of BBT , i.e., AAT is obtained by removing the same
set of rows and columns from BBT . Then, by Eigenvalue Interlacing Theorem (Hwang (2004)) and
the fact that ATA and AAT have the same set of non-zero singular values, the matrix operator norm
satisfies ‖A‖2 =

√
λmax(ATA) =

√
λmax(AAT ) ≤

√
λmax(BBT ) = ‖B‖2.

We restate Theorem 3.1 from the main paper as below.

Theorem A.2 (GNN transferability). Let Ga = {(gi, xi)}ni=1 and Gb = {(gi′ , xi′)}mi′=1 be two
graphs. Then denote Lgi as the (normalised) graph Laplacian of gi ∀i = 1, · · · , n, and let the
node features of gi be structure-respecting and normalized (similarly for gi′). Consider GNN Ψθ

with k layers and a 1-hop polynomial filter φθ, the empirical performance difference of Ψθ with φθ
evaluated on LEGI satisfies

|LEGI(Ga)− LEGI(Gb)| ≤ O

(
M +

1

nm

n∑
i=1

m∑
i′=1

λmax(Lgi − Lgi′ )
1/2

)
, (6)

where M is a constant dependant on k, φθ, {Lgi}, {Lgi′}, {xi}, {xi′}. In addition, if ∃U ∈
O(n ∨m)4 s.t.,

ULgiU
T = Diag(λ(Lgi)), ULgi′U

T = Diag(λ(Lgi′ ))

we have O
(
M + 1

nm

∑n
i=1

∑m
i′=1 ‖λ(Lgi)− λ(Lgi′ )‖2

)
, where λ(Lgi) denotes the ordered eigen-

values of the graph Laplacian of gi ∈ Ga (similarly for gi′ ).

Proof. We denote σs(t) = log(1 + et), the softplus activation function, which is 1-Lipschitz contin-
uous. Now,
|LEGI(G)− LEGI(G

′)|

=

∣∣∣∣∣∣ 1

n2

n∑
i,j=1

(D(gi, zj))−
1

n

n∑
i=1

(−(−D(gi, zi))− (
1

m2

m∑
i′,j′=1

(D(gi′ , zj′))−
1

m

m∑
i′=1

(−(−D(gi′ , zi′))))

∣∣∣∣∣∣
≤ 1

n2m2

n∑
i,j=1

m∑
i′,j′=1

|D(gi, zj)−D(gi′ , zj′)|+
1

nm

n∑
i=1

m∑
i′=1

|D(gi, zi)−D(gi′ , zi′)|

=
1

n2m2

n∑
i,j=1

m∑
i′,j′=1

A+
1

nm

n∑
i=1

m∑
i′=1

B.

First we consider B. Recall that, Vp(gi) is the set of nodes in layer p of gi,

D(gi, zi) =

k∑
p=1

|Vp(gi)|∑
q=1

log(σsig
(
UT τ

(
WT [f(xi)‖zi]

))
),

where σsig(t) = 1
1+e−t is the sigmoid function, τ is some γτ -Lipschitz activation function and [·‖·]

denotes the concatenation of two vectors. Then we have
UT τ

(
WT [f(xi)‖zi]

)
= UT τ

(
WT

1 f(xi) +WT
2 zi
)
.

4O(n∨m) is the orthogonal group of order n∨m. So we have Lgi and Lgi′ admitting simultaneous ordered
spectral decomposition.

12



Under review as a conference paper at ICLR 2021

WLOG, assume dp = |Vp(gi)| = |Vp(gi′)| ∀u = 1, · · · , k. In addition, since log(σsig(t)) =
− log(1 + e−t) = −σs(−t), which is 1-Lipschitz, it gives

B ≤
k∑
p=1

dp∑
q=1

|UT τ
(
WT

1 f(xi) +WT
2 zi
)
− UT τ

(
WT

1 f(xi
′
) +WT

2 zi′
)
|

≤ γτsU
k∑
p=1

dp∑
q=1

(‖WT
1 f(xi)−WT

1 f(xi
′
)‖2 + ‖WT

2 zi −WT
2 zi′‖2)

≤ γτsUsW
k∑
p=1

dp∑
q=1

(‖f(xi)− f(xi
′
)‖2 + ‖zi − zi′‖2),

(7)

where sU is the largest singular value of U , and similarly sW = sW1
∨ sW2

. Since we assumed the
node features are normalised, then ‖f(xi)− f(xi

′
)‖2 ≤ cD.

From Eq. 7, we only care about xi’s embedding obtained from a k-layer GNN with 1-hop polynomial
(linear in L) filter. Inspired by the characterization of GNN from a node-wise view in Verma & Zhang
(2019), we similarly denote the embedding of node xi ∀i = 1, · · · , n in the final layer of the GNN as

zki = zi = Ψθ(xi) = σ(
∑

j∈N (xi)

e·jz
k−1
j ) ∈ Rd,

where e·j = [φθ(L)]·j ∈ R. We may denote z`i ∈ Rd similarly for ` = 1, · · · , k − 1, and z0
i = xi ∈

Sd−1 the node feature of node xi. With the assumption of GNN stated in the statement, it is clear
that only the k-hop ego-graph gi centered at xi is needed to compute zki for any i = 1, · · · , n instead
of the whole of G. With such observation in mind, let us denote the matrix of node embeddings of
gi at the `th layer as (z

i(`)
p,q ) ∈ R|V (gi)|×d, for ` = 1, · · · , k; and let (z

i(0)
p,q ) ≡ (xip,q) ∈ (Sd−1)|V (gi)|

denote the matrix of node features in the k-hop ego-graph gi. In addition, we denote (z
i(`)
p,q )p≤t to be

the submatrix that is obtained by selecting rows that corresponds to v ∈ Vp(gi) for p = 0, · · · , t ≤ k.
Similarly for gi′ .

Moreover, let us denote φθ(Lgi) ≡ [φθ(L)]gi , i.e., the filtered full graph Laplacian of G subsetted
by the k-hop ego-graph gi. Then, let φθ(Lgi)p≤t denotes the submatrix that is obtained by selecting
rows and columns that corresponds to v ∈ Vp(gi) for p = 0, · · · , t ≤ k. Similarly for gi′ .

Therefore, by Lemma A.1, for any ` = 1, · · · , k, the following holds

‖(zi
′(`)
p,q )p≤t − (zi

′(`)
p,q )p≤t‖2 ≤ ‖(zi

′(`)
p,q )p≤t+1 − (zi

′(`)
p,q )p≤t+1‖2.

Assume ‖(zi
′(`−1)
p,q )‖2 ≤ cz <∞ ∀`. Now, at the final layer,

‖zi − zi′‖2 = ‖(zi
′(k)
p,q )p=0 − (zi

′(k)
p,q )p=0‖2

≤‖[σ(φθ(Lgi)p≤1(zi(k−1)
p,q )p≤1)− σ(φθ(Lgi′ )p≤1(zi

′(k−1)
p,q )p≤1)]p=0‖2

≤γσ‖φθ(Lgi)p≤1(zi(k−1)
p,q )p≤1 − φθ(Lgi′ )p≤1(zi

′(k−1)
p,q )p≤1‖2

≤γσ‖φθ(Lgi)p≤1‖2‖(zi(k−1)
p,q )p≤1 − (zi

′(k−1)
p,q )p≤1‖2

+γσ‖(zi
′(k−1)
p,q )p≤1‖2‖φθ(Lgi)p≤1 − φθ(Lgi′ )p≤1‖2

≤γσ‖φθ(Lgi)‖2‖(zi(k−1)
p,q )p≤1 − (zi

′(k−1)
p,q )p≤1‖2 + γσcz‖φθ(Lgi)− φθ(Lgi′ )‖2.

(8)

In general, for ` = 1, · · · , k − 1, the following holds with t = k − `,

‖(zi
′(`)
p,q )p≤t − (zi

′(`)
p,q )p≤t‖2

≤γσ‖φθ(Lgi)p≤t+1(zi(`−1)
p,q )p≤t+1 − φθ(Lgi′ )p≤t+1(zi

′(`−1)
p,q )p≤t+1‖2

≤γσ‖φθ(Lgi)‖2‖(zi(`−1)
p,q )p≤t+1 − (zi

′(`−1)
p,q )p≤t+1‖2 + γσcz‖φθ(Lgi)− φθ(Lgi′ )‖2.

(9)

Then we equivalently write Eq. 9 as E` ≤ bE`−1 + a, which gives

E` ≤ b`E1 +
b` + 1

b− 1
a.
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Then, with (xip,q) = (z
i(0)
p,q ), we see the following is only dependant on the structure of gi and gi′ ,

‖(zi
′(`)
p,q )− (zi

′(`)
p,q )‖2 ≤ γ`σ‖φθ(Lgi)‖`2‖(xip,q)− (xi

′

p,q)‖2

+
γ`σ‖φθ(Lgi)‖`2 + 1

γσ‖φθ(Lgi)‖2 − 1
γσcz‖φθ(Lgi)− φθ(Lgi′ )‖2.

Since the features are normalised, and so are the graph Laplacians, we have ‖φθ(Lgi)‖2 ≤ cL and
‖(xip,q)− (xi

′

p,q))‖2 ≤ cx. Then with Eq. 8, we have

‖zi − zi′‖2 ≤ γkσckLcx +
γkσc

k
L + 1

γσcL − 1
γσγθcz‖Lgi − Lgi′‖2

≤ cγ,Ψ(M + ‖Lgi − Lgi′‖2)

= cγ,Ψ(M + λmax(Lgi − Lgi′ )
1/2).

(10)

Now, by Eq. 7, we have
B ≤ kdmaxγτs(cD + cγ,Ψ(M + λmax(Lgi − Lgi′ )

1/2)),

where dmax = maxp dp. Similarly, the above holds for A, since from Eq. 8, the node features and
embedded features are bounded by separate terms. We therefore arrive at

|LEGI(G)− LEGI(G
′)| ≤ 2kdmaxγτ cγ,Ψs(M

′ +
1

nm

n∑
i=1

m∑
i′=1

λmax(Lgi − Lgi′ )
1/2))

≤ 2kdmaxγτ cγ,Ψs(M
′ +

1

nm

n∑
i=1

m∑
i′=1

‖Lgi − Lgi′‖F )).

(11)

Moreover, by Von Neumann’s Trace Inequality Grigorieff (1991), if ∃U ∈ O(β)5, where β =∑k
p=0 dp, s.t.

ULgiU
T = Diag(λ(Lgi)), ULgi′U

T = Diag(λ(Lgi′ )),

we have ‖Lgi − Lgi′‖F = ‖λ(Lgi)− λ(Lgi′ )‖2, then
Eq. 11 ≤ cγ,Ψ(M + ‖λ(Lgi)− λ(Lgi′ )‖2).

Therefore Eq. 11 becomes

|LEGI(G)− LEGI(G
′)| ≤ 2kdmaxγτ cγ,Ψs(M

′ +
1

nm

n∑
i=1

m∑
i′=1

‖λ(Lgi)− λ(Lgi′ )‖2).

Note that, our view of structural information is closely related to graph kernels (Bai & Hancock,
2016) and graph perturbation (Verma & Zhang, 2019). Specifically, our Def 2.1 is motivated by
the concept of k-layer expansion sub-graph in (Bai & Hancock, 2016). However, (Bai & Hancock,
2016) used the Jensen-Shannon divergence between pairwise representations of sub-graphs to define
a depth-based sub-graph kernel, while we depict G as samples of its ego-graphs. In this sense, our
view is related to the setup in (Verma & Zhang, 2019), which derived a uniform algorithmic stability
bound of a 1-layer GNN under 1-hop structure perturbation of G.

In the setting of domain adaptation, (Ben-David et al., 2007) draws a connection between the
difference in the distributions of source and target domains and the model transferability, and learns a
transferable model by minimizing such distribution differences. This coincides with our approach of
connecting the structure difference of two graphs in terms of k-hop subgraph distributions and the
transferability of GNNs in the above theory.

B MODEL DETAILS

Following the same notations used in the paper, EGI consists of a GNN encoder Ψ and a GNN
discriminator D. In general, the GNN encoder Ψ and decoder D can be any existing GNN models.
For each ego-graph and its node features {gi, xi}, the GNN encoder returns node embedding zi

5O(β) is the orthogonal group of square matrix β. So we have Lgi and Lgi′ admits simultaneous ordered
spectral decomposition.
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for the center node vi. As mentioned in Eq. 2 in the main paper, the GNN discriminator D makes
edge-level predictions as follows,

D(eṽv|hq̃p,q, xip,q, zi) = σ
(
UT · τ

(
WT [hq̃p,q||xip,q||zi]

))
, (12)

where eṽv ∈ E(gi) and hq̃p,q ∈ Rd is the representation for edge eṽv between node vp−1,q̃ in hop
p−1 and vp,q in hop p. Specifically, we denote the source node at p−1 hop as q̃ ∈ Q̃p,q, Q̃p,q = {q̃ :
vp−1,q̃ ∈ Vp−1(gi), e(p−1,q̃)(p,q) ∈ E(gi)}. Hence, the edge prediction relies on the combination of
center node embedding zi, destination node feature xip,q and edge message hq̃p,q .

Ego-graph (𝒈𝒈𝒊𝒊,𝒙𝒙𝒊𝒊)

Ego-graph (𝒈𝒈𝒊𝒊′,𝒙𝒙𝒊𝒊′)

Encoder𝜳𝜳

𝒛𝒛𝒊𝒊

𝒛𝒛𝒊𝒊’

Discriminator Dcenter node 
embedding

edge message 
passing

hop 2

edge message 
passing

hop 1

✔

×

Edge-wise 
decision

✔

×

Figure 3: The overall EGI training framework.

In Figure 3, {gi, xi} and {g′i, x′i} are the positive and negative training samples w.r.t ego-graph
topology gi. The discriminator D operates on a reversed ego-graph g̃i comparing encoder’s forward
propagation on gi. It starts from the center node vi and compute the hidden representation mp−1,q̃

for node vp−1,q at each hop. The edge message hq̃p,q is calculated between source node’s hidden
representation mp−1,q̃ and destination node features xp,q .

hq̃p,q = ReLU
(
WT
p

(
mp−1,q̃ + xip,q

))
, mp−1,q̃ =

1

|Q̃p−1,q̃|

∑
q′∈Q̃p−1q̃

hq
′

p−1,q̃ (13)

When p = 1, every edge origins from the center node vi and m0,q′ is the center node feature xvi .

In every batch, we sample a set of ego-graphs and their node features {gi, xi}. During the forward
pass of encoder Ψ, it aggregates from neighbor nodes to the center node vi. Then, the discriminator
calculates the edge embedding in Eq. 12 from center node vi to its neighbors and make edge-level
predictions– fake or true. The training framework of EGI is depicted in Figure 3 and Algorithm 1.

We implement our method and all of the baselines using the same encoders Ψ: 2-layer GIN (Xu et al.,
2019) for synthetic and role identification experiments, 2-layer GraphSAGE (Hamilton et al., 2017)
for the relation prediction experiments. We set hidden dimension as 32 for both synthetic and role
identification experiments, For relation prediction fine-tuning task, we set hidden dimension as 256.
We train EGI in a mini-batch fashion since all the information for encoder and discriminators are
within the k-hop ego-graph gi and its features xi. Further, we conduct neighborhood sampling and
set maximum neighbors as 10 to speed up the parrallel training. The space and time complexity of
EGI is O(BNK), where B is the batch size, N is the number of the neighbors and k is the number of
hops of ego-graphs. Notice that both the encoder Ψ and discriminator D propagate message on the
k-hop ego-graphs, so the extra computation cost of D compared with a common GNN module is a
constant multiplier over the original one. The scalability of EGI on million scale YAGO network is
reported in section C.3.

B.1 TRANSFER LEARNING SETTINGS

The goal of transfer learning is to train a model on a dataset or task, and use it on another. In our
graph learning setting, we focus on training the model on one graph and using it on another. In
particular, we focus our study on the setting of direct-transfering, where the model learned on the
source graph is directly applied on the target graph without fine-tuning. We study this setting because
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Algorithm 1: Pseudo code for training EGI

1 The GNN encoder Ψ and the GNN discriminator D, k-hop ego graph and features {gi, xi};
2 /* EGI-training starts */
3 while LEGI not converges do
4 Sample M ego-graphs {(g1, x1), ..., (gM , xM )} from empirical distribution P without

replacement, and obtained their positive and negative node embeddings zi, z′i through Ψ

zi = Ψ(gi, xi), z
′
i = Ψ(g′i, x

′
i),

/* Initialize positive and negative expectation in Eq. 1 in the main paper*/
5 Epos = 0, Eneg = 0
6 for p = 1 to k do
7 /* Compute JSD on edges at each hop*/
8 for e(p−1,q̃)(p,q) ∈ E(gi) do
9 generate edge embedding hq̃p,q in Eq. (13) ;

10 Epos = Epos + σ
(
UT · τ

(
WT [hq̃p,q||xip,q||zi]

))
11 Eneg = Eneg + σ

(
UT · τ

(
WT [hq̃p,q||xip,q||z′i]

))
12 end
13 end
14 /* Compute batch loss*/
15 LEGI = Eneg − Epos
16 /* Update Ψ, D */

17 θΨ
+←− −∇ΨLEGI, θD

+←− −∇DLEGI
18 end

it allows us to directly measure the transferability of GNNs, which is not affected by the fine-tuning
process on the target graph. In other words, the fine-tuning process introduces significant uncertainty
to the analysis, because there is no guarantee on how much the fine-tuned GNN is different from the
pre-trained one. Depending on specific tasks and labels distributions on the two graphs, the fine-tuned
GNN might be quite similar to the pre-trained one, or it can be significantly different. It is then
very hard to analyze how much the pre-trained GNN itself is able to help. Another reason is about
efficiency. The fine-tuning of GNNs requires the same environment set-up and computation resource
as training GNNs from scratch, although it may take less training time eventually if pre-training is
effective. It is intriguing if this whole process can be eliminated when we guarantee the performance
with direct-transfering.

In our experiments, we also study the setting of transfer learning with fine-tuning, particularly on the
real-world large-scale YAGO graphs. Since we aim to study the general transferability of GNNs not
bounded to specific tasks, we always pre-train GNNs with the unsupervised pre-training objective on
source graphs. Then we enable two types of fine-tuning. The first one is post-fine-tuning (L = Ls),
where the pre-trained GNNs are fine-tuned with the supervised task specific objective Ls on the
target graphs. The second on is joint-fine-tuning (L = Ls + Lu), where pre-training is the same, but
fine-tuning is done w.r.t. both the pre-training objective Lu and task specific objective Ls on target
graphs in a semi-supervised learning fashion. The unsupervised pre-training objective Lu of EGI is
Algorithm 1, while those of the compared algorithms are as defined in their papers. The supervised
fine-tuning objective Ls is the same as in the DistMult paper (Yang et al., 2014) for all algorithms.

C EXPERIMENT DETAILS

C.1 SYNTHETIC EXPERIMENTS

Data. As mentioned in the main paper, we use two traditional graph generation models for syn-
thetic data generation: (1) barabasi-albert graph (Barabási & Albert, 1999) and (2) forest-fire
graph (Leskovec et al., 2005). We generate 40 graphs each with 100 nodes with each model. We
control the parameters of two models to generate two graphs with different ego-graph distributions.
Specifically, we set the number of attached edges as 2 for barabasi-albert model and set pforward = 0.4,
pbackward = 0.3 for forest-fire model. In Figure 4a and 4b, we show example graphs from two families
in our datasets. They have the same size but different appearance which leads to our study on the
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transferability gap in Table 1 in the main paper. The accuracy of this task defined as the percentage of
nearest neighbors for target node in the embedding space that are structure-equivalent, i.e. #correct
k-nn neighbors / #ground truth equivalent nodes.

(a) Forest-fire graph example (b) Barabasi-albert graph example (c) structural label example

Figure 4: Visualizations of the graphs and labels we use in the synthetic experiments.

Results. The structural equivalence label is obtained by a 2-hop WL-test (Weisfeiler & Lehman,
1968) on the ego-graphs. If two nodes have the same 2-hop ego-graphs, they will be assigned the
same label. In the example of Figure 4c, the nodes labeled with same number (e.g. 2, 4) have the
isomorphic 2-hop ego-graphs. Note that this task is exactly solvable when node features and GNN
architectures are powerful enough like GIN (Xu et al., 2019). In order to show the performance
difference among different methods, we set the length of one-hot node degree encoding to 3 (all nodes
with degrees higher than 3 have the same encoding). Here, we present the performance comparison
with different length of degree encodings (d) in Table 4. When the capacity of initial node features is
high (d=10), the transfer learning gap diminishes between different methods and different graphs
because the structural equivalence problem can be exactly solved by neighborhood aggregations.
However, when the information in initial node features is limited, the advantage of EGI in learning
and transfering the graph structural information is obvious. In Table 5, we also show the performance
of different transferable and non-transferable features, i.e. node embedding (Perozzi et al., 2014) and
random feature vectors. The observation is similar with Table 1 in the main paper: the transferable
feature can reflect the performance gap between similar and dissimilar graphs while non-transferable
features can not.

In both Table 4 and 7 here as well as Table 1 in the main paper, we report the structural difference
among graphs in the two sets (d̄) calculated w.r.t. the term 1

nm

∑n
i=1

∑m
i′=1 ‖λ(Lgi)− λ(Lgi′ )‖2 on

the RHS of Theorem 2.1 in the main paper. This indicates that the Forest fire graphs are structurally
similar to the other Forest fire graphs, while less similar to the Barabasi graphs, as can be verified
from Figure 4a and 4b. Our bound in Theorem 3.1 then tells us that the GNNs (in particular, EGI)
should be more transferable in the F-F case than B-F. This is verified in Table 4 and 5 when using the
transferable node features of degree encoding with limited dimension (d=3) as well as DeepWalk
embedding, as EGI trained on Forest fire graphs performs significantly better on Forest fire graphs
than on Barabasi graphs (with +0.094 and +0.057 differences, respectively).

Table 4: Synthetic experiments of identifying structural-equivalent nodes with different degree encoding
dimensions.

Method #dim degree encoding d = 3 # dim degree encoding d = 10 structural difference
F-F B-F ∆ F-F B-F ∆ d̄(F,F) d̄(B,F)

GCN (untrained) 0.478 0.478 / 0.940 0.940 /

1.78 2.17
GIN (untrained) 0.572 0.572 / 0.940 0.940 /
GVAE (GCN) 0.498 0.432 +0.066 0.939 0.937 0.002
DGI (GIN) 0.578 0.591 -0.013 0.939 0.941 -0.002
EGI (GIN) 0.710 0.616 +0.094 0.942 0.942 0

C.2 REAL-WORLD ROLE IDENTIFICATION EXPERIMENTS

Data. We report the number of nodes, edges and classes for both airport and gene dataset. The
numbers for the Gene dataset are the aggregations of the total 52 gene networks in the dataset. For
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Table 5: Synthetic experiments of identifying structural-equivalent nodes with different transferable and non-
transferable features.

Method DeepWalk embedding random vectors structural difference
F-F B-F ∆ F-F B-F ∆ d̄(F,F) d̄(B,F)

GCN (untrained) 0.658 0.658 / 0.246 0.246 /

1.78 2.17
GIN (untrained) 0.663 0.663 / 0.520 0.520 /
GVAE (GCN) 0.713 0.659 +0.054 0.266 0.264 0.002
DGI (GIN) 0.640 0.613 +0.027 0.512 0.576 -0.064
EGI (GIN) 0.772 0.715 +0.057 0.507 0.485 +0.022

Table 6: Overall Dataset Statistics

Dataset # Nodes # Edges # Classes

Europe 399 5,995 4
USA 1,190 13,599 4
Brazil 131 1,074 4
Gene 9,228 57,029 2

the three airport networks, Figure 5 shows the power-law degree distribution on log-log scale. The
class labels are between 0 to 3 reflecting the level of the airport activities (Ribeiro et al., 2017). For
the Gene dataset, we matched the gene names in the TCGA dataset (Yang et al., 2019) to the list of
transcription factors on wikipedia6. 75% of the genes are marked as 1 (transcription factors) and
some gene graphs have extremely imbalanced class distributions. So we conduct experiments on
the relatively balanced gene graphs of brain cancers (Figure 2 in the main paper). Both datasets do
not have organic node attributes. The role-based node labels are highly relevant to their local graph
structures, but are not trivially computable such as from node degrees.

(a) Europe airport log-log plot (b) USA airport log-log plot (c) Brazil airport log-log plot

Figure 5: Visualizations of power-law degree distribution on three airport dataset.

Results. As we can observe from Figure 5, the three airport graphs have quite different sizes and
structures (e.g., regarding edge density and connectivity pattern). Thus, the absolute classification
accuracy in both Table 2 in the main paper and Table 7 here varies across different graphs. However,
as we mention in the main paper, the structural difference we compute based on Eq. 5 in Theorem 3.1
is close among the Europe-USA and Europe-Brazil graph pairs (12.03 and 12.14), which leads to
close transferability of EGI from Europe to USA and Brazil. This indicates the effectiveness of our
view over essential structural information.

Note that, the results present in Table 7 are the accuracy of GNNs directly trained and evaluated
on each network without transfering. Therefore, only the Europe column has the same results as
in Table 2 in the main paper, while the USA and Brazil columns can be regarded as providing an
upper-bound performance of GNN transfered from other graphs. As we can see, EGI gives the closest
results from Table 2 in the main paper to Table 7 here, demonstrating the its plausible transferability.
The scores are so close, showing a possibility to skip fine-tuning when the source and target graphs
are similar enough. Also note that, although the variances are pretty large (which is also observed

6https://en.wikipedia.org/wiki/Transcription_factor
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in other works like (Ribeiro et al., 2017) since the networks are small), our t-tests have shown the
improvements of EGI to be significant.

Table 7: Role identification that identifies structurally similar nodes on real-world networks. The performance
reported are the average and standard deviation for 10 runs. Our classification accuracy on three datasets all
passed the t-test (p<0.01) with the second best result in the table.

Method Airport (Ribeiro et al., 2017)
Europe USA Brazil

node degree 52.81% ± 5.81% 55.67% ± 3.63% 67.11% ± 7.58%
GCN (random-init) 52.96% ± 4.51% 56.18% ± 3.82% 55.93% ± 1.38%
GIN (random-init) 55.75% ± 5.84% 62.77% ± 2.35% 69.26% ± 9.08%
GVAE (GIN) (Kipf & Welling, 2016) 53.90% ± 4.65% 58.99% ± 2.44% 55.56% ± 6.83%
DGI (GIN) (Velickovic et al., 2019) 57.75% ± 4.47% 62.44% ± 4.46% 68.15% ± 6.24%
Mask-GIN (Hu et al., 2019a) 56.37% ± 5.07% 63.78% ± 2.79% 61.85% ± 10.74%
ContextPred-GIN (Hu et al., 2019a) 52.69% ± 6.12% 56.22% ± 4.05% 58.52% ± 10.18%
Structural Pre-train (Hu et al., 2019b) 56.00% ± 4.58% 62.29% ± 3.51% 71.48% ± 9.38 %
EGI (GIN) 59.15% ± 4.44% 65.88% ± 3.65% 74.07% ± 5.49%

C.3 REAL-WORLD LARGE-SCALE RELATION PREDICTION EXPERIMENTS

Data. As shown in Table 8, the source graph we use to pre-train GNNs is the full graph cleaned from
the YAGO dump (Suchanek et al., 2007), where we assume the relations among entities are unknown.
The target graph we use is a subgraph uniformed sampled from the same YAGO dump (we sample
the nodes and then include all edges among the sampled nodes). The similar ratio between number
of nodes and edges can be observed in Table 8. On the target graph, we also have the access to 24
different relations (Shi et al., 2018) such as isAdvisedBy, isMarriedTo and so on. Such relation labels
are still relevant to the graph structures, but the relevance is lower compared with the structural role
labels. We use the 256-dim degree encoding as node features for pre-training on the source graph,
then we use the 128-dim positional embedding generated by LINE (Tang et al., 2015) for fine-tuning
on the target graph, to explicitly make the features differ across source and target graphs.

Results. In Section B.1, we introduced two different types of fine-tuning, i.e., post-fine-tuning and
joint-fine-tuning. For both types of fine-tuning, we add one feature encoder E before feeding it
into the GNNs for two purposes. First, the target graph fine-tuning feature usually has different
dimensions with the pre-training features, such as the node degree encoding we use. Second, the
semantics and distributions of fine-tuning features can be different from pre-training features. The
feature encoder aims to bridge the gap between feature difference in practice. The supervised loss
used in this experiment is the same as in DistMult (Yang et al., 2014). In particular, the bilinear score
function is calculated as s(h, r, t) = zThMrzt, where Mr is a diagonal matrix for each relation r, zh
and zt the the embedding of GNN encoder Ψ for head and tail entities. The experiments were run on
GTX1080 with 12G memories. We report the average training time per epoch of our algorithm in
pre-training and fine-tuning stage in Table 8 as well. The pre-training and fine-tuning takes about 40
epochs and 10 epochs to converge, respectively. In Table 8, we also present the per-epoch training
time of EGI. EGI takes about 338 seconds per epoch for optimizing the ego-graph information
maximization objective on YAGO-source. As we can see, fine-tuning also takes significant time
compared to pre-training, which strengthens our arguments about avoiding or reducing fine-tuning
through structural analysis. We implement all baselines within the same pipeline, and the runtimes
are all at the same scale.

Table 8: dataset statistics and running time of EGI

Dataset # Nodes # Edges # Relations # Train/Test Training time per epoch

YAGO-Source 579,721 2,191,464 / / 338 seconds
YAGO-Target 115,186 409,952 24 480/409,472 134 seconds
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