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Abstract

Visually-grounded language models (VLMs) are highly effective in linking visual1

and textual information, yet they often struggle with basic classification and local-2

ization tasks. While classification mechanisms have been studied more extensively,3

the processes that support object detection remain less clear. In this work, we ana-4

lyze foundational VLMs and show that image tokens corresponding to the object5

directly contain the information required for localization. We find that the model6

applies a containerization mechanism: it uses object-related tokens to define spatial7

boundaries, while largely discarding semantic context. Our analysis further reveals8

that this information is processed in the early to middle layers of the language9

model and that classification and detection rely on shared mechanisms. Finally, we10

demonstrate that spatial grounding does not come solely from positional encodings11

in the visual backbone, but rather from residual positional signals combined with12

the language model’s ability to infer spatial order from token sequences.13

1 Introduction14

Visually-grounded Language Models (VLMs) combine a pre-trained vision encoder with a large15

language model (LLM), typically refined through vision-language instruction tuning. The visual16

encoder extracts grid-level features from an image, a multimodal adapter maps them into the language17

embedding space, and the resulting tokens are processed jointly with text by the LLM. This architec-18

ture allows VLMs to link visual and textual inputs and has enabled strong performance on tasks such19

as visual question answering, captioning, and open-ended reasoning about images [13, 5, 6, 1].20

Despite these advances, VLMs continue to struggle with core vision tasks. They often misclassify21

or fail to accurately localize objects [20, 23]. While the mechanisms underlying classification have22

been studied [14, 23], much less is known about localization and detection. Closing this gap is23

important because most VLMs inherit visual features from CLIP [17], which was trained with global24

image-text supervision and struggles with the pixel-level precision required for localization and25

detection [3, 18, 24]. Yet VLMs can still answer queries that require identifying and locating objects,26

suggesting that these models build spatial structure from weak visual signals. This raises the question27

of how the mechanisms enabling localization and detection emerge in VLMs.28

In this paper, we present an initial study of the mechanisms underlying object detection in VLMs.29

Our main findings are:30

1. Grounding through containerization. Information needed for localization is directly encoded in31

the visual tokens. The model groups these tokens into containers that define object boundaries,32

largely independent of semantics.33

2. Implicit spatial layout learning. The LLM infers the two-dimensional structure of the image from34

the one-dimensional token sequence by learning implicit line breaks, without spatial modeling.35

3. Early–middle layer processing. The mechanisms that support detection emerge in the early to36

middle layers of the LLM, indicating overlap with the layers that drive classification.37
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Related Work Several studies have focused on improving localization performance of VLMs38

[22, 16, 6, 1], but none analyze their underlying mechanisms. Prior mechanistic interpretability39

studies of VLMs focus on reasoning, VQA, or hallucinations ([2, 9, 15, 21, 11, 14]). We build on40

ablation and attention knockout methods [14], adapting them to study localization mechanisms in41

object detection tasks.42

2 Method43

Visually Grounded Language Models We study two variants of LLaVa 1.5 [13], an open-source44

VLM with a simple, yet effective architecture. Visual features are encoded by CLIP ViT-L/14 [17] and45

projected into the LLM embedding space via a two-layer MLP. We analyze the two available versions:46

LLaVa-7B and LLaVa-13B, which use Vicuna-7B/13B [4] as the language backbone, respectively.47

Dataset We filter the COCO [12] training split to obtain a controlled subset of 8,442 images.48

Specifically, we retain images containing 1-4 annotated objects, with no more than one instance per49

category to avoid category-level ambiguity. Each object is further required to cover 10%-50% of50

the image area. Following [14], we additionally control for hallucinations by keeping only samples51

where the model correctly identifies objects in the original image, but fails when objects are masked52

with noise. This ensures that predictions rely on visual evidence rather than context.53

Task We compare model performance across two tasks: (i) Classification: We prompt the model54

with the query “Is there {art} {cls} in the image?”, where cls denotes the object cate-55

gory and art the appropriate article. Predictions are evaluated by searching for the token “Yes” in56

the response, and success rate is reported as the fraction of correctly classified instances. (ii) Detec-57

tion: We prompt the model with “Please provide the bounding box coordinates of the58

{cls}.” The predicted bounding boxes are parsed and compared against ground-truth annotations59

using the intersection-over-union (IoU) metric. Performance is measured as the success rate, defined60

as the proportion of samples where IoU exceeds thresholds of 0.5, 0.7, and 0.9. The final detection61

score is obtained by averaging over these three thresholds.62

3 Experiments63

3.1 Object Localization64

Method We conduct an ablation study to investigate the contribution of visual input tokens to the65

performance of the VLM on the classification and detection task. To preserve domain-consistent66

statistics while effectively removing image-specific information, we replace the original image tokens67

with their average embedding computed over the ImageNet [7] validation set.68

We evaluate three strategies for selecting visual tokens for ablation: (i) Object: We project the object69

mask onto the image token grid and include all tokens that overlap with it by at least one pixel.70

To probe for boundary sensitivity and context dependence, we shrink or dilate the mask by 1 or 271

token padding. A visualization of the masking is provided in the Appendix Figure 3. (ii) Integrated72

Gradients: We identify the top k important image tokens using the Integrated Gradients attribution73

method [19], computed over 50 steps with respect to the “Yes” logit (for classification) or bounding74

box coordinates (for detection). (iii) Random: As a control, we randomly select k image tokens,75

repeat the process with three different seeds, and report the standard deviation.76

Result As Table 1 shows, both detection and classification tasks rely on the information encoded77

in object tokens, as ablating them results in a significantly larger performance decline compared78

to removing an equal number of tokens either randomly or via gradient-based selection. Detection79

is more affected than classification: removing object tokens reduces detection performance nearly80

to zero, while classification still succeeds in 60–80% of cases. Positive padding around the object81

further amplifies the effect, while maintaining the original boundaries through negative padding has82

minimal influence on performance. These findings indicate that the essential information for both83

tasks resides within the object boundaries.84

Next, we investigate the mechanisms by which the model encapsulates objects to generate bounding85

boxes. To test this, we artificially expand the ground-truth mask by padding it with p layers of tokens.86
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Table 1: Performance after token ablation. The baseline indicates no performed token ablation and is
compared to ablating the object mask with different paddings, highest-gradient and random token
ablation.

LLaVA 7B LLaVA 13B

Ablation (Avg. Token Count) Detection (%) Classification (%) Detection (%) Classification (%)

Baseline (0) 54.79 99.25 65.96 99.46

− 2 Padding (31) 53.17 99.13 66.61 99.37
− 1 Padding (67) 46.41 98.51 63.27 98.76
Object (122) 8.11 63.70 14.61 77.36
+ 1 Padding (176) 1.46 36.47 2.00 54.81
+ 2 Padding (230) 0.76 33.84 1.11 48.50

Integrated Gradients (100) 23.90 93.52 19.29 96.32
Integrated Gradients (200) 8.53 79.83 5.77 83.26

Random (100) 52.44± 0.65 99.29± 0.01 62.79± 0.30 99.42± 0.02
Random (200) 47.82± 1.85 99.29± 0.05 57.96± 0.32 99.37± 0.02

Concretely, we sample tokens from the existing object and place them into the surrounding padding87

region, effectively extending the object’s footprint while keeping its semantic content unchanged. We88

then measure whether the predicted bounding box expands accordingly across three random sampling89

seeds. For LLaVA-7B, detection accuracy is 61.84± 0.09% with p = 1 and 66.56± 0.10% with90

p = 2. For LLaVA-13B, average accuracy is 71.79± 0.21% at p = 1 and 78.97± 0.17% for p = 2.91

These results indicate that detection depends mainly on the presence of object tokens rather than their92

specific semantic arrangement. We show qualitative examples in Appendix Figure 4.93

To further support this claim, we shuffle the image tokens within the object mask directly at the LLM94

input. As shown in App. Table 2, detection performance remains unchanged under this perturbation.95

Together, these findings suggest that the model employs a form of containerization, where tokens96

collectively define an object’s spatial extent, independent of their internal semantic structure.97

3.2 Position Encoding98

Method We next study how positional information is processed within the VLM, focusing on the99

role of the visual backbone’s positional encoding (PE) and the subsequent token ordering in the100

LLM for spatial grounding. To study how positional information remains identifiable throughout the101

model’s hierarchical processing, we train a separate linear classifier for each model layer to predict102

the position of an image token within the 24×24 input grid (576 classes). The classifiers are trained103

for 10 epochs using 50,000 ImageNet images for training and 10,000 for testing.104
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Figure 1: Positional decoding results. Left: average position accuracy per layer for CLIP (0-22), the
multimodal projection (P) and LLaVA language models (0-39). Right: per-position accuracy at layer
11, showing higher accuracy at the image corners.

Result In Figure 1, we observe that positional information in the CLIP visual backbone is decodable105

from early layers but largely vanishes by the final layers, consistent with prior findings that CLIP-ViT106

trades spatial precision for semantic abstraction over depth [10]. In contrast, in the LLM, positional107
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identifiability is initially low. However, it increases rapidly and peaks around layers 12 and 13.108

The multimodal projection retains strong signals for the four image corners (app. Fig. 5), which109

appear sufficient for the LLM to infer approximate row boundaries (“line breaks”) across the token110

sequence. Tokens aligned with these inferred line breaks are predicted with higher probability111

than other positions (Fig. 1, right), suggesting that the model uses them as structural anchors when112

reconstructing spatial layouts. In App. B, we provide additional experiments supporting these claims.113

3.3 Attention Knockout114

Method Our next experiments aim to identify where in the network the visual information that is115

required for the task is extracted and processed. We apply the attention knockout technique [8, 14],116

which blocks attention and thereby prevents the communication between tokens. Unlike [14], we117

eliminate attentions from all tokens following the image tokens to the object tokens, effectively118

removing any information extracted from the object tokens in those layers. We combine layers in119

groups of four and block all attention heads inside each group. We evaluate the resulting performance120

drop on classification and detection tasks using a 1,024-image subset of our filtered COCO dataset.121

Result Our results are shown in Figure 2. Blocking attention to the object significantly decreases122

performance in the early to mid layers of the model, while perturbing attention flow in later layers123

leaves performance largely unaffected. Both detection and classification rely on early shared layers,124

after which detection depends on additional task-specific layers. This progression suggests a two-step125

process: the model first identifies the object, then localizes it. Moreover, the layers with the largest126

detection decline align with those that retain strong positional information (see Sec. 3.2). Compared127

to layer-wise knockouts (app. Fig. 6), ablating groups of layers amplifies the effect, particularly for128

classification. This suggests that the model accumulates object-related information across consecutive129

layers rather than relying on layer-specific mechanisms.130
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Figure 2: Effect of attention knockout on classification and detection. Performance drops mainly in
early and mid layers, while later layers remain unaffected.

4 Discussion and Limitations131

Our findings shed light on the fundamental mechanisms through which VLMs capture and encode132

spatial structure. Our experiments reveal that positional information is reconstructed in the LLM,133

rather than relying on positional information encoded in the visual backbone. Localization depends134

on a containerization process in which object tokens collectively define spatial boundaries, largely135

independently of semantics. Attention knockout reveals that detection and classification rely on136

overlapping early-middle layers, with localization emerging after object identification. These results137

refine our understanding of the inner workings of VLMs and open several directions for future work.138

We focus our study on LLaVa as a representative VLM, but future work could extend the analysis139

to models with other architectural choices such as visual token compression, alternative positional140

encodings, or richer grounding objectives. Our experiments address the simplest case of single-object141

localization, which provides a foundation for exploring more complex relative localization tasks.142

Moreover, our methods could be extended to examine the mechanisms of broader capacities, such as143

reasoning or hallucination.144
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Appendix214

We include additional experiments and visualizations in the appendix to support our statements.215
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Figure 3: Visualization of object mask for the ablation experiment. Left: the original 336×336
input image in pixel space with an annotated object mask. This mask is mapped onto the 24×24 token
grid of the vision transformer, where a token is selected if it has any pixel overlap with the original
mask. Right: examples of padding applied to the token mask. Negative padding removes adjacent
tokens and shrinks the ablated region, while positive padding adds neighboring tokens and expands it.

B Position Encoding217

We support our findings from Section 3.2 with controlled shuffling experiments that selectively218

perturb positional information at different stages of the multimodal pipeline.219

Token Order Shuffling We first shuffle the sequence of visual tokens after the multimodal projec-220

tion but before they are passed into the LLM. This preserves all positional information encoded by221

the visual backbone while disrupting the sequence order. As shown in Table 2, detection performance222

drops to almost zero, while classification performance remains unaffected. This indicates that the223

LLM does not mainly utilize spatial signals from the visual backbone. Instead, it depends strongly on224
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Figure 4: Examples of the object extension experiment. Each image shows the input with its mask
in pixel space. The yellow region indicates the original mask, while the green region denotes the
padding p added by sampling tokens from the object. The top row corresponds to p = 1 and the
bottom row to p = 2. We display both the predicted and ground-truth bounding boxes for the original
and the extended object. The predicted boxes expand consistently with the mask, suggesting that the
model containerizes object tokens to define spatial boundaries.

Table 2: Detection and classification results for LLaVA models under different token shuffling tests.
Reported values include the standard deviation over 10 seeds. We distinguish between shuffling visual
tokens at the LLM input and shuffling positional encodings at the visual backbone input. Complete
shuffle randomizes all tokens, while mask shuffle restricts randomization to tokens inside the object
mask. Row/Column shuffle permutes tokens within rows/columns while keeping columns/rows fixed.

LLaVA 7B LLaVA 13B

Model Position Shuffle Detection (%) Classification (%) Detection (%) Classification (%)

- Baseline 54.79 99.25 65.96 99.46

LLM Tokens Complete 4.67± 0.07 99.19± 0.03 1.06± 0.04 99.34± 0.02
Mask 56.3± 0.17 99.26± 0.02 67.7± 0.17 99.40± 0.03

ViT PE
Complete 6.22± 0.13 89.49± 0.21 11.20± 0.10 96.10± 0.08
Row 31.32± 0.20 98.21± 0.11 43.44± 0.19 98.95± 0.06
Column 15.14± 0.12 97.33± 0.12 42.51± 0.20 99.08± 0.05

token order, its own positional encoding, and possibly some weak residual signals from the backbone.225

For object classification, however, token order appears irrelevant, suggesting that the model relies on226

object-level signals rather than spatially structured semantics.227

When tokens are shuffled in a structured way, either row-wise or column-wise, performance degrades228

less severely than under full shuffling but bounding boxes show systematic distortions, stretching229

along the shuffled axis (compare Fig. 7 last two rows). Since the LLM is not dependent on the230

backbone’s positional encoding, this supports the containerization hypothesis (Sec. 3.1): tokens231

spread along one axis are grouped into a “container”, which the model interprets as the object’s232

spatial extent.233

Backbone Position Encoding Shuffling Next, we examine the extent to which ViT’s own positional234

encodings contribute to localization capabilities. A complete shuffle of the PE causes a severe235

degradation in localization performance (Tab. 2). However, this perturbation also destroys the ViT’s236

internal spatial priors, confounding interpretation. To confirm this, we measure zero-shot ImageNet237

accuracy using the CLIP text encoder: shuffling the PE reduces classification accuracy from 63.29%238

to 4.45%, showing that the ViT itself fails to provide usable features under such a manipulation.239
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To better isolate the effect of spatial rearrangements, we performed structured shuffles of the PE,240

permuting entire rows or columns. In LLaVA-7B, column shuffling disrupts detection accuracy to241

a larger extent than row shuffling. We hypothesize that the LLM learns a row-major 1D ordering242

of image patches, and therefore depends on accurate “line-break” information. Column shuffling243

corrupts this alignment more strongly, whereas row shuffling preserves it. For LLaVA-13B, the244

difference between row and column shuffling is much smaller, suggesting that larger models are more245

robust and can reconstruct positional structure without fully relying on the ViT’s PE. Qualitative246

examples supporting these observations are provided in the appendix (Fig. 7).247
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Figure 5: Heatmap visualizations of positional decoding accuracy at selected stages of LLaVA.
Each heatmap shows the probability of correctly predicting the position of a visual token in the
24× 24 grid. The multimodal projection retains positional information mainly at the four corners,
effectively marking the image boundaries needed to infer its dimensions. Accuracy then increases
within the LLM, becoming highest in the mid-layers (layer 13 in LLaVA-7B and layer 12 in LLaVA-
13B). Corners and boundary regions remain the most reliably recovered, indicating that they serve as
anchors for reconstructing the global spatial layout.
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relatively stable throughout the network. Removing attention to padding tokens further decreases
localization performance.
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Figure 7: Qualitative results of the shuffling experiments from Appendix B. Each column shows
the same image with 20 bounding boxes sampled from different seeds after applying a specific
shuffling strategy. We prompt LLaVA-7B to detect the main visible object and report the average IoU
with the ground-truth annotation. Permuting the positional encoding of the visual backbone globally
or column-wise (rows 1 and 2) disrupts detection, whereas row-wise shuffling (row 3) preserves it.
Shuffling the LLM’s visual input tokens (row 4) causes clear model failure, while restricting shuffling
to tokens inside the object mask (row 5) still produces accurate predictions. When shuffling the
LLM’s visual tokens row- or column-wise (last two rows), detections become stretched along the
respective axis, supporting the containerization hypothesis (Sec. 3.1).
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