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Abstract
Compositionality, the notion that the meaning of an expression is constructed from the
meaning of its parts and syntactic rules, permits the infinite productivity of human language.
For the first time, artificial language models (LMs) are able to match human performance in
a number of compositional generalization tasks. However, much remains to be understood
about the computational mechanisms underlying these abilities. We take a geometric
approach to this problem by relating the degree of compositionality in data to the intrinsic
dimensionality of their representations under an LM, a measure of feature complexity. We
show that the degree of dataset compositionality is reflected in representations’ intrinsic
dimensionality, and that the relationship between compositionality and geometric complexity
arises due to learned linguistic features over training. Overall, our results highlight that
linear and nonlinear dimensionality measures capture different and complementary views of
data complexity.

1. Introduction

By virtue of linguistic compositionality, few syntactic rules and a finite lexicon can generate
an unbounded number of sentences (Chomsky, 1957). That is, language, though seemingly
high-dimensional, can be explained using relatively few degrees of freedom. If an LM is a
good model of language, we expect its internal representations to exhibit the low-dimensional
and compositional structure of the latter. That is, representations should reflect the manifold
hypothesis, or the notion that real-life, high-dimensional data lie on a low-dimensional
manifold (Goodfellow et al., 2016). The dimension of this manifold, or intrinsic dimension
(ID), is then the minimal number of degrees of freedom required to describe it without
information loss (Campadelli et al., 2015).

The manifold hypothesis has been attested for linguistic representations: LMs compress
inputs to an ID orders-of-magnitude lower than their extrinsic dimension (Cai et al., 2021;
Cheng et al., 2023; Valeriani et al., 2023), yet, it is unknown whether ID reflects linguistic
compositionality. In controlled experiments on the Pythia family of language models (Bider-
man et al., 2023) and a carefully designed synthetic dataset, we provide the first experimental
insights into the relationship between linguistic compositionality and representational ID. We
show, over the course of LM training, that (1) LMs represent their inputs on low-dimensional
manifolds, (2) representational ID reflects the degree of input compositionality over training,
and (3) the time-evolution of ID tracks a phase transition in linguistic competence.

2. Setup

Models We evaluate pre-trained Transformer-based LMs of sizes ∈ {70m, 140m, 1.4b, 6.9b,
12b} from the Pythia family (Biderman et al., 2023). Models were trained on the causal
language modeling task on The Pile, a natural language corpus comprising encyclopedic text,
books, social media, code, and reviews (Gao et al., 2020).
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Figure 1: Mean dimensionality over model size. Mean nonlinear Id (left) and linear
d (right) over layers is shown for increasing LM hidden dimension D. While the
nonlinear Id does not depend on extrinsic dimension D (flat lines), PCA d scales
roughly linearly in D. Curves are averaged over 5 random splits, shown ± 1 SD.

Dataset We construct a stimulus dataset of sentences from an artificial grammar (details
in Appendix D). To do so, we set 12 semantic categories and randomly sample a 50-word
vocabulary for each, where categories’ vocabularies are disjoint. Categories include 5 adjective
types (quality, nationality, size, color, texture), 2 noun types (job, animal) and 1 verb type.
We use a fixed syntax by ordering the categories:

The [quality1.ADJ][nationality1.ADJ][job1.N] [action1.V] the [size1.ADJ][texture.ADJ]
[color.ADJ][animal.N] then [action2.V] the [size2.ADJ][quality2.ADJ][nationality2.ADJ]
[job2.N].

We modify the grammar to control the degree of compositionality. In particular, we are
interested in two types of compositionality: (1) combinatorial dataset complexity, where a
dataset is more compositional if it contains more unique word combinations; (2) sentence-
level compositional semantics, where sentence meaning is composed, via syntax, from word
meanings. To control for dataset compositionality, we couple the values of k word positions
for k = 1 · · · 4. When k positions are coupled, the sequence’s atomic units are sets of k
contiguous words, thus, lower k produces a more compositional dataset. Second, to investigate
compositional semantics, we randomly shuffle the words in each sequence. LM behavior on
syntactically sane vs. shuffled sequences then proxies compositional vs. lexical-only semantics.

Dimensionality estimation We are interested in whether the geometry of representations
reflects the degree of input compositionality. Because sequence lengths may vary, we consider
only the last token representation, as it is the only to attend to the entire context, in the
Transformer’s residual stream (Elhage et al., 2021). Then, for each layer’s representation, we
compute both a nonlinear and a linear measure of dimensionality, which have key conceptual
differences. The nonlinear Id, computed with the TwoNN estimator (Facco et al., 2017),
is the number of degrees of freedom or latent features needed to describe the underlying
representation manifold (Campadelli et al., 2015; Ansuini et al., 2019). This differs from
the linear effective dimension d, computed with PCA (Jolliffe, 1986), which is that of the
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Figure 2: Training dynamics of dimensionality. For TwoNN Id (top) and PCA d
(bottom); left: Mean Id at different timepoints of training for sane vs. shuffled
examples with different coupling k over the layers (6.9b model). Id difference of
shuffled examples with varying k diminishes as the training persists. Right: Id
difference between coupling k = 1, k = 4 across training, and varying model size.

minimal linear subspace which explains representations’ variance up to a threshold. See
Appendix C for details about the dimensionality measures used.

3. Results

Nonlinear and linear ID scale differently with model size Models represent inputs on
a nonlinear manifold with orders-of-magnitude lower dimension than the ambient dimension
(Id ∼ O(10), see Figure 1 left). Moreover, larger models exhibit higher representational
dimensionality, but the scaling is not uniform. Figure 1 shows the linear d to scale linearly
with hidden dimension D, but nonlinear Id to instead stabilize to the mentioned range O(10)
regardless of extrinsic dimension. This result highlights key differences in how linear and
nonlinear dimensions are recruited: LMs globally distribute representations to occupy d ∝ D
dimensions of the space, but locally constrains their shape to a low-dimensional (Id) manifold.

Representational ID reflects input compositionality Representational dimensionality
preserves relative data combinatorial complexity. In Figure 1, for both sane (solid curves) and
shuffled (dotted curves) settings, both Id and d increase predictably with input complexity:
the highest curves correspond to the 1-coupled dataset, or 12 degrees of freedom, and the
lowest denote the 4-coupled dataset, or 3 degrees of freedom. Now, turning to sequence-level
compositional semantics, Figure 1 also shows the mean dimensionality over layers for sane
and shuffled settings (layerwise results in Figure F.1). Nonlinear and linear dimensionalities
show opposing patterns: compared to sane text, shuffled text Id collapses to a low range,
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while d increases. We interpret this opposition as in Recanatesi et al. (2021), who argue that
predictive coding requires the model to both encode the vast space of inputs, exerting upward
pressure on representational complexity, as well as extract latent semantic features to support
prediction, exerting downward pressure on complexity. Recanatesi et al. (2021) as well as
our results suggest that the first pressure expands the global linear representation space
Rd, while the second compresses representations to a Id-dimensional nonlinear manifold. In
our setting, shuffling words in a length-l sequence increases the implied input space as ∝ l!,
increasing d. But, shuffling destroys sequence semantics, exerting a downward pressure on Id.

Figure 3: Phase transition in ID and task
performances. Top: Id devel-
opment of Pythia-6.9B over pre-
training across layers. Bottom: Zero-
shot task performance across pre-
training.

Geometry reflects learned semantic fea-
tures The relationship between dimension-
ality and data combinatorial complexity, con-
trolled by k, for sane text is not an emergent
feature over training. In Figure 2 (left), the
inverse relationship between k and both Id
and d is present throughout training. But,
the reason for this relation differs at the start
and end: in shuffled text, where sequence-
level semantics are not present, the rela-
tionship between k and dimensionality is
salient at the beginning and greatly dimin-
ishes by the end. Together, these demon-
strate an inductive bias of the initialized
LM architecture to preserve input complex-
ity in its representations. Then, over train-
ing, differences in dimensionality may be
increasingly explained by linguistic features
beyond the surface distribution of inputs.
We claim that higher-level semantic process-
ing explains the correspondence between rep-
resentational and input complexity by the end of training. Figure 3 plots the Id on the
k = 1 dataset and the zero-shot performance on linguistic tasks requiring complex semantic
understanding (see Appendix E for task details). Resonating with Chen et al. (2024), the Id
(Figure 3 top) decreases sharply around checkpoint 103 and then re-distributes, marking a
phase of rapidly improving linguistic competence (bottom). It is also at checkpoint 103 that,
in Figure 2 right, (1) ∆Id between the k = 1 and k = 4 dataset collapses in the shuffled
setting; (2) Id stabilizes for different model size. These previously mentioned markers of
semantic feature extraction coincide with increased linguistic competence during training.

Discussion We have studied LM compositionality from a geometric and dynamic perspec-
tive. Using a carefully designed synthetic dataset, we found representational complexity to
reflect input compositionality superficially at the start of training and semantically by the
end. Crucially, nonlinear complexity measures have been underexplored in the literature
compared to linear ones; we demonstrate their empirical differences, highlighting a need to
further investigate nonlinear measures to proxy feature learning in deep neural models.
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Appendix A. Computing resources

All experiments were run on a cluster with 12 nodes with 5 NVIDIA A30 GPUs and 48
CPUs each.

Extracting LM representations took a few wall-clock hours per model-dataset computation.
ID computation took approximately 0.5 hours per model-dataset computation. Taking
parallelization into account, we estimate the overall wall-clock time taken by all experiments,
including failed runs, preliminary experiments, etc., to be of about 10 days.

Appendix B. Assets

Pythia https://huggingface.co/EleutherAI/pythia-6.9b-deduped; license: apache-2.0

scikit-dimension https://scikit-dimension.readthedocs.io/en/latest/; license: bsd-
3-clause

PyTorch https://scikit-learn.org/; license: bsd

Appendix C. ID Estimation

We report the nonlinear Id using the popular TwoNN estimator of ?, and we estimate the
linear effective dimensionality d using Principal Component Analysis (Jolliffe, 1986) with a
variance cutoff of 99%. Though in the main paper we focus on TwoNN and PCA, we also
tested the Maximum Likelihood Estimator of (Levina and Bickel, 2004) and the Participation
Ratio (Recanatesi et al., 2021). For mathematical details, see below:

TwoNN Estimator A number of methods have been proposed to estimate the nonlinear
ID of high-dimensional point clouds (Campadelli et al., 2015). State-of-the-art ID estimators
work by exploiting known relationships between points in d-dimensions, then fitting d using
maximum likelihood estimation from data. We considered the commonly used TwoNN
estimator of ?, which has been found to highly correlate to other state-of-the-art estimators
(Cheng et al., 2023; Campadelli et al., 2015).

The TwoNN method works as follows. In brief, points on the underlying manifold are
assumed to follow a locally homogeneous Poisson point process. Local, in this case, refers to
neighborhoods about each point x which encompass x’s first and second nearest neighbors.
Let r

(i)
k be the Euclidean distance between point xi and its kth nearest neighbor. Then,

under the mentioned assumptions, the distance ratios µi := r
(i)
1 /r

(i)
2 follow the cumulative

distribution function F (µ) = 1− µ−Id . Finally, Id is numerically estimated from data.

Maximum Likelihood Estimator In addition to TwoNN, we considered Levina and
Bickel (2004)’s Maximum Likelihood Estimator (MLE), a similar, nonlinear measure of
Id. MLE has been used in prior works on representational geometry such as (Cai et al.,
2021; Cheng et al., 2023; Pope et al., 2021), and similarly models the number of points in
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a neighborhood around a reference point x to follow a Poisson point process. For details
we refer to the original paper (Levina and Bickel, 2004). Like past work (?Cheng et al.,
2023), we found MLE and TwoNN to be highly correlated, producing results that were nearly
identical: compare Figure 1 left to Figure F.3 left, and Figure F.1 top to Figure F.2 top).

Participation Ratio For our primary linear measure of dimensionality d, we computed
PCA and took the number of components that explain 99% of the variance. In addition
to PCA, we computed the Participation Ratio (PR), defined as (

∑
i λi)

2/(
∑

i λ
2
i ) (Gao

et al., 2017). We found PR to give results that were incongruous with intuitions about
linear dimensionality. In particular, it produced a lower dimensionality estimate than the
nonlinear estimators we tested; see, e.g., Figure F.3, where the PR-d for sane text is less
than that of TwoNN. This contradicts the mathematical relationship that Id ≤ d ≤ D. This
may be because, empirically, PR-d corresponded to explained variances of 60− 80%, which
are inadequate to describe the bounding linear subspace for the representation manifold.
Therefore, while we report the mean PR-d over model size in Figure F.3 and the dimensionality
over layers in Figure F.2 for completeness, we do not attempt to interpret them.

Appendix D. Toy Grammar

The grammar is composed of sentences of the form

The [quality1.ADJ][nationality1.ADJ][job1.N] [action1.V] the [size1.ADJ][texture.ADJ]
[color.ADJ][animal.N] then [action2.V] the [size2.ADJ][quality2.ADJ][nationality2.ADJ]
[job2.N].

The syntax is chosen so that sentences are grammatical and that adjective order complies
with the accepted order for English (Dixon, 1976). Although the syntactic structure and
vocabulary items are likely seen during training, words are sampled independently for
each category without considering the sentence’s global semantic coherence. Therefore,
sentences are unlikely seen during training. When encountering them for the first time, a
frozen LM must successfully construct their meanings from the meanings of their parts, or
compositionally generalize.

Each category, colored and enclosed in brackets, is sampled from a vocabulary of 50
possible words, listed in the table below:

Category Words

job1 teacher, doctor, engineer, chef, lawyer, plumber, electrician,
accountant, nurse, mechanic, architect, dentist, programmer,
photographer, painter, firefighter, police, pilot, farmer,
waiter, scientist, actor, musician, writer, athlete, designer,
carpenter, librarian, journalist, psychologist, gardener,
baker, butcher, tailor, cashier, barber, janitor, receptionist,
salesperson, manager, tutor, coach, translator, veterinarian,
pharmacist, therapist, driver, bartender, security, clerk
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job2 banker, realtor, consultant, therapist, optometrist,
astronomer, biologist, geologist, archaeologist,
anthropologist, economist, sociologist, historian,
philosopher, linguist, meteorologist, zoologist, botanist,
chemist, physicist, mathematician, statistician, surveyor,
pilot, steward, dispatcher, ichthyologist, oceanographer,
ecologist, geneticist, microbiologist, neurologist, cardiologist,
pediatrician, surgeon, anesthesiologist, radiologist,
dermatologist, gynecologist, urologist, psychiatrist,
physiotherapist, chiropractor, nutritionist, personal trainer,
yoga instructor, masseur, acupuncturist, paramedic, midwife

animal dog, cat, elephant, lion, tiger, giraffe, zebra, monkey, gorilla,
chimpanzee, bear, wolf, fox, deer, moose, rabbit, squirrel,
raccoon, beaver, otter, penguin, eagle, hawk, owl, parrot,
flamingo, ostrich, peacock, swan, duck, frog, toad, snake,
lizard, turtle, crocodile, alligator, shark, whale, dolphin,
octopus, jellyfish, starfish, crab, lobster, butterfly, bee, ant,
spider, scorpion

color red, blue, green, yellow, purple, orange, pink, brown, gray,
black, white, cyan, magenta, turquoise, indigo, violet,
maroon, navy, olive, teal, lime, aqua, coral, crimson, fuchsia,
gold, silver, bronze, beige, tan, khaki, lavender, plum,
periwinkle, mauve, chartreuse, azure, mint, sage, ivory,
salmon, peach, apricot, mustard, rust, burgundy, mahogany,
chestnut, sienna, ochre

size1 big, small, large, tiny, huge, giant, massive, microscopic,
enormous, colossal, miniature, petite, compact, spacious,
vast, wide, narrow, slim, thick, thin, broad, expansive,
extensive, substantial, boundless, considerable, immense,
mammoth, towering, titanic, gargantuan, diminutive,
minuscule, minute, hulking, bulky, hefty, voluminous,
capacious, roomy, cramped, confined, restricted, limited,
oversized, undersized, full, empty, half, partial

size2 lengthy, short, tall, long, deep, shallow, high, low, medium,
average, moderate, middling, intermediate, standard,
regular, normal, ordinary, sizable, generous, abundant,
plentiful, copious, meager, scanty, skimpy, inadequate,
sufficient, ample, excessive, extravagant, exorbitant, modest,
humble, grand, majestic, imposing, commanding, dwarfed,
diminished, reduced, enlarged, magnified, amplified,
expanded, contracted, shrunken, swollen, bloated, inflated,
deflated
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nationality1 American, British, Canadian, Australian, German, French,

Italian, Spanish, Japanese, Chinese, Indian, Russian,
Brazilian, Mexican, Argentinian, Turkish, Egyptian,
Nigerian, Kenyan, African, Swedish, Norwegian, Danish,
Finnish, Icelandic, Dutch, Belgian, Swiss, Austrian, Greek,
Polish, Hungarian, Czech, Slovak, Romanian, Bulgarian,
Serbian, Croatian, Slovenian, Ukrainian, Belarusian,
Estonian, Latvian, Lithuanian, Irish, Scottish, Welsh,
Portuguese, Moroccan, Algerian

nationality2 Vietnamese, Thai, Malaysian, Indonesian, Filipino,
Singaporean, Nepalese, Bangladeshi, Maldivian, Pakistani,
Afghan, Iranian, Iraqi, Syrian, Lebanese, Israeli, Saudi,
Emirati, Qatari, Kuwaiti, Omani, Yemeni, Jordanian,
Palestinian, Bahraini, Tunisian, Libyan, Sudanese,
Ethiopian, Somali, Ghanaian, Ivorian, Senegalese, Malian,
Cameroonian, Congolese, Ugandan, Rwandan, Tanzanian,
Mozambican, Zambian, Zimbabwean, Namibian, Botswanan,
New Zealander, Fijian, Samoan, Tongan, Papuan,
Marshallese

action1 feeds, walks, grooms, pets, trains, rides, tames, leashes,
bathes, brushes, adopts, rescues, shelters, houses, cages,
releases, frees, observes, studies, examines, photographs,
films, sketches, paints, draws, catches, hunts, traps, chases,
pursues, tracks, follows, herds, corrals, milks, shears, breeds,
mates, clones, dissects, stuffs, mounts, taxidermies,
domesticates, harnesses, saddles, muzzles, tags, chips,
vaccinates

action2 hugs, kisses, loves, hates, admires, respects, befriends,
distrusts, helps, hurts, teaches, learns from, mentors, guides,
counsels, advises, supports, undermines, praises, criticizes,
compliments, insults, congratulates, consoles, comforts,
irritates, annoys, amuses, entertains, bores, inspires,
motivates, discourages, intimidates, impresses, disappoints,
surprises, shocks, delights, disgusts, forgives, resents, envies,
pities, understands, misunderstands, trusts, mistrusts,
betrays, protects
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quality1 good, bad, excellent, poor, superior, inferior, outstanding,
mediocre, exceptional, sublime, superb, terrible, wonderful,
awful, great, horrible, fantastic, dreadful, marvelous,
atrocious, splendid, appalling, brilliant, dismal, fabulous,
lousy, terrific, abysmal, incredible, substandard, amazing,
disappointing, extraordinary, stellar, remarkable,
unremarkable, impressive, unimpressive, admirable,
despicable, praiseworthy, blameworthy, commendable,
reprehensible, exemplary, subpar, ideal, flawed, perfect,
imperfect

quality2 acceptable, unacceptable, satisfactory, unsatisfactory,
sophisticated, insufficient, adequate, exquisite, suitable,
unsuitable, appropriate, inappropriate, fitting, unfitting,
proper, improper, correct, incorrect, right, wrong, accurate,
inaccurate, precise, imprecise, exact, inexact, flawless,
faulty, sound, unsound, reliable, unreliable, dependable,
undependable, trustworthy, untrustworthy, authentic, fake,
genuine, counterfeit, legitimate, illegitimate, valid, invalid,
legal, illegal, ethical, unethical, moral, immoral

texture smooth, rough, soft, hard, silky, coarse, fluffy, fuzzy, furry,
hairy, bumpy, lumpy, grainy, gritty, sandy, slimy, slippery,
sticky, tacky, greasy, oily, waxy, velvety, leathery, rubbery,
spongy, springy, elastic, pliable, flexible, rigid, stiff, brittle,
crumbly, flaky, crispy, crunchy, chewy, stringy, fibrous,
porous, dense, heavy, light, airy, feathery, downy, woolly,
nubby, textured

Appendix E. Benchmark tasks

Here we briefly summarize the benchmark tasks that we use to evaluate Pythia checkpoints
as described in Section 4.3.

WinoGrande WinoGrande (Sakaguchi et al., 2021) is a dataset designed to test common-
sense reasoning by building on the structure of the Winograd Schema Challenge (Levesque
et al., 2012). It presents sentence pairs with subtle ambiguities where understanding the
correct answer requires world knowledge and commonsense reasoning. It challenges models
to differentiate between two possible resolutions of pronouns or references, making it a
benchmark for evaluating an AI’s ability to understand context and reasoning.

LogiQA LogiQA (Liu et al., 2020) is an NLP benchmark for evaluating logical reasoning
abilities in models. It consists of multiple-choice questions derived from logical reasoning
exams for human students. The questions test various forms of logical reasoning, such as
deduction, analogy, and quantitative reasoning, making it ideal for assessing how well AI can
handle structured logical problems.
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SciQ SciQ (Welbl et al., 2017) is a dataset focused on scientific question answering, based
on material from science textbooks. It features multiple-choice questions related to science
topics like biology, chemistry, and physics. The benchmark is designed to test a model’s
ability to comprehend scientific information and answer questions using factual knowledge
and reasoning.

ARC Challenge The ARC (AI2 Reasoning Challenge) Challenge Set (Clark et al., 2018)
is a benchmark designed to test models on difficult, grade-school-level science questions. It
presents multiple-choice questions that are challenging due to requiring complex reasoning,
inference, and background knowledge beyond simple retrieval-based approaches. It is a
tougher subset of the larger ARC dataset.

PIQA PIQA (Physical Interaction QA) (Bisk et al., 2020) is a benchmark designed to
test models on physical commonsense reasoning. The questions require understanding basic
physical interactions, like how objects interact or how everyday tasks are performed. It
focuses on scenarios that involve intuitive knowledge of the physical world, making it a useful
benchmark for evaluating practical commonsense in models.

ARC Easy ARC Easy is the easier subset of the AI2 Reasoning Challenge, consisting
of grade-school-level science questions that require less complex reasoning compared to the
Challenge set. This benchmark is meant to evaluate models’ ability to handle straightforward
factual and retrieval-based questions, making it more accessible for baseline NLP models.

LAMBADA LAMBADA (Paperno et al., 2016) is a reading comprehension benchmark
where models must predict the last word of a passage. The challenge lies in the fact that
understanding the entire context of the passage is necessary to guess the correct word. This
benchmark tests a model’s long-range context comprehension and coherence skills in natural
language.

Appendix F. Additional Results
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Figure F.1: Dimensionality over layers. TwoNN nonlinear Id (top) and PCA linear d
(bottom) over layers are shown for all sizes (left to right). Each color corresponds
to a coupling length k ∈ 1 · · · 4. Solid curves denote sane sequences, and dotted
curves denote shuffled sequences. For all models, lower k results in higher Id and
d for both normal and shuffled settings. For all models, shuffling results in lower
Id but higher d. Curves are averaged over 5 random seeds, shown with ±1 SD.
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Figure F.2: Other dimensionality metrics over layers. MLE nonlinear Id (top) and
PR linear d (bottom) over layers are shown for all model sizes (left to right).
Each color corresponds to a coupling length k ∈ 1 · · · 4. Solid curves denote
sane sequences, and dotted curves denote shuffled sequences. For all models,
lower k results in higher Id for both normal and shuffled settings. For all models,
shuffling results in lower Id. The PR-d produced nonsensical results, with linear
dimensionality higher than nonlinear dimensionality. Curves are averaged over 5
random seeds, shown with ±1 SD.
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Figure F.3: Mean dimensionality over model size (other metrics). Mean nonlinear
Id computed with MLE (left) and linear d computed with PR (right) over layers
is shown for increasing LM hidden dimension D. MLE Id does not depend on
extrinsic dimension D (flat lines). PR d produces nonsensical values, higher than
the nonlinear Id. Curves are averaged over 5 random seeds, shown with ± 1 SD.
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Figure F.4: ID tracks task performance, additional results. Nonlinear Id (top) and
linear d (bottom) over training is shown for sane (left) and shuffled (right) text,
for the 1-coupled setting. Each curve is one layer of the LM (yellow is later,
purple is earlier). All settings in [TwoNN, PCA]×[sane, shuffled] exhibit a phase
transition in representational dimensionality at around checkpoint 103, which
corresponds to the sharp increase in task performance. In the nonlinear case (top
row), the difference between layers’ Id is low at the end of training for shuffled
text, and high for sane text. This suggests LM learns to perform meaningful and
specialized processing over layers. The difference between layers’ d (bottom row)
at the end of training is, conversely, high for shuffled and lower for sane text.
This is consistent with our interpretation of d as capturing implied dataset size.
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