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Abstract

Visually-grounded language models (VLMs) are highly effective in linking visual
and textual information, yet they often struggle with basic classification and local-
ization tasks. While classification mechanisms have been studied more extensively,
the processes that support object detection remain less clear. In this work, we ana-
lyze foundational VLMs and show that image tokens corresponding to the object
directly contain the information required for localization. We find that the model
applies a containerization mechanism: it uses object-related tokens to define spatial
boundaries, while largely discarding semantic context. Our analysis further reveals
that this information is processed in the early to middle layers of the language
model and that classification and detection rely on shared mechanisms. Finally, we
demonstrate that spatial grounding does not come solely from positional encodings
in the visual backbone, but rather from residual positional signals combined with
the language model’s ability to infer spatial order from token sequences.

1 Introduction

Visually-grounded Language Models (VLMs) combine a pre-trained vision encoder with a large
language model (LLM), typically refined through vision-language instruction tuning. The visual
encoder extracts grid-level features from an image, a multimodal adapter maps them into the language
embedding space, and the resulting tokens are processed jointly with text by the LLM. This architec-
ture allows VLMs to link visual and textual inputs and has enabled strong performance on tasks such
as visual question answering, captioning, and open-ended reasoning about images [[13} 15} 16} [1]].

Despite these advances, VLMs continue to struggle with core vision tasks. They often misclassify
or fail to accurately localize objects [20} 23]]. While the mechanisms underlying classification have
been studied [14, 23], much less is known about localization and detection. Closing this gap is
important because most VLMs inherit visual features from CLIP [17], which was trained with global
image-text supervision and struggles with the pixel-level precision required for localization and
detection [3 18} 24]]. Yet VLMs can still answer queries that require identifying and locating objects,
suggesting that these models build spatial structure from weak visual signals. This raises the question
of how the mechanisms enabling localization and detection emerge in VLMs.

In this paper, we present an initial study of the mechanisms underlying object detection in VLMs.
Our main findings are:

1. Grounding through containerization. Information needed for localization is directly encoded in
the visual tokens. The model groups these tokens into containers that define object boundaries,
largely independent of semantics.

2. Implicit spatial layout learning. The LLM infers the two-dimensional structure of the image from
the one-dimensional token sequence by learning implicit line breaks, without spatial modeling.

3. Early-middle layer processing. The mechanisms that support detection emerge in the early to
middle layers of the LLM, indicating overlap with the layers that drive classification.
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Related Work Several studies have focused on improving localization performance of VLMs
[22, 116} |6 |1]], but none analyze their underlying mechanisms. Prior mechanistic interpretability
studies of VLMs focus on reasoning, VQA, or hallucinations ([12, 9, [15} 21} [11} [14]). We build on
ablation and attention knockout methods [[14]], adapting them to study localization mechanisms in
object detection tasks.

2 Method

Visually Grounded Language Models We study two variants of LLaVa 1.5 [[13]], an open-source
VLM with a simple, yet effective architecture. Visual features are encoded by CLIP ViT-L/14 [17] and
projected into the LLM embedding space via a two-layer MLP. We analyze the two available versions:
LLaVa-7B and LLaVa-13B, which use Vicuna-7B/13B [4]] as the language backbone, respectively.

Dataset We filter the COCO [12]] training split to obtain a controlled subset of 8,442 images.
Specifically, we retain images containing 1-4 annotated objects, with no more than one instance per
category to avoid category-level ambiguity. Each object is further required to cover 10%-50% of
the image area. Following [[14], we additionally control for hallucinations by keeping only samples
where the model correctly identifies objects in the original image, but fails when objects are masked
with noise. This ensures that predictions rely on visual evidence rather than context.

Task We compare model performance across two tasks: (i) Classification: We prompt the model
with the query “‘Is there {art} {cls} in the image?’’, where cls denotes the object cate-
gory and art the appropriate article. Predictions are evaluated by searching for the token “Yes” in
the response, and success rate is reported as the fraction of correctly classified instances. (ii) Detec-
tion: We prompt the model with ‘‘Please provide the bounding box coordinates of the
{cl1s}.”’ The predicted bounding boxes are parsed and compared against ground-truth annotations
using the intersection-over-union (IoU) metric. Performance is measured as the success rate, defined
as the proportion of samples where IoU exceeds thresholds of 0.5, 0.7, and 0.9. The final detection
score is obtained by averaging over these three thresholds.

3 Experiments

3.1 Object Localization

Method We conduct an ablation study to investigate the contribution of visual input tokens to the
performance of the VLM on the classification and detection task. To preserve domain-consistent
statistics while effectively removing image-specific information, we replace the original image tokens
with their average embedding computed over the ImageNet [[7] validation set.

We evaluate three strategies for selecting visual tokens for ablation: (i) Object: We project the object
mask onto the image token grid and include all tokens that overlap with it by at least one pixel.
To probe for boundary sensitivity and context dependence, we shrink or dilate the mask by 1 or 2
token padding. A visualization of the masking is provided in the Appendix Figure3] (ii) Integrated
Gradients: We identify the top k£ important image tokens using the Integrated Gradients attribution
method [[19], computed over 50 steps with respect to the “Yes” logit (for classification) or bounding
box coordinates (for detection). (iii) Random: As a control, we randomly select k& image tokens,
repeat the process with three different seeds, and report the standard deviation.

Result As Table|l|shows, both detection and classification tasks rely on the information encoded
in object tokens, as ablating them results in a significantly larger performance decline compared
to removing an equal number of tokens either randomly or via gradient-based selection. Detection
is more affected than classification: removing object tokens reduces detection performance nearly
to zero, while classification still succeeds in 60-80% of cases. Positive padding around the object
further amplifies the effect, while maintaining the original boundaries through negative padding has
minimal influence on performance. These findings indicate that the essential information for both
tasks resides within the object boundaries.

Next, we investigate the mechanisms by which the model encapsulates objects to generate bounding
boxes. To test this, we artificially expand the ground-truth mask by padding it with p layers of tokens.
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Table 1: Performance after token ablation. The baseline indicates no performed token ablation and is
compared to ablating the object mask with different paddings, highest-gradient and random token
ablation.

LLaVA 7B LLaVA 13B

Ablation (Avg. Token Count) Detection (%) Classification (%) \ Detection (%) Classification (%)
Baseline (0) 54.79 99.25 \ 65.96 99.46

— 2 Padding (31) 53.17 99.13 66.61 99.37

— 1 Padding (67) 46.41 98.51 63.27 98.76
Object (122) 8.11 63.70 14.61 77.36

+ 1 Padding (176) 1.46 36.47 2.00 54.81

+ 2 Padding (230) 0.76 33.84 1.11 48.50
Integrated Gradients (/00) 23.90 93.52 19.29 96.32
Integrated Gradients (200) 8.53 79.83 5.77 83.26
Random (/00) 52.44 + 0.65 99.29 + 0.01 62.79 + 0.30 99.42 £+ 0.02
Random (200) 47.82 £1.85 99.29 £+ 0.05 57.96 + 0.32 99.37 £ 0.02

Concretely, we sample tokens from the existing object and place them into the surrounding padding
region, effectively extending the object’s footprint while keeping its semantic content unchanged. We
then measure whether the predicted bounding box expands accordingly across three random sampling
seeds. For LLaVA-7B, detection accuracy is 61.84 4 0.09 % with p = 1 and 66.56 + 0.10 % with
p = 2. For LLaVA-13B, average accuracy is 71.79 +0.21 % at p = 1 and 78.97 & 0.17 % for p = 2.
These results indicate that detection depends mainly on the presence of object tokens rather than their
specific semantic arrangement. We show qualitative examples in Appendix Figure ]

To further support this claim, we shuffle the image tokens within the object mask directly at the LLM
input. As shown in App. Table[2] detection performance remains unchanged under this perturbation.
Together, these findings suggest that the model employs a form of containerization, where tokens
collectively define an object’s spatial extent, independent of their internal semantic structure.

3.2 Position Encoding

Method We next study how positional information is processed within the VLM, focusing on the
role of the visual backbone’s positional encoding (PE) and the subsequent token ordering in the
LLM for spatial grounding. To study how positional information remains identifiable throughout the
model’s hierarchical processing, we train a separate linear classifier for each model layer to predict
the position of an image token within the 24x24 input grid (576 classes). The classifiers are trained
for 10 epochs using 50,000 ImageNet images for training and 10,000 for testing.
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Figure 1: Positional decoding results. Left: average position accuracy per layer for CLIP (0-22), the
multimodal projection (P) and LLaVA language models (0-39). Right: per-position accuracy at layer
11, showing higher accuracy at the image corners.

Result In Figure[T} we observe that positional information in the CLIP visual backbone is decodable
from early layers but largely vanishes by the final layers, consistent with prior findings that CLIP-ViT
trades spatial precision for semantic abstraction over depth [10]. In contrast, in the LLM, positional
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identifiability is initially low. However, it increases rapidly and peaks around layers 12 and 13.
The multimodal projection retains strong signals for the four image corners (app. Fig.[5), which
appear sufficient for the LLM to infer approximate row boundaries (“line breaks’) across the token
sequence. Tokens aligned with these inferred line breaks are predicted with higher probability
than other positions (Fig. [T} right), suggesting that the model uses them as structural anchors when
reconstructing spatial layouts. In App. [Bl we provide additional experiments supporting these claims.

3.3 Attention Knockout

Method Our next experiments aim to identify where in the network the visual information that is
required for the task is extracted and processed. We apply the attention knockout technique [8} [14]],
which blocks attention and thereby prevents the communication between tokens. Unlike [14], we
eliminate attentions from all tokens following the image tokens to the object tokens, effectively
removing any information extracted from the object tokens in those layers. We combine layers in
groups of four and block all attention heads inside each group. We evaluate the resulting performance
drop on classification and detection tasks using a 1,024-image subset of our filtered COCO dataset.

Result  Our results are shown in Figure 2] Blocking attention to the object significantly decreases
performance in the early to mid layers of the model, while perturbing attention flow in later layers
leaves performance largely unaffected. Both detection and classification rely on early shared layers,
after which detection depends on additional task-specific layers. This progression suggests a two-step
process: the model first identifies the object, then localizes it. Moreover, the layers with the largest
detection decline align with those that retain strong positional information (see Sec.[3.2)). Compared
to layer-wise knockouts (app. Fig.[6), ablating groups of layers amplifies the effect, particularly for
classification. This suggests that the model accumulates object-related information across consecutive
layers rather than relying on layer-specific mechanisms.
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Figure 2: Effect of attention knockout on classification and detection. Performance drops mainly in
early and mid layers, while later layers remain unaffected.

4 Discussion and Limitations

Our findings shed light on the fundamental mechanisms through which VLMs capture and encode
spatial structure. Our experiments reveal that positional information is reconstructed in the LLM,
rather than relying on positional information encoded in the visual backbone. Localization depends
on a containerization process in which object tokens collectively define spatial boundaries, largely
independently of semantics. Attention knockout reveals that detection and classification rely on
overlapping early-middle layers, with localization emerging after object identification. These results
refine our understanding of the inner workings of VLMs and open several directions for future work.

We focus our study on LLaVa as a representative VLM, but future work could extend the analysis
to models with other architectural choices such as visual token compression, alternative positional
encodings, or richer grounding objectives. Our experiments address the simplest case of single-object
localization, which provides a foundation for exploring more complex relative localization tasks.
Moreover, our methods could be extended to examine the mechanisms of broader capacities, such as
reasoning or hallucination.
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Appendix
We include additional experiments and visualizations in the appendix to support our statements.

A Ablation
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Figure 3: Visualization of object mask for the ablation experiment. Left: the original 336x336
input image in pixel space with an annotated object mask. This mask is mapped onto the 24x24 token
grid of the vision transformer, where a token is selected if it has any pixel overlap with the original
mask. Right: examples of padding applied to the token mask. Negative padding removes adjacent
tokens and shrinks the ablated region, while positive padding adds neighboring tokens and expands it.

B Position Encoding

We support our findings from Section [3.2] with controlled shuffling experiments that selectively
perturb positional information at different stages of the multimodal pipeline.

Token Order Shuffling We first shuffle the sequence of visual tokens after the multimodal projec-
tion but before they are passed into the LLM. This preserves all positional information encoded by
the visual backbone while disrupting the sequence order. As shown in Table[2} detection performance
drops to almost zero, while classification performance remains unaffected. This indicates that the
LLM does not mainly utilize spatial signals from the visual backbone. Instead, it depends strongly on
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Figure 4: Examples of the object extension experiment. Each image shows the input with its mask
in pixel space. The yellow region indicates the original mask, while the green region denotes the
padding p added by sampling tokens from the object. The top row corresponds to p = 1 and the
bottom row to p = 2. We display both the predicted and ground-truth bounding boxes for the original
and the extended object. The predicted boxes expand consistently with the mask, suggesting that the
model containerizes object tokens to define spatial boundaries.

Table 2: Detection and classification results for LLaVA models under different token shuffling tests.
Reported values include the standard deviation over 10 seeds. We distinguish between shuffling visual
tokens at the LLM input and shuffling positional encodings at the visual backbone input. Complete
shuffle randomizes all tokens, while mask shuffle restricts randomization to tokens inside the object
mask. Row/Column shuffle permutes tokens within rows/columns while keeping columns/rows fixed.

LLaVA 7B LLaVA 13B
Model Position  Shuffle Detection (%)  Classification (%) \ Detection (%)  Classification (%)
- Baseline 54.79 99.25 ‘ 65.96 99.46
LLM Tokens Complete  4.67 +0.07 99.19 £ 0.03 1.06 £+ 0.04 99.34 £0.02
Mask 56.3 +0.17 99.26 £+ 0.02 67.7+0.17 99.40 £ 0.03
Complete  6.22 +0.13 89.49 +0.21 11.20 £0.10 96.10 £ 0.08
ViT PE Row 31.32+£0.20 98.21 £0.11 43.44 £0.19 98.95 £+ 0.06
Column 15.14 £0.12 97.33 £0.12 42.51 £0.20 99.08 £ 0.05

token order, its own positional encoding, and possibly some weak residual signals from the backbone.
For object classification, however, token order appears irrelevant, suggesting that the model relies on
object-level signals rather than spatially structured semantics.

When tokens are shuffled in a structured way, either row-wise or column-wise, performance degrades
less severely than under full shuffling but bounding boxes show systematic distortions, stretching
along the shuffled axis (compare Fig. [7]last two rows). Since the LLM is not dependent on the
backbone’s positional encoding, this supports the containerization hypothesis (Sec. [3.I): tokens
spread along one axis are grouped into a “container”, which the model interprets as the object’s
spatial extent.

Backbone Position Encoding Shuffling Next, we examine the extent to which ViT’s own positional
encodings contribute to localization capabilities. A complete shuffle of the PE causes a severe
degradation in localization performance (Tab.[2). However, this perturbation also destroys the ViT’s
internal spatial priors, confounding interpretation. To confirm this, we measure zero-shot ImageNet
accuracy using the CLIP text encoder: shuffling the PE reduces classification accuracy from 63.29%
to 4.45%, showing that the ViT itself fails to provide usable features under such a manipulation.
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To better isolate the effect of spatial rearrangements, we performed structured shuffles of the PE,
permuting entire rows or columns. In LLaVA-7B, column shuffling disrupts detection accuracy to
a larger extent than row shuffling. We hypothesize that the LLM learns a row-major 1D ordering
of image patches, and therefore depends on accurate “line-break” information. Column shuffling
corrupts this alignment more strongly, whereas row shuffling preserves it. For LLaVA-13B, the
difference between row and column shuffling is much smaller, suggesting that larger models are more
robust and can reconstruct positional structure without fully relying on the ViT’s PE. Qualitative
examples supporting these observations are provided in the appendix (Fig. 7).
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Figure 5: Heatmap visualizations of positional decoding accuracy at selected stages of LLaVA.
Each heatmap shows the probability of correctly predicting the position of a visual token in the
24 x 24 grid. The multimodal projection retains positional information mainly at the four corners,
effectively marking the image boundaries needed to infer its dimensions. Accuracy then increases
within the LLM, becoming highest in the mid-layers (layer 13 in LLaVA-7B and layer 12 in LLaVA-
13B). Corners and boundary regions remain the most reliably recovered, indicating that they serve as
anchors for reconstructing the global spatial layout.

C Attention Blocking
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Figure 6: Attention blocking per layer. We report classification and detection accuracy when
blocking all attention heads of a single layer from tokens following the image tokens to the object
tokens. Detection performance drops sharply in the early to mid layers, while classification remains
relatively stable throughout the network. Removing attention to padding tokens further decreases
localization performance.
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Figure 7: Qualitative results of the shuffling experiments from Appendix B} Each column shows
the same image with 20 bounding boxes sampled from different seeds after applying a specific
shuffling strategy. We prompt LLaVA-7B to detect the main visible object and report the average IoU
with the ground-truth annotation. Permuting the positional encoding of the visual backbone globally
or column-wise (rows 1 and 2) disrupts detection, whereas row-wise shuffling (row 3) preserves it.
Shuffling the LLM’s visual input tokens (row 4) causes clear model failure, while restricting shuffling
to tokens inside the object mask (row 5) still produces accurate predictions. When shuffling the
LLM’s visual tokens row- or column-wise (last two rows), detections become stretched along the
respective axis, supporting the containerization hypothesis (Sec. [3.1).
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