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Abstract

Conditional Generative Adversarial Networks (cGAN) generate realistic images by
incorporating class information into GAN. While one of the most popular cGANs is
an auxiliary classifier GAN with softmax cross-entropy loss (ACGAN), it is widely
known that training ACGAN is challenging as the number of classes in the dataset
increases. ACGAN also tends to generate easily classifiable samples with a lack of
diversity. In this paper, we introduce two cures for ACGAN. First, we identify that
gradient exploding in the classifier can cause an undesirable collapse in early train-
ing, and projecting input vectors onto a unit hypersphere can resolve the problem.
Second, we propose the Data-to-Data Cross-Entropy loss (D2D-CE) to exploit
relational information in the class-labeled dataset. On this foundation, we propose
the Rebooted Auxiliary Classifier Generative Adversarial Network (ReACGAN).
The experimental results show that ReACGAN achieves state-of-the-art generation
results on CIFAR10, Tiny-ImageNet, CUB200, and ImageNet datasets. We also
verify that ReACGAN benefits from differentiable augmentations and that D2D-CE
harmonizes with StyleGAN2 architecture. Model weights and a software package
that provides implementations of representative cGANs and all experiments in our
paper are available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.

1 Introduction

Generative Adversarial Networks (GAN) [1] are known for the forefront approach to generating
high-fidelity images of diverse categories [2, 3, 4, 5, 6, 7, 8, 9]. Behind the sensational generation
ability of GANs, there has been tremendous effort to develop adversarial objectives free from the
vanishing gradient problem [10, 11, 12], regularizations for stabilizing adversarial training [11, 13,
14, 3, 15, 16, 17], and conditioning techniques to support the adversarial training using category
information of the dataset [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Subsequently, the conditioning
techniques have become the de facto standard for high-quality image generation. The models with the
conditioning methods are called conditional Generative Adversarial Networks (cGAN), and cGANs
can be divided into two groups depending on the discriminator’s conditioning way: classifier-based
GANs [18, 20, 23, 25, 27] and projection-based GANs [19, 3, 4, 28].

The classifier-based GANs facilitate an auxiliary classifier to generate class-specific images by
penalizing the generator if the synthesized images are not consistent with the conditioned labels.
ACGAN [18] has been one of the widely used classifier-based GANs for its simple design and
satisfactory generation performance. While ACGAN can exploit class information by pushing
and pulling classifier’s weights (proxies) against image embeddings [23], it is well known that
ACGAN training is prone to collapsing at the early stage of training as the number of classes
increases [19, 23, 25, 27]. In addition, the generator of ACGAN tends to generate easily classifiable
images at the cost of reduced diversity [18, 19, 27]. Projection-based GANs, on the other hand, have
shown cutting-edge generation results on datasets with a large number of categories. SNGAN [3],
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Figure 1: Schematics that depict how cGANs perform conditioning. The red color means positive
samples/proxy, and the blue color indicates negative samples/proxies. Arrows represent push-pull
forces based on the reference sample. The length of an arrow indicates the magnitude of the force.

SAGAN [29], and BigGAN [4] are representatives in this family and can generate realistic images
on CIFAR10 [30] and ImageNet [31] datasets. However, projection-based GANs only consider a
pairwise relationship between an image and its label proxy (data-to-class relationships). As the
result, the projection-based GANs can miss an additional opportunity to consider relation information
between data instances (data-to-data relationships) as discovered by [23].

In this paper, we analyze why ACGAN training becomes unstable as the number of classes increases
and propose remedies for (1) the instability and (2) the relatively poor generation performance
of ACGAN compared with the projection-based models. First, we begin by analytically deriving
the gradient of the softmax cross-entropy loss used in ACGAN. By examining the exact values of
analytic gradients, we discover that the unboundedness of input feature vectors and poor classification
performance in the early training stage can cause an undesirable gradient exploding problem. Second,
with alleviating the instability, we propose the Rebooted Auxiliary Classifier Generative Adversarial
Networks (ReACGAN) using the Data-to-Data Cross-Entropy loss (D2D-CE). ReACGAN projects
image embeddings and proxies onto a unit hypersphere and computes similarities for data-to-data and
data-to-class consideration. Additionally, we introduce two margin values for intra-class variations
and inter-class separability. In this way, ReACGAN overcomes the training instability and can exploit
additional supervisory signals by explicitly considering data-to-class and data-to-data relationships,
and also by implicitly looking at class-to-class relationships in the same mini-batch.

To validate our model, we conduct image generation experiments on CIFAR10 [30], Tiny-
ImageNet [32], CUB200 [33], and ImageNet [31] datasets. Through extensive experiments, we
demonstrate that ReACGAN beats both the classifier-based and projection-based GANs, improving
over the state of the art by 2.5%, 15.8%, 5.1%, and 14.5% in terms of Fréchet Inception Dis-
tance (FID) [34] on the four datasets, respectively. We also verify that ReACGAN benefits from
consistency regularization [16] and differentiable augmentations [9, 8] for limited data training.
Finally, we confirm that D2D-CE harmonizes with the StyleGAN2 architecture [7].

2 Background: Generative Adversarial Networks

Generative Adversarial Network (GAN) [1] is an implicit generative model that aims to generate a
sample indistinguishable from the real. GAN consists of two networks: a Generator G : Z −→ X
that tries to map a latent variable z ∼ p(z) into the real data space X and a Discriminator D : X −→
[0, 1] that strives to discriminate whether a given sample x is from the real data distribution preal(x) or
from the implicit distribution pgen(G(z)) derived from the generator G(z). The objective of a vanilla
GAN [1] can be expressed as follows:

min
G

max
D

Ex∼p(x)[log(D(x))] + Ez∼p(z)[log(1−D(G(z)))]. (1)
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While GANs have shown impressive results in the image generation task [2, 35, 11, 13], training
GANs often ends up encountering a mode-collapse problem [36, 11, 12]. As one of the prescriptions
for stabilizing and reinforcing GANs, training GANs with categorical information, named conditional
Generative Adversarial Networks (cGAN), is suggested [37, 18, 19]. Depending on the presence of
explicit classification losses, cGAN can be divided into two groups: Classifier-based GANs [18, 20,
23, 25, 27] and Projection-based GANs [19, 3, 4, 28]. One of the widely used classifier-based GANs
is ACGAN [18], and ACGAN utilizes softmax cross-entropy loss to perform classification task with
adversarial training. Although ACGAN has shown satisfactory generation results, training ACGAN
becomes unstable as the number of classes in the training dataset increases [19, 23, 25, 27]. Besides,
ACGAN tends to generate easily classifiable images at the cost of limited diversity [18, 19, 27]. To
alleviate those problems, Zhou et al. [38] have proposed performing adversarial training on the
classifier. Gong et al. [20] have introduced an additional classifier to eliminate a conditional entropy
minimization process in the adversarial training. However, ACGAN training still suffers from the
early-training collapse issue and the reduced diversity problem when trained on datasets with a large
number of class categories, such as Tiny-ImageNet [32] and ImageNet [31].

In these circumstances, Miyato et al. [19] have proposed a projection discriminator for cGANs and
have shown significant improvement in generating the ImageNet dataset. Motivated by the promising
result of the projection discriminator, many projection-based GANs [3, 29, 4, 16, 6, 17] have been
proposed and become the standard for conditional image generation. In this paper, we revisit ACGAN
and unveil why ACGAN training is so unstable. Coping with the instability, we propose the Rebooted
Auxiliary Classifier GANs (ReACGAN) for high-quality and diverse image generation.

3 Rebooting Auxiliary Classifier GANs

3.1 Feature Normalization

To uncover a nuisance that can cause the instability of ACGAN, we start by analytically deriving
the gradients of weight vectors in the softmax classifier. Let the part of the discriminator before the
fully connected layer be a Feature extractor F : X −→ F ∈ Rd and let Classifier C : F −→ Rc

be a single fully connected layer parameterized by W = [w1, ...,wc] ∈ Rd×c, where c denotes
the number of classess. We sample training images X = {x1, ...,xN} and integer labels y =
{y1, ..., yN} from the joint distribution p(x,y). Using the notations above, we can express the
empirical cross-entropy loss used in ACGAN [18] as follows:

LCE = − 1

N

N∑
i=1

log
( exp (F (xi)

>wyi)∑c
j=1 exp (F (xi)>wj)

)
. (3)

Based on Eq. (3), we can derive the derivative of the cross-entropy loss, w.r.t wk∈{1,...,c} as follows:

∂LCE

∂wk
= − 1

N

N∑
i=1

{
F (xi)

(
1yi=k − pi,k

)}
, (4)

where 1yi=k is an indicator function that will output 1 if yi = k is satisfied, and pi,k is a class
probability that represents the probability that i-th sample belongs to class k, mathematically

exp (F (xi)
>wk)∑c

j=1 exp (F (xi)>wj)
. The equation above implies that the norm of the gradient of the softmax

cross-entropy loss is coupled with the norms and directions of each input feature map F (xi) and the
class probabilities. In the early training stage, the classifier is prone to making incorrect predictions,
resulting in low probabilities. This phenomenon occurs more frequently as the number of categories
in the dataset increases. As the result, the norm of the gradient |∂LCE

∂wk
| begins to explode as the vector

F (xi) stretches out to wk direction but being located close to the the other vectors wj∈{1,...,c}\{k}.
This often breaks the balance between adversarial learning and classifier training, leading to an
early-training collapse. Once the early-training collapse occurs, ACGAN training concentrates on
classifying categories of images instead of discriminating the authenticity of given samples. We
experimentally demonstrate that the average norm of ACGAN’s input feature maps increases as the
training progresses (Fig. 2a). Accordingly, the average norm of the gradients increases sharply at
the early training stage and decreases with the high class probabilities of the classifier (Fig. 2b, Fig.
A3 in Appendix). While the average norm of gradients decreases at some point, the FID value of
ACGAN does not decrease, implying the collapse of ACGAN training (Fig. 2c).
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Figure 2: Merits of integrating feature normalization and data-to-data relationship consideration.
All experiments are conducted on Tiny-ImageNet [32] dataset. (a) Average norms of input feature
maps F (·), (b) average norms of gradients of classification losses, and (c) trends of FID scores.
Compared with ACGAN [18], the proposed ReACGAN does not experience the training collapse
problem caused by excessively large norms of feature maps and gradients at the early training stage.
In addition, ReACGAN can converge to better equilibrium by considering data-to-data relationships
with easy positive and negative sample suppression.

As one of the remedies for the gradient exploding problem, we find that simply normalizing the
feature embeddings onto a unit hypersphere F (xi)

||F (xi)|| effectively resolves ACGAN’s early-training
collapse (see Fig. 2). The motivation is that normalizing the features onto the hypersphere makes
the norms of feature maps equal to 1.0. Thus, the discriminator does not experience the gradient
exploding problem. From the next section, we will deploy a linear projection layer P on the feature
extractor F . And, we will normalize both the embeddings from the projection layer and the weight
vectors (w1, ...,wc) in the classifier since normalizing both the embeddings and the weight vectors
does not degrade image generation performance. We denote the normalized embedding P (F (xi))

||P (F (xi))||
as fi and the normalized weight vector wyi

||wyi
|| as vyi

.

3.2 Data-to-Data Cross-Entropy Loss (D2D-CE)

We expand the feature normalized softmax cross-entropy loss described in Sec. 3.1 to the Data-to-Data
Cross-Entropy (D2D-CE) loss. The motivations are summarized into two points: (1) replacing data-
to-class similarities in the denominator of Eq. (3) with data-to-data similarities and (2) introducing
two margin values to the modified softmax cross-entropy loss. We expect that point (1) will encourage
the feature extractor to consider data-to-class as well as data-to-data relationships, and that point (2)
will guarantee inter-class separability and intra-class variations in the feature space while preventing
ineffective gradient updates induced by easy negative and positive samples. To develop the feature
normalized cross-entropy loss into D2D-CE, we replace the similarities between a sample embedding
and all proxies except for the positive one in the denominator,

∑
j∈{1,...,c}\{yi} exp (f

>
i vj) with

similarities between negative samples in the same mini-batch. The modified cross-entropy loss can
be expressed as follows:

L
′

CE = − 1

N

N∑
i=1

log

(
exp (f>i vyi

/τ)

exp (f>i vyi/τ) +
∑

j∈N (i) exp (f
>
i fj/τ)

)
, (5)

where τ is a temperature, and N (i) is the set of indices that point locations of the negative samples
whose labels are different from the reference label vyi

in the mini-batch. The self-similarity matrix of
samples in the mini-batch is used to calculate the similarities between negative samples f>i fj∈N (i)

with a false negative mask (see Fig. 3). Thus, Eq. (5) enables the discriminator to contrastively
compare visual differences between multiple images and can supply more informative supervision
for image conditioning. Finally, we introduce two margin hyperparameters to L′

CE and name it
Data-to-Data Cross-Entropy loss (D2D-CE). The proposed D2D-CE can be expressed as follows:

LD2D-CE = − 1

N

N∑
i=1

log

(
exp

(
[f>i vyi −mp]−/τ

)
exp

(
[f>i vyi

−mp]−/τ
)
+
∑

j∈N (i) exp
(
[f>i fj −mn]+/τ

)), (6)
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Figure 3: Overview of ReACGAN. ReACGAN performs adversarial training using the loss LAdv.
At the same time, ReACGAN tries to minimize data-to-data cross-entropy loss (D2D-CE) on the
linear head (P ) to exploit relational information in the labeled dataset. ◦ means element-wise product.
Note that False negatives mask operates on the similarity matrix between two batches of sample
embeddings to compute the similarities between negative samples in the denominator of Eq. (6).

where mp is a margin for suppressing a high similarity value between a reference sample and its
corresponding proxy (easy positive), mn is a margin for suppressing low similarity values between
negatives samples (easy negatives). [·]− and [·]+ denote min(·,0) and max(·,0) functions, respectively.

3.3 Useful Properties of Data-to-Data Cross-Entropy Loss
𝑠!,# = 𝒇𝒒𝜯𝒇𝒓
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Figure 4: Graph showing regions where hard
negative mining, easy positive and negative sup-
pression, and no gradient update occur.

In this subsection, we explain four useful proper-
ties of D2D-CE. Let sq be a similarity between the
normalized embedding fq and the corresponding
normalized proxy vyq

, sq,r be a similarity between
fq and fr, and a and b be arbitrary indices of nega-
tive samples, i.e., a, b ∈ N (q). Then the properties
of D2D-CE can be summarized as follows:
Property 1. Hard negative mining. If the value of
sq,a is greater than sq,b, the derivative of LD2D-CE
w.r.t sq,a is greater than or equal to the derivative
w.r.t sq,b; that is ∂LD2D-CE

∂sq,a
≥ ∂LD2D-CE

∂sq,b
≥ 0.

Property 2. Easy positive suppression. If sq −
mp ≥ 0, the derivative of LD2D-CE w.r.t sq is 0.
Property 3. Easy negative suppression. If sq,r −mn ≤ 0, the derivative of LD2D-CE w.r.t sq,r is 0.
Property 4. If sq −mp ≥ 0 and sq,r −mn ≤ 0 are satisfied, LD2D-CE has the global minima of
1
N

∑N
i=1 log (1 + |N (i)|).

We put proofs of the above properties in Appendix D. Property 1 indicates that D2D-CE implicitly
conducts hard negative mining and benefits from comparing samples with each other. Also, Properties
2 and 3 imply that samples will not affect gradient updates if the samples are trained sufficiently.
Consequently, the classifier concentrates on pushing and pulling hard negative and hard positive
examples without being dominated by easy negative and positive samples.

3.4 Rebooted Auxiliary Classifier Generative Adversarial Networks (ReACGAN)

With the proposed D2D-CE objective, we propose the Rebooted Auxiliary Classifier Generative
Adversarial Networks (ReACGAN). As ACGAN does, ReACGAN jointly optimizes an adversarial
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loss and the classification objective (D2D-CE). Specifically, the discriminator, which consists of the
feature extractor, adversarial head, and linear head, of ReACGAN tries to discriminate whether a
given image is sampled from the real distribution or not. At the same time, the discriminator tries to
maximize similarities between the reference samples and corresponding proxies while minimizing
similarities between negative samples using real images and D2D-CE loss. After updating the
discriminator a predetermined number of times, the generator strives to deceive the discriminator by
generating well-conditioned images that will output a low D2D-CE value. By alternatively training
the discriminator and generator until convergence, ReACGAN generates high-quality images of
diverse categories without early-training collapse. We attach the algorithm table in Appendix A.

Differences between ReACGAN and ContraGAN. The authors of ContraGAN [23] propose a
conditional contrastive loss (2C loss) to cover data-to-data relationships when training cGANs. The
main differences between 2C loss and D2D-CE objective are summed up into three points: (1) while
2C loss is derived from NT-Xent loss [39], which is popularly used in the field of the self-supervised
learning, our D2D-CE is developed to resolve the early-training collapsing problem and the poor
generation results of ACGAN, (2) 2C loss holds false-negative samples in the denominator, and they
can cause unexpected positive repulsion forces, and (3) 2C loss contains the similarities between
all positive samples in the numerator, and they give rise to large gradients on pulling easy positive
samples. Consequently, GANs with 2C loss tend to synthesize images of unintended classes as
reported in the author’s software document [40]. However, D2D-CE does not contain the false
negatives in the denominator and considers only the similarity between a sample and its proxy in the
numerator. Therefore, ReACGAN is free from the undesirable repelling forces and does not conduct
unnecessary easy positive mining. More detailed explanations are attached in Appendix F.

Consistency Regularization and D2D-CE Loss. Zhang et al. [16] propose a consistency regular-
ization to force the discriminator to make consistent predictions if given two images are visually
close to each other. They create a visually similar image pair by augmenting a reference image with
pre-defined augmentations. After that, they let the discriminator minimize L2 distance between the
logit of the reference image and the logit of the augmented counterpart. While ReACGAN locates
an image embedding nearby its corresponding proxy but far apart multiple image embeddings of
different classes, consistency regularization only pulls a reference and the augmented image towards
each other. Since consistency regularization and D2D-CE can be applied together, we will show that
ReACGAN benefits from consistency regularization in the experiments section (Table 1).

4 Experiments

4.1 Datasets and Evaluation Metrics

To verify the effectiveness of ReACGAN, we conduct conditional image generation experiments using
five datasets: CIFAR10 [30], Tiny-ImageNet [32], CUB200 [33], ImageNet [31], and AFHQ [41]
datasets and four evaluation metrics: Inception Score (IS) [42], Fréchet Inception Distance (FID) [34],
and F0.125 (Precision) and F8 (Recall) [43]. The details on the training datasets are in Appendix C.1.

Inception Score (IS) [42] and Fréchet Inception Distance (FID) [34] are widely used metrics for
evaluating generative models. We utilize IS and FID together because some studies [4, 6, 25] have
shown that IS has a tendency to measure the fidelity of images better while FID tends to weight
capturing the diversity of images.

Precision (F0.125) and Recall (F8) [43] are metrics for estimating precision and recall of the approxi-
mated distribution p(G(z)) against the true data distribution p(x). Instead of evaluating generative
models using one-dimensional scores, such as IS and FID, Sajjadi et al. [43] have suggested using a
two-dimensional score F0.125 and F8 that can quantify how precisely the generated images are and
how well the generated images cover the reference distribution.

4.2 Experimental Details

The implementation of ReACGAN basically follows details of PyTorch-StudioGAN library [40]1

that supports various experimental setups from ACGAN [18] to StyleGAN2 [7] + ADA [8] with

1PyTorch-StudioGAN is an open-source library under the MIT license (MIT) with the exception of Style-
GAN2 and StyleGAN2 + ADA related implementations, which are under the NVIDIA source code license.
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Table 1: Comparison with classifier-based GANs [18, 23] and projection-based GANs [3, 4, 29] on
CIFAR10 [30], Tiny-ImageNet [32], and CUB200 [33] datasets using IS [42], FID [34], F0.125, and
F8 [43] metrics. For baselines, both the numbers from the cited paper (denoted as * in method) and
from our experiments using StudioGAN library [40] are reported. The numbers in bold-faced denote
the best performance and in underline indicate the values are in one standard deviation from the best.

Method
CIFAR10 [30] Tiny-ImageNet [32] CUB200 [33]

IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑
SNGAN∗ [3] 8.22 21.7 - - - - - - - - - -
BigGAN∗ [4] 9.22 14.73 - - - - - - - - - -
ContraGAN∗ [23] - 10.60 - - - 29.49 - - - - - -
ACGAN [18] 9.84 8.45 0.993 0.992 6.00 96.04 0.656 0.368 6.09 60.73 0.726 0.891
SNGAN [3] 8.67 13.33 0.985 0.976 8.71 51.15 0.900 0.702 5.41 47.75 0.754 0.912
SAGAN [29] 8.66 14.31 0.983 0.973 8.74 49.90 0.872 0.712 5.48 54.29 0.728 0.882
BigGAN [4] 9.81 8.08 0.993 0.992 12.78 32.03 0.948 0.868 4.98 18.30 0.924 0.967
ContraGAN [23] 9.70 8.22 0.993 0.991 13.46 28.55 0.974 0.881 5.34 21.16 0.935 0.942
ReACGAN 9.89 7.88 0.994 0.992 14.06 27.10 0.970 0.894 4.91 15.40 0.970 0.954

BigGAN + CR∗ [16] - 11.48 - - - - - - - - - -
BigGAN [4] + CR [16] 9.97 7.18 0.995 0.993 15.94 19.96 0.972 0.950 5.14 11.97 0.978 0.981
ContraGAN [23] + CR [16] 9.59 8.55 0.992 0.972 15.81 19.21 0.983 0.941 4.90 11.08 0.984 0.967
ReACGAN + CR [16] 10.11 7.20 0.996 0.994 16.56 19.69 0.984 0.940 4.87 10.72 0.985 0.971

BigGAN + DiffAug∗ [9] 9.17 8.49 - - - - - - - - - -
BigGAN [4] + DiffAug [9] 9.94 7.17 0.995 0.992 18.08 15.70 0.980 0.972 5.53 12.15 0.967 0.981
ContraGAN [23] + DiffAug [9] 9.95 7.27 0.995 0.992 18.20 15.40 0.986 0.963 5.39 11.02 0.978 0.970
ReACGAN + DiffAug [9] 10.22 6.79 0.996 0.993 20.60 14.25 0.988 0.972 5.22 9.27 0.985 0.983

Real Data 11.54 34.11 5.49

different scales of datasets [30, 32, 33, 31, 41] and architectures [2, 13, 4, 7]. For a fair comparison,
we use the same backbones over all baselines, except otherwise noted, for both the discriminator
and generator. For stable training, we apply spectral normalization (SN) [3] to the generator and
discriminator except for experiments using SNGAN (in this case, we apply SN to the discriminator
only) and StyleGAN2 [7]. We also use the same conditioning method for generators with conditional
batch normalization (cBN) [44, 45, 19]. This allows us to investigate solely the conditioning methods
of the discriminator, which are the main interest of our paper. If not specified, we use hinge loss [46]
as a default for the adversarial loss.

Before conducting main experiments, we perform hyperparameter search with candidates of a temper-
ature τ ∈ {0.125, 0.25, 0.5, 0.75, 1.0} and a positive margin mp ∈ {0.5, 0.75, 0.9, 0.95, 0.98, 1.0}.
We set a negative margin mn as 1 − mp to reduce search time. Through extensive ex-
periments with 3 runs per each setting, we select τ with {0.5, 0.75, 0.25, 0.5, 0.25} and mp

with {0.98, 1.0, 0.95, 0.98, 0.90} for CIFAR10,Tiny-ImageNet,CUB200, ImageNet 256 B.S., and
ImageNet 2048 B.S. experiments, respectively. A low temperature seems to work well on fine-grained
image generation tasks, but generally, ReACGAN is robust to the choice of hyperparameters. The
results of the hyperparameter search and other hyperparameter setups are provided in Appendix C.2.

We evaluate all methods through the same protocol of [9, 16, 17], which uses the same amounts
of generated images from the reference split specialized for each dataset.2 Besides, we run all the
experiments three times with random seeds and report the averaged best performances for reliable
evaluation with the lone exception of ImageNet and StyleGAN2 related experiments. Please refer to
Appendix C.2 for other experimental details. The numbers in bold-faced denote the best performance
and in underline indicate that the values are in one standard deviation from the best.

4.3 Evaluation Results

Comparison with Other cGANs. We compare ReACGAN with previous state-of-the-art cGANs
in Tables 1 and 2. We employ the implementations of GANs in PyTorch-StudioGAN library as
it provides improved results on standard benchmark datasets [30, 31]. For a fair comparison, we
provide results from each original paper (denoted as * in method) as well as those from StudioGAN

2We use the validation split as the default reference set, but we use the test split of CIFAR10 and the training
split of CUB200 and AFHQ due to the absence or lack of the validation dataset.
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Table 2: Experiments using ImageNet [31] dataset. B.S. means batch size for training. (Left): Com-
parisons with previous cGAN approaches. (Right): Learning curves of BigGAN [4], ContraGAN [23],
and ReACGAN (ours) which are trained using the batch size of 256.

Method
ImageNet [31]

IS ↑ FID ↓ F0.125 ↑ F8 ↑

B
.S

.=
2
5
6

ACGAN∗ [20] 7.26 184.41 - -
SNGAN∗ [3] 36.80 27.62 - -
SAGAN∗ [29] 52.52 18.28 - -
BigGAN∗ [20] 38.05 22.77 - -
TAC-GAN∗ [20] 28.86 23.75 - -
ContraGAN∗ [23] 31.10 19.69 0.951 0.927
ACGAN [18] 62.99 26.35 0.935 0.963
SNGAN [3] 32.25 26.79 0.938 0.913
SAGAN [29] 29.85 34.73 0.849 0.914
BigGAN [4] 43.97 16.36 0.964 0.955
ContraGAN [23] 25.25 25.16 0.947 0.855
ReACGAN 68.27 13.98 0.976 0.977
BigGAN [4] + DiffAug [9] 36.97 18.57 0.956 0.941
ReACGAN + DiffAug [9] 69.74 11.95 0.977 0.975

B
.S

.=
20

48 BigGAN∗ [4] 99.31 8.51 - -
BigGAN∗ [25] 104.57 9.18 - -
BigGAN [4] 99.71 7.89 0.985 0.989
ReACGAN 92.74 8.23 0.991 0.990
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library [40]. We also conduct experiments with popular augmentation-based methods: consistency
regularization (CR) [16] and differentiable augmentation (DiffAug) [9].

Compared with other cGANs, ReACGAN performs the best on most benchmarks, surpassing the
previous methods by 2.5%, 5.1%, 15.8%, and 14.5% in FID on CIFAR10, Tiny-ImageNet, CUB200,
and ImageNet (256 B.S.), respectively. ReACGAN also harmonizes with augmentation-based
regularizations, bringing incremental improvements on all the metrics. For the ImageNet experiments
using a batch size of 256, ReACGAN reaches higher IS and lower FID with fewer iterations than
other models in comparison. Finally, we demonstrate that ReACGAN can learn with a larger batch
size on ImageNet. While some recent methods [20, 38, 27] have been built on ACGAN to improve
the generation performance of ACGAN, large-scale image generation experiments with the batch
size of 2048 have never been reported. Table 2 shows that our ReACGAN reaches FID score
of 8.23 on ImageNet, being comparable with the value of 7.89 from BigGAN implementation in
PyTorch-StudioGAN library. ReACGAN, however, provides better synthesis results than other
implementations of BigGAN [4, 25]. Note that our result on ImageNet is obtained in only two runs
while the training setup and architecture of BigGAN have been extensively searched and finely tuned.

Comparison with Other Conditioning Losses. We investigate how the generation qualities vary
with different conditioning losses while keeping the other configurations fixed. We compare D2D-CE
loss with cross-entropy loss of ACGAN (AC) [18], loss used in the projection discriminator (PD) [19],
multi-hinge loss (MH) [26], and conditional contrastive loss (2C) [23]. The results are shown in
Table 3. AC- and MH-based models present decent results on CIFAR10, but undergo early-training
collapse on Tiny-ImageNet and CUB200 datasets. Replacing them with PD, 2C, and D2D-CE losses
produce satisfactory performances across all datasets, where PD loss makes the best F8 (recall) on
CUB200 dataset while giving third F0.125 (precision) value. The noticeable point is that the proposed
D2D-CE shows consistent results across all datasets, showing the lowest FID and the highest F8

and F0.125 values in most cases. This means ReACGAN can generate high-fidelity images and is
relatively free from the precision and recall trade-off [43] than the others.

Consistent Performance of ReACGAN on Adversarial Loss Selection. We validate the consistent
performance of ReACGAN on four adversarial losses: non-saturation loss [1], least square loss [10],
Wasserstein loss with gradient penalty regularization (W-GP) [13], and hinge loss [46] on CIFAR10
and Tiny-ImageNet datasets in Table 4. The experimental results show that BigGAN + D2D-CE
(ReACGAN) consistently outperforms the projection discriminator (PD) and conditional contrastive
loss (2C) counterparts over three adversarial losses [1, 13, 46]. However, for the experiments using
the least square loss [10], ReACGAN exhibits inferior generation performances to the projection
discriminator. We speculate that minimizing the least square distance between an adversarial logit
and the target scalar (1 or 0) might affect the norms of feature maps and spoil the classifier training
performed by D2D-CE loss.
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Table 3: Experiments on the effectiveness of D2D-CE loss compared with other conditioning losses.

Conditioning Method
CIFAR10 [30] Tiny-ImageNet [32] CUB200 [33]

IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑

BigGAN w/o Condition [4]
9.46 12.21 0.987 0.982 7.38 76.15 0.804 0.576 5.16 35.17 0.852 0.936(Abbreviated to Big)

Big + AC [18] 9.84 8.45 0.993 0.992 6.00 96.04 0.656 0.368 6.09 60.73 0.726 0.891
Big + PD [19] 9.81 8.08 0.993 0.992 12.78 32.03 0.948 0.868 4.98 18.30 0.924 0.967
Big + MH [26] 10.05 7.94 0.994 0.990 4.37 140.74 0.282 0.156 5.18 245.69 0.625 0.832
Big + 2C [23] 9.70 8.22 0.993 0.991 13.46 28.55 0.974 0.881 5.34 21.16 0.935 0.942
Big + D2D-CE (ReACGAN) 9.89 7.88 0.994 0.992 14.06 27.10 0.970 0.894 4.91 15.40 0.970 0.954

Table 4: Experiments to identify the consistent performance of D2D-CE on adversarial loss selection.

Adversarial Loss Conditioning CIFAR10 [30] Tiny-ImageNet [32]

Method IS ↑ FID ↓ F0.125 ↑ F8 ↑ Better? IS ↑ FID ↓ F0.125 ↑ F8 ↑ Better?

Non-saturation [1]
PD [19] 9.75 8.29 0.993 0.991 X 8.27 58.85 0.816 0.713
2C [23] 9.30 10.47 0.990 0.959 6.57 84.27 0.745 0.556
D2D-CE 9.79 8.27 0.993 0.991 X 11.76 39.32 0.942 0.852 X

Least square [10]
PD [19] 9.94 8.26 0.993 0.992 X 12.74 37.14 0.920 0.900 X
2C [23] 8.66 12.18 0.986 0.941 9.58 53.10 0.916 0.706
D2D-CE 9.70 9.56 0.991 0.987 9.50 57.67 0.848 0.692

W-GP [13]
PD [19] 5.71 64.75 0.792 0.652 6.67 84.16 0.696 0.498
2C [23] 5.93 55.99 0.842 0.709 6.89 74.45 0.812 0.536
D2D-CE 7.30 35.94 0.942 0.847 X 8.92 52.74 0.856 0.689 X

Hinge [46]
PD [19] 9.81 8.08 0.993 0.992 12.78 32.03 0.948 0.868
2C [23] 9.70 8.22 0.993 0.991 13.46 28.55 0.974 0.881
D2D-CE 9.89 7.88 0.994 0.992 X 14.06 27.10 0.970 0.894 X

Table 5: FID [34] values of conditional StyleGAN2 (cStyleGAN2) [7] and StyleGAN2 [7] + D2D-CE
on CIFAR10 [30] and AFHQ [41] datasets. ADA means the adaptive discriminator augmentation [8].
FID is exceptionally computed using the training split for calculating the reference moments since
FID value of StyleGAN2 is often calculated using the moments of the training dataset.

Conditioning method CIFAR10 [30] AFHQ [41]

cStyleGAN2 [7] 3.88 -
StyleGAN2 [7] + D2D-CE 3.34 -

cStyleGAN2 [7] + ADA [8] 2.43 4.99
StyleGAN2 [7] + ADA [8] + D2D-CE 2.38 4.95
StyleGAN2 [7] + DiffAug [9] + D2D-CE + Tuning 2.26 -

Effect of D2D-CE for Different GAN Architectures. We study the effect of D2D-CE loss with
different GAN architectures. In Table 5, we validate that D2D-CE is effective for StyleGAN2 [7]
backbone and also fits well with the adaptive discriminator augmentation (ADA) [8]. StyleGAN2
with D2D-CE loss produces 13.9% better generation result than the conditional version of
StyleGAN2 (cStyleGAN2) on CIFAR10. Moreover, StyleGAN2 with D2D-CE can be reinforced
with ADA or DiffAug when train StyleGAN2 + D2D-CE under the limited data situation. Among
GANs, StyleGAN2 + DiffAug + D2D-CE + Tuning achieves the best performance on CIFAR10, even
outperforming some diffusion-based methods [47, 48]. Additional results with other architectures,
i.e., a deep convolutional network [2] and a resnet style backbone [13], are provided in Appendix E.

4.4 Ablation Study

We study how each component of ReACGAN affects ACGAN training. By adding or ablating
each part of ReACGAN, as shown in Table 6, we identify four major observations. (1) Feature
and weight normalization greatly stabilize ACGAN training and improve generation performances
on Tiny-ImageNet and CUB200 datasets. (2) D2D-CE enhances the generation performance by
considering data-to-data relationships and by performing easy sample suppression (3th and 4th rows).
(3) the suppression technique does not work well on the feature normalized cross-entropy loss (5th
row). (4) While ACGAN shows high Inception score on ImageNet experiment, it shows relatively
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AFHQ - 5122

ImageNet - 1282 CUB200 - 1282 Tiny-ImageNet - 642 CIFAR10 - 322

Figure 5: Curated images generated by the proposed ReACGAN. More qualitative results on ReAC-
GAN, BigGAN [4], ContraGAN [23], and ACGAN [18] are attached in Appendix J.

Table 6: Ablation study on feature map normalization, data-to-data consideration, and easy positive
and negative sample suppression.

Ablation
Tiny-ImageNet [32] CUB200 [33] ImageNet [49]

IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑
ACGAN [18] 6.00 96.04 0.656 0.368 6.09 60.73 0.726 0.891 62.99 26.35 0.935 0.963
+ Normalization 13.46 30.33 0.955 0.889 4.78 25.54 0.883 0.952 18.16 36.40 0.879 0.787
+ Data-to-data (Eq. (5)) 12.96 28.71 0.967 0.863 5.08 25.12 0.894 0.946 - - - -
+ Suppression (Eq. (6)) 14.06 27.10 0.970 0.894 4.91 15.40 0.970 0.954 63.16 14.59 0.974 0.974
- Data-to-data 12.96 30.79 0.960 0.857 5.39 30.36 0.863 0.947 - - - -

poor FID, F0.125, and F8 values compared with the model trained with normalization, data-to-data
consideration, and the suppression technique. This result is consistent with the qualitative results on
ImageNet, where the images from ACGAN are easily classifiable, but the images from ReACGAN
are high quality and diverse. We attribute the improvement to the discriminator that successfully
leverages informative data-to-data and data-to-class relationships with easy sample suppression.

5 Conclusion

In this paper, we have analyzed why training ACGAN becomes unstable as the number of classes
in the dataset increases. By deriving the analytic form of gradient in the classifier and numerically
checking the gradient values, we have discovered that the unstable training comes from a gradient
exploding problem caused by the unboundedness of input feature vectors and poor classification abil-
ity of the classifier in the early training stage. To alleviate the instability and reinforce ACGAN, we
have proposed the Data-to-Data Cross-Entropy loss (D2D-CE) and the Rebooted Auxiliary Classifier
Generative Adversarial Network (ReACGAN). The experimental results verify the superiority of
ReACGAN compared with the existing classifier- and projection-based GANs on five benchmark
datasets. Moreover, exhaustive analyses on ReACGAN prove that ReACGAN is robust to hyperpa-
rameter selection and harmonizes with various architectures and differentiable augmentations.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?
[Yes] The main contributions of our paper can be summarized into two points: (1)
analyzing why ACGAN training becomes unstable as the number of classes in the
training dataset increases, (2) developing a new cGAN model: the Rebooted Auxil-
iary Classifier Generative Adversarial Networks (ReACGAN). Both claims are well
reflected in the abstract and introduction.

(b) Did you describe the limitations of your work?
[Yes] The proposed ReACGAN generates high-quality images using informative data-
to-data and data-to-class relationships in the dataset. However, it requires additional
hyperparameter tuning for a temperature and margins values. Also, we analyze the
weakness of ReACGAN in Appendix F.

(c) Did you discuss any potential negative societal impacts of your work?
[Yes] Generative Adversarial Networks can be used to synthesize indistinguishable
images from the real. This might cause fake news, sexual harnesses, and hacking
machine vision applications. Although the potential negative social impacts are not
discussed in our main paper, we deal with this issue in Appendix G.

(d) Have you read the ethics review and ensured that your paper conforms to them?
[Yes] We carefully read the ethics review guidelines and comply with them.
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2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results?

[Yes] We state all assumptions that arise from the theoretical results, i.e., Property 1-4
in Sec. 3.3 in the main paper.

(b) Did you include complete proofs of all theoretical results?
[Yes] We provide the complete proofs in Appendix D.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)?
[Yes] We release model weights and the software package used in our paper at
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
[Yes] We state details for training models in Sec. 4.2 in the main paper, which include
the evaluation procedure, hyperparameter selection, and controlled environment for
a fair comparison. In addition, we add how we pre-process training datasets in the
Appendix C.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
[Yes] For reliable evaluation, we run all the experiments three times with random seeds.
We provide standard deviations of Tables 1, 3, 4, 6 in Appendix I.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
[Yes] We include the total amount of compute and the type of resources in Appendix H.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

[Yes] We cite papers and GitHub repository that we used for our experiments in
Sec. 4.2.

(b) Did you mention the license of the assets?
[No] We utilize five datasets to validate our method: CIFAR10, Tiny-ImageNet,
CUB200, ImageNet, and AFHQ. These are widely used public datasets, and we cite
them in the paper. However, we could not find any license information for CIFAR10,
Tiny-ImageNet, and CUB200. The ImageNet and AFHQ datasets can be used for non-
commercial purposes only. In addition, we mention the license of PyTorch-StudioGAN
in the main paper, which is used for our experiments.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We provide the URL of our source code in the abstract.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?
[Yes] The CIFAR10, Tiny-ImageNet, CUB200, ImageNet, and AFHQ datasets are
properly curated, and they are popular datasets for research purpose. To our best
knowledge, there is no inappropriate contents in the datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
[Yes] The benchmark datasets we used are widely adopted by others and do not contain
any harmful or troublesome contents.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable?
[N/A] Our research has no relevance to the crowdsourcing or human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?
[N/A] Our research has no relevance to the crowdsourcing or human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?
[N/A] Our research has no relevance to the crowdsourcing or human subjects.
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