
SEER: Facilitating Structured Reasoning and Explanation via
Reinforcement Learning

Anonymous ACL submission

Abstract

Elucidating the reasoning process with struc-001
tured explanations from question to answer is002
crucial, as it significantly enhances the inter-003
pretability, traceability, and trustworthiness of004
question-answering (QA) systems. However,005
structured explanations demand models to per-006
form intricately structured reasoning, which007
poses great challenges. Most existing meth-008
ods focus on single-step reasoning through su-009
pervised learning, ignoring logical dependen-010
cies between steps. Moreover, existing rein-011
forcement learning (RL) based methods over-012
look the structured relationships, underutiliz-013
ing the potential of RL in structured reason-014
ing. In this paper, we propose SEER, a novel015
method that maximizes a structure-based return016
to facilitate structured reasoning and explana-017
tion. Our proposed structure-based return pre-018
cisely describes the hierarchical and branching019
structure inherent in structured reasoning, ef-020
fectively capturing the intricate relationships021
between different reasoning steps. In addition,022
we introduce a fine-grained reward function to023
meticulously delineate diverse reasoning steps.024
Extensive experiments show that SEER signif-025
icantly outperforms state-of-the-art methods,026
achieving an absolute improvement of 6.9%027
over RL-based methods on EntailmentBank, a028
4.4% average improvement on STREET bench-029
mark, and exhibiting outstanding efficiency and030
cross-dataset generalization performance1.031

1 Introduction032

Navigating machines to understand and articulate033

the thought process from posing a question to ar-034

riving at an answer has been a long-term pursuit035

in the AI community (McCarthy, 1959; Yu et al.,036

2023). Current QA explainable systems adeptly fur-037

nish brief supporting evidence (Rajani et al., 2019;038

DeYoung et al., 2020). However, they often fail to039

clarify the reasoning process from prior knowledge040

1Our code is available at https://anonymous.4open.
science/r/SEER-0B51.

Structured Explanation

ℎ: sturdy wood would be the best for making a table

Facts

𝑥𝑥1: wood is usually sturdy
𝑥𝑥2: a table is a kind of furniture
𝑥𝑥3: making furniture requires sturdy materials
𝑥𝑥4: wood is a kind of natural material

or

Corpus

𝑖𝑖1: wood is usually a sturdy natural material
𝑖𝑖2: making a table requires sturdy materials
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Figure 1: An example of structured explanation. Given
a hypothesis h (a declarative sentence derived from a
question-answer pair) and a set of facts (or corpus), the
goal is to generate a structured explanation, which delin-
eates the reasoning process from facts to the hypothesis.

to the derived answer. By elucidating the reasoning 041

process of answers generation from the language 042

models, we can greatly improve interpretability, 043

trustworthiness, and debuggability (Dalvi et al., 044

2021; Ribeiro et al., 2023). As illustrated in Fig- 045

ure 1, when generating answers for the question 046

"Which natural material is best for making a ta- 047

ble?", the reasoning process with structured expla- 048

nations, such as entailment trees (Dalvi et al., 2021) 049

or reasoning graphs (Ribeiro et al., 2023), explains 050

why "sturdy wood" is the best answer. 051

Deriving such complex structured explanations 052

poses a great challenge. Previous methods (Dalvi 053

et al., 2021; Tafjord et al., 2021) consider struc- 054

tured explanations as linearized sequences and 055

generate the entire reasoning process at one go. 056

However, these methods lack controllability and 057

may hallucinate unreliable reasoning steps. To ad- 058
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Method Training Emphasis Runtime Return

RLET multi-step reasoning 9.34s chained
FAME single-step reasoning 30.77s /
Ours structured reasoning 3.91s structured

Table 1: Comparative analysis of different methods:
RL-based method, RLET (Liu et al., 2022), supervised
method, FAME (Hong et al., 2023), and our approach.

dress these concerns, recent studies (Hong et al.,059

2022; Neves Ribeiro et al., 2022; Yang et al.,060

2022) decompose structured explanations and fo-061

cus on single-step reasoning via supervised learn-062

ing. Nevertheless, this kind of approach may not063

always yield optimal results as they fail to con-064

sider the interdependencies between different steps.065

FAME (Hong et al., 2023) attempts to compensate066

for these shortcomings by leveraging Monte-Carlo067

planning (Kocsis and Szepesvári, 2006), which068

significantly increases the running time and inad-069

vertently explores numerous ineffective steps (as070

shown in Table 1). Furthermore, FAME still con-071

centrates on isolated single-step reasoning, which072

lacks support for structured reasoning. As a gen-073

eral framework for solving sequential decision-074

making problems, reinforcement learning (RL) is075

employed in RLET (Liu et al., 2022) to enhance076

multi-step reasoning. However, RLET defines the077

return (a.k.a. cumulative reward) using the stan-078

dard chain structure, thus lacking the ability to rep-079

resent the tree (Dalvi et al., 2021) or graph (Ribeiro080

et al., 2023) logical structures inherent in struc-081

tured reasoning. As a result, the potential of RL for082

structured reasoning is not fully exploited.083

To address the above issues, we propose SEER, a084

novel method that facilitates Structured rEasoning085

and Explanation via Reinforcement learning. In086

structured reasoning, we observe that the logical087

dependencies between different steps no longer fol-088

low a chained trajectory but instead adhere to the089

inherent tree or graph structure. Therefore, we090

propose the structure-based return to precisely de-091

scribe a tree or graph logical structure, effectively092

capturing the complex interdependencies between093

different steps. Additionally, we refine the reward094

function to meticulously delineate diverse reason-095

ing steps, specifically targeting redundant ones that096

do not contribute to the final structured explana-097

tions. Through experiments in Sec. 5.4, we find098

that redundant steps represent the exploration in099

the environment, and appropriate penalization con-100

tributes to improved reasoning performance.101

Our contributions are summarized as follows: 102

•We propose SEER, a novel RL-based method that 103

facilitates structured reasoning and explanation. To 104

our knowledge, SEER is the first general frame- 105

work that accommodates scenarios of chained, tree- 106

based, and graph-based structured reasoning. 107

•We propose the structure-based return to address 108

the intricate interdependencies among different rea- 109

soning steps, effectively stimulating the potential 110

of RL in structured reasoning. 111

•We conduct extensive experiments to demonstrate 112

the superiority of SEER over state-of-the-art meth- 113

ods. Our method facilitates the effectiveness and 114

efficiency of structured reasoning and exhibits out- 115

standing cross-dataset generalization performance. 116

2 Related Work 117

2.1 Explanation for Question Answering 118

Extensive research has delved into various forms of 119

interpretability in QA systems (Thayaparan et al., 120

2020; Wiegreffe and Marasovic, 2021; Lamm et al., 121

2021). Different from the free-form texts suscepti- 122

ble to hallucinations (Rajani et al., 2019; Wei et al., 123

2022) or the rationales that only provide supporting 124

evidence (DeYoung et al., 2020; Valentino et al., 125

2021), the structured explanations, such as the en- 126

tailment trees (Dalvi et al., 2021) and reasoning 127

graphs (Ribeiro et al., 2023), offer a novel way to 128

generate explanations. These structured methods 129

utilize tree or graph formats to clearly outline what 130

information is used and how it is combined to reach 131

the answer. Despite the remarkable interpretabil- 132

ity, the intricately structured reasoning also poses 133

significant challenges (Yu et al., 2023; Xu et al., 134

2023). 135

2.2 Natural Language Reasoning 136

Natural language reasoning, a process that inte- 137

grates multiple knowledge to derive new conclu- 138

sions, has attracted significant attention (Saha et al., 139

2020; Tafjord et al., 2021; Sanyal et al., 2022). 140

Among these, the entailment trees and reasoning 141

graphs, which involve structured reasoning and 142

reasoning path generation tasks, present consid- 143

erable challenges (Yu et al., 2023). Dalvi et al. 144

(2021) attempts to transform structured reasoning 145

into a linearized sequence to fit generative mod- 146

els, which may generate hallucinations and invalid 147

reasoning. To alleviate this issue, recent stud- 148

ies (Neves Ribeiro et al., 2022; Hong et al., 2022; 149

Neves Ribeiro et al., 2022; Hong et al., 2023) per- 150
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form premises selection and reasoning in a step-by-151

step manner. Nevertheless, these methods decom-152

pose structured reasoning and solely leverage iso-153

lated single-step supervision to train models. This154

kind of approach neglects the interdependencies be-155

tween different steps, which may not always yield156

optimal results. Therefore, in light of the advance-157

ments of RL in various reasoning tasks (Poesia158

et al., 2021; Le et al., 2022), RLET (Liu et al.,159

2022) attempts to incorporate RL into the entail-160

ment trees. However, it has to enumerate all poten-161

tial actions, which is unacceptable for practical sce-162

narios. Furthermore, RLET still defines returns in163

chained trajectories to facilitate multi-step reason-164

ing, which is not suitable for tree/graph-based struc-165

tured reasoning. In contrast, our SEER showcases166

superior adaptability to chained, tree-based, and167

graph-based structured reasoning via the structure-168

based return, which significantly enhances both the169

reasoning performance and efficiency.170

3 Method171

3.1 Task Formulation172

As illustrated in Figure 1, the input of the task com-173

prises a set of facts X = {x1, x2, . . . , xn} and a174

hypothesis h. The output of the task is the reason-175

ing steps in a structured form, such as an entailment176

tree T or a reasoning graph2. The entailment tree177

T consists of tree-structured reasoning, whose leaf178

nodes are selected from the relevant facts (x∗) and179

intermediate nodes represent the derived interme-180

diate conclusions (i∗). We represent the annotated181

ground-truth entailment tree as Tgold, with its leaf182

nodes signifying Xgold.183

3.2 Overview184

We model the structured reasoning as a reinforce-185

ment learning (RL) task, the goal of which is to186

learn the optimal reasoning policy. Figure 2 il-187

lustrates the overall framework of SEER, which188

mainly includes trajectory rollout and policy opti-189

mization. For trajectory rollout, we generate tra-190

jectories based on the current policy, and each tra-191

jectory is produced iteratively until the stopping192

criteria are satisfied (Appendix C.1). For policy193

optimization, we assign rewards to the collected194

2Although the reasoning graph (Ribeiro et al., 2023) is a
more general structure, to be consistent with the majority of
previous work, we use the entailment tree (Dalvi et al., 2021)
as an example to formalize the task and illustrate our method.
Our proposed method is also applicable to the task described
in the form of a reasoning graph.

trajectories and update both the policy and critic 195

using the structure-based return. Algorithm 1 (Ap- 196

pendix A) outlines our proposed method for further 197

reference. 198

3.3 Fine-grained Component of SEER 199

State At reasoning step t, we define the state 200

st = {h, Pt, Ct} as a combination of the hypoth- 201

esis h, existing reasoning steps Pt and candidate 202

sentences Ct. Pt contains the reasoning steps so far, 203

and Ct is the set of sentences that can be selected 204

as premises. Each sentence in Ct is either unused 205

facts or intermediate conclusions It generated by 206

previous steps, i.e., Ct = {X ∪ It\Ut}, where Ut 207

is the set of used sentences. For the initial state, 208

s1 = {h, P1 = ∅, C1 = X}. 209

Action Given the state st, we consider two types 210

of actions at ∈ A(st): (1) "Reason: <premises>": 211

the entailment module is invoked to generate 212

a new intermediate conclusion it based on the 213

given <premises>. Here, <premises> are selected 214

from Ct. Then, the state is updated as follows: 215

Pt+1 = Pt ∪ {<premises> → it}, Ut+1 = Ut ∪ 216

{<premises>}, and It+1 = It ∪ {it}. (2) "End": 217

This action signifies the end of the reasoning pro- 218

cess and returns the trajectory τ . 219

Policy The action type "Reason: <premises>" in- 220

duces a large action space, since premises can be 221

any combination of sentences from the candidate 222

set C. To enumerate the probabilities of all poten- 223

tial actions and then sample an action to execute, 224

previous studies (Liu et al., 2022; Hong et al., 2022) 225

limit combinations to pairwise premises, such that 226

the action space is reduced to
(
n
2

)
, where n is the 227

size of the set C. However, such a simplification 228

incurs some potential drawbacks. First, as the num- 229

ber of candidate sentences increases, the number 230

of potential actions grows exponentially. This ren- 231

ders them impractical for complex reasoning tasks 232

with limited computational resources. Second, by 233

restricting combinations to pairs only, the interde- 234

pendencies among multiple premises are ignored, 235

which may limit the effectiveness and richness of 236

the derived conclusions. 237

To address this issue, we adopt a generative 238

model to represent the policy π, which can directly 239

sample from the action space A(st). Using the 240

generative model essentially expands the action 241

space where the combinations of premises can be 242

arbitrary. This enables the policy to extensively 243
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Figure 2: Overall framework of SEER. For trajectory rollout, action generation (Policy) and conclusion generation
(entitlement) are performed alternately. The orange area details the reasoning process from st to st+1. For policy
optimization, the reward module assigns rewards and updates the policy and critic based on tree or graph structures.

explore better actions during RL training, not lim-244

ited to paired premises. Further, to speed up RL245

training, we first generate the top-k actions using246

policy π:247

a1t , a
2
t , ..., a

k
t ∼ π(a|st), a ∈ A(st), (1)248

where the input is a linearized state st (i.e., the con-249

catenation of h, Pt, and Ct). Then, we proceed with250

re-normalization to form an appropriate probabil-251

ity distribution over the top-k actions, and sample252

from it to select the action at to be performed in253

the current reasoning step, that is,254

π′(ait|st) =
π(ait|st)∑k
j=1 π(a

j
t |st)

, i = 1, ..., k, (2)255

256
at ∼ π′(a|st), a ∈ {a1t , a2t , ..., akt }. (3)257

Entailment Module If the action at is "Reason:258

<premises>", we invoke the entailment module to259

derive the intermediate conclusion to obtain the260

next state. The entailment module is also a gener-261

ative model with its input being <premises>. Fol-262

lowing (Hong et al., 2022; Liu et al., 2022), we fine-263

tune the entailment model in a supervised manner264

and freeze the parameters during the reinforcement265

learning process, as shown in Figure 2.266

Reward To evaluate the correctness of the entail-267

ment tree, Dalvi et al. (2021) proposed an align-268

ment algorithm based on Jaccard similarity to align269

each intermediate node of the predicted tree Tpred270

with Tgold. However, different from the fully super-271

vised learning methods, we observe that during the272

RL process, the policy explores different actions to273

identify the optimal reasoning process, inevitably 274

attempting some redundant steps that do not con- 275

tribute to reaching the final hypothesis. Existing 276

RL-based work (Liu et al., 2022) simply treats re- 277

dundant steps with the same penalty as erroneous 278

steps. This simplification may negatively affect 279

the learning process which discourages necessary 280

exploration in the action space. Furthermore, it 281

lacks detailed feedback to guide the policy toward 282

optimal policy, as it fails to differentiate between 283

innocuous actions (redundant steps) and incorrect 284

actions (erroneous steps). 285

To this end, we propose a fine-grained reward 286

function that assigns different reward values for cor- 287

rect steps, erroneous steps, and redundant steps, as 288

shown in Equation 4. For a trajectory τ , we assume 289

that the last intermediate conclusion is our pre- 290

dicted hypothesis since the policy deems it should 291

End here. Then, we backtrack to construct the pre- 292

dicted entailment tree Tpred (see Appendix C.6 for 293

more details). Note that there might be some steps 294

not participating in Tpred, which are regarded as 295

redundant steps. Then, as illustrated in Figure 5, 296

we consider steps that perfectly match via the align- 297

ment algorithm (Dalvi et al., 2021) as correct steps 298

and regard others as erroneous steps. 299

rt =


1, if perfectly match,
−0.5, if it /∈ Tpred,

−1, otherwise.

(4) 300

Critic To enhance training stability, we introduce 301

the critic to estimate the state-value function V (st). 302

The input of V (st) is a linearized state, and its 303
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output is a scalar representing the return (i.e., cu-304

mulative reward) when starting from state st. In305

the simplest case, the return is the chained sum of306

the rewards. Accordingly, one-step temporal differ-307

ence (TD) (Sutton, 1988) is often used to estimate308

V (st), which is updated by the TD-target:309

Gt = rt + γV (st+1), (5)310

where γ is the discount factor. However, in struc-311

tured reasoning, reasoning steps typically adhere to312

inherent tree (Dalvi et al., 2021) or graph (Ribeiro313

et al., 2023) structures, with the chained structure314

being merely a special case. Thus, Equation 5 just315

describes the chained multi-step reasoning, which316

may not effectively capture the intricate logical de-317

pendencies between steps in structured reasoning.318

Therefore, we propose the structure-based return,319

where the TD-target is expressed in a more general320

formulation:321

Ĝt = rt + γ
1

|P(st)|
∑

sj∈P(st)

V (sj), (6)322

where P(st) represents the parent node of state323

st in the entailment tree Tpred or reasoning graph.324

When st /∈ Tpred, P(st) = st+1. It can be seen that325

our structure-based return (Equation 6) adapts to326

structured reasoning involving chained, tree-based327

and graph-based structured scenarios. Especially,328

entailment tree is a special case of the reasoning329

graph, in which each state typically has only one330

parent node, and thus Equation 6 degenerates into331

Ĝt = rt + γV (P(st)). Furthermore, as shown in332

Figure 6 (Appendix E), for equivalent trajectories333

s1 → s2 → s3 → s4 and s2 → s1 → s3 → s4,334

previous method (Liu et al., 2022) would assign335

different returns for state s1 and s2, even though336

they represent the same tree in the end. Conversely,337

our method, by precisely delineating the intricate338

interdependencies between reasoning steps, consis-339

tently allocates the same return to any equivalent340

trajectories, thereby enhancing both stability and341

effectiveness.342

3.4 Optimization343

Our objective is to enhance the structured reason-344

ing capabilities of the policy through RL. To allevi-345

ate issues of training instability and sample ineffi-346

ciency in RL (Zhou et al., 2023; Roit et al., 2023),347

we employ the proximal policy optimization (PPO)348

algorithm (Schulman et al., 2017) to train the policy349

π (parameterized by θ), as follows: 350

Lπ = Et[min
( π′

θ(at|st)
π′
θold

(at|st)
Ât, clip

( π′
θ(at|st)

π′
θold

(at|st)
,

1− ϵ, 1 + ϵ
))

Ât + βE(π′
θ)],

(7) 351

where π′ represents the probabilities normalized by 352

Equation 2, θ and θold are parameters of the new 353

and old policies, ϵ is a hyperparameter defining the 354

clipping range, β is the entropy exploration coeffi- 355

cient, and E is the entropy bonus, which encourages 356

sufficient exploration: 357

E(π′
θ) = Eat∼πθ

[− log π′
θ(at|st)]. (8) 358

Futhermore, Ât is the estimate of the advantage 359

function for state st, defined as follows: 360

Ât = Ĝt − V (st). (9) 361

To accurately evaluate return and guide the pol- 362

icy towards better updates, we train the critic by 363

minimizing the difference between its prediction 364

and the TD-target: 365

LV = Et

[
(V (st)− Ĝt)

2
]
. (10) 366

Supervised Warm-up Incorporating the super- 367

vised warm-up strategy before RL offers a rela- 368

tively stable initial policy, which facilitates faster 369

adaptation to the environment, particularly for com- 370

plex reasoning tasks (Ramamurthy et al., 2023; Wu 371

et al., 2023). Therefore, we convert the structured 372

reasoning into single-step supervised data to warm 373

up the policy as follows: 374

Lwarmup = −
∑
i

log p(yi|st, y<i). (11) 375

where y is the golden action at st. 376

4 Experiments 377

4.1 Datasets 378

Tree-structured reasoning We conduct exper- 379

iments on EntailmentBank (Dalvi et al., 2021), 380

the first dataset that supports structured explana- 381

tion with entailment trees. Following (Hong et al., 382

2023), we also conduct experiments on Entailment- 383

BankQA (Tafjord et al., 2022), whose objective is 384

to reach the answer based on the entailment tree. 385

Graph-structured reasoning We conduct ex- 386

periments on the STREET benchmark (Ribeiro 387

et al., 2023) to assess the performance of graph- 388

structured reasoning. Please refer to Appendix B 389

for more details about the dataset statistics. 390
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4.2 Baselines391

For EntailmentBank, we compare with single-pass392

methods, such as EntailmentWriter (Dalvi et al.,393

2021), and step-by-step methods including MET-394

GEN (Hong et al., 2022), IRGR (Neves Ribeiro395

et al., 2022), RLET (Liu et al., 2022), NL-396

Proofs (Yang et al., 2022) and FAME (Hong et al.,397

2023). For EntailmentBankQA, we compare with398

Selection-Inference (SI) (Creswell and Shanahan,399

2022) and FAME (Hong et al., 2023). For the400

STREET benchmark, we compare with the method401

proposed in (Ribeiro et al., 2023). Furthermore, we402

conduct comparisons with GPT-4 (OpenAI, 2023)403

equipped with Chain-of-Thought (CoT) (Wei et al.,404

2022), Tree of Thought (ToT) (Yao et al., 2023a)405

and ReAct (Yao et al., 2023b).406

4.3 Implementation Details407

For a fair comparison3, the policy is built with a408

T5-large model (Raffel et al., 2020), while the critic409

is the encoder of T5-large combined with a MLP410

(tanh as the activation function). For a supervised411

warm-up, we set a learning rate of 1e-5, a batch size412

of 16, and train the model for 20 epochs. For RL413

training, we set learning rate 2e-6 for both policy414

and critic, discounter factor γ as 0.95, batch size415

as 3, buffer size as 12, buffer training epochs NK416

as 2, ϵ as 0.2, and β as 1e-4. More implementation417

details can be found in Appendix C.418

4.4 Evaluation Metrics419

For EntailmentBank, we evaluate Tpred with the fol-420

lowing dimensions: Leaves, Steps, Intermediates,421

and Overall AllCorrect. For STREET benchmark,422

we evaluate the reasoning graphs with two dimen-423

sions: Answer Accuracy and Reasoning Graph Ac-424

curacy. Note that Overall AllCorrect and Reason-425

ing Graph Accuracy are extremely strict metrics,426

where any deviations will result in a score of 0.427

More metrics details can be found in Appendix D.428

5 Result Analysis429

5.1 Structured Reasoning430

EntailmentBank As shown in Table 2, our SEER431

outperforms all baseline methods on the most strict432

metric, "Overall AllCorrect", across all three tasks.433

3Previous studies have consistently utilized T5-large as
the base model. Despite the existence of more advanced
generative models (Du et al., 2022; Touvron et al., 2023),
using T5-large enables us to maintain a fair comparison.

Specifically, our method achieves an absolute im- 434

provement of 1.7%/1.4%/1.0% in Task 1/2/3 com- 435

pared to the strongest baseline. The steps dimen- 436

sion, i.e., premises selection, is the core of En- 437

tailmentBank4, contributing to enhancing the ac- 438

curacy of both leaves and intermediates dimen- 439

sions, thereby improving the overall AllCorrect 440

metric. (1) Compared to SOTA supervised meth- 441

ods, such as NLProofs and FAME, our method ex- 442

hibits significant advantages in the steps dimension. 443

This demonstrates that focusing solely on isolated 444

single-step reasoning through supervised learning 445

may yield suboptimal solutions in intricate struc- 446

tured reasoning tasks, even though employing ad- 447

vanced planning algorithms, such as Monte-Carlo 448

planning in FAME. (2) Compared to the SOTA RL- 449

based method, our method outperforms RLET by 450

5.8%/9.0%/6.0% in Task 1/2/3. Our method em- 451

ploys a generative model as the policy to circum- 452

vent the issue of enumerating actions, facilitating 453

the policy’s understanding of structured reasoning 454

tasks (generating potential actions by itself). More- 455

over, our proposed structure-based return more ef- 456

fectively captures the tree-structured logical depen- 457

dencies between steps and can assign stable returns 458

for equivalent trajectories, which significantly im- 459

proves reasoning abilities. Subsequent ablation 460

studies will further demonstrate this. (3) Compared 461

to GPT-4 with CoT, ToT, and ReAct, our method 462

achieves an absolute improvement of 1.9% in Task 463

3. Although GPT-4 exhibits outstanding reasoning 464

capabilities surpassing many other baselines, its 465

performance relies on a vast number of parameters. 466

Details about the prompts of GPT-4 can be found 467

in Appendix F. 468

EntailmentBankQA Following (Creswell and 469

Shanahan, 2022), we introduce the halter module 470

to generate answers based on Tpred and substitute 471

hypothesis with question and option during the 472

reasoning process. As illustrated in Table 3, our 473

method surpasses FAME by an absolute margin 474

of 1.2%/7.4% in Task 1/2. While both FAME and 475

SI are supervised methods, FAME significantly 476

outperforms SI by enhancing the model’s reason- 477

ing and exploration capabilities through Monte- 478

Carlo planning. However, our method enhances 479

the structured reasoning capabilities of the policy 480

rather than focusing solely on single-step reason- 481

ing, which can significantly improve the quality of 482

the entailment tree to aid in answering, especially 483

4A comprehensive error analysis is detailed in Appendix G.
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Task Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task1

EntailmentWriter 98.7 84.1 50.0 38.5 67.6 35.9 34.4
METGEN 100.0 100.0 57.9 42.1 71.3 39.2 37.0
IRGR 97.6 89.4 50.2 36.8 62.1 31.8 32.4
RLET 100.0 100.0 54.6 40.7 66.9 36.3 34.8
NLProofS 97.8 90.1 55.6 42.3 72.4 40.6 38.9

SEER (Ours) 100.0 100.0 67.6 52.6 70.3 42.6 40.6

Task2

EntailmentWriter 83.2 35.0 39.5 24.7 62.2 28.2 23.2
METGEN 83.7 48.6 41.7 30.4 62.7 32.7 28.0
IRGR 69.9 23.8 30.5 22.3 47.7 26.5 21.8
RLET 81.0 39.0 38.5 28.4 56.3 28.6 25.7
NLProofS 90.3 58.8 47.2 34.4 70.2 37.8 33.3

SEER (Ours) 86.4 53.5 56.8 39.7 66.3 38.3 34.7

Task3

EntailmentWriter 35.7 2.9 6.1 2.4 33.4 7.7 2.4
METGEN 34.8 8.7 9.8 8.6 36.7 20.4 8.6
IRGR 45.6 11.8 16.1 11.4 38.8 20.9 11.5
RLET 38.3 9.1 11.5 7.1 34.2 12.1 6.9
NLProofS 43.2 8.2 11.2 6.9 42.9 17.3 6.9
FAME 43.4 13.8 16.6 12.4 40.6 19.9 11.9
GPT4-CoT 44.1 12.1 15.4 10.8 43.1 20.6 10.8
GPT4-ToT 43.3 12.0 15.8 11.0 43.9 20.0 11.0
GPT4-ReAct 45.8 12.9 14.1 10.5 43.5 21.5 10.5

SEER (Ours) 47.1 13.8 17.4 12.9 45.1 18.8 12.9

Table 2: Experiment results on EntailmentBank. Bold and underlined texts highlight the best method and the
runner-up. RLET is based on DeBERTa-large (He et al., 2023), while all other methods are based on T5-large. All
baseline results come from published papers. We use the gpt-4-1106-preview version for GPT-4.

Method Task 1 Task 2
SI+Halter 72.4 55.9
SI+Halter+Search 83.2 72.9
FAME 91.5 78.2
SEER (Ours) 92.7 85.6

Table 3: Experiment results on the EntailmentBankQA.
SI is based on Chinchilla-7B (Hoffmann et al., 2022).

in complex reasoning environments.484

STREET As shown in Table 4, compared to485

GPT-4, our method has achieved absolute improve-486

ments of 4.8%/3.4%/4.1%/5.2% across various487

datasets, although the Reasoning Graph Accuracy488

is a very strict metric (Ribeiro et al., 2023). While489

GPT-4 excels at answering questions (far surpass-490

ing other methods), its parameter is thousands of491

times greater than other methods. Moreover, dur-492

ing the reasoning process, GPT-4 is prone to hal-493

lucinations (Rawte et al., 2023), resulting in poor494

performance in structured reasoning, particularly495

evident in the "Reasoning Graph Accuracy" met-496

ric. Since SCONE contains sufficient data as well497

Method SCONE GSM8K AQUA-RAT AR-LSAT

Answer Accuracy

STREET 69.6 10.4 28.7 28.0
GPT4 † 66.0 94.0 78.0 32.0
SEER (Ours) 72.4 21.4 37.6 33.5

Reasoning Graph Accuracy

STREET 60.0 0.7 0.0 0.0
GPT4 † 32.0 10.0 4.0 2.0
SEER (Ours) 64.8 13.4 8.1 7.2

Table 4: Experiment results on STREET benchmark.
† indicates we recorded the best results in CoT, ToT, and
ReAct for brevity.

as similar QA and reasoning patterns, we observe 498

that the STREET method would outperform GPT- 499

4 on SCONE. However, by obtaining high-quality 500

reasoning graphs, our method achieves absolute im- 501

provements of 2.8%/11.0%/8.9%/5.5% compared 502

to the STREET method, significantly improving 503

answer accuracy and trustworthiness. In reason- 504

ing graphs, a state may have multiple parent nodes. 505

Our structure-based return (Equation 6) still pre- 506

cisely describes the cumulative reward for each 507
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Method
eQASC eOBQA

P@1 NDCG P@1 NDCG
EntailmentWriter 52.48 73.14 69.07 89.05
EntailmentWriter-Iter 52.56 73.28 72.15 90.19
METGEN 55.81 74.19 74.89 90.50
FAME 53.36 79.64 73.09 89.32
GPT-4 54.00 88.82 85.36 91.19
SEER (Ours) 60.33 89.76 77.50 94.62

Table 5: Cross-dataset performance on the eQASC and
eOBQA.

Method Leaves Steps Intermediates Overall

SEER (Ours) 13.8 12.9 18.8 12.9
w/o redundant 13.2 12.6 18.5 12.3
w/o structure-based return 12.9 11.7 18.5 11.1
w/o RL 10.2 9.4 17.1 9.1

Table 6: Ablation study of each component.

state, thereby facilitating reasoning performance in508

graph-structured reasoning.509

5.2 Cross-dataset Performance510

To evaluate the generalization performance, we511

conduct cross-dataset experiments on eQASC and512

eOBQA5 (Jhamtani and Clark, 2020). We apply513

the policy of Task 2 for selection without training514

on eQASC or eOBQA. As illustrated in Table 5,515

our method exhibits significant superiority in cross-516

dataset generalization. Compared to supervised517

methods, our SEER, following the inherent struc-518

tural nature of entailment trees, can better capture519

the logical dependencies between reasoning steps,520

which can effectively promote the generalization521

ability of the policy. The experimental results fur-522

ther validate the effectiveness of our method.523

5.3 Ablation Studies524

To evaluate the contribution of each component,525

we conduct extensive ablation studies. As shown526

in Table 6, we investigate three different variations527

of SEER in Task 3 of EntailmentBank: (1) w/o528

redundant neglects redundant steps by assigning529

a reward of -1. (2) w/o structure-based return530

removes the structure-based return and calculates531

it using the chained sum of rewards (Equation 5).532

(3) w/o RL removes the RL phase, relying solely533

on supervised warm-up. We discover that over-534

looking redundant steps may potentially inhibit the535

exploration of policy, leading to a performance de-536

cline. In addition, the results shown in Table 6 also537

5More details about the setting of eQASC and eOBQA can
be found in Appendix B.
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Figure 3: Parameter sensitivity analysis.

demonstrate that removing the structure-based re- 538

turn severely affects the performance. It not only 539

adequately addresses the equivalent trajectory prob- 540

lems, but also elegantly captures the logical rela- 541

tionships inherent in entailment trees, which is cru- 542

cial for structured reasoning. Furthermore, it can 543

be seen that removing the RL phase reduces perfor- 544

mance by 3.8% of Overall Allcorrect, which is a 545

significant impact for this strict metric. This indi- 546

cates that relying solely on supervised learning may 547

overlook the logical relationships in structured rea- 548

soning, thereby falling into suboptimal solutions. 549

5.4 Parameter Sensitivity Analysis 550

As illustrated in Figure 3, we further investigate 551

the impact of rredundant and β on the performance in 552

Task 3. We observe that compared to treating redun- 553

dant and erroneous steps equally (rredundant = −1), 554

not penalizing (rredundant = 0) may have more detri- 555

mental effects, which allows for unrestricted explo- 556

ration. Moreover, a suitable β (the coefficient of 557

entropy bonus) is crucial for performance enhance- 558

ment, as it encourages the policy to break away 559

from the "stereotypes" of supervised warm-up. 560

6 Conclusions 561

We propose SEER, a novel approach that facili- 562

tates structured reasoning and explanation via RL. 563

To our knowledge, SEER is the first general frame- 564

work capable of enhancing chained, tree-based, and 565

graph-based structured reasoning. Our structure- 566

based return precisely delineates the hierarchical 567

and branching structure inherent in structured rea- 568

soning, effectively facilitating reasoning ability. 569

Furthermore, SEER employs a generative model to 570

represent the policy and refines the reward function, 571

ingeniously circumventing the limitations of exist- 572

ing works. Comprehensive experimental results 573

demonstrate that SEER significantly outperforms 574

state-of-the-art methods and exhibits outstanding 575

cross-dataset generalization performance. 576
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Limitations577

Although our method has achieved excellent per-578

formance in structured reasoning and explanation,579

there remains one issue that deserves further explo-580

ration for future work: how to perform structured581

reasoning in the context of multimodal data. This582

includes combining content from images, tables, or583

audio data, a form of multimodal structured reason-584

ing that is increasingly prevalent and demanding585

in real-world scenarios. In future work, we plan586

to extend our SEER to accommodate multimodal587

scenarios.588

Ethics Statement589

This work focuses primarily on structured reason-590

ing and explanation problems, and its contributions591

are entirely methodological. Therefore, this work592

does not have direct negative social impacts. For593

the experiments, we have open-sourced the code594

and utilized openly available datasets commonly595

used in previous research, without any sensitive596

information to our knowledge. The authors of this597

work adhere to the ACL ethical guidelines, and598

the application of this work does not present any599

apparent issues that may lead to ethical risks.600
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A Algorithm Details818

Algorithm 1: The training process of SEER

Input: Structured reasoning dataset D;
Training epochs Nwarmup, N and
NK ; batch size bwarmup and bmini;

Output: The optimal parameter of policy
/* (1) Supervised Warm-up phase */

1 Initialise policy parameters πθ
2 Convert D into single-step data Dstep

3 for epoch = 1 to Nwarmup do
4 for i = 1 to |Dstep|/bwarmup do
5 sample minibatch from Dstep
6 update parameters πθ by Eq. 11

/* (2) RL phase */
7 Initialize the critic parameters V
8 for epoch = 1 to N do
9 Initialise training buffer B ← ∅

// Filling the replay buffer
10 while B not full do
11 sample {h,X, Tgold} from D
12 collect trajectory τ via πθ
13 assign a reward for each step in τ
14 fill buffer B with {st, at, rt} from τ

// Performing k-epoch updates
per buffer

15 for epochk = 1 to NK do
16 sample {(st, at, rt)}bmini from B
17 compute E(π′

θ) and Ât by Eqs. 8, 9
18 update policy πθ by Eq. 7
19 update critic V by Eq. 10

Algorithm 1 describes the overall training pro-819

cess of our proposed SEER in detail, which primar-820

ily consists of two phases: supervised warm-up821

and reinforcement learning (RL). In the supervised822

warm-up phase, the structured reasoning is first de-823

composed into single-step reasoning data (Line 2).824

Then, we employs supervised learning to guide the825

policy πθ to quickly adapt to the complex reason-826

ing environments (Lines 3-6). This is particularly827

beneficial when the number of parameters in the828

policy is relatively small (Akyurek et al., 2023; Liu829

et al., 2023). In the RL phase, we initially populate830

the replay buffer B through the policy πθ (Lines831

9-13). Then, we update the parameters of the pol-832

icy and the critic using the buffer data. To improve833

sample efficiency, NK updates are performed for834

each replay buffer (Lines 14-18).835

For the inference process, we only need to use 836

the policy (without the critic) for structured rea- 837

soning. Specifically, as illustrated in the trajectory 838

rollout of Figure 2, we update the state by the pol- 839

icy and the entailment module. Then, we end the 840

reasoning process until the stopping criteria are sat- 841

isfied. Finally, we backtrack to construct the entire 842

structured explanation, taking the last intermediate 843

conclusion as the hypothesis for entailment tree (or 844

the answer for the STREET benchmark). 845

B Datasets Details 846

Datasets of Structured Reasoning Table 7 de- 847

scribes the statistics of datasets in detail. In the 848

answer types, “K-Way MC” stands for multiple 849

choice answer with K options. 850

EntailmentBank (Dalvi et al., 2021) comprises 851

1,840 expert-annotated entailment trees with an av- 852

erage of 7.6 nodes spanning across 3.2 entailment 853

steps. The facts are derived from the WorldTree V2 854

corpus (Xie et al., 2020). Based on different facts 855

X , there are three progressively more challenging 856

tasks: Task1 (no-distractor), Task2 (distractor) 857

and Task3 (full-corpus). For GPT-4, we employ 858

all the data in Task 3 from EntailmentBank to evalu- 859

ate its performance. EntailmentBank was originally 860

designed for post-hoc tree reconstruction tasks in- 861

stead of QA, Tafjord et al. (2022) converted it into 862

EntailmentBankQA where the task is to choose the 863

correct answer given multiple choice options rather 864

than deriving hypothesis h. 865

To construct the STREET benchmark, Ribeiro 866

et al. (2023) standardized many QA datasets, such 867

as ARC (Clark et al., 2018), SCONE (Long et al., 868

2016), GSM8K (Cobbe et al., 2021), AQUA- 869

RAT (Ling et al., 2017) and AR-LSAT (Zhong 870

et al., 2021), in the graph-structured explanation 871

format, where the tasks are converted into answer- 872

ing the question based on the predicted reasoning 873

graphs. Please note that ARC in STREET is con- 874

gruent with Task 1 of EntailmentBankQA (Ribeiro 875

et al., 2023), hence, we do not repeat the experi- 876

ment for this task in Table 4. Due to the high cost 877

of GPT-4, we randomly sample 50 instances from 878

each dataset in the STREET benchmark to evaluate 879

GPT-4’s performance. 880

Datasets of Cross-dataset Experiments To eval- 881

uate the generalization performance of our method, 882

following (Hong et al., 2022), we conduct cross- 883

dataset experiments on eQASC and eOBQA (Jham- 884

tani and Clark, 2020), which collect one-step entail- 885
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Task Name Task Domain # Questions # Reasoning Steps Reasoning Type Answer Type
EntailmentBank Science 1,840 5,881 Tree-structured /
EntailmentBankQA (ARC) Science 1,840 5,881 Tree-structured 4-Way MC
SCONE Processes 14,574 130,482 Graph-structured State Pred.
GSM8K Math 1,030 4,666 Graph-structured Number
AQUA-RAT Math 1,152 7,179 Graph-structured 5-Way MC
AR-LSAT Logic 500 2,885 Graph-structured 5-Way MC

Table 7: Datasets Statistics of Structured Reasoning.

ment trees for questions from QASC (Khot et al.,886

2020) and OpenBookQA (Mihaylov et al., 2018),887

respectively. The goal of this task is to select valid888

one-step trees from the candidate set and evaluate889

the results with P@1 and NDCG metrics (Hong890

et al., 2022). Questions with no valid tree are fil-891

tered. The candidate sets for eQASC and eOBQA892

are composed of 10 and 3 sentences respectively.893

C Implementation Details894

C.1 Stopping criteria895

For a fair comparison, we use the T5-large model896

to represent the policy. However, we observe that897

T5-large tends to perform "Reason" actions more898

frequently, which is caused by the smaller number899

of model parameters and the issue of having only a900

few "End" instances. Moreover, unlike GPT-4, T5-901

large is less able to recognize when a hypothesis902

has been inferred and when to stop. Therefore, we903

attach two extra stopping criteria in addition to the904

"End" action: (1) The semantic similarity between905

the intermediate conclusion and the hypothesis ex-906

ceeds a predefined threshold, i.e., BLEURT(i∗, h)907

> 1. (2) Exceeding the maximum number of rea-908

soning steps (set to 20 in this paper).909

C.2 Alignment algorithm910

Following (Dalvi et al., 2021), we evaluate the inter-911

mediate steps based on Jaccard similarity. Specifi-912

cally, the intermediate nodes i∗ in Tpred are aligned913

with the intermediate nodes in Tgold that have the914

maximum Jaccard similarity. If the Jaccard simi-915

larity between the intermediate node in Tpred and916

all intermediate nodes in Tgold is zero, it is aligned917

with "NULL". Note that only the intermediate node918

that is perfectly matched with a node in Tgold, i.e.,919

the Jaccard similarity is 1, is considered as a cor-920

rect step. Figure 5 provides a detailed illustration921

of this process. The alignment process is similar in922

the reasoning graphs (Ribeiro et al., 2023).923

C.3 Retriever for Task 3 924

In Task 3 of EntailmentBank, first, it is necessary to 925

retrieve relevant sentences from the corpus (Dalvi 926

et al., 2021). The research focus of this paper is 927

to enhance the structured reasoning ability of the 928

policy. Therefore, we directly adopt the retriever 929

and its associated parameters proposed in previous 930

work (Hong et al., 2023), which is based on the 931

all-mpnet-base-v2 model (Reimers and Gurevych, 932

2019). For a fair comparison, we retrieve the top 933

25 most relevant sentences as X for Task 3. 934

C.4 Entailment Module 935

The entailment module is also based on the T5- 936

large model, taking premises as input and generat- 937

ing intermediate conclusions. Our primary focus is 938

to enhance the structured reasoning ability of the 939

policy through RL, therefore, we directly employ 940

the entailment module that has already been trained 941

in previous work (Hong et al., 2023), which also 942

aids in a fair comparison. 943

C.5 Halter Module 944

In EntailmentBankQA, we employ the Halter mod- 945

ule (Creswell and Shanahan, 2022) to answer ques- 946

tions based on the predicted entailment trees. In 947

this paper, the Halter module is built upon the T5- 948

large model. The module is trained with a learning 949

rate of 1e-5 and a batch size of 16. 950

C.6 Entailment Tree Construction 951

To evaluate the correctness of each reasoning step, 952

we have to reconstruct the trajectory into an entail- 953

ment tree Tpred and compare it with Tgold. Figure 5 954

illustrates this reconstruction process. We consider 955

the last intermediate conclusion as the hypothesis 956

and then construct the predicted entailment tree 957

based on the reasoning relationship of each step. 958

The reconstruction process is similar in the reason- 959

ing graphs (Ribeiro et al., 2023). 960
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C.7 Running time961

In our experimental setting, the average training962

time per entailment tree in SEER is 6.98 seconds,963

and the average inference time per entailment tree964

in SEER is 3.91 seconds. As reported in their965

papers, the inference time per entailment tree in966

RLET (Liu et al., 2022) and FAME (Hong et al.,967

2023) are 9.34 seconds and 30.77 seconds, respec-968

tively. FAME leverages Monte-Carlo planning, ne-969

cessitating the exploration of numerous nodes to970

enhance the reasoning capability of the policy, thus971

requiring considerable computational time. Our972

proposed SEER significantly surpasses FAME in973

terms of both efficiency and effectiveness.974

C.8 Experiment Environments975

All experiments were conducted on Ubuntu 22.04976

equipped with NVIDIA A100 GPUs. Our code977

mainly depends on python 3.106 and PyTorch978

2.0.17. The pre-trained language models are de-979

rived from HuggingFace Transformers8.980

C.9 Details of Reasoning Graphs981

For the reasoning graphs in the STREET Bench-982

mark, the implementation details are slightly dif-983

ferent from the entailment trees. In the reasoning984

graphs, reasoning steps may possess multiple par-985

ent nodes, and a fact (x∗) or intermediate conclu-986

sion (i∗) may be utilized multiple times (Ribeiro987

et al., 2023). Therefore, in the reasoning graph,988

we refrain from incorporating previously used989

premises into Ut, instead continually expanding the990

candidate sentence set Ct through newly derived991

intermediate conclusions. In other words, the state992

in the reasoning graphs is updated according to the993

following rules: Pt+1 = Pt ∪ {<premises>→ it},994

Ct+1 = {X ∪ It+1}, and It+1 = It ∪ {it}.995

C.10 Other Implementation Details996

For GPT-4, we set the temperature to 0.7. For Tree997

of Thought, we set b = 5 candidates at each step,998

and then vote to select the optimal action. Details999

regarding the prompts of CoT, ToT, and ReAct1000

can be found in Appendix F. For all baselines, we1001

obtain the optimal results based on experimental1002

results or hyperparameter settings derived from the1003

original papers. For our method, we initialize the1004

critic with the encoder of the warm-up policy to1005

6https://www.python.org/
7https://pytorch.org/
8https://huggingface.co/

expedite the convergence of the critic and facilitate 1006

policy updates. The hidden layer dimension of the 1007

MLP in the critic is set to 512. 1008

D Metrics Details 1009

For EntailmentBank, we follow (Dalvi et al., 2021) 1010

and evaluate the entailment tree Tpred using three 1011

dimensions: 1012

• Leaves: To evaluate the leaf nodes of Tpred, we 1013

compute F1 by comparing Xpred with Xgold. 1014

• Steps: To evaluate the structural correctness of 1015

each step, we compare all steps between Tpred and 1016

Tgold and then compute F1. A predicted step is 1017

considered structurally correct if its premises (e.g., 1018

x∗, i∗) exactly match the gold premises. 1019

• Intermediates: To evaluate the intermediate con- 1020

clusions, we compare the aligned intermediate con- 1021

clusions and then compute F1. A predicted interme- 1022

diate conclusion is deemed correct if the BLEURT 1023

score (Sellam et al., 2020) exceeds 0.28. 1024

For each dimension, the AllCorrect score is 1 if 1025

F1 is 1, otherwise 0. Given the above scores, we 1026

employ the Overall AllCorrect metric to compre- 1027

hensively evaluate Tpred, which takes a value of 1 if 1028

and only if all leaves, steps, and intermediates are 1029

correct. Note that this is an extremely strict metric, 1030

where any deviations in Tpred will result in a score 1031

of 0. 1032

For the STREET benchmark, we follow (Ribeiro 1033

et al., 2023) and adopt two metrics, namely, the 1034

answer to the question and the quality of the rea- 1035

soning graphs, to evaluate different methods. 1036

• Answer Accuracy: This metric measures the 1037

ability to correctly answer questions. The answer 1038

accuracy serves as an upper bound for other metrics, 1039

as any reasoning graph generated with incorrect 1040

answers is also labeled as incorrect. 1041

• Reasoning Graph Accuracy: This metric com- 1042

pares the predicted reasoning graph and the golden 1043

reasoning graph from the aspects of the graph struc- 1044

ture and the content of intermediate conclusions. 1045

Please note that this is a stringent metric, with mi- 1046

nor deviations from the golden reasoning graph 1047

resulting in the prediction being incorrect. 1048

E Illustrations and Case Study of SEER 1049

Given a hypothesis h and initial facts X , we first 1050

obtain the trajectory through the reasoning process, 1051

as shown in Figure 4. The state update follows the 1052

Markov decision process (Bellman, 1957), mean- 1053

ing the current state only depends on the previous 1054
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state. Figure 4 is an erroneous reasoning exam-1055

ple to better illustrate the following steps. Then,1056

we convert the trajectory τ into an entailment tree1057

Tpred and align it with Tgold to assign reward for1058

each intermediate conclusion (as presented in Fig-1059

ure 5). Furthermore, Figure 6 elucidates the issue1060

of equivalent trajectories, and previous work can1061

not accurately describe the logical relationship be-1062

tween different states in entailment trees.1063

F Prompts for GPT-41064

Figures 7 and 8 show the Chain-of-Thought1065

(CoT) (Wei et al., 2022) and ReAct (Yao et al.,1066

2023b) prompts for GPT-4, and figures 9 and 101067

show the prompts of thought generator and state1068

evaluator in Tree of Thought (ToT) (Yao et al.,1069

2023a), respectively. We provide a detailed intro-1070

duction to the task definition and guide the model1071

to respond in the required format. We randomly se-1072

lected three examples for in-context learning. For a1073

fair comparison, we use the same examples for1074

CoT and ReAct, attributing similar thoughts to1075

them. ReAct divides the dialogue into two rounds,1076

"Thought" and "Action", to query GPT-4. For ToT,1077

following (Yao et al., 2023a), we generate candi-1078

date actions using a thought generator and sub-1079

sequently select and execute the optimal action1080

through a state evaluator. Due to its exceptional1081

reasoning capabilities and self-evaluation strategy,1082

ToT achieves superior results compared to CoT and1083

ReAct, as shown in Table 2. However, ToT requires1084

higher costs in comparison to CoT and ReAct.1085

G Error Analysis1086

We conduct a comprehensive error analysis on1087

Task2 and Task3 of EntailmentBank.1088

G.1 Error Analysis of Task21089

We randomly sample 50 entailment trees where1090

SEER made incorrect reasoning. We find the fol-1091

lowing four types of errors.1092

(1) Reasoning Step Error (62%). This is1093

the main source of errors and predominantly de-1094

pends on whether the policy can select the correct1095

premise. We observe that a small portion of the1096

errors (accounting for 12.9% of this error type) use1097

all the gold leaves, but have errors in the combi-1098

nation order. Compared to other reasoning step1099

errors, the policy identified the correct premise.1100

For example, the gold steps are "x24 & x5 → i1;1101

i1 & x23 → h" and the error steps predicted by 1102

SEER are "x23 & x5 → i1; i1 & x24 → i2". 1103

(2) Early Termination Error (18%). We ob- 1104

serve that the reasoning process may terminate pre- 1105

maturely and the existing entailment steps are all 1106

correct. On one hand, T5-large outputs “End” pre- 1107

maturely, unlike GPT-4 which can accurately judge 1108

when to stop. On the other hand, the entailment 1109

module might erroneously infer a hypothesis, lead- 1110

ing to premature termination. 1111

(3) Intermediate Conclusion Error (10%). 1112

This error type is different from the above error 1113

(where the entailment module prematurely infers a 1114

hypothesis). Intermediate conclusion error denotes 1115

errors triggered by incorrect entailment in the inter- 1116

mediate conclusions, despite having correct leaves 1117

and steps. For a fair comparison, we used the en- 1118

tailment module that has already been trained in 1119

previous work (Hong et al., 2023). It is noted that 1120

the reasoning part, which is the focus of our paper, 1121

is completely correct in this type of error, and this 1122

type of error can be mitigated by training a better 1123

entailment module. 1124

(4) Imperfect Evaluation (10%). We discover 1125

that some trees deemed as invalid are valid in fact, 1126

indicating that current automated metrics underes- 1127

timate the validity of the trees. The most common 1128

reason is that there are multiple valid ways to con- 1129

struct an entailment tree. For example, consider the 1130

structure of a gold tree: "x1 & x2 & x3 → h" may 1131

be predicted as: "x1 & x2 → i1; i1 & x3 → i2". 1132

G.2 Error Analysis of Task3 1133

Task 3 requires retrieving an initial set of facts X 1134

from the corpus. Therefore, in addition to the errors 1135

in Task 2 described above, we found that Task 3 1136

has its own unique set of errors. 1137

(1) Missing Gold Leaves Error (58%). Miss- 1138

ing gold leaves error refers to the case where the 1139

gold leaves are not included in the facts X retrieved 1140

from the corpus. This case will inevitably lead to 1141

an error in the predicted entailment tree, regard- 1142

less of how powerful the policy is. The bottleneck 1143

of this error lies in the retrieval model. For a fair 1144

comparison, we directly use the retrieval model 1145

provided in previous work (Hong et al., 2023). 1146

(2) Reasoning Errors (42%). The four error 1147

types described in G.1 account for 42% in Task3. 1148

We also discovered that the reasoning graph con- 1149

tains similar error types as found in entailment 1150

trees, as they both belong to structured reasoning. 1151
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Question: Melinda learned that days in some seasons have more daylight hours than in other seasons. Which season receives the most hours of sunlight in the 

Northern Hemisphere? 
Answer: summer 
Hypothesis ℎ: northern hemisphere will have the most sunlight in summer 

 

 

 

 
… 𝑠𝑠3 … 𝑎𝑎3 … 

 

 

 

 

𝑠𝑠1: ℎ; 𝑃𝑃1 = ∅; 𝐶𝐶1 ={ 
𝑥𝑥1: when a hemisphere is tilted towards the sun, that hemisphere receives more 

direct sunlight 

𝑥𝑥13: summer is when a hemisphere is tilted towards the sun 

𝑥𝑥14: the western hemisphere is a kind of hemisphere of earth 

𝑥𝑥2: if a place is in summer, then it will have the most sunlight 𝑥𝑥15: united states is located in the northern hemisphere 

𝑥𝑥3: summer has the most sunlight 𝑥𝑥16: north america is located in the northern hemisphere 

𝑥𝑥4: the northern hemisphere is a kind of hemisphere of earth 𝑥𝑥17: the north pole is located in the northern hemisphere 

𝑥𝑥5: the equator receives the most amount of direct sunlight throughout the year 𝑥𝑥18: sint eustatius (netherlands) is located in the northern hemisphere 

𝑥𝑥6: the amount of daylight is greatest in the summer 𝑥𝑥19: china is located in the northern hemisphere 

𝑥𝑥7: when a hemisphere is tilted away from the sun, that hemisphere receives less 

direct sunlight 

𝑥𝑥20: winter has the least sunlight 

𝑥𝑥21: the amount of daylight is least on the winter solstice 

𝑥𝑥8: the amount of daylight is greatest on the summer solstice 𝑥𝑥22: the amount of daylight is least in the winter 

𝑥𝑥9: the northern hemisphere is tilted toward the sun 𝑥𝑥23: netherlands is located in the northern hemisphere 

𝑥𝑥10: june is during the summer in the northern hemisphere 𝑥𝑥24: the southern hemisphere is a kind of hemisphere of earth 

𝑥𝑥11: the poles receives the least amount of direct sunlight throughout the year 

𝑥𝑥12: a hemisphere is a part of earth 

𝑥𝑥25: a hemisphere of earth is a kind of place} 

 

𝑎𝑎1: Reason: 𝑥𝑥4 & 𝑥𝑥25 
Entailment Module: 𝑥𝑥4 & 𝑥𝑥25 → 𝑖𝑖1: the northern hemisphere is a kind of place. 

𝑠𝑠2: ℎ; 𝑃𝑃2 = {𝑥𝑥4 & 𝑥𝑥25 → 𝑖𝑖1}; 𝐶𝐶2 ={ 
𝑖𝑖1: the northern hemisphere is a kind of place. 𝑥𝑥13: summer is when a hemisphere is tilted towards the sun 

… … 

𝑥𝑥10: june is during the summer in the northern hemisphere 𝑥𝑥24: the southern hemisphere is a kind of hemisphere of earth} 

 
𝑎𝑎2: Reason: 𝑥𝑥10 & 𝑥𝑥13 
Entailment Module: 𝑥𝑥10 & 𝑥𝑥13 → 𝑖𝑖2: june is when the northern hemisphere tilts toward the sun. 

𝑠𝑠4: ℎ; 𝑃𝑃4 = {𝑥𝑥4 & 𝑥𝑥25 → 𝑖𝑖1;  𝑥𝑥10 & 𝑥𝑥13 → 𝑖𝑖2; 𝑥𝑥3 & 𝑥𝑥17 → 𝑖𝑖3}; 𝐶𝐶4 ={ 
𝑖𝑖1: the northern hemisphere is a kind of place. 𝑥𝑥12: a hemisphere is a part of earth 

𝑖𝑖2: june is when the northern hemisphere tilts toward the sun. 𝑥𝑥14: the western hemisphere is a kind of hemisphere of earth 

𝑖𝑖3: the north pole experiences the most sunlight during summer. 𝑥𝑥15: united states is located in the northern hemisphere 

… … 

𝑥𝑥11: the poles receives the least amount of direct sunlight throughout the year 𝑥𝑥24: the southern hemisphere is a kind of hemisphere of earth} 

 

𝑎𝑎4: Reason: 𝑖𝑖1 & 𝑖𝑖2 
Entailment Module: 𝑖𝑖1 & 𝑖𝑖2 → 𝑖𝑖4: the northern hemisphere tilts toward the sun in june. 
 
 𝑠𝑠5: ℎ; 𝑃𝑃5 = {𝑥𝑥4 & 𝑥𝑥25 → 𝑖𝑖1;  𝑥𝑥10 & 𝑥𝑥13 → 𝑖𝑖2; 𝑥𝑥3 & 𝑥𝑥17 → 𝑖𝑖3;  𝑖𝑖1 & 𝑖𝑖2 → 𝑖𝑖4}; 𝐶𝐶5 ={ 
𝑖𝑖3: the north pole experiences the most sunlight during summer. 𝑥𝑥12: a hemisphere is a part of earth 

𝑖𝑖4: the northern hemisphere tilts toward the sun in june.  

… … 

𝑥𝑥11: the poles receives the least amount of direct sunlight throughout the year 𝑥𝑥24: the southern hemisphere is a kind of hemisphere of earth} 

 
 
 
 

𝑎𝑎5: End 
Output: trajectory 𝑠𝑠1(𝑖𝑖1) → 𝑠𝑠2(𝑖𝑖2) → 𝑠𝑠3(𝑖𝑖3) → 𝑠𝑠4(𝑖𝑖4) 
 
 

Figure 4: An illustration of the reasoning process of SEER. Note that a1 is a correct step, a2 and a4 are erroneous
steps, and a3 is a redundant step. We start from the initial state s1 where existing entailment steps P1 = ∅ and
candidate sentences C1 = X . In each step, we sample an action and update the state until the reasoning is done. For
the "Reason" action, we sent the premises to the entailment module. The new conclusion is added to the C, the
premises is removed from C and the entailment step is added to the P . For the "End" action, we end the reasoning
process and output the trajectory.
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JS 𝑖𝑖4,ℎ = 0.4

Figure 5: An illustration of the reward and alignment process of SEER. Each reasoning step is a subtree (similarly,
each reasoning step is a subgraph in the reasoning graph (Ribeiro et al., 2023)). (1) We construct Tpred using the
last intermediate conclusion (i4 in this example) as the hypothesis. (2) We calculate the Jaccard similarity between
the intermediate node (i∗) in Tpred and each golden intermediate node in Tgold (̂i1 and h in this example), and align
with the maximum Jaccard similarity. In this example, i1 is aligned with î1 due to JS(i1, î1) = 1. i2 is aligned with
"NULL". i4 is aligned with î1 due to JS(i4, î1) = 0.5 and JS(i4, h) = 0.4. (3) We assign rewards based on the
alignment results. Note that i3 (s3) is a redundant step. r1 = 1, r2 = −1, r3 = −0.5, and r4 = −1. The reward for
each state originates from the tree structure rather than the chained trajectory. Therefore, the return of each state
should also follow the tree structure (or graph structure in reasoning graphs) rather than the chained trajectory.
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Structure-based return

previous return

Figure 6: An illustration of the equivalent trajectory and the definition of return. As the reasoning steps of s1,
s2, and s3 are mutually independent, the execution order among these steps can be arbitrary. Thus, τ and τ ′ are
equivalent trajectories because they can be converted to the same entailment tree (Dalvi et al., 2021). As shown in
blue box, previous work (Liu et al., 2022) defines the return (a.k.a cumulative reward) in a chained trajectory and
would assign different returns to s1 and s2 in these equivalent trajectories. In contrast, as shown in red box, our
structure-based return is defined based on the tree or graph structure inherent in structured reasoning, which is the
same source of rewards. Our structure-based return will consistently allocate stable returns to equivalent trajectories,
thereby promoting training stability and convergence. Furthermore, maintaining consistency between the sources of
rewards and returns can significantly enhance the effectiveness of the policy.
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As a quality assurance reasoning system, you first analyze how to perform the reasoning and then immediately give the results of the reasoning. I will give you a 

hypothesis and a context. I want you to show a reasoning step that goes from some or all of the sentences in the context to the hypothesis. The inference step uses 

two sentences in the context as premises and obtains a new conclusion. The conclusion should be a valid entailment of the premises. You don't have to choose all the 

sentences in the context, just the ones you think are sufficient and necessary as premises for your reasoning. 

 

Here are some examples: 

Example 1: 

Hypothesis: a line graph an be used to show the data of the growth of the vine over a period of time 

Context: 

x1: length is a measure of distance from one end of an object to the other end of that object 

x2: 1 month is equal to 28-31 days 

… 

x25: a student wants to record the data of the growth of a vine over a period of a day 

 

Your response should be in the following format. 

From sentences x23 and x25, we can infer that the student wants to record the data of the growth of a vine over a period of time (labeled as i1). Then, we can conbine 

this intermediate conclusion (i1) with x5 to derive the hypothesis, due to the x5 describe the line graph is used for showing change. 

Proof: x23 & x25 -> i1: the student wants to record the data of the growth of a vine over a period of time; i1 & x5 -> hypothesis; 

 

Example 2: 

Hypothesis: the star cluster that captured by the space telescope is a galaxy 

Context: 

x1: if something is a part of something then that something can be found in that something 

x2: distant means great in distance 

… 

x25: the properties of something can be used to identify / used to describe that something 

 

Your response should be in the following format. 

From sentences x8 and x16, we can infer that the star cluster captured by the space telescope, which contains billions of stars, is likely to be a galaxy (referred to as 

i1). The final hypothesis can be directly derived from this intermediate conclusion i1. 

Proof: x16 & x8 -> hypothesis; 

 

Example 3: 

Hypothesis: 

the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year 

Context: 

x1: leo is a kind of constellation 

x2: to be found in means to be contained in 

… 

x25: the earth revolving around the sun causes stars to appear in different areas in the sky at different times of year 

 

Your response should be in the following format. 

From sentences x1 and x17, we know that Leo is a type of constellation and a constellation contains stars. This leads us to the intermediary conclusion (i1) that Leo 

contains stars. Combining this intermediate conclusion i1 with x25, which states that the earth revolving around the sun causes stars to appear in different areas in 

the sky at different times of year, we can infer the hypothesis that the earth revolving around the sun causes Leo to appear in different areas in the sky at different 

times of year. 

Proof: x1 & x17 -> i1: leo is a constellation containing stars; i1 & x25 -> hypothesis; 

(END OF EXAMPLES) 

 

Please pay attention to the output format and take care that the reasoning process is as concise as possible without unnecessary steps. 

 

Now reason about the following: 

Figure 7: A Chain-of-Thought prompt for GPT-4.
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As a quality assurance reasoning system that solves sequential reasoning tasks through interleaving Thought, Action. I will give you a hypothesis and a context. I 

want you to show a reasoning step that goes from some or all of the sentences in the context to the hypothesis. The inference step uses two sentences in the context 

as premises and obtains a new conclusion. The conclusion should be a valid entailment of the premises. You don't have to choose all the sentences in the context, 

just the ones you think are sufficient and necessary as premises for your reasoning. 

 

Here are some examples: 

Example 1: 

Hypothesis: a line graph an be used to show the data of the growth of the vine over a period of time 

Context: 

x1: length is a measure of distance from one end of an object to the other end of that object 

x2: 1 month is equal to 28-31 days 

x3: days ( d ) are a metric unit used for measuring time generally used for values between 1 and 365 

… 

x25: a student wants to record the data of the growth of a vine over a period of a day 

 

Thought: From sentences x23 and x25, we can infer that the student wants to record the data of the growth of a vine over a period of time (labeled as i1). Then, we 

can conbine this intermediate conclusion (i1) with x5 to derive the hypothesis, due to the x5 describe the line graph is used for showing change. 

Action: x23 & x25 -> i1: the student wants to record the data of the growth of a vine over a period of time; i1 & x5 -> hypothesis; 

 

Example 2: 

Hypothesis: the star cluster that captured by the space telescope is a galaxy 

Context: 

x1: if something is a part of something then that something can be found in that something 

x2: distant means great in distance 

x3: discovering something usually requires seeing that something 

… 

x25: the properties of something can be used to identify / used to describe that something 

 

Thought: From sentences x8 and x16, we can infer that the star cluster captured by the space telescope, which contains billions of stars, is likely to be a galaxy 

(referred to as i1). The final hypothesis can be directly derived from this intermediate conclusion i1. 

Action: x16 & x8 -> hypothesis;  

 

Example 3: 

Hypothesis: 

the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year 

Context: 

x1: leo is a kind of constellation 

x2: to be found in means to be contained in 

x3: move around means revolve 

… 

x25: the earth revolving around the sun causes stars to appear in different areas in the sky at different times of year 

 

Thought: From sentences x1 and x17, we know that Leo is a type of constellation and a constellation contains stars. This leads us to the intermediary conclusion 

(i1) that Leo contains stars. Combining this intermediate conclusion i1 with x25, which states that the earth revolving around the sun causes stars to appear in different 

areas in the sky at different times of year, we can infer the hypothesis that the earth revolving around the sun causes Leo to appear in different areas in the sky at 

different times of year. 

Action: x1 & x17 -> i1: leo is a constellation containing stars; i1 & x25 -> hypothesis; 

(END OF EXAMPLES) 

 

Please pay attention to the output format and take care that the reasoning process is as concise as possible without unnecessary steps. 

 

Now reason about the following: 

Figure 8: A ReAct prompt for GPT-4. "Thought" and "Action" query GPT-4 in two rounds.
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The Prompt of Thought Generator: 
As a quality-assured controller in a reasoning system, your primary task is to provide the most insightful action for each step of reasoning towards the hypothesis. 

Instead of completing the entire reasoning process at once, we want to break it down into multiple steps. 

Your candidate actions are: 

1. reason: sentX & intX -> new conclusion 

2. END 

`reason: sentX & intX -> new conclusion` represents the selection of sentX and intX from the current context to derive a new conclusion. Note that only sentences 

that exist in context can be used, and sentences in Used Premise cannot be used. 

`END` indicates that the current hypothesis has been reasoned out and the reasoning can be terminated. Note that the reasoning should end when the conclusion 

drawn is similar to the hypothesis. 

Please give 5 candidate actions that are most likely to facilitate reasoning based on the context. 

Note that we are reasoning step by step and only consider the current step, which is the five possible steps to answer the current optimal answer. 

 

Here are some examples: 

Example 1: 

Hypothesis: the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year 

Used Premises: 

sent1: leo is a kind of constellation 

sent17: a constellation contains stars 

Current Proof: 

sent1 & sent17 -> int1: leo is a constellation containing stars 

Context: 

sent8: a motion is a kind of event / action 

… 

sent25: the earth revolving around the sun causes stars to appear in different areas in the sky at different times of year 

int1: leo is a constellation containing stars 

Candidate action: 

reason: sent11 & sent20 -> planets in the solar system, like earth, orbit the sun 

reason: sent8 & sent10 -> motion is an event where an object moves to a direction 

reason: sent14 & int1 -> how Leo appears is determined by how its stars look in the sky 

reason: sent25 & int1 -> the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year 

END 

Example 2: 

… 

Example 3: 

… 

(END OF EXAMPLES) 

 

Please pay attention to the output format and take care that the reasoning process is as concise as possible without unnecessary steps. 

 

Now reason about the following: 

Hypothesis: {hypothesis} 

Used Premise: 

{used_premise} 

Current Proof: 

{current_proof} 

Context: 

{context}  

Candidate action: 

Figure 9: A Tree of Thought prompt (Thought Generator) for GPT-4.
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The Prompt of State Evaluator: 
Given an instruction and several choices, decide which choice is most promising. Analyze each choice in detail, then conclude in the last line "The best choice is 

{{s}}", where s the integer id of the choice. 

Be careful to follow the output format. 

Here are some examples: 

Example 1: 

Hypothesis: the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year 

Used Premises: 

sent1: leo is a kind of constellation 

sent17: a constellation contains stars 

Current Proof: 

sent1 & sent17 -> int1: leo is a constellation containing stars 

Context: 

sent2: to be found in means to be contained in 

… 

sent25: the earth revolving around the sun causes stars to appear in different areas in the sky at different times of year 

int1: leo is a constellation containing stars 

Candidate action: 

Choice 1: 

reason: sent11 & sent20 -> planets in the solar system, like earth, orbit the sun 

Choice 2: 

reason: sent8 & sent10 -> motion is an event where an object moves to a direction 

Choice 3: 

reason: sent14 & int1 -> how Leo appears is determined by how its stars look in the sky 

Choice 4: 

reason: sent25 & int1 -> the earth revolving around the sun causes leo to appear in different areas in the sky at different times of year 

Choice 5: 

END 

 

Vote: The best choice is 4 

 

Example 2: 

… 

Example 3: 

… 

(END OF EXAMPLES) 

 

Now vote about the following: 

Hypothesis: {hypothesis} 

Used Premise: 

{used_premise} 

Current Proof: 

{current_proof} 

Context: 

{context}  

Candidate action: 

{candidate action} 

Vote: 

Figure 10: A Tree of Thought prompt (State Evaluator) for GPT-4.
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