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ABSTRACT

Diffusion models hold great potential for accelerating antibody design, but their
performance is so far limited by the number of antibody-antigen complexes
used for model training. Meanwhile, AlphaFold3-like protein folding models,
pre-trained on a large corpus of crystal structures, have acquired a broad under-
standing of biomolecular interaction. Based on this insight, we develop a new
antigen-conditioned antibody design model by adapting the diffusion module of
AlphaFold3-like models for sequence-structure co-diffusion. Specifically, we ex-
tend their structure diffusion module with a sequence diffusion head and fine-tune
the entire protein folding model for antibody sequence-structure co-design. Our
benchmark results show that sequence-structure co-diffusion models not only sur-
pass state-of-the-art antibody design methods in performance but also maintain
structure prediction accuracy comparable to the original folding model. Notably,
in the antibody co-design task, our method achieves a CDR-H3 recovery rate of
65% for typical antibodies, outperforming the baselines by 87%, and attains a
remarkable 63% recovery rate for nanobodies.

1 INTRODUCTION

Monoclonal antibodies are Y-shaped proteins that specifically recognize and neutralize the pathogens
(commonly known as antigens) during immune responses (Janeway et al., 2001). The binding
specificity is determined by their complementarity-determining regions (CDRs), whose sequences
and structures exhibit significant variability. Recent work on generative models have shown great
potential in designing CDRs that bind to an antigen (Jin et al., 2022b; Luo et al., 2022; Kong et al.,
2023a; Martinkus et al., 2024; Zhu et al., 2024). However, their performance is limited by the scarcity
of antibody-antigen complex data, as highlighted by Zhu et al. (2024).

To address this issue, we seek to leverage foundation models, such as protein folding models, that
have learned general knowledge of biomolecular interaction from a large corpus of general protein
interaction data. Our hypothesis is that the general knowledge of protein-protein interaction learned
by protein folding models, such as AlphaFold3 (AF3) (Abramson et al., 2024), Chai-1 (Discovery
et al., 2024), Boltz-1 (Wohlwend et al., 2024), and Protenix (Chen et al., 2025), are transferrable to
the task of modeling of antibody-antigen complexes, a specialized type of protein interaction.

To validate this hypothesis, we need to effectively endow current protein folding models with the
additional capability of generating both sequence and structure of an antibody or a protein. Our key
observation is that AF3-like folding models already utilize diffusion modules for structure prediction.
Indeed, diffusion models (Ho et al., 2020; Song et al., 2021; Karras et al., 2022) have shown various
success in the co-design of antibody sequences and structures (Luo et al., 2022; Martinkus et al., 2024;
Zhu et al., 2024). Therefore, we propose to integrate sequence diffusion into the diffusion modules
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Figure 1: Overview of our method. We build upon AF3-like folding models by integrating sequence
diffusion with the existing structure diffusion, enabling the co-diffusion of structure and sequence.
The input for sequence denoising network directly reuses the residue token-level representations
originally used for structure denoising in AF3-like models. Initially, CDR tokens are marked as <X>,
which will be specified as one of the 20 amino acid tokens in the final output. Through replacement
sampling, our method allows the CDR design to be conditioned on fixed co-crystal structures.

of AF3-like folding models for sequence-structure co-design. We demonstrate the feasibility of this
idea using Boltz-11 (Wohlwend et al., 2024), an open-source implementation of AF3 provided with
training scripts. Specifically, we augment the diffusion module of Boltz-1 with a sequence diffusion
head. We implement two approaches for sequence diffusion: a discrete diffusion approach trained in
the D3PM-absorbing (Austin et al., 2021) fashion, and a continuous diffusion approach trained using
EDM (Karras et al., 2022) method. After properly aligning sequence and structure diffusion steps,
we fine-tune the entire Boltz-1 network using a training set of antibody-antigen complexes. Results
showcase that the modified AF3-like model outperforms existing baseline methods in antibody
sequence and structure co-design tasks, while retaining Boltz-1’s structure prediction capability.

2 METHODOLOGY

We first present a description of the task we investigate in this paper in Sec. 2.1. Sec. 2.2 details
how straightforward modifications to AF3-like models enable support for antibody co-design, with
supplementary methodological details provided in Appendix C. Before proceeding to our method, we
refer readers to Appendix B for a quick review of AF3’s workflow and the key notations involved.

2.1 PROBLEM DESCRIPTION

We present a diagram of an antibody-antigen complex in Fig. S1. In this work, we follow the
widely adopted setting for antibody design: re-designing CDRs in experimentally resolved co-
crystal structures, where all non-CDR regions (antibody framework sequences/structures, antigen
sequences/structures, and antibody-antigen binding pose) are given. The objective is to co-design the
sequence and structure of CDRs within this predefined context.

Particularly, rather than designing a single CDR at a time, we aim to simultaneously design all CDRs
at once, which is a more challenging task (Martinkus et al., 2024). Within this study, we use the
notation system from AF3 to characterize protein complexes, employing {ki} and {xl} to specify the
amino acid (a.k.a. residue) composition and structure of the complex, respectively. ki is a one-hot
encoding that represents the type of each amino acid token (20 standard amino acid types + <X>).
The <X> token is originally used in AF3-like folding models to indicate positions where the residue
type is unknown, for which only the backbone atom coordinates will be predicted. Each element in
{xl} represents the three-dimensional coordinates of an atom.

We use the <X> token to represent residues within the CDRs that need to be designed. In the final
output, each <X> token is replaced with a specific residue from the 20 standard types, accompanied
by their corresponding atomic coordinates, thus achieving the goal of the antibody co-design.

2.2 OUR METHOD

The input includes residue tokens from antibodies and antigens. For the antibody CDRs that need to
be designed, these positions are filled with <X> tokens. Considering the discrete nature of residue
tokens as categorical variables, along with the resemblance of the input format to masked language
models (MLMs) like BERT (Devlin et al., 2019) — where <X> is analogous to the <MASK> tokens
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used in MLMs — the D3PM-absorbing (Austin et al., 2021) method, inspired by MLMs, intuitively
aligns well with this task. Therefore, we choose to use D3PM-absorbing for sequence diffusion.

During the training of diffusion-based co-design methods, it is required to corrupt the sequence
and structure to a matching degree, which can be achieved by sampling them at the same timestep.
However, as noted in Appendix B, AF3-like models perform structure diffusion training by directly
sampling noise levels, unlike D3PM-absorbing, which uses timestep sampling. Furthermore, to the
best of our knowledge, there is no established theory for training discrete diffusion without sampling
timesteps during so far. Aligning sequence and structure diffusion is therefore challenging.

Continuous diffusion as an alternative for sequence. It is worth noting that Hoogeboom et al.
propose a method for applying continuous diffusion to discrete data by adding Gaussian noise to their
one-hot encodings in training. This allows sequence to be trained also using the EDM method. In this
way, sequence diffusion can readily align with structure diffusion training in AF3. For the generation
of discrete data, this method tends to be less effective than discrete diffusion (Austin et al., 2021;
Gruver et al., 2023), as supported by results in Sec. 3, which we have also implemented. However,
our results also reveal its unique advantage for structure prediction. Since this paper primarily focuses
on the additional implementation of sequence design compared to AF3, which involves discrete
data, we have concentrated on discussing the method using D3PM-absorbing for sequence diffusion
in the following main paper. The implementation of the continuous version, being relatively more
straightforward and simpler, is provided in Appendix C.7.

Structure & sequence diffusion alignment. Although the training method for structure diffusion
directly samples noise levels, we notice that AF3 uses a predefined sequence of 200 decreasing noise
levels during sampling. This approach closely resembles the concept of discrete timesteps. Thus,
we consider modifying structure diffusion training to also sample noise levels only from these 200
noise levels. This allows us to create a predefined noise scheduler for training, where we sample a
timestep and retrieve the corresponding noise level according to this scheduler. Accordingly, we set
the number of diffusion steps for sequence to 200, thus enabling easy alignment. Since these same
200 levels are used during both training and inference of the structure diffusion, the approach shifts
towards a style resembling the classic DDPM’s discrete time training (Ho et al., 2020). Empirical
results suggest that fine-tuning with this new structure diffusion approach preserves the model’s
ability to accurately predict complex structures.

Instantiation of discrete sequence diffusion. Diffusion is applied specifically to CDRs. <X> is
naturally suited as the absorbing state for residues in CDRs. The forward process is characterized
by a discrete transition matrix that determines the probability of a token mutating into <X>. The
corresponding prior is a point mass on the sequence of which the CDRs are made up entirely of <X>.
On top of AF3, we introduce an additional module named TokenDenoiser. Since we need to make
predictions at token-level, token-level representations are required for TokenDenoiser. As described
in Appendix B, the AF3’s structure diffusion process already drives token-level representations {ai},
which are obtained via full self-attention on token level and serve the purpose of structure denoising.
Here we choose to directly reuse {ai} as the input to TokenDenoiser. The TokenDenoiser is
implemented simply as a MLP, consisting of LINEAR layers connected by GELU activation function.

Next, we detail how to input the corresponding noisy sequence, denoted as {knoisy
i }, into the diffusion

module at each sampled timestep during training. As noted in Appendix B, {sinputs
i } from the trunk

serves as the a basic encoding of the raw input, where part of its continuous dimensions is actually
the one-hot encoding to the tokens. Thus, we can easily achieve the input of the noisy sequence at
sampled timestep by directly replacing these dimensions with {knoisy

i } , resulting in {sreplaced
i }. Then,

{sreplaced
i } is fed into our structure and sequence co-diffusion module and its subsequent usage remains

consistent with that of {sinputs
i }. We denote the restored sequence as {kdenoised

i }. Note that except for
{sinputs

i }, all these notations are associated with a specific timestep t. However, for simplicity, we
omit t in the notations presented here.

We fully fine-tune the AF3-like models by combining the original objective of AF3 for structure
prediction with an additional objective specifically for sequence diffusion. This additional objective
is to maximize the likelihood of the denoising process on the ground truth CDRs sequences, thereby
learning the optimal parameters for the TokenDenoiser. Our sequence sampling follows the D3PM-
absorbing standard method, as used by Gruver et al.. To allow our sampling to be conditioned on
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Table 1: Comparison of simultaneously designed CDRs for
typical antibodies, with the best and the second-best highlighted.

CDR Method AAR ↑ RMSD ↓ CDR Method AAR ↑ RMSD ↓

H1

DiffAb 60.92% 1.52Å

L1

DiffAb 56.72% 1.43Å
dyMEAN 70.31% 1.65Å dyMEAN 73.06% 1.58Å

MFDesign-C 74.89% 1.48Å MFDesign-C 82.98% 1.41Å
MFDesign-D 74.95% 1.61Å MFDesign-D 82.98% 1.65Å

H2

DiffAb 33.53% 1.44Å

L2

DiffAb 55.08% 1.21Å
dyMEAN 66.38% 1.47Å dyMEAN 76.04% 1.23Å

MFDesign-C 65.59% 1.26Å MFDesign-C 88.84% 1.00Å
MFDesign-D 67.54% 1.44Å MFDesign-D 87.81% 1.15Å

H3

DiffAb 22.26% 4.29Å

L3

DiffAb 43.03% 1.80Å
dyMEAN 34.69% 6.15Å dyMEAN 52.69% 1.59Å

MFDesign-C 63.13% 3.54Å MFDesign-C 78.93% 1.55Å
MFDesign-D 65.04% 3.71Å MFDesign-D 80.15% 1.69Å

Table 2: Results on typical an-
tibodies with simultaneously de-
signed CDRs, highlighting the
best and the second-best results.

Method Loop-AAR ↑ Loop-RMSD ↓ IMP ↑

DiffAb 15.86% 5.03Å 56.77%

dyMEAN 20.80% 7.84Å 10.56%

MFDesign-C 61.71% 4.13Å 66.24%

MFDesign-D 63.38% 4.28Å 59.66%

the given co-crystal structures and redesign CDRs, we employ the replacement sampling technique.
Orginally from image inpainting domain (Lugmayr et al., 2022), this technique has been applied in
molecule and protein generation tasks to condition the sampling on certain motifs (Schneuing et al.,
2024; Trippe et al., 2023). Refer to Appendix C for more details on our training and sampling.

Our method is outlined in Fig. 1. We extend the AF3’s DiffusionModule with sequence diffusion to
enable structure and sequence co-design, which we call CoDiffusionModule, formalized in Alg. S1.
It follows a feature extraction process akin to the DiffusionModule, but reuses the final obtained
token-level representations for sequence design. AF3-like folding models inherently support the
input of <X> tokens. For these unknown residues, they only sample and denoise the backbone atom
coordinates. In line with this design, we exclusively generate the backbone atom coordinates for
the CDRs. Subsequently, following Luo et al. and Zhu et al., we perform side-chain packing and
structure relaxation using PyRosetta (Chaudhury et al., 2010) to obtain final all-atom structure.

3 RESULTS ON THE ANTIBODY SEQUENCE AND STRUCTURE CO-DESIGN

Due to the unavailability of AF3’s training scripts, we opt to make modifications based on Boltz-1 in
this work, which is a faithful reimplementation by Wohlwend et al. that follows the same variable and
function definitions as AF3. Our method is termed MFDesign in subsequent sections, which stands
for the Modified Folding model for the co-Design of antibody sequence and structure. In this section,
we focus on the antibody sequence and structure co-design task. Additional results are presented in
Appendix G, with a focus on the structure prediction task detailed in Appendix G.1.

Dataset. The data for evaluation comes from the Structural Antibody Database (SAbDab) (Dunbar
et al., 2014). Boltz-1 itself is pre-trained on PDB structures released before the same cut-off date
as AlphaFold3, i.e., September 30, 2021. In previous studies (Luo et al., 2022; Kong et al., 2023a;
Martinkus et al., 2024; Zhu et al., 2024), their experimental setups do not consider the release date
when splitting data. To prevent data leakage, meaning the test data should not have been seen during
Boltz-1’s pre-training phase, we cannot directly adopt the splits used by previous works. Instead,
we need to consider the release date when partitioning the data. We first follow the approach of
DiffAb (Luo et al., 2022) and AbDiffuser (Martinkus et al., 2024) by using MMSeq2 (Steinegger
& Söding, 2017) to cluster antibodies according to CDR-H3 sequences at 50% sequence identity.
These clusters are then divided into training, validation, and test sets in an 9:0.5:0.5 ratio, ensuring
that all samples released before the cut-off date are included in the training set. This results in 5,843
training samples, 187 validation samples, and 204 test samples, with the test set comprising 161
regular antibodies and 43 nanobodies. Our test set is much larger than those in previous studies,
offering a more robust demonstration of the models’ ability to generalize. Moreover, it’s worth noting
that some prior works (Jin et al., 2022a; Kong et al., 2023a; Zhu et al., 2024) employ the RAbD
Benchmark (Adolf-Bryfogle et al., 2018), which includes 60 diverse complexes, to test antibody
generation performance. However, since these data are released in the PDB before the cut-off date
and Boltz-1 has already seen them, we do not adopt the RAbD Benchmark for evaluation to ensure
fair comparisons. We provide our detailed data processing procedure in Appendix D to establish a
standardized pipeline, which aims to assist future studies in replicating or building upon our work.
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Table 3: Comparison of generated nanobodies with simultaneously designed CDRs, with the best
and the second-best results highlighted. Note that we do not compare against dyMEAN here, as its
source code does not support processing nanobodies.

Method CDR-H1 CDR-H2 CDR-H3 Loop-AAR Loop-RMSD IMPAAR RMSD AAR RMSD AAR RMSD
DiffAb 45.17% 2.52Å 31.11% 1.54Å 15.39% 4.71Å 10.51% 5.50Å 30.93%

MFDesign-C 65.71% 2.48Å 55.60% 1.62Å 61.40% 3.71Å 61.01% 4.26Å 42.67%
MFDesign-D 67.34% 2.62Å 58.93% 1.78Å 63.51% 3.84Å 60.80% 4.41Å 38.26%

Baselines. We focus on the more challenging setting of designing all CDRs at once (Martinkus
et al., 2024), rather than designing a single CDR at a time. Consequently, we do not compare our
approach with those methods that are limited to designing a single CDR at a time. Although both
AbDiffuser (Martinkus et al., 2024) and AbX (Zhu et al., 2024) are capable of designing all CDRs
simultaneously, we exclude these methods from our comparison due to the unavailability of available
source code for AbDiffuser and the absence of training scripts for AbX (Zhu et al., 2024). Ultimately,
we choose DiffAb (Luo et al., 2022) and dyMEAN (Kong et al., 2023a) as our baselines because they
serve as representative methods for the generative and discriminative categories of antibody co-design
methods, respectively. For our method, we provide results for sequence diffusion implemented with
both discrete and continuous diffusion. We denote the discrete version of the model as MFDesign-D
and the continuous version as MFDesign-C.

Metrics. We adopt the following metrics to evaluate all methods: (1) AAR (%): measures the
accuracy of the generated sequences of CDRs by comparing amino acid identity with native sequences;
(2) RMSD (Å): calculates the root-mean-square deviation of Cα atom coordinates between generated
and native CDRs. Following Zhu et al., we introduce additional metrics for the middle loop residues
within CDR-H3, which primarily contribute to antigen binding: (3) Loop-AAR (%): applies AAR
specifically to the middle loop residues of CDR-H3, assessing sequence recovery in this key region;
(4) Loop-RMSD (Å): uses RMSD to evaluate the structural accuracy of the middle loop residues
within CDR-H3. Furthermore, we use: (5) IMP (%): is the percentage of designed antibodies with
enhanced binding energy (∆G) compared to the original, assessed with Rosetta’s InterfaceAnalyzer
tool (Alford et al., 2017). For generative-based methods, DiffAb and our method, we generate 20
candidates per sample and report the averaged results.

For a fair comparison, we follow the same experimental setting as previous works (Luo et al., 2022;
Kong et al., 2023a; Martinkus et al., 2024; Zhu et al., 2024), which involves re-designing CDRs
within given co-crystal structures. In this setup, the sequences and structures of all non-CDR regions,
including the framework and antigen, along with the antibody-antigen binding conformation, are
provided. By using the replacement sampling technique mentioned in Sec. 2.2, our method enables
CDRs re-design based on the given co-crystal structures. The results are presented below.

Results on Typical Antibodies. Table 1 and Table 2 present the results of simultaneously designed
CDRs for typical antibodies, fully demonstrating the superiority of our method. From Table 1, we see
that MFDesign-C achieves the best results in RMSD across all CDRs. Its performance in AAR is also
superior to the baselines, except for CDR-H2. MFDesign-D, while not surpassing our own continuous
version on CDR-L2, outperforms the baselines in AAR across the remaining CDRs by a notable
margin. This reflects the suitability of each model for different data types: coordinates are continuous,
so the continuous version generally performs better in RMSD; sequences are discrete, so the discrete
version generally performs better in AAR. Notably, for the more challenging CDR-H3, our method
improves AAR by 87.49% and reduces RMSD by 17.48% compared to the best baseline. Table 2
shows the results when further ignoring the relatively conserved regions at both ends of CDR-H3 and
focusing only on the highly variable middle loop, as these residues are the primary contributors to
antigen binding (Kong et al., 2023a; Zhu et al., 2024). In this case, the best performance in Loop-AAR
among the baselines, achieved by dyMEAN, is only 20.80%, while MFDesign-D achieves an accuracy
of 63.38%, representing a 204.71% improvement. In terms of Loop-RMSD, MFDesign-D attains a
17.89% reduction compared to the best baseline DiffAb. Besides, our method reaches 66.24% in the
IMP metric. We attribute the superior performance of our method to the broad knowledge of protein
interactions originally acquired by AF3-like model during pre-training. Moreover, the AF3-like
model themselves already have good structure prediction capabilities, which may also explain the
effectiveness of MFDesign in RMSD-related metrics.
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Results on Nanobodies. Nanobodies, a.k.a. single-domain antibodies, consist of only a single
heavy chain and are gaining increasing attention due to thier favorable properties, such as small
high solubility and stability (Bannas et al., 2017). Their structure is simpler, but because they lack a
light chain to assist in antigen binding, their CDR-H3 region tends to be longer compared to typical
antibodies and nanobody-antigen complex complex data is scarcer than typical antibodies. This
longer CDR-H3 aids in antigen binding but also makes it more challenging to design. In this study,
we validate the effectiveness of our method for designing nanobodies, where the labeled data is
even more less, and summarize the results in Table 3. We observe that for all methods, performance
decreases compared to typical antibodies, which may be due to the limited data availability. The
baseline DiffAb shows a significant drop, especially in nanobody CDR-H3, where its AAR is only
15.39%, an 30.86% decrease. In contrast, both the continuous and discrete versions of our method
maintain an AAR above 60% for CDR-H3, with Loop-AARs also above 60%.

4 CONCLUSION

This paper proposes an antigen-conditioned antibody design model by extending AlphaFold3-like
models with sequence-structure co-diffusion. By utilizing their acquired understanding of biomolecu-
lar interactions during pre-training, our method effectively overcomes the challenge posed by the
limited availability of labeled antibody-antigen complex data. Our modified AF3-like model achieves
superior performance over existing baselines in the co-design of antibody sequence and structure,
while maintaining structure prediction accuracy comparable to the original AF3-like model.
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A RELATED WORKS

Diffusion Model. Diffusion-based generative methods (Song et al., 2021; Ho et al., 2020) have
demonstrated remarkable effectiveness across various domains, such as image and video genera-
tion (Epstein et al., 2023; Wu et al., 2024). These models can be classified by the type of data they
target: continuous or discrete, with the theoretical foundations of continuous diffusion being more
developed and mature. Recently, diffusion models have also shed light on new possibilities in the
scientific domain. In particular, continuous diffusion methods have excelled in tasks like molecular
generation (Guan et al., 2023; Qiang et al., 2023) and protein structure design (Trippe et al., 2023;
Watson et al., 2023), due to their suitability for continuous spatial coordinate data. Meanwhile,
discrete diffusion methods have shown promise in handling sequential data, proving effective in
designing protein sequences (Gruver et al., 2023) and DNA (Avdeyev et al., 2023; Wang et al., 2024),
which consist of discrete elements like amino acids and nucleotides.

Protein Folding Model. Determining protein structures directly from sequences is a core challenge in
biology, known as the protein folding problem, and is vital for understanding protein functions. AI has
become a key tool in tackling this challenge. AlphaFold2 (Jumper et al., 2021) is a groundbreaking
development in this domain, achieving unprecedented accuracy in predicting protein structures
through training on extensive datasets from the Protein Data Bank (PDB) (Berman et al., 2000),
setting new benchmarks in structural biology. Building on this success, AlphaFold-Multimer extends
the approach to model interactions between multiple proteins (Evans et al., 2021). Further advancing
this field, DeepMind introduce AlphaFold3 (Abramson et al., 2024), a diffusion-based method that
not only improves prediction accuracy but also expands support for a wider range of interactions,
including those involving nucleic acids and ligands. In parallel, aside from the AlphaFold series, the
RoseTTAFold series emerged as a powerful option for the folding task, including models such as
RoseTTAFold (Baek et al., 2021), RoseTTAFold2 (Baek et al., 2023), RoseTTAFoldNA (Baek et al.,
2024).

Antibody Design. Most antibody design efforts focus on the design of CDRs. Traditional methods (Li
et al., 2014; Lapidoth et al., 2015; Adolf-Bryfogle et al., 2018) for antibody design primarily
rely on energy-based optimization, which can be quite time-consuming. In contrast, recent deep
learning-based methods have been proposed to enhance antibody design, broadly divided into
discriminative and generative models. Discriminative models (Jin et al., 2022b;a; Kong et al.,
2023b;a) typically utilize graph neural networks to extract features from the context, including
antigens and antibody framework regions, to predict the most probable CDRs structure and sequence.
Generative models (Luo et al., 2022; Martinkus et al., 2024; Zhu et al., 2024), which are mainly
diffusion-based, excel at modeling the complex distributions of both structure and sequence. By
accurately capturing these distributions, they can sample a more diverse set of antibody candidates
from them.

B A QUICK REVIEW OF ALPHAFOLD3-LIKE FOLDING MODELS

AF3-like methods are structured as conditional diffusion models, consisting mainly of two compo-
nents: the conditioning trunk and the diffusion module. These models also feature a confidence
module, but it is trained independently and is not the primary focus here, so we do not discuss
it. Below, notations with subscript i/ij are token-level representations, while l/lm are atom-level.
The modules introduced in the original AF3 paper are highlighted in the following discussion, and
corresponding details can be referenced in the supplementary materials of AF32.

Conditioning Trunk. This trunk processes raw inputs denoted as {f∗}, such as the protein sequences
to be predicted, MSA results, and structural template information. Initially, these inputs pass through
an InputEmbedder, which performs basic encoding to obtain input features {sinputs

i }. These initial
input features are used to derive the preliminary single and pair representations. The single and pair
representations are then updated iteratively through a stack of three modules: TemplateModule,
MSAModule, and PairFormerStack. Finally, the input features {sinputs

i } obtained at the beginning,
along with the iteratively updated single and pair representations, denoted as {strunk

i } and {ztrunk
ij }

respectively, are fed to the following diffusion module to condition the structural diffusion process.

2 ¬ Click here to access the supplementary materials of AF3.
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Structure Diffusion. AF3 adopts EDM (Karras et al., 2022) for structure diffusion training. Notably,
EDM differs from typical diffusion models (Ho et al., 2020; Song et al., 2021) that sample a timestep
to determine the noise level based on a pre-defined noise schedule during training. Instead, EDM
directly samples the noise level by drawing the logarithm of the noise intensity from a defined
Gaussian distribution.

Speicifically, during AF3’s training, the noise level σ is sampled from the distribution σdata·exp(−1.2+
1.5 · N (0, 1)) and is fed, along with the three outputs from the previous trunk, into the DiffusionCon-
ditioning module. In this module, relative position encoding between residue tokens is incorporated
into {ztrunk

ij } to facilitate both token-level and atom-level self-attention (Vaswani, 2017) used later,
resulting in the output {zij}. Besides, within this module, the sampled noise level is embedded
using random Fourier features (Tancik et al., 2020) and then integrated with {sinputs

i } and {strunk
i } to

construct {si}.

Next, following EDM, AF3 scales the noisy atom coordinates {xnoisy
l } to unit variance, which gives

{rnoisy
l }. {rnoisy

l }, {strunk
i } and {zij} are further processed in the AtomAttentionEncoder. Initially,

this module yields three atom-level representations: {ql}, {cl}, {plm}. These representations are all
based on atomic features from the raw inputs and incorporate additional information from {rnoisy

l },
{strunk

i } and {zij}, respectively. Then, sequence-local atom attention is applied to update {ql} using
{cl} and {plm}. The updated {ql} are further aggregated to form the token-level representations
{ai}.

Subsequently, {si} is used to update {ai}. The updated {ai}, along with outputs {ai} and {zij} from
the previous DiffusionConditioning module, is fed into the DiffusionTransformer module to per-
form full self-attention on the token level. This module further updates {ai} and layer normalization
is applied to {ai}.

The residue-level representations {ai}, together with the atom-level representations {ql}, {cl} and
{plm} are then inputted into the AtomAttentionDecoder module, which yields {rupdate

l }. {rupdate
l }

is rescaled back and combined with the input noisy structure {rnoisy
l }, in line with EDM, to obtain the

final predicted denoised structure {xdenoised
l }.

The structure diffusion training process outlined above is encapsulated within the DiffusionModule
of AF3, as formalized in Algorithm 20 of AF3’s supplementary materials. In summary, this process
uses the outputs from the trunk, in conjunction with the raw inputs, to further construct atom-level
and token-level representations. These representations are then fed to the structure denoising network
for recovery.

For inference, AF3 adopts the EDM stochastic sampler and from a sequence of 200 decreasing levels
defined by: {

σdata ·
(
σ1/ρ

max +
t

200− 1
·
(
σ
1/ρ
min − σ1/ρ

max

))ρ ∣∣∣∣ t = 0, 1, . . . , 199

}
,

where σdata, σmax, σmin and ρ are hyper-parameters.

C SUPPLEMENTARY DETAILS ABOUT THE OUR METHOD

Due to space limitations in the main text, this section presents supplementray details on the method-
ological aspects of MFDesign. For implementation specifics, we defer to Appendix F.2.

C.1 ALGORITHMIC FORMULATION OF CODIFFUSIONMODULE

For a clearer and more intuitive understanding, we formalize the proposed CoDiffusionModule in
Algorithm S1.

C.2 AVOIDING DATA LEAKAGE

Even when the CDRs in the antibody query sequences for MSA are filled with the unknown token
<X>, the MSA results contain a significant number of sequences that, while not exactly identical

12
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Algorithm S1 Sequence and Structure Co-diffusion Module: CoDiffusionModule

Input: noisy structure {xnoisy
l }, noisy sequence {knoisy

i }, noise level for structure σ, raw inputs {f∗},
trunk’s outputs

{
{sinputs

i },
{
strunk
i

}
,
{
ztrunk
ij

}}
, hyper-parameter {σdata};

1: {sreplaced
i } ← substitute the specified dimensions within {sinputs

i } with {knoisy
i }

# Pre-conditioning for diffusion
2: {si}, {zij} = DiffusionConditioning

(
σ, {f∗} , {sreplaced

i }, {strunk
i }, {ztrunk

ij }, σdata

)
▶ Refer to Alg. 21 in AF3

# Scale coordinates with approximately unit variance
3: rnoisy

l = xnoisy
l /

√
σ2 + σ2

data
# Sequence-local atom attention and aggregation to coarse-grained tokens

4: {ai}, {ql}, {cl}, {plm} = AtomAttentionEncoder
(
{f∗}, {rnoisy

l }, {strunk
i }, {zij}

)
▶ Refer to Alg. 5 in AF3

# Full self-attention on token level
5: ai += LinearNoBias(LayerNorm(si))
6: {ai} = DiffusionTransformer ({ai}, {si}, {zij}) ▶ Refer to Alg. 23 in AF3
7: ai = LayerNorm (ai)

# Structure denosing
8:

{
rupdate
l

}
= AtomAttentionDecoder ({ai} , {ql} , {cl} , {plm}) ▶ Refer to Alg. 6 in AF3

9: xdenoised
l = σ2

data/
(
σ2

data + σ2
)
· xnoisy

l + σdata · σ/
√

σ2
data + σ2 · rupdate

l
# Sequence denoising

10: {kdenoised
i } =TokenDenoiser ({ai})

Output: denoised structure {xdenoised
l }, denoised sequence {kdenoised

i };

to the antibody sequences, have sequences in positions corresponding to the antibody CDRs highly
consistent with the CDRs ground-truth sequences. This can cause the model to learn to predict
CDR sequences directly from the MSA results, leading to data leakage. To address this, in both
our training and inference, we exclude sequences where the regions corresponding to the CDRs in
the query antibody sequence have a similarity to the CDRs that exceeds a threshold, as detailed in
Appendix D.4. This processing is to ensure fair benchmarking. In practical antibody design, filtering
is not required.

C.3 TRAINING STRATEGY

Similar to AF3 models that use token cropping for training, we also implement this technique. Our
training process is divided into four stages as follows:

• 1st-stage: We only input antibody sequences, using a maximum token size of 256 to accommodate
the VH and VL sequences. This allows for a larger batch size, enabling the model to quickly learn
to design CDRs and predict antibody structures based only on antibody sequences.

• 2nd-stage & 3rd-stage: We continue to input full VH and VL sequences while randomly selecting
tokens from the antigen epitope and the nearby regions to introduce the antigen context. Both
stages follow the same cropping method detailed in Alg. S2, differing only in maximum token size:
384 in the second stage and 512 in the third.

• 4th-stage: We perform full-parameter fine-tuning, which may affect the model’s ability to predict
structure learned during pre-training. Besides, considering the first three stages focus on predicting
structures around the antibody and nearby antigen regions, the model might underperform when
predicting structures of antigen regions far from the antibody. To address this, we implement
a sampling strategy where there is a 50% probability of selecting tokens from regions around
the antibody and a 50% probability of selecting tokens from any area within the complex. This
approach helps the model retains its newly acquired antibody co-design capability while also
preserving its pre-trained ability to predict complex structures. The maximum token size for this
stage is kept at 512.
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Algorithm S2 Cropping Strategy Adopted in Our 2nd & 3rd & 4th Training Phases

Input: tokens, max token number Nmax
token, max atom number Nmax

atom, neighborhood sizes = [0, 2, 4, . . ., 40];
1: cropped tokens = []
2: Add all tokens in VH and VL sequence of the antibody to cropped tokens
3: Sample neighborhood size uniformly at random from neighborhood sizes
4: Sample center token uniformly within the tokens in the 6 CDRs of VH and VL
5: sorted epitope tokens← sort tokens in the epitope of antigen by ascending their distance to the selected center token
6: for token in sorted epitope tokens do
7: Let chain tokens be the entries in the same chain as token (including token)
8: if len(chain tokens) ≤ neighborhood size then
9: selected tokens = chain tokens

10: else
11: selected tokens = [token]
12: min idx← index of token in chain tokens
13: max idx← index of token in chain tokens
14: while len(selected tokens) < neighborhood size do
15: min idx = min idx - 1
16: max idx = max idx + 1
17: Let selected tokens be the entries ∈ chain tokens whose index in chain tokens ∈ [min idx, max idx]
18: end while
19: end if
20: Let new tokens be the entries in selected tokens that are not present in cropped tokens
21: if adding new tokens to cropped tokens would exceed max token number Nmax

token or max atom number Nmax
atom then

22: Break the for loop
23: else
24: Add new tokens to cropped tokens
25: end if
26: end for

Output: cropped tokens;

C.4 TOKEN CROPPING

As discussed in the Sec. 2.2, our model training consists of four stages, involving three token cropping
strategies. The first strategy, employed in the first stage, is straightforward, involving inputting only
the VH and VL tokens of the antibodies.

The other strategies are used in later stages. One of them, used specifically in the fourth stage,
is a random token sampling method. For this, we directly adopt the cropping technique from the
Boltz-1 (Wohlwend et al., 2024) paper, specifically utilizing the approach detailed in their Algorithm
2. This cropping method effectively handles complex of varying size by interpolating between spatial
and contiguous cropping strategies. It defines “neighborhoods” around specific tokens, which are
incrementally added based on their distance from a randomly selected crop center. By varying the
size of neighborhoods, the algorithm can seamlessly transition from spatial to contiguous cropping.

The last strategy, used in the second, third, and fourth stages, focuses on cropping tokens around
the antibody. This method, based on the above random token sampling method (Algorithm 2 from
the Boltz-1 paper), is formalized in Algorithm S2 of our work, where we provide a comprehensive
description of its tailored implementation for our specific need. In brief, this cropping approach first
includes the VH and VL sequences of the antibody. Then, it randomly selects a token from the six
CDRs as the center token. Tokens located at the antigen epitopes are then sorted in ascending order
based on their distance to this selected center token. In this work, we define a residue on the antigen
surface as an epitope residue if any internal atom is within a distance of less than a threshold of 10
Åfrom the atoms of the antibody CDRs. The remaining process follows Algorithm 2 from Boltz-1.

C.5 TRAINING OBJECTIVE

In this work, we aim to tackle the task of co-designing antibody sequences and structures. For this
purpose, we define two separate loss functions: one for the sequence diffusion training and another
for the structure diffusion training. The structure diffusion loss, Lstructure, is directly taken from AF3,
as defined by Equation 6 in AF3’s supplementary materials. The sequence diffusion loss function is
denoted as Lsequence. Our final loss L is simply the sum of these two components:

L = Lsequence + Lstructure,
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Next, we give the detailed definition of Lsequence for the version using discrete diffusion for sequence.
We adopt the D3PM-absorbing (Austin et al., 2021), a discrete diffusion framework, for our sequence
diffusion here. We denote the clean sample as {ki}0 and we perform sequence diffusion only
the CDRs within {ki}0. The forward diffusion process p ({ki}t | {ki}0) gradually corrups CDRs
tokens by replacing them with special token <X> at each timestep t, via a discrete transition matrix
that defines the probability of mutating a residue into <X>. The prior distribution at t = T is a
sequence where residues within CDRs are all <X> tokens. Our denoising model, TokenDenoiser,
parameterized by θ, pθ

(
{k̂i}0 | {ki}t, t)

)
, is trained to recover the original sequence from the

absorbing version {ki}t. To optimize the parameter set θ, we maximize the likelihood of the
denoising process on ground-truth tokens:

Lsequence = E{ki}0,t [− log pθ ({ki}0 | {ki}t)] ,where {ki}t ∼ p ({ki}t | {ki}0) .

C.6 SAMPLING

In this paper, two sampling methods are employed: one for the antibody sequence and structure
co-design task, and the other for structure prediction. We present our two sampling algorithms for the
method employing discrete diffusion for sequence in this section.

C.6.1 SAMPLING W/ Replacement TECHNIQUE

The structure follows the sampling method from AF3 (Abramson et al., 2024) (refer to Algorithm 18
in AF3), which adopts the EDM (Karras et al., 2022) sampling method. For sequence sampling, we
use the standard D3PM-absorbing (Austin et al., 2021) sampling method.

In particular, when designing antibody CDRs, experimentally resolved co-crystal structures are
provided, where all non-CDR regions (antibody framework sequences/structures, antigen se-
quences/structures, and the antibody-antigen binding pose) are given. This means our sampling must
be conditioned on these fixed components.

In this work, we utilize a replacement sampling technique to allow the design of our CDRs to be
conditioned on the given co-crystal structures. This technique is initially proposed and widely adopted
in the image inpainting task (Lugmayr et al., 2022). It has also been used in molecule and protein
generation tasks (Schneuing et al., 2024; Trippe et al., 2023) to condition the sampling on given
motifs. In simple terms, it involves replacing the generated contents corresponding to the fixed parts
with their forward noised counterparts. In our sampling, we need to align the given ground-truth
co-crystal structure to the denoised structure and then perform replacement operation.

Assuming the input has already been processed by the conditioning trunk to yield
{sinputs

i }, {strunk
i }, {ztrunk

ij }, we then focus on the subsequent sampling process. We formalize our
sampling method for antibody sequence and structure co-design in Algorithm S3. In fact, the raw
inputs {f∗} include {kinput

i }, but we choose to highlight them separately.

C.6.2 SAMPLING W/O Replacement TECHNIQUE

For the structure prediction task, we sample from scratch. Therefore, we do not need to input a
given structure as in Algorithm S3, nor do we use the replacement sampling technique. As a result,
the sampling algorithm used here omits a given structure as input and also skips Lines 14-15 from
Algorithm S3, which correspond to the replacement technique, while the rest remains consistent with
Algorithm S3. If the input antibody sequence contains the <X> token, we will simultaneously predict
its amino acid type while predicting the structure.

C.7 SEQUENCE DIFFUSION IN THE CONTINUOUS SPACE

In the main body of this paper, we present an implementation utilizing D3PM-absorbing (Austin
et al., 2021), a discrete diffusion method, for sequence diffusion. Additionally, we also implement
a continuous version. Following the methodology of prior research (Hoogeboom et al., 2022), we
introduce Gaussian noise directly to the one-hot encoding of residue types to handle discrete data
through continuous diffusion.
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Algorithm S3 Sampling with Replacement Method

Input: raw inputs {f∗}, trunk’s outputs
{
{sinputs

i }, {strunk
i }, {ztrunk

ij }
}

,

given ground-truth co-crystal structure {xGT
l }, input sequence {kinput

i } with CDRs marked in <X>,
hyper-parameters required by EDM (Karras et al., 2022) sampling method {σdata, σmax, σmin, ρ, γ0, γmin, λ, η};

1: for t ∈ [0, 1, 2, . . . , 199] do
# Define noise schedule for structure sampling

2: ct = σdata ·
(
σ
1/ρ
max + t

200−1
·
(
σ
1/ρ
min − σ

1/ρ
max

))ρ

# Define noise schedule for sequence sampling
3: mt = 1− t

200−1

4: end for
# Initialize structure via sampling from a Gaussian noise

5: xl ∼ c0 · N
(
0⃗, I3

)
# Input sequences naturally serve as initialization because CDRs are all already in the absorbing state

6: {knoisy
i } = {kinput

i }
7: for t ∈ [1, 2, . . . , 199] do
8: {xl} = CentreRandomAugmentation({xl}) ▶ Refer to Algorithm 19 in AF3
9: γ = γ0 if ct > γmin else 0

10: σ = ct−1(γ + 1)


Same as AF3, which follows EDM sampling method

11: ξl = λ
√

σ2
t − c2t−1 · N

(
0⃗, I3

)
12: x

noisy
l = xl + ξl

13: {xdenoised
l }, {kdenoised

i } = CoDiffusionModule
(
{xnoisy

l }, {knoisy
i }, σ, {f∗}, {sinputs

i }, {strunk
i }, {ztrunk

ij }
)
▶ Alg. S1

# Replacement sampling technique (Lines 14-15) (Lugmayr et al., 2022; Schneuing et al., 2024)
14: x

GT-aligned
l = RigidAlign

(
{xGT

l }, {x
denoised
l }

)
▶ Refer to Algorithm 28 in AF3

15: xdenoised
l = xdenoised

l if atom l is within CDRs else x
GT-aligned
l

16: δl = (xl − xdenoised
l )/σ

17: dt = ct − σ

 Same as AF3, which follows EDM sampling method
18: xl ← x

noisy
l + η · dt · δl

# Randomly sample a probability from a uniform distribution between 0 and 1 for each token
19: pi ∼ U(0, 1)
20: kdenoised

i = kdenoised
i if residue i is within CDRs else k

input
i

 Follow D3PM-absorbing
sampling method

21: k
noisy
i = one-hot encoding of <X> if pi < mt and residue i is within CDRs else kdenoised

i
22: end for
23: x

GT-aligned
l = RigidAlign

(
{xGT

l }, {xl}
)

▶ Refer to Algorithm 28 in AF3
24: xl = xl if atom l is within CDRs else x

GT-aligned
l

25: {ki} = {kdenoised
i }

Output: predicted final sequence {ki}, predicted final structure {xl};

As noted in Appendix B, the noise level for AF3’s structure diffusion training σ is sampled from
σdata · exp(−1.2 + 1.5 · N (0, 1)). For inference, AF3 defines a sequence of decreasing noise levels:{
σdata ·

(
σ
1/ρ
max + t

200−1 ·
(
σ
1/ρ
min − σ

1/ρ
max

))ρ

| t = 0, 1, . . . , 199
}

. σdata, σmax, σmin and ρ are hyper-
parameters. For structure diffusion, we adhere to the default settings in AF3 for these parameters.

Since our diffusion now is also based on continuous diffusion, we can also apply the EDM (Karras
et al., 2022) training method to sequence diffusion. Similar to structure diffusion, we directly sample
the noise level instead of first sampling a time step and then using a predefined noise scheduler to
obtain the corresponding noise level. By sharing the noise level between structure and sequence,
we can easily align their training. We define a scaling factor ω and set it to 1/4 in our experiments.
The noise level for the structure is sampled from σdata · exp(−1.2 + 1.5 · N (0, 1)), and then this
sampled noise level is multiplied by ω to serve as the noise level for the sequence. This ensures that
the noise levels for the sequences are proportional to those for the structure. Once the noise level for
the structure is determined, the noise level for the sequence diffusion can be obtained using ω, and
noise is then added to the one-hot encodings of tokens to obtain {knoisy

i }. Diffusion is still applied
only to the CDRs.

In this following, we present how to input the corresponding noisy sequence into the CoDiffusion-
Module at each sampled timestep. During training, we add noise to the one-hot encodings of tokens
to obtain {knoisy

i }. Similar to the method used in discrete sequence diffusion, we then replace the
specified dimension in {sinputs

i } with {knoisy
i }. For each denoising step in inference, we directly add
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Figure S1: Illustration of an antibody-antigen complex. Typical antibodies consist of heavy and
light chains, each with a variable domain (VH and VL, respectively) composed of three CDRs and
framework regions. CDRs are highly variable and mainly determine the antibody specificity for
antigens. In contrast, nanobodies consist of only a heavy chain.

noise to the token-level probability distributions, {hi}, which represents the probability distribution
of each amino acid type for each token. This is obtained by inputting previously predicted {kdenoised

i }
after last step into the SOFTMAX function. Then, we replace the specified dimensions in {sinputs

i }
with {hi}.

C.8 LIMITATIONS AND FUTURE WORK

One limitation of our current approach is that we only generate backbone atoms for CDRs, requiring
an additional side-chain packing step to obtain full-atom structures. Accordingly, we aim to develop
an end-to-end model capable of direct all-atom structure prediction in the future. Besides, we currently
use full-parameter fine-tuning and plan to explore more efficient strategies to reduce computational
costs while maintaining result quality.

D DATA PREPROCESS

Here, we present a detailed description of our data processing pipeline for the Structural Antibody
Database (SAbDab) (Dunbar et al., 2014), with the goal of establishing a standardized approach that
facilitates reproducibility and enables future research endeavors in this field. As a comprehensive
repository of antibody structures that undergoes weekly updates, SAbDab provides an invaluable
resource for structural antibody research. In Fig. S1, we illustrate a typical antibody-antigen complex
structure. The data used in this work are collected from SAbDab up to November 27, 2024. The full
data processing scripts and processed data will be released upon acceptance.

D.1 PRELIMINARY DATA FILTERING

Based on the summary file in TSV format provided by SAbDab, we only include samples whose
annotated antigen type field falls into one of the following five categories:

• protein

• protein | protein

• protein | protein | protein

• protein | protein | protein | protein

• protein | protein | protein | protein | protein

Furthermore, we only consider antibodies that either contain both heavy and light chains or consist
of a single heavy chain (i.e., nanobody), with a resolution no worse than 4.5 Å. Following Dif-
fAb (Luo et al., 2022), we also utilize the Chothia scheme (Chothia & Lesk, 1987) for numbering the
CDRs. After obtaining antibody sequences through parsing SAbDab’s Chothia-scheme numbered
antibodies, we further validate the CDR positions using the AbNumber3 toolkit, which is based on
ANARCI (Dunbar & Deane, 2016). Moreover, we filter out antibody sequences that can not be
correctly identified by AbNumber. These problematic sequences are found to either have incorrect
lengths, missing regions among FR1/CDR1/FR2/CDR2/FR3/CDR3/FR4, or notably long CDR3
regions (e.g. chain I in PDB ID: 4k3e, which is an antibody heavy chain). Note that DiffAb also
filters out sequences with abnormally long CDR3 regions in their preprocessing.

3
© https://github.com/prihoda/AbNumber
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D.2 DEDUPLICATION

In the TSV format summary file provided by SAbDab, there may be multiple antibody-antigen
complex samples that correspond to the same PDB structure. We closely examine the variable domain
sequences of the antibody heavy chains from these samples derived from the same PDB structure.
After parsing the PDB structures and using the AbNumber tool to calibrate the CDRs regions, we
employ AbNumber’s alignment tool for pairwise comparisons and obtain some observations. Based
on these observations, we develop a deduplication algorithm for these samples. Below, we present
several typical examples of comparisons found in this process, focusing only on the CDRs sequences.
First, consider the following pair of examples:

• VH sequence of Chain H in PDB 1bj1:

FR1 GYTFTNY FR2 NTYTGE FR3 YPHYYGSSHWYFDV FR4

• VH sequence of Chain K in PDB 1bj1:

FR1 GYTFTNY FR2 NTYTGE FR3 YPHYYGSSHWYFDV FR4

Both samples are associated with the same PDB structure, and their CDRs sequences are completely
identical. For such samples, we believe that retaining just one is sufficient. We choose to retain the
one with the longer VH sequence, as it provides more complete information. Now, consider the next
set of examples:

• VH sequence of Chain J in PDB 6tyl:

FR1 GGIVHIS FR2 PSNGD FR3 FLRHTASASYNNY FR4

• VH sequence of Chain E in PDB 6tyl:

FR1 GGIVHIS FR2 PSNGD FR3 FSYNNY FR4

In the second set, the CDR-H1 and CDR-H2 regions are identical, but differences exist in the CDR-H3
sequence, where the lower sequence is noticeably shorter than the upper one. Upon closer inspection,
it can be observed that the lower sequence lacks some amino acids present in the upper sequence.
This situation may arise due to some unexpected uncertainties during the data collection process of
the PDB structure. In our study, we regard these two sequences as essentially the same, and it is
evident that the upper sequence provides more complete information, so we discard the lower sample.
Now, consider the third set of examples:

• VH sequence of Chain K in PDB 7xj6:

FR1 GFTFSSS FR2 VVGSGN FR3 PNCNSTTCHDGFDI FR4

• VH sequence of Chain E in PDB 7xj6:

FR1 GGTFSSY FR2 IPILGI FR3 GTEYGDYDVSHD FR4

In the third set of examples, the sequences of CDR-H1 and CDR-H2 have the same length, but the
amino acid types differ at certain positions. In the CDR-H3 sequence, although the lower one is
shorter than the upper, this is not a case of missing parts as in the second example but rather indicates
significant sequence differences. Thus, we consider these two chains as fundamentally different
antibody sequences, and we retain both.

Based on these findings, we design the following algorithm to deduplicate the data obtained after
processing in Section D.1. First, we use the Levenshtein distance to measure the differences between
the CDRs sequences of two chains. The Levenshtein distance (Levenshtein, 1966) between two strings
is defined as the minimum number of single-character edits (insertions, deletions, or substitutions)
required to change one string into the other. In the examples above, the Levenshtein distance values
for the three sets of sequences are 0, 7, and 20, respectively, illustrating varying degrees of similarity
and difference.

We concatenate the CDRs sequences of each sample’s VH sequence into a single string and then
calculate the Levenshtein distance between these concatenated strings for each pair of samples when
assessing differences. In our study, we set a threshold of 9 for the Levenshtein distance; if the distance

18



Published at the GEM workshop, ICLR 2025

Algorithm S4 SAbDab Deduplication
Input: a dataframe DF gathering samples sampled from Sec. D.1, distance threshold;

1: all reserved = []
# Group samples according to related PDB ID and then iterate over each group

2: for group in DF.groupby(‘PDB ID’) do
# Sort the samples in descending order within current group based on the length of the VH sequence

3: sorted group = group.sort values(by=‘VH SEQUENCE’, key=lambda x:x.str.len(), ascending=False)
# Reserve the sample with the longest VH sequence within the group

4: reserved=[sorted group.iloc[0]]
# Iterate over every sample after the first one within the group

5: for entry in sorted group.iloc[1:] do
6: should add flag = True
7: for reserved entry in reserved do
8: distance=levenshtein distance(entry[‘VH SEQUENCE’], reserved entry[‘VH SEQUENCE’])
9: if distance ≤ distance threshold then

10: should add flag = False
11: break
12: end if
13: end for
14: if should add flag then
15: reserved.append(entry)
16: end if
17: end for

# Merge reserved samples
18: all reserved += reserved
19: end for
20: filtered DF = DataFrame(all reserved)

Output: a dataframe filtered DF composed of remaining data after Sec. D.2;

does not exceed 9, the sequences are considered not significantly different and likely represent the
same sequence, in which case one should be discarded. As some samples are nanobodies without a
light chain, we only compare the CDRs of the VH sequence for all samples.

The algorithm is as follows: we group the samples by their associated PDB ID. For each group, we
maintain a list to store the samples that are ultimately retained within the group. We first sort the
samples in descending order based on the length of the VH sequence and add the longest sequence to
the list, as it is considered to provide the most comprehensive information. Then, we iterate through
the remaining sequences: if the Levenshtein distance to any sample in the list does not exceed the
threshold, it is considered a duplicate; if the Levenshtein distance to all samples in the list exceeds
the threshold, it is retained and added to the list. This process is detailed in Algorithm S4.

Following the processing detailed in Section D.1, we initially have 11,009 samples associated with
5,762 PDB structures. Upon completing the deduplication step, we retain 6,347 samples.

D.3 TRAIN & VALIDATION & TEST SETS CURATION

As discussed in Section 3 of the main text, it is essential to consider the release date of the data to
prevent data leakage when partitioning it into training, validation, and test sets.

We begin by applying MMSeqs2 (Steinegger & Söding, 2017) to cluster all antibodies based on
their CDR-H3 sequences, using a 50% sequence identity threshold. These clusters form the basis for
subsequent data partitioning and filtering.

Clusters that contain any structures with release dates prior to the cut-off date of September 30, 2021,
are entirely included in the training set. This ensures that all pre-cut-off date data is used for training
and avoids any risk of leakage into validation or test phases. For those clusters with data released
on or after the cut-off date, we further divide them into validation and test sets to ensure these sets
contain completely unseen data. The overall target ratio for the training, validation, and test clusters
is approximately 9:0.5:0.5.

Due to Boltz-1’s (Wohlwend et al., 2024) memory limitations, which do not support structures with
more than 2000 residues/tokens on standard GPUs with 80GB memory (refer to this GitHub issue:
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© https://github.com/jwohlwend/boltz/issues/17), we also filter out samples in the validation and test
sets where the combined antibody-antigen complex exceeds 2000 residues.

Moreover, we incorporate two specific filters inspired by AlphaFold3 (Abramson et al., 2024) to
improve data quality:

• Remove any sample where a complex contains a single chain with all residues marked as unknown.

• Exclude protein chains with consecutive Cα atoms that are more than 10 Åapart. This filter is
applied only to the antibody chains and not to the antigen chains.

As a result of this process, we obtained 5,843 training samples from 2,570 clusters, 187 validation
samples from 142 clusters, and 204 test samples from 144 clusters.

D.4 MSA CONSTRUCTION

The Boltz-1 repository has already provided a way to obtain MSA results through the Colab-
Fold (Mirdita et al., 2022) API. However, with limited computational resources, such a pub-
lic remote server needs to queue incoming requests when handling multiple concurrent users,
resulting in unstable processing speeds. To address this issue, we choose to build our own
local server that exclusively processes our requests. Consistent with Boltz-1, we adopt these
two databases for MSA search: uniref30 2302, colabfold envdb 202108. After the
setup, we can simply replace the default msa server url parameter in Boltz-1 with our lo-
cal server URL to obtain paired and unpaired MSA results from the local MSA server. The
server is built following the local setup guide provided in the ColabFold repository, available
at: © https://github.com/sokrypton/ColabFold/tree/main/MsaServer.

Filtering. We have already discussed in the main text the need to filter MSAs to prevent data leakage
during both the training and inference stages. The filtering is done as follows: The MSA results
provide an amino acid-by-amino acid alignment of the retrieved sequences with the query sequence.
For each VH or VL query sequence, we examine each sequence retrieved one by one. We extract the
segments that correspond to the three CDRs of the query sequence. If any of these segments have a
sequence identity greater than or equal to a specified threshold with the corresponding CDR sequence,
we remove the entire sequence from the final MSA results. In both the training and inference stages
discussed in the main text, this threshold is set to 0.2.

E DETAILS ABOUT THE ADOPTED METRICS

In this section, we provide more details about the metrics we used in this paper for evaluation.

E.1 METRICS ADOPTED IN SEC. 3

AAR. It measures the accuracy of the generated CDRs sequences by comparing the amino acid
identity with native sequences. It calculates the percentage of amino acids in the generated sequence
that match the reference sequence.

RMSD. RMSD measures the deviation of the Cα atom coordinates between generated and native
CDRs. Following DiffAb (Luo et al., 2022), the antibody frameworks are aligned prior to RMSD
calculation. In this work, this alignment is specifically based on the Cα atoms.

Loop-AAR. This metric evaluates the accuracy of amino acid recovery specifically for the central
loop residues of CDR-H3, the region most critical for antigen binding. Consistent with (Zhu et al.,
2024), we exclude specific residues from our analysis. For the Chothia numbering scheme (Chothia
& Lesk, 1987), we exclude the initial and terminal two residues of CDR-H3. In contrast, for the
IMGT scheme (Lefranc et al., 2003), we exclude the first four and the last two residues.

Loop-RMSD. This metric assesses the structural deviation of the central loop residues within CDR-
H3 between generated and native structures, focusing on the region critical for antigen binding.
Consistent with Loop-AAR, we follow the loop region definitions specific to each numbering scheme.
Similar to the RMSD calculation, the antibody frameworks are aligned before computing Loop-
RMSD.

20

https://github.com/jwohlwend/boltz/issues/17
https://github.com/sokrypton/ColabFold/tree/main/MsaServer


Published at the GEM workshop, ICLR 2025

IMP. The Improvement Percentage (IMP) is determined by evaluating the binding energies of
antibody-antigen complexes, calculated using the InterfaceAnalyzer with the ref2015 score function
in PyRosetta toolkit (Chaudhury et al., 2010). IMP represents the fraction of designed complexes that
achieve lower binding energies compared to their natural counterparts.

Metrics calculated from structural data are computed after we perform side-chain packing and
relaxation.

E.2 METRICS ADOPTED IN APPENDIX G.1

RMSD. Here, RMSD measures the root-mean-square deviation of all Cα atom coordinates between
generated and native protein structures. For this calculation, the entire protein structure is aligned,
focusing on Cα atoms to provide an overall measure of structural accuracy.

Loop-RMSD. It evaluates the structural deviation of Cα atoms specifically within the central loop of
the CDR-H3 region. This metric is calculated after aligning the entire protein structure and focuses
on prediction accuracy in this highly variable and critical region for antigen binding.

TM-score. TM-score assesses the similarity between predicted and native protein structures, with
scores ranging from 0 to 1. A higher TM-score indicates better global similarity and is particularly
sensitive to the overall fold of the protein, rather than local variations.

Given that these metrics only require backbone predictions, and as noted by AlphaFold 3 that that the
relax postprocessing step is rarely needed when using AF3, we do not perform side-chain packing or
relaxation here. The models’ prediction results are used directly for evaluation.

F MORE DETAILS ABOUT THE IMPLEMENTATIONS

Due to our use of different data splits from those in the original papers of the baselines, it is necessary
to retrain these baseline models to ensure a fair comparison. In this section, we provide detailed
information on the implementation of both the baseline models and MFDesign. All experiments run
on a single node consisting of 8 × H100 GPUs with 80 GB HBM3 each (aggregated GPU memory
of 640 GB), 2 × Intel Xeon Platinum 8468 processors comprised of 48 CPUs each (total 96 cores,
192 threads).

F.1 DETAILS ABOUT THE IMPLEMENTATIONS OF BASELINES

DiffAb4 (Luo et al., 2022) We implement the baseline using the code provided by the authors, and we
adhered to the hyper-parameter settings detailed in the codesign multicdrs.yml file from the repository
for our training configuration. DiffAb employs the Chothia numbering scheme, which is consistent
with our approach.

dyMEAN5 (Kong et al., 2023a) We utilize the code provided by the authors and set our training
parameters according to the hyper-parameters specified in the multi cdr design.json file in the
repository. dyMEAN employs the IMGT scheme (Lefranc et al., 2003) for numbering antibodies. We
choose to adhere to its original selection regarding the scheme as Zhu et al. do.

Remark. The official dyMEAN code does not support nanobody processing, which results in a
reduced number of samples for evaluation in dyMEAN as compared to the full test set. In contrast,
both DiffAb and our method are capable of effectively handling nanobodies, allowing for evaluation
on the complete test set.

F.2 DETAILS ABOUT THE IMPLEMENTATIONS OF OUR METHOD

Since AlphaFold3 has not open-sourced its training scripts, in this work, we base our approach on
Boltz-1, a reproduced version of AF3 by Wohlwend et al., which provides these scripts. Addition-
ally, Boltz-1 maintains consistency with AlphaFold3 in terms of variable and function definitions,
facilitating a clearer understanding of the implementation alongside the original AlphaFold3 paper.

4
© https://github.com/luost26/diffab

5
© https://github.com/THUNLP-MT/dyMEAN
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Table S1: Comparison of antigen structure prediction performance, with and without the fourth
training stage, evaluated using RMSD and TM-score, with best results highlighted.

w/ 4-th training stage? RMSD ↓ TM-score ↑
% 9.87Å 74.91%
! 9.59Å 76.72%

Our primary modification compared to AF3 is the addition of a denoising network for sequences,
which we implement using a simple MLP composed of several LINEAR layers connected by GELU
activation functions. We observe that in the implementation of DiffAb (Luo et al., 2022), an
additional feature is encoded for each amino acid to indicate its region. We adopt this approach in our
implementation and find it beneficial for accelerating early convergence of the model. Specifically, we
include a feature indicating which chain a residue belongs to, specifying whether it is the heavy chain,
light chain, or antigen. For antibody sequences (VH and VL), another feature specifies the region
within the chain, such as FR1, CDR1, FR2, CDR2, FR3, CDR3, or FR4. For antigen residues in the
antibody co-design task, where the baseline provides epitope information, we include a feature to
identify if an antigen residue is part of the epitope region. However, in complex structure prediction,
we do not differentiate based on epitopes, as incorporating such information does not align with
the bind-docking setting. These additional features, along with the previously obtained token-level
representations, are fed into the sequence denoising network.

For our models used in the co-design of antibody sequences and structures, the implementation of
both discrete and continuous diffusion for sequence follows the same training approach:

• 1st-stage: A warm-up strategy is employed, where the learning rate increases linearly from 0 to
a predefined value 5× 10−4 over 10 steps. Subsequent to this warm-up phase, the learning rate
decays by a factor of 0.999 every 100 steps. The max token number is set to 256. The batch size
for a single GPU is 6, thus amounting to 48 samples per training step. This stage consists of a total
of 5, 000 training steps.

• 2nd-stage: Training continues for a total of 2, 000 steps, starting with an initial learning rate that is
set directly. The learning rate then decays by a factor of 0.999 every 100 steps. The max token
number is set to 384, and the batch size for a single GPU is set to 3, resulting in 24 samples per
training step.

• 3rd-stage: Training continues for a total of 5, 000 steps, starting with an initial learning rate that is
set directly. The learning rate then decays by a factor of 0.999 every 100 steps. The max token
number is set to 512, and the batch size for a single GPU is set to 1, resulting in 8 samples per
training step.

• 4th-stage: Training continues for a total of 9, 000 steps, starting with an initial learning rate that is
set directly. The learning rate then decays by a factor of 0.999 every 100 steps. The max token
number is set to 512, and the batch size for a single GPU is set to 1, resulting in 8 samples per
training step.

G MORE EXPERIMENTAL RESULTS

G.1 STRUCTURE PREDICTION

In this section, we evaluate our method in the structure prediction task, a.k.a. protein folding
problem. Unlike in Sec. 3, we do not use impainting for sampling for this task because revealing any
ground-truth structure information is not allowed here. We observe that the origin Boltz-1 struggles
with accurately predicting antibody-antigen binding sites, a common issue among existing structure
prediction models. This limitation becomes evident when Boltz-1 is tasked with predicting complex
structures for antibody-antigen pairs from the test set in Sec. 3. For each sample, the model generates
five predicted structures, and the average TM-score across these predictions is only 0.62. As our
model is fine-tuned from Boltz-1, it inherits this limitation.
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Table S2: Performance comparison on the structure
prediction task, evaluated by RMSD, Loop-RMSD,
and TM-score.

Given CDR? Fine-tuned? RMSD ↓ Loop-RMSD ↓ TM-score ↑
% % 2.21Å 5.57Å 91.84%
% ! 1.73Å 4.90Å 93.88%

! % 1.39Å 3.53Å 95.45%
! ! 1.65Å 4.55Å 94.25%

PDB ID: 8t03
Ground-truth H3: RTWLLHAMDY
Predicted H3: QTWLLDAMDY

PDB ID: 8sfx

A B

Ground-truth Original Model Our Fine-tuned Model

Figure S2: Examples of predicted structures.

Thus, we choose to predict antibody structures alone, a relatively simpler task, yet still challenging,
particularly in accurately predicting the CDR-H3 region. We experiment with two input types: one
where the CDRs are represented as <X>, and another where the CDRs are provided. We compare our
fine-tuned Boltz-1 model with the original, non-fine-tuned model. For the first input type, we apply
filtering to the MSA results. For the second, we do not filter the MSA results. We adopt the test set
used in Sec. 3. We use the model implemented in discrete sequence diffusion here for evaluation.

Metrics. We utilize the following set of metrics for detailed evaluation: (1) RMSD (Å): measures
the root-mean-square deviation of all Cα atom coordinates after aligning the entire protein structure,
providing an overall measure of structural accuracy; (2) Loop-RMSD (Å): calculates the RMSD for
the Cα atoms specifically in the middle loop of the CDR-H3 region after whole-structure alignment,
which is particularly challenging to predict; (3) TM-score: ranges from 0 to 1, with higher scores
indicating better similarity between the predicted and reference structures. We generate 20 predictions
for each sample and report the averaged results.

Table S2 summarizes the results on antibody structure prediction task. In comparisons where the
input antibody’s CDRs are unknown, our fine-tuned model consistently surpasses the original across
all three metrics. In Fig. S2A, we demonstrate a case where CDRs are not present in the input. We
see that the original Boltz-1 and our fine-tuned model can both accurately predict the framework
regions of this sample. However, for the CDRs, the original model’s prediction is less precise. Our
model, despite starting with unknown residues, can predict CDRs sequences during the sampling
process. As the sequence becomes clearer, this allows for more accurate CDRs structure predictions.
This suggests that our method could provide valuable insights into what the functional structure of an
antibody might look like, when only the framework regions sequences are given.

With the CDRs provided, we observe that the results are improved for both compared to when
CDRs are absent. Our fine-tuned model performs worse than the original model on three metrics.
However, the gap is slight, with the TM-score decreasing by only 1.26%. This indicates that our
fine-tuning retains a structure prediction capability comparable to that of the original model. This
slight decline in performance might be due to changes in the training method for structural diffusion.
Additionally, because we apply full parameter fine-tuning, it might change the feature space learned
during pre-training that was more beneficial for structure prediction. The added sequence prediction
task may introduce gradients that conflict with structure prediction, leading to decreased performance
in the latter. In Fig. S2B, we present the prediction of the fine-tuned model for a nanobody, whose
CDR-H3 is longer and thus more challenging to predict accurately than that of a typical antibody.
However, our fine-tuned model successfully predicts the structure of the CDR-H3 for this sample,
further exemplifying our method’s good structure prediction ability.

G.2 ABLATION OF THE 4TH TRAINING STAGE

Recall that we adopt a four-stage training approach. The first three stages primarily focus on selecting
tokens from regions around the antibody and its nearby areas, which could result in inadequate
training for antigen regions far from the antibody. To address this limitation, we introduce a fourth
training stage specifically designed to ensure adequate learning of these distant antigen regions.

Here, we use our model to predict the structures of antigens, comparing the performance with and
without the fourth stage of training. For each antigen in the test set from Sec. 3, we generate 5
predictions. We employ RMSD and TM-score as evaluation metrics and summarize the results in
Table S1. We use the MF-Design with discrete sequence diffusion for this study. We find that, after
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undergoing the fourth training stage, the model shows improvements in both metrics compared to the
model trained with only the first three stages.

G.3 VISUALIZATION OF MORE EXAMPLES

In this section, we provide more visualizations of our results. In Fig. S3, we show the outcomes from
simultaneously designing all CDRs of antibodies conditioned on co-crystal structures, as discussed
in Sec. 3, with a focus on our designed CDR-H3. In Fig. S4, we present additional cases from
Appendix G.1, where sequences with unknown amino acid types in the CDRs of nanobodies are used
as inputs, and our model is able to predict the structure while also predicting the sequences of the
nanobody CDRs. Additionally, in Fig. S5, we illustrate some predicted complex structures by our
model when given the complete antibody-antigen complex sequence as input. These structures here
are all predicted using the model with a discrete implementation of sequence diffusion.

H CORRESPONDENCE OF MODULES REFERENCED IN THIS PAPER TO
ALPHAFOLD 3 ALGORITHMS

For direct technical cross-referencing, This section explicitly maps the AlphaFold3’s modules refer-
enced in this paper to their original algorithm numbers in the AlphaFold3’s supplementary materials
in Table S4.

I NOTATIONS

We summarize the notations used in this paper in Table S3 to facilitate reading.

Table S3: Notations.

Notation Description
<X> a token which means the corresponding residue’s type is unknown and requires to be speficied
ki a token, which is an one-hot encoding of its type

{ki} a token set
xl three-dimensional coordinates of a atom
{xl} a structure characterized by a set of atoms’ coordinates
{f∗} raw inputs

{sinputs
i } basic encodings for the raw inputs, generated by InputEmbedder in the conditioning trunk

{strunk
i } token-level single representations, the output of the conditioning trunk

{ztrunk
ij } token-level pair representations, the output of the conditioning trunk
{si} token-level single representations generated by DiffusionConditioning, which embed information from the noise level, {sinputs

i } and {strunk
i }

{zij} token-level pair representations generated by DiffusionConditioning, which embed information from relative position encoding and {ztrunk
ij }

{xnoisy
l } noisy structure

{rnoisy
l } scaled {xnoisy

l } with approximately unit variance
{ql} atom-level single representations generated by AtomAttentionEncoder, which encode basic atomic features and incorporate information from {rnoisy

l }
{cl} atom-level single representations generated by AtomAttentionEncoder, which encode basic atomic features and incorporate information from {strunk

i }
{plm} atom-level pair representations generated by AtomAttentionEncoder, which encode basic atomic features and incorporate information from {zij}
{ai} token-level single representations generated by AtomAttentionEncoder and updated by DiffusionTransformer

{xdenoised
l } denoised structure
σdata hyper-parameters for structure sampling
σmin hyper-parameters for structure sampling
σmax hyper-parameters for structure sampling
ρ hyper-parameters for structure sampling
γ0 hyper-parameters for structure sampling
γmin hyper-parameters for structure sampling
λ hyper-parameters for structure sampling
η hyper-parameters for structure sampling
t a sampled timestep
T the total number of timesteps for our sequence and structure diffusion training
mt the mask rate for sequence diffusion at timstep t

{knoisy
i } noisy sequence

{kdenoised
i } denoised sequence
{xGT

l } given ground-truth co-crystal structure
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Table S4: Mapping of referenced modules in this paper to AlphaFold3’s algorithms.

Module AF3 Algorithm
InputEmbedder Algorithm 2
TemplateModule Algorithm 16

MSAModule Algorithm 8
PairFormerStack Algorithm 17

DiffusionConditioning Algorithm 21
AtomAttentionEncoder Algorithm 5
DiffusionTransformer Algorithm 23

AtomAttentionDecoder Algorithm 6
DiffusionModule Algorithm 20

CentreRandomAugmentation Algorithm 19
RigidAlign Algorithm 28
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PDB ID: 9e6k
Heavy Chain: H
Light Chain: L
Antigen: C
Ground-truth H3: GWLDV
Predicted H3: SWMDV
H3-RMSD: 0.79
TM-score: 98.57

PDB ID: 9df0
Heavy Chain: H
Light Chain: L
Antigen: A
Ground-truth H3: KIVNWFDP
Predicted H3: QVINWFDP
H3-RMSD: 0.70
TM-score: 98.29

PDB ID: 8uky
Heavy Chain: H
Light Chain: L
Antigen: C
Ground-truth H3: PSLYGSFDY
Predicted H3: PSLYNSFDY
H3-RMSD: 0.90
TM-score: 99.40

PDB ID: 8tq7
Heavy Chain: F
Light Chain: G
Antigen: C
Ground-truth H3: STAAWFPY
Predicted H3: STDAWFAY
H3-RMSD: 1.31
TM-score: 98.62

Ground-truth Predicted

Figure S3: Examples of generated typical antibodies with simultaneously designed CDRs.
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PDB ID: 8tzu
Heavy Chain: C
Antigen: B
Ground-truth H3: SYLSLNFPDDL
Predicted H3: SYLSVNFPDDF
H3-RMSD: 2.31
TM-score: 94.14

PDB ID: 9eot
Heavy Chain: B
Antigen: A
Ground-truth H3: DLYSYGTRDVADFGS
Predicted H3: DLYSYATRDLSDFDD
H3-RMSD: 2.14
TM-score: 94.44

PDB ID: 9fvb
Heavy Chain: C
Antigen: A
Ground-truth H3: DHFHVTHRKYDY
Predicted H3: DRFHVTNRQYDY
H3-RMSD: 2.72
TM-score: 95.66 

Ground-truth Predicted

PDB ID: 8qz6
Heavy Chain: B
Antigen: A
Ground-truth H3: LRRKAEYGSRSIADFDS
Predicted H3: MRRTAEYSSRSMSDFDS
H3-RMSD: 2.77
TM-score:93.19

Figure S4: Examples of predicted nanobody structures using sequences with unknown CDRs as
input.

PDB ID: 8r80
Heavy Chain: H
Light Chain: L
Antigen: R
RMSD: 1.39
TM-score: 97.02

PDB ID: 8v4f
Heavy Chain: B
Light Chain: D
Antigen: A
RMSD: 1.35
TM-score: 91.67

PDB ID: 8x0x
Heavy Chain: G 
Light Chain: K
Antigen: A
RMSD: 1.68
TM-score: 95.43

PDB ID: 8ywx
Heavy Chain: E
Light Chain: D
Antigen: A
RMSD: 2.39
TM-score: 91.24

Predicted Antibody Predicted AntigenGround-truth

Figure S5: Examples of predicted antibody-antigen complex structure using complete sequences.
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