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ABSTRACT

To overcome the inherent limitations of Chain-of-Thought (CoT) and to further
push the upper bound of multimodal reasoning capabilities, we introduce Think-
ing with Visual Programming (TVP), where models can iteratively interact with an
external code executor to generate, run, and verify both visual and textual agentic
operations as part of the reasoning loop. Motivated by the open question of how
far Multimodal Large Language Models (MLLMs) still lag behind this paradigm,
we introduce MMR-VIP, a MultiModal Agentic Reasoning benchmark built on
Visual Impossible Problems. We design MMR-VIP with two key principles: (1)
We construct a Difficulty Ladder grounded in computational complexity theory,
structuring tasks from easy problems that can be solved with inherent percep-
tion and reasoning, through medium problems that require external computational
tools, to hard problems that remain intractable even with programming assistance.
(2) We decompose the paradigm of Thinking with Visual Programming into three
Cognitive Skills, namely Perception, Abstraction, and Optimization, which
correspond to perceiving visual inputs, abstracting them into problem formula-
tions, and optimizing algorithms to obtain efficient solutions. Our experiments on
MMR-VIP yield the following findings: (1) GPT-5, as a native TVP model, deliv-
ers the strongest overall results, yet its accuracy remains only 38.2%, underscoring
substantial room for progress. (2) For commercial models, multi-turn code execu-
tion consistently surpasses direct CoT and single-turn execution, providing stable
and significant improvements. (3) Across difficulty levels, performance follows a
ladder-shaped trend, with negligible gains on easy tasks, the largest improvements
on medium tasks, and steady advances on hard tasks. (4) From a cognitive per-
spective, TVP enhances optimization by offloading complex computation, search,
and planning, but models still encounter bottlenecks in abstraction.

1 INTRODUCTION

Multimodal reasoning is a defining capability of human intelligence, enabling us to address diverse
challenges such as navigating in the physical world, interpreting scientific figures, and solving ge-
ometry problems (Yue et al., 2024; Lu et al., 2024). Recent advances in Multimodal Large Language
Models (MLLMs) (OpenAI, 2024; DeepMind, 2025; Bai et al., 2025) have demonstrated significant
progress by leveraging Chain-of-Thought (CoT) (Wei et al., 2022; Zhang et al., 2024c), which
bridges perception and reasoning through explicit sequences of textual steps. Nevertheless, exist-
ing improvements remain constrained, since they primarily extend text-based CoT, prolonging the
reasoning process without enhancing the upper bound of the model’s reasoning capabilities.

To address these limitations, “Thinking with Images” (TWI) (Zheng et al., 2025; Su et al., 2025a;c)
has recently been proposed as an emerging paradigm, enabling models to incorporate iterative vi-
sual inspection as part of the reasoning loop. In practice, current methods rely on manipulating
images with external tools (Zhang et al., 2025), such as cropping, zooming, rotating, and other im-
age processing operations. Although such strategies enhance perceptual accuracy, they are limited
to a narrow set of predefined visual tools, thereby rigidifying the reasoning process and restricting its
generality. As various forms of visual manipulation can naturally be expressed and executed through
programming, we propose the paradigm of “Thinking with Visual Programming” (TVP), which
goes beyond fixed tools and allows models like OpenAI’s o4 and GPT-5 (OpenAI, 2025a) to flexibly
generate, execute, and verify both visual and textual operations within the reasoning process.
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Easy

Question: Place one queen in each row 
and column so that no two queens 
attack each other. Find the number 
of valid placements.

Answer: 1

Question: Place one queen in each row 
and column such that no two queens 
attack each other, and no queen is 
threatened by an existing knight 
(knight safety is ignored). Find the 
number of valid placements.

Answer: 5

Question: Place one queen in each row 
and column such that no two queens 
attack each other, and no queen is 
threatened by an existing knight 
(knight safety is ignored). Each 
square has a placement cost based on 
its color. Find the arrangement of 
queens that satisfies these 
constraints with minimum total cost.

Answer: 170

Medium

Hard

Perception

Abstraction

Optimization

Chain-of-Thought
The number of different valid queen placements is: 0
Because: Several queens are already placed (E3, A5, C9, G12) …
… Checking carefully: The already placed queens on E3, A5, C9, G12 
already conflict with each other diagonally (E3 and A5 are on the 
same diagonal, C9 and G12 are on the same diagonal).
No complete arrangement exists that satisfies the constraints.

Thinking with Visual Programming
I'm considering using image analysis to detect the chess pieces, via 
template matching. It could work since we have black queen and 
knight icons, plus the coordinates in the squares. I'd need to 
segment the image and analyze color intensity. I'll go with the code 
approach for detecting pieces more reliably.

<code> Computing per-cell darkness threshold </code>
<code> Computing mapping for top dark count cells </code>

The pieces are located at A5, B4, C9, E3, and G12. After revisiting 
the data, I’ll trust the code and place the knight at B4, which leaves 
the other pieces as queens. 
It looks like the knight's attack squares do indeed prevent new 
queen placements but not existing queens. For the remaining queens, 
the algorithm should ensure they don't attack each other or land on 
knight-attack squares. 

<code> Computing knight attack squares </code>

I’ve confirmed that there are only 6 valid knight attack squares 
from B4, as some moves fall off the board or into negative columns. 
I’m ready to implement the solver with the necessary constraints! 
I'll implement the backtracking approach, keeping the knight and 
queens’ constraints in check.

<code> Computing valid queen placements with knight 
constraints </code>
<code> Verifying queen placement constraints </code>

We found 5 valid queen placements, and I'll double-check 
everything.

(1) Difficulty Ladder in MMR-VIP. (4) Performance Across Cognitive Skills.(2) Cognitive Skills of TVP.

(3) Performance Across Difficulty Levels.

Figure 1: Thinking with Visual Programming paradigm. Figure 1(1) illustrates the three difficulty
levels in MMR-VIP using the N-Queens task as an example. Figure 1(2) shows that for a medium-
level problem, direct CoT reasoning fails while TVP succeeds, and in the process three key cognitive
skills emerge. Figure 1(3) compares the average performance of four powerful models (GPT-4.1-
mini, GPT-4.1, Gemini-2.5-Flash, and Claude-Sonnet-4) under CoT and TVP, showing minimal
changes on easy tasks, the largest gains on medium tasks, and clear improvements on hard tasks.
The results exhibit a ladder-shaped performance trend across difficulty levels. Figure 1(4) presents
the performance differences of the four models across cognitive skills, where TVP yields notable
improvements in symbolic (perception), computation, search, and planning (optimization).

Humans inherently solve complex reasoning problems in a programming-like manner by preprocess-
ing visual inputs for better perception, applying algorithmic procedures to derive solutions, and ver-
ifying outcomes through testing. Nevertheless, it remains unclear how far current MLLMs are from
this paradigm. To this end, we introduce MMR-VIP, a MultiModal Agentic Reasoning benchmark
that consists of Visual Impossible Problems. Formally, we refer to Visual Impossible Problems as
problems that appear intractable under CoT-based reasoning, yet become solvable when augmented
with visual programming interactions. We design MMR-VIP with two key considerations:

Difficulty Ladder. We categorize problems into three levels of difficulty, drawing inspiration from
how humans tackle tasks with and without tools, and grounded in computational complexity the-
ory. (1) Easy level requires that the model can reliably solve them using its inherent perception and
reasoning abilities, without any programming assistance. This level corresponds to “low-complexity
problems in P”, where the model can perform reasoning within its working memory; (2) Medium
level is challenging for the model to solve independently, but can be effectively addressed when it is
allowed to use a code interpreter. This level typically involves “polynomial-time solvable problems
in P”, where the model must rely on external computational tools to compute solutions; (3) Hard
level remains unsolved even with programming assistance, often due to their large-scale computa-
tional complexity, highly intricate constraints, or demanding optimization requirements. This level
corresponds conceptually to “NP-hard problems”, which often lie beyond the capabilities of current
models. As shown in Figure 1(1), the three levels form a progressive difficulty ladder, where each
step reflects an increasing demand on the model’s reasoning capacity and reliance on external tools.

Cognitive Skill. We decompose the Thinking with Visual Programming paradigm into three key
cognitive skills, focusing on the core cognitive processes required to perceive, abstract, and opti-
mize multimodal agentic reasoning. Taking the N-Queens problem in Figure 1(2) as an example:
(1) Perception requires the model to transform visual content into structured information, correctly
extracting relevant elements from multimodal inputs (e.g., detecting and locating chess pieces on
the board); (2) Abstraction requires the model to transform structured information to problem for-
mulation, producing computationally useful forms and proposing feasible solutions (e.g., converting
piece positions into symbolic constraints that capture attack rules); (3) Optimization requires the
model to transform problem formulation to algorithmic optimization, optimizing both algorithms
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and computational procedures to obtain correct and efficient answers (e.g., applying a backtracking
algorithm to search for valid queen placements under the given constraints).

MMR-VIP encompasses 28 carefully crafted task types, each designed across three difficulty levels,
resulting in 1,680 instances that provide a comprehensive evaluation of multimodal agentic reason-
ing capabilities. These tasks span a wide spectrum, from basic skills such as counting and height
measurement to advanced challenges including graph coloring and circuit logic. To avoid dataset
contamination and guarantee that models solve tasks via code execution instead of memorized recall,
all problems in MMR-VIP are generated using carefully designed, manually written code.

We conduct a comprehensive evaluation on MMR-VIP across a wide range of MLLMs, including
commercial models such as Claude-Sonnet-4, open-source models such as Qwen2.5-VL-72B, as
well as native TVP models like o4-mini and GPT-5. We further assess different reasoning paradigms,
including direct CoT, single-turn code execution, and multi-turn code execution. We obtain the fol-
lowing conclusions: (1) Our experimental results reveal clear differences across model types and
reasoning paradigms. For open-source models, introducing code execution provides little to no im-
provement, mainly due to their limited visual programming capabilities. For commercial models,
single-turn code execution yields unstable performance, while multi-turn code execution consis-
tently delivers substantial gains. As illustrated in Figure 1(3), multi-turn code execution improves
accuracy on medium-level tasks by 58.4% compared to direct CoT. GPT-5, as a native TVP model,
achieves the best overall performance; however, its accuracy remains only 38.2%, indicating sub-
stantial room for improvement; (2) Performances across different difficulty levels align well with the
design of MMR-VIP, exhibiting a ladder-shaped performance trend. Compared to direct CoT, we
observe that TVP yields minimal changes on easy tasks, the largest gains on medium tasks, and con-
sistent improvements on hard tasks; (3) From the perspective of cognitive skills, TVP shows clear
progress in optimization, as it can leverage programming to offload complex computation, search,
and planning operations. However, its performance still encounters bottlenecks in abstraction, where
models lack the ability to translate visual inputs into high-level problem formulations. We hope that
MMR-VIP will serve as a challenging benchmark to drive future research toward closing this gap.

2 PARADIGM DEFINITIONS

2.1 MULTIMODAL CHAIN-OF-THOUGHT

We formalize the conventional paradigm of Multimodal Chain-of-Thought reasoning. For a model
θ, given an input image I and a textual question x, the CoT process can be defined as:

PCoT(y | I, x) = Pθ(r | I, x) · Pθ(y | I, x, r). (1)

Here, r = (s1, s2, . . . , sn) denotes the intermediate reasoning chain, which explicitly captures the
sequence of textual steps bridging perception and reasoning, while y represents the final answer
conditioned on both the original input (I, x) and the generated textual rationale r.

2.2 THINKING WITH VISUAL PROGRAMMING

We formalize the proposed paradigm of Thinking with Visual Programming. For a model θ, given an
input image I and textual question x, TVP extends conventional CoT by introducing programming
actions at, which are executed through interaction with an external code executor E . Unlike single-
pass reasoning, this is a multi-turn interactive agentic process consisting of T rounds:

PTVP(y | I, x) =
T∏

t=1

Pθ(rt, at | st−1) · Pθ(y | sT ). (2)

At each step t, the model generates a reasoning trace rt and a programming action at, executes at
via the external executor E , and incorporates the multimodal execution result E(at) into the state st:

st = st−1 ∪ {rt, at, E(at)}, s0 = {I, x}. (3)

Compared to CoT, TVP offers significant advantages by integrating pixel manipulations and algo-
rithmic computation into the reasoning loop, enabling models to move beyond textual thinking. In
this paper, we do not provide models with fixed external tools. Instead, we allow them to write code
that can call standard libraries, such as PIL, OpenCV, and Matplotlib, among others.

3
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(1) Attribute

Question: 
What is 
the number 
of red dots?

Answer: 29

Difficulty: Hard
Task: Point Counting

Question: What is 
the color of the 
ball at (2, 2, 2)? 
You can choose an 
answer from Red, 
Green, Orange, 
Cyan, Purple, Blue 
and Yellow.

Answer: Red

Question: This is a 
digital circuit 
problem. Given 
known input values 
for the circuit, 
determine the 
output value.

Answer: 0

(2) Location

Difficulty: Medium
Task: 3D Location

Difficulty: Easy
Task: Circuit Logic

(3) Symbolic

(4) Geometry

Question: Calculate 
the minimum 
enclosing rectangle 
area of the 
following rectangle, 
where the sides of 
the enclosing 
rectangle must be 
parallel to the grid.

Answer: 63

Difficulty: Easy
Task: Bounding Box

Question: How many 
ricochets will a ball 
launched from (1.0, 
1.0) at 5° need to hit 
the target at (9.0, 
9.0)? 
The ball reflects 
perfectly off the 
arena walls and 
mirror-obstacles.

Answer: 8

Question: Given the 
following four-
coloring problem 
graph, where part 
of the region has 
been pre-colored, 
how many coloring 
combinations are 
there for the 
remaining region?

Answer: 34560

(5) Physics

Difficulty: Medium
Task: Ricochet Ball

Difficulty: Hard
Task: Graph Coloring

(6) Network

(7) Search

Question: This is a diagram 
of a Rubik's Cube. Given an 
initial state (above), you can 
perform the standard 18 
operations to find the 
minimum number of moves 
required to get the Rubik's 
Cube to the given state 
(below).

Answer: 6

Difficulty: Hard
Task: Rubik's Cube

Question: Each 
task can only be 
assigned to one 
person, and 
each person can 
only be assigned 
one task. 
Compute the 
maximum total 
profit.

Answer: 500

Question: Given the 
first 8 numbers in 
the nine-square 
grid, calculate the 
smallest positive 
integer such that 
the sum of this 
number plus all 
previous numbers is 
an integer multiple 
of 20.

Answer: 12

(8) Planning

Difficulty: Medium
Task: Resource Allocation

Difficulty: Easy
Task: Calculation

(9) Computation

Figure 2: Evaluation framework of cognitive skills in MMR-VIP.

3 MMR-VIP BENCHMARK

To investigate how far current MLLMs are from the paradigm of TVP, we introduce MMR-VIP,
a MultiModal Agentic Reasoning benchmark that consists of Visual Impossible Problems. These
are carefully designed problems that existing MLLMs cannot reliably solve with conventional CoT
reasoning alone, but instead necessitate interaction with an external code executor. We will detail the
design principles behind MMR-VIP, including its difficulty ladder and cognitive skill dimensions,
and describe the benchmark construction process along with dataset statistics.

3.1 DIFFICULTY LADDER

We categorize problems in MMR-VIP into a three-level Difficulty Ladder, drawing inspiration
from how humans tackle tasks of varying complexity and their reliance on external tools. At the
Easy level, tasks can be reliably solved using the model’s inherent perception and reasoning abili-
ties, without the need for programming assistance. These correspond to “low-complexity problems
in P”, where solutions can be derived directly within the model’s working memory. The Medium
level encompasses tasks that models struggle to solve on their own but can successfully address
when supported by external tools such as code interpreters. These tasks align with “polynomial-time
solvable problems in P,” where deriving solutions requires programmatic operations and computa-
tional tools beyond intuition alone. Finally, the Hard level captures problems that remain unsolved
even with programming assistance, typically due to large-scale computational complexity, intricate
constraints, or challenging optimization requirements. Conceptually, these tasks are analogous to
“NP-hard problems”, which often exceed the practical capabilities of current models. Such a diffi-
culty ladder setting enables a more in-depth examination of the paradigm of TVP.1

1The tasks in MMR-VIP are not strictly designed or guaranteed to align with formal complexity-theoretic
definitions, but rather follow the spirit of increasing computational and cognitive demands.
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Table 1: Mapping between cognitive skills and task types in MMR-VIP.

Category Tasks
Attribute 3D Position, Bin Packing, Graph Coloring, Hanoi Tower, Point Counting, Resource Allocation,

Rubik’s Cube, Sliding Puzzle, Snake Game, Three-Views
Location 3D Position, Bounding Box, Height Measurement, Point Counting, Projectile Motion, Snake

Game, Three-Views
Symbolic Calculation, Chart, Circuit Logic, House Robber, Interval DP, N-Puzzle, Projectile Motion,

Tableau LP
Geometry Area Measurement, Bounding Box, Rubik’s Cube, Three-Views
Physics Circuit Logic, Projectile Motion, Ricochet Ball
Network Graph Coloring, Graph Isomorphism
Search Bin Packing, Bubble Sort, Calculation, Graph Coloring, Maze, N-Puzzle, N-Queens, Path

Counting, Rubik’s Cube, Sliding Puzzle, Snake Game
Planning Chart, Hanoi Tower, House Robber, Interval DP, Lights Out, Resource Allocation, Tableau LP
Computation Calculation, Path Counting

3.2 COGNITIVE SKILL

Beyond task difficulty, we design MMR-VIP to emphasize the underlying Cognitive Skills required
for multimodal agentic reasoning under the TVP paradigm. These skills highlight the essential pro-
cesses through which models must learn to leverage external tools to approach complex problems.
We define three successive skills within TVP: Perception, Abstraction, and Optimization, which
together examine a model’s visual programming ability from complementary dimensions.

Perception: This skill concerns the model’s ability to accurately extract structured information from
raw visual inputs. Unlike direct pattern recognition that relies solely on intrinsic visual perception,
TVP enables models to enhance perception through programmatic operations such as counting,
measuring, and localization. For example, as shown in Figure 2(1), when a task requires precise
object counting, models that rely only on intrinsic perception often fail due to overlapping shapes,
varying sizes, or background noise. In contrast, TVP enables the model to generate code that ana-
lyzes pixel-level cues such as color and boundary lines, allowing it to count objects more accurately.
We evaluate this skill across three dimensions: Attribute (i.e., color, shape, size), Location (i.e.,
positions, distances, spatial relations), and Symbolic (i.e., digits, letters, or graphical symbols).

Abstraction: This skill concerns the model’s ability to transform low-level structured information
into higher-level problem formulations. It requires not only recognizing surface patterns but also
capturing the underlying rules and constraints, and converting them into computationally useful
forms. For instance, as illustrated in Figure 2(6), the model must write code to abstract the puzzle
into a network structure, representing each piece as a node and encoding adjacency relations as
edges. This code-based abstraction allows the model to perform further search or optimization
over the graph. In MMR-VIP, we evaluate abstraction across three dimensions: Geometry (i.e.,
geometric formulations), Physics (i.e., physical laws), and Network (i.e., graph structures).

Optimization: This skill focuses on the model’s ability to transform problem formulations into
efficient algorithmic solutions. It requires not only identifying feasible solutions but also refining
them to satisfy the given conditions. For example, as illustrated in Figure 2(7), the Rubik’s Cube
task requires the model to minimize the number of moves from an initial state to a target state. TVP
enables the model to generate and execute code that systematically explores the space of valid cube
operations, pruning redundant paths and converging to the optimal sequence of moves. We evaluate
this skill across three dimensions: Search (i.e., depth-first search, breadth-first search), Planning
(i.e., dynamic programming, linear programming), and Computation (i.e., numerical calculations).

3.3 BENCHMARK CONSTRUCTION

To ensure that tasks are both solvable in the TVP paradigm and suitable for difficulty control, we
adopt a Code2Task generation framework. We recruited five annotators with strong backgrounds in
programming competitions and instructed them to write code that specifies task rules and automati-
cally generates the corresponding images2, problems, and answers. As task difficulty increased, an-
notators were required to design new rules and introduce greater computational complexity, thereby
enriching the reasoning challenges. To facilitate this process, annotators were permitted to utilize

2We implemented visualization through HTML and Matplotlib.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Experimental results on MMR-VIP. The best performance in each column is highlighted
in bold. Red denotes cases where TVP underperforms CoT, while Green denotes cases where it
outperforms CoT, with darker shades indicating larger magnitude of change.

Model Difficulty Level Cognitive Skill Overall
Easy Mid Hard Att Loc Sym Geo Phy Net Com Sea Pla

Open-source Models

Keye-VL-1.5-8B CoT 28.0 11.4 4.8 12.0 9.3 21.2 11.2 8.3 27.5 35.0 15.6 14.3 14.8
T=1 9.1 3.2 2.5 4.2 3.8 5.2 3.8 4.4 12.5 6.7 4.2 3.8 4.9 (↓ 9.9)

Gemma-3-27B CoT 16.2 5.5 5.0 7.8 6.0 11.9 2.5 10.0 16.7 17.5 10.2 6.0 8.9
T=1 15.5 10.0 4.1 6.2 5.5 17.3 4.2 6.7 22.5 28.3 8.9 10.2 9.9 (↑ 1.0)

Qwen2.5-VL-7B CoT 13.2 7.0 3.9 7.5 3.6 7.3 3.8 8.9 26.7 6.7 6.8 6.4 8.0
T=1 7.3 5.5 1.6 2.5 2.9 7.5 2.1 2.2 17.5 21.7 5.3 1.7 4.8 (↓ 3.2)

Qwen2.5-VL-32B
CoT 24.3 10.9 6.4 13.7 12.6 17.3 8.3 10.0 25.0 29.2 14.7 8.6 13.9
T=1 13.6 4.6 4.1 7.7 8.1 6.9 4.2 9.4 13.3 6.7 5.9 4.8 7.4 (↓ 6.5)

T=3 18.9 9.8 6.8 10.0 8.8 18.3 2.5 7.2 20.8 28.3 13.3 10.7 11.8 (↓ 2.1)

Qwen2.5-VL-72B CoT 23.9 10.4 6.1 12.3 10.7 15.8 12.5 8.9 30.8 20.8 12.1 8.6 13.4
T=1 20.5 9.6 4.5 11.5 11.7 16.2 5.8 7.8 18.3 15.8 9.1 10.9 11.6 (↓ 1.8)

Commercial Models

GPT-4.1-mini
CoT 42.7 20.2 9.8 23.3 23.8 32.1 19.6 21.1 30.8 34.2 18.9 26.9 24.2
T=1 45.5 28.2 14.1 16.0 23.3 49.4 22.1 22.2 35.0 39.2 24.7 37.1 29.3 (↑ 5.1)

T=3 42.1 28.4 14.1 21.8 21.4 45.0 16.2 14.4 31.7 31.7 22.9 40.5 28.2 (↑ 4.0)

GPT-4.1
CoT 42.7 19.1 11.1 23.0 26.9 33.8 20.0 26.1 30.0 35.0 13.9 28.6 24.3
T=1 38.9 18.0 7.1 18.7 23.8 25.4 22.1 27.2 27.5 22.5 17.6 16.4 21.4 (↓ 2.9)

T=3 47.1 25.5 12.1 18.7 25.0 50.4 13.8 32.8 28.3 32.5 20.3 36.9 28.3 (↑ 4.0)

Gemini-2.5-Flash
CoT 46.4 18.0 10.9 17.8 27.6 42.5 26.2 25.6 32.5 40.0 17.7 28.1 25.1
T=1 32.7 14.5 7.9 9.0 17.4 34.2 22.1 25.0 12.5 32.5 14.4 19.5 18.3 (↓ 6.8)

T=3 59.3 34.5 16.1 21.8 30.2 64.6 27.1 33.3 29.2 40.0 30.0 49.0 36.6 (↑ 11.5)

Gemini-2.5-Pro CoT 58.0 20.9 10.4 21.3 25.7 44.4 29.6 29.4 27.5 37.5 26.2 32.9 29.8
T=1 38.8 20.2 11.4 12.7 17.9 38.3 20.0 30.0 27.5 16.7 16.5 29.5 23.4 (↓ 6.4)

Claude-Sonnet-4 CoT 49.6 18.2 8.9 19.5 28.6 38.3 27.1 23.3 26.7 38.3 19.2 28.1 25.6
T=1 49.5 31.6 14.3 22.0 27.6 53.5 19.6 26.1 28.3 45.8 28.6 38.3 31.8 (↑ 6.2)

Native TVP Models
o4-mini 57.7 30.7 17.3 28.0 24.8 55.4 25.4 26.1 35.0 40.0 27.3 55.2 35.2
GPT-5-mini 61.8 29.8 16.8 32.7 29.8 52.9 27.9 26.1 32.5 42.5 28.3 53.3 36.1
GPT-5 65.5 33.8 15.4 27.5 31.7 60.4 30.8 31.1 39.2 39.2 28.2 56.9 38.2

Reference
Human 69.6 55.4 35.7 48.3 54.8 75.0 37.5 27.8 58.3 66.7 50.0 69.1 53.6

AI-assisted code editors (e.g., Cursor). Finally, we conducted cross-validation of all generated code
to verify correctness, where each program was independently reviewed by multiple annotators.

In total, MMR-VIP encompasses 28 carefully crafted task types, each designed across three dif-
ficulty levels. For every task and difficulty, we randomly generated 20 instances, resulting in a
benchmark of 1,680 instances in total. We include detailed examples of each task in the Appendix
C. The mapping between task types and their corresponding cognitive skills is presented in Table 1.
Since all tasks are synthesized from code, MMR-VIP is reproducible and extendable. Researchers
can regenerate new instances by adjusting parameters or extend the benchmark with new task rules,
making MMR-VIP a continuously evolvable framework rather than a fixed dataset.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of existing MLLMs on MMR-VIP. We sys-
tematically evaluate model performance across different difficulty levels and cognitive skills, and
further contrast the effectiveness of CoT and TVP. We also analyze from multiple perspectives, in-
cluding the effect of iteration rounds, the role of input modalities, and the distribution of error types.

4.1 EXPERIMENTAL SETUP

We evaluate three categories of MLLMs on MMR-VIP: commercial models (e.g., GPT-4.1 (Ope-
nAI, 2025b), Gemini-2.5-Flash, Gemini-2.5-Pro (DeepMind, 2025), Claude-Sonnet-4 (Anthropic,
2025)), open-source models (e.g., Qwen2.5-VL (Bai et al., 2025), Gemma-3 (Kamath et al., 2025),
Keye-VL-1.5 (Yang et al., 2025a)), and native TVP models (e.g., o4-mini, GPT-5). We do not
include existing open-source models designed specifically for Thinking with Images, since these
models primarily focus on applying fixed transformations to images rather than freely generating
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Figure 3: Performance comparison of Gemini-2.5-Flash on different tasks under CoT and TVP
(T = 3). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP
over CoT, and Red indicates degradations of TVP over CoT.

code to support reasoning. Moreover, to assess the effectiveness of different reasoning strategies,
we compare three settings: Chain-of-Thought, single-turn TVP, where the model invokes the code
executor once, and multi-turn TVP, where the model can iteratively generate, execute, and refine
code for up to T = 3, 5, 7 rounds. We provide the detailed prompts used for all settings in the
Appendix D. As a reference, we randomly sample 168 instances and invite human participants to
solve these tasks. Each participant is allowed to leverage search engines and interpreters during the
process. We adopt accuracy as the evaluation metric. We report results along three perspectives:
performance across different difficulty levels, performance across distinct cognitive skills, and the
overall accuracy.

4.2 EXPERIMENTAL RESULTS

As shown in the Table 2, our experiments on MMR-VIP yield several key findings:

(1) Performance differences across model types and reasoning paradigms. For open-source
models like Qwen2.5-VL-72B, introducing TVP offers negligible gains and sometimes results in
performance drops, owing to their limited visual programming capabilities. For commercial mod-
els, single-turn code execution produces unstable results, whereas multi-turn execution consistently
yields significant improvements. For instance, Gemini-2.5-Flash shows an accuracy gain of 18.3%
when increasing from T = 1 to T = 3. For native TVP models, although GPT-5 achieves the highest
performance, it attains only 38.2% accuracy, reflecting the substantial limitations that remain. We
can observe a clear performance gap relative to humans, underscoring that humans are more adept
at leveraging external tools to solve complex visual problems.

(2) Clear difficulty ladder. The results align closely with the benchmark’s design, showing a dis-
tinct ladder-shaped performance trend. Compared to direct CoT, TVP shows negligible differences
on easy tasks, achieves the largest improvements on medium tasks, and delivers consistent gains on
hard tasks. Nevertheless, performance at the hard level remains very low, with the best accuracy
reaching only 17.3%. This demonstrates that MMR-VIP effectively stratifies problems by difficulty,
thereby exposing the limits of current MLLMs’ reasoning capabilities.

(3) Imbalanced cognitive skills. The results reveal marked disparities across cognitive skills. TVP
delivers the most significant improvements in Optimization, where models effectively leverage pro-
grammatic search, planning, and computation to tackle complex problem-solving tasks. As shown
in Figure 3, Gemini-2.5-Flash exhibits large gains on tasks such as Interval Dynamic Program-
ming, N-Queens, Tableau Linear Programming, and N-Puzzle, where code execution is essential to
explore solution spaces. In addition, TVP also enhances Symbolic perception, since code allows
models to precisely recognize, parse, and manipulate digits, letters, or graphical symbols. However,
performance in Abstraction remains the most challenging, where models still struggle to translate
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Figure 4: Performance and token consumption under different iteration rounds (T = 0, 1, 3, 5, 7).
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Figure 5: Correctness flow between CoT (T = 0) and TVP (T = 3) for Gemini-2.5-Flash.

low-level visual cues into high-level formulations such as geometric equations, physical laws, or
graph structures. This underscores the necessity of improving their ability to abstract through code.

4.3 ANALYSIS

4.3.1 IMPACT OF ITERATION ROUNDS

We examine the impact of iterative rounds of code execution on model performance across easy,
medium, and hard tasks. As shown in Figure 4, compared to direct CoT, single-turn TVP (T = 1)
often leads to a drop in accuracy. To better understand this phenomenon, we compute the corre-
lation between the performance difference of TVP (T = 1) versus CoT and the success rate of
program execution. The Pearson correlation coefficient is 0.81 (p ≈ 0.05), indicating a strong posi-
tive relationship. A primary source of degradation arises when incorrect code execution propagates
interpreter error messages into the reasoning process, thereby misguiding subsequent inference.

Performance generally peaks at T = 3 or T = 5, where iterative refinement enables more re-
liable program execution and reflective reasoning. As illustrated in Figure 5, we further analyze
the correctness flow between CoT and TVP (T = 3). The results show that the most significant
changes occur at the Medium difficulty level. However, for open-source models like Qwen2.5-VL-
32B, additional iterations fail to bring noticeable gains. This finding highlights that robust visual
programming capabilities are indispensable for open-source models to fully realize the benefits of
TVP. Meanwhile, increasing to T = 7 brings little to no additional gains and instead results in
significantly higher token consumption, highlighting the trade-off between accuracy and efficiency.

4.3.2 INFLUENCE OF INPUT MODALITIES

Table 3: Performance comparison under dif-
ferent input modalities.

Model I T I & T
GPT-4.1-mini 26.3 75.0 76.3
Claude-Sonnet-4 7.5 50.0 63.8
GPT-5-mini 5.0 50.0 53.8
GPT-5 25.0 46.3 70.0

To further investigate the role of input modalities
in TVP, we select four tasks from MMR-VIP that
can be represented in both textual and visual forms:
Tableau LP, Chart, Graph Coloring, and Maze. This
design allows us to directly compare model perfor-
mance under three conditions: (1) image-only input
(I), (2) text-only input (T), and (3) combined im-
age–text input (I & T). Results in Table 3 show that
text input generally outperforms image input, indi-
cating that current models still have weaker visual
reasoning capabilities. Moreover, visual inputs sometimes introduce perception errors, which can
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Figure 6: Error analysis of four models under TVP (T = 1).

propagate through subsequent reasoning steps. Nevertheless, combined multimodal input consis-
tently surpasses unimodal input, particularly on tasks where the visual layout conveys structural or
spatial constraints that are difficult to capture with text alone.

4.3.3 ERROR ANALYSIS

To better understand the limitations of TVP, we conduct a detailed error analysis by categorizing
incorrect predictions into six major types: Program Execution Error, Visual Perception Error, Al-
gorithmic Modeling Error, Program Inefficiency, Problem Misinterpretation, and Output Formatting
Issue. The precise definitions and representative examples of each category are provided in the Ap-
pendix F. As illustrated in Figure 6, the most common sources of error are Visual Perception Error,
Algorithmic Modeling Error, and Program Execution Error. These results align with our earlier find-
ings: they reflect (1) the insufficiency of models in Perception and Abstraction, where they struggle
to accurately extract information from visual inputs and transform it into computationally useful for-
mulations, and (2) the limitations of current models’ programming capabilities, where code errors
remain prevalent. We also provide several case studies of CoT and TVP in Appendix G.

5 RELATED WORKS

Multimodal Reasoning. Multimodal reasoning has recently become a prominent frontier in AI re-
search, with an expanding set of benchmarks and investigations underscoring its pivotal importance
across domains such as interpreting scientific diagrams (Yue et al., 2024; Guo et al., 2025), solv-
ing geometry problems (Zhang et al., 2024b; Wang et al., 2024), and tackling visual puzzles (Chia
et al., 2024; Ghosal et al., 2025; Song et al., 2025). Recent work (Huang et al., 2025; Meng et al.,
2025; Chris et al., 2025; Hong et al., 2025; Deng et al., 2025; Wang et al., 2025c;b) has focused on
enhancing models’ reasoning ability through reinforcement learning, thereby extending reasoning
depth, enabling reflection and verification, and improving performance on complex tasks. However,
some studies argue that RL is constrained by an invisible leash (Wu et al., 2025a), preventing it from
discovering new reasoning trajectories beyond the model’s initial capabilities (Lin & Xu, 2025).

Visual Programming. Visual programming (Yang et al., 2025b; Surı́s et al., 2023; Hu et al., 2024b)
requires models to generate executable code based on visual inputs. MMCode (Li et al., 2024)
evaluates MLLMs’ code generation abilities on competitive-programming problems presented with
visual contexts. HumanEval-V (Zhang et al., 2024a) is a benchmark designed to evaluate complex
diagram understanding and visual reasoning abilities in programming contexts. It assesses whether
models can accurately infer the underlying rules embedded in visual diagrams and subsequently gen-
erate correct programs that satisfy the corresponding test cases. Moreover, SWE-bench Multimodal
(Yang et al., 2025b) evaluates agents on their ability to fix bugs in visual, user-facing JavaScript soft-
ware, with tasks that incorporate images within their problem statements or test cases. Built upon
the Mini-level of the XLogoOnline platform, XLogoOnline-Mini (Wen et al., 2025) requires mod-
els to synthesize programs that control a turtle navigating through a grid to accomplish a specified
goal. The benchmark evaluates a broad spectrum of capabilities, including mathematical reasoning,
logical reasoning, spatial understanding, and planning. The primary difference of our work, MMR-
VIP, is that it aims to evaluate a model’s multimodal reasoning capabilities, where code serves only
as an optional tool to enhance reasoning rather than being the final output. All code generated in
MMR-VIP is free-form and intended solely to assist in problem-solving.
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Tool-Integrated Reasoning. Rather than relying solely on parametric knowledge within the model,
tool-integrated reasoning (TIR) (Jin et al., 2025; Li et al., 2025; Xue et al., 2025; Feng et al., 2025;
Dong et al., 2025) enables the model to reason with external tools, such as a Python interpreter. Ex-
tending this idea to multimodal settings, the paradigm of Thinking with Images (TWI) has emerged
as an effective approach (Lu et al., 2025; Su et al., 2025b;a; Lai et al., 2025; Wang et al., 2025d; Wu
et al., 2025b; Zhou et al., 2025). Instead of relying solely on textual reasoning, models are equipped
with a predefined set of visual tools such as cropping, zooming, or rotating, which allow them to
refine perception during problem solving. Recently, there has been a growing trend of enabling
MLLMs to generate executable code as part of the reasoning process (Tang et al., 2025; Zhao et al.,
2025; Hu et al., 2024a; Zhang et al., 2025; Wang et al., 2025a), showcasing the potential of the TVP.

6 CONCLUSION

In this work, we introduced MMR-VIP, a benchmark designed to evaluate multimodal agentic rea-
soning under the Thinking with Visual Programming paradigm. Beyond text-based CoT and fixed
visual tools, TVP allows models to flexibly generate, execute, and refine programmatic code, which
serve as intermediate reasoning steps to facilitate multimodal problem solving. MMR-VIP is specif-
ically crafted for this paradigm, featuring problems that are unsolvable under CoT-based reasoning
but become tractable when integrated with visual programming interactions. Progress in multimodal
agentic reasoning will depend critically on strengthening models’ coding proficiency, enhancing
their visual abstraction ability, and equipping them with multi-round iterative reasoning strategies.
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ETHICS STATEMENT

All experimental procedures involving human participants were conducted in accordance with the
relevant ethical guidelines. Moreover, all data instances in our benchmark are puzzle-style prob-
lems that are automatically synthesized through scripts rather than collected from real-world human
data. As such, the dataset contains no personal, harmful, or biased information. This ensures that
MMR-VIP is entirely safe for research and avoids introducing any sensitive or ethically problematic
content.

REPRODUCIBILITY STATEMENT

Our dataset is entirely script-synthesized rather than manually annotated or generated by LLMs, en-
suring full reproducibility. To facilitate this, we will release the synthesis scripts with fixed random
seeds alongside the final MMR-VIP dataset. We also provide data examples in the supplementary
materials. In addition, we provide detailed prompts used in all experiments in Appendix D, and
we will open-source the evaluation code together with the Python interpreter environment. This
guarantees that researchers can faithfully reproduce our experimental results.
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tiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geof-
frey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot,
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A LLM USAGE STATEMENT

In this work, Large Language Models (LLMs) were used solely as general-purpose auxiliary tools.
Their role was limited to polishing grammar and phrasing to enhance the clarity of the manuscript,
as well as assisting in the generation of Python and LaTeX code for creating figures and tables. No
parts of the research ideation, experimental design, analysis, or substantive writing relied on LLMs.

B DISCUSSION

Here, we would like to discuss the relationship between Thinking with Images (TWI) and Thinking
with Visual Programming (TVP).

Existing approaches under the Thinking with Images paradigm typically rely on a predefined set of
visual tools, such as cropping, zooming, and rotating. These operations can indeed enhance per-
ceptual accuracy, especially for handling high-resolution images or focusing attention on relevant
regions. However, their scope is inherently narrow. While effective for improving low-level per-
ception, such fixed transformations provide limited support for deep reasoning tasks that require
abstraction, planning, or algorithmic optimization. In other words, current Thinking with Images
primarily enhances seeing more carefully, but does not necessarily enable thinking more deeply.

In contrast, Thinking with Visual Programming generalizes beyond fixed toolkits by allowing mod-
els to write and execute code, thus treating visual operations themselves as programmable functions.
This enables not only flexible tool selection but also the creation of new tools on demand, allowing
the reasoning process to adapt dynamically to the task at hand. Under this view, cropping or rotat-
ing an image represents only one instance within a broader spectrum of programmable operations,
which may also involve algorithmic simulation, complex computation, or visualization.

From this perspective, TWI can be regarded as a subset of TVP, serving as a valuable stepping stone
but not the ultimate goal. As our experimental results demonstrate, current models remain far from
fully realizing the TVP paradigm. While existing studies have already achieved promising outcomes
under the TWI framework, a substantial gap persists between these methods and the broader vision
of TVP. Bridging this gap requires equipping models with stronger visual programming capabili-
ties and more advanced visual abstraction skills, enabling them to move beyond fixed perceptual
tools toward flexible, programmable reasoning. On this foundation, agentic reinforcement learning
can become truly effective. In the future, we envision equipping MLLMs with access to external
resources such as web browsers. This would allow them not only to autonomously create tools
through code but also to search for and integrate existing tools from the internet.
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C BENCHMARK DETAILS

To ensure the data quality of MMR-VIP, we provided annotators with a detailed guideline:

All tasks must:
(1) Be code-synthesizable (problems, images, and solutions are generated by code).
(2) Be aligned with cognitive skills (at least 1, at most 3 from the given taxonomy).
(3) Be stratified into difficulty levels (Easy / Medium / Hard).
(4) Be suitable for programmatic reasoning (problems solvable or aided by code execution).
Cognitive Skills
(1) Attribute: identify colors, shapes, sizes.
(2) Location: detect positions, distances, spatial relations.
(3) Symbolic: recognize digits, letters, or visual symbols.
(4) Geometry: formulate geometric equations or relations.
(5) Physics: model dynamics using physical laws.
(6) Network: construct graph structures (nodes, edges, constraints).
(7) Search: implement DFS, BFS, or other exploration methods.
(8) Planning: apply dynamic/linear programming to solve constrained problems.
(9) Computation: perform numerical calculations or algorithmic procedures.
Difficulty Levels
(1) Easy: solvable using intrinsic perceptual and reasoning abilities, without code execution.
(2) Medium: requiring programmatic operations, where external computation is essential.
(3) Hard: remaining challenging even with programming support, typically due to high algo-
rithmic complexity or intricate constraints.
Workflow
Annotators should first define the problem (including its target cognitive skills and difficulty
levels), then implement code that generates instances and computes the ground-truth solution.
Next, the problem must be visualized using standard libraries to ensure clarity. Each program
should support batch generation of images, questions, and answers across difficulty levels.
Finally, the generated code must undergo validation, where outputs are independently reviewed
to ensure correctness and consistency between problem, visualization, and answer.

Hanoi Tower (Attribute)

Question: Find the minimum number of moves 
required to get from the Tower of Hanoi state 
described in the figure to the completed state.

Answer: 28

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the minimum number of moves 
required to get from the Tower of Hanoi state 
described in the figure to the completed state.

Answer: 52

Question: Find the minimum number of moves 
required to get from the Tower of Hanoi state 
described in the figure to the completed state.

Answer: 26

Figure 7: Data example of Hanoi Tower.

Sliding Puzzle (Search)

Question: At each time, any colored ball can be 
exchanged with the white ball. How many such 
exchanges are needed at least to make all the red 
balls arranged in front of the green balls (white 
ball positions are arbitrary)?

Answer: 5

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: At each time, any colored ball can be 
exchanged with the white ball. How many such 
exchanges are needed at least to make all the red 
balls arranged in front of the green balls (white 
ball positions are arbitrary)?

Answer: 9

Question: At each time, any colored ball can be 
exchanged with the white ball. How many such 
exchanges are needed at least to make all the red 
balls arranged in front of the blue balls and blue 
balls in front of the yellow balls (white ball 
positions are arbitrary)?

Answer: 9

Figure 8: Data example of Sliding Puzzle.
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3D Position (Location)

Question: What is the color of the ball at (2, 2, 2)? 
The answer is the name of the color, with the 
first letter capitalized. You can choose an answer 
from Red, Green, Orange, Cyan, Purple, Blue, 
Yellow and Magenta.

Answer: Purple

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: What is the color of the ball at (2, 2, 2)? 
The answer is the name of the color, with the 
first letter capitalized. You can choose an answer 
from Red, Green, Orange, Cyan, Purple, Blue and 
Yellow.

Answer: Yellow

Question: What is the color of the ball at (2, 4, 3)? 
The answer is the name of the color, with the 
first letter capitalized. You can choose an answer 
from Red, Green, Orange, Cyan, Purple, Blue and 
Yellow.

Answer: Purple

Figure 9: Data example of 3D Position.

Bin Packing (Search)

Question: There are some blocks in the picture. 
Find the smallest square area that can place all 
the small blocks in the area in a suitable way 
without overlapping. Return the length of the 
square side.

Answer: 5

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: There are some blocks in the picture. 
You are required to piece them together into a 
rectangle. Please return the perimeter of the 
rectangle.

Answer: 22

Question: There are some blocks in the picture. 
Find the smallest square area that can place all 
the small blocks in the area in a suitable way 
without overlapping. Return the length of the 
square side.

Answer: 8

Figure 10: Data example of Bin Packing.

Graph Coloring (Network)

Question: Given the following four-coloring 
problem graph, where part of the region has been 
pre-colored, how many coloring combinations are 
there for the remaining region?

Answer: 56

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given the following four-coloring 
problem graph, where part of the region has been 
pre-colored, how many coloring combinations are 
there for the remaining region?

Answer: 131

Question: Given the following four-coloring 
problem graph, where part of the region has been 
pre-colored, how many coloring combinations are 
there for the remaining region?

Answer: 14862336

Figure 11: Data example of Graph Coloring.
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Maze (Search)

Question: The picture describes a maze problem, 
where green is the starting position and red is the 
end point. Find the length of the shortest path. 
Each grid square has a length of 1.

Answer: 44

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The picture describes a maze problem, 
where green is the starting position and red is the 
end point. Find the length of the shortest path.吧
Each grid square has a length of 1.

Answer: 104

Question: The picture describes a maze problem, 
where green is the starting position and red is the 
end point. Find the length of the shortest path. 
Each grid square has a length of 1.

Answer: 102

Figure 12: Data example of Maze.

Point Counting (Attribute)

Question: What is the number of red dots?

Answer: 10

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: What is the number of red dots?

Answer: 32

Question: What is the number of red dots?

Answer: 12

Figure 13: Data example of Point Counting.

Height Measurement (Location)

Question: Detect the length of the red line, 
where the side length of each grid on the 
chessboard is 0.5. The length of the red line is an 
integer multiple of the length of the floor tile. 
How long is the red line in the picture?

Answer: 1.5

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Detect the diagonal length of the red 
line, where the side length of each grid square is 
0.5. The result should be rounded to one decimal 
place.

Answer: 2.2

Question: Estimate the volume of the 3D prism 
shown in the image. The result should be rounded 
to one decimal place. The side length of each grid 
on the chessboard is 0.5.

Answer: 1.3

Figure 14: Data example of Height Measurement.
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Resource Allocation (Planning)

Question: This is the heatmap of the question. 
Each task can only be assigned to one person, and 
each person can only be assigned one task. How to 
allocate to maximize total profit? (all profits are 
multiples of ten), and output the maximum profit. 

Answer: 210

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is the heatmap of the question. 
Each task can only be assigned to one person, and 
each person can only be assigned one task. How to 
allocate to maximize total profit? (all profits are 
multiples of ten), and output the maximum profit.

Answer: 440

Question: This is a heatmap showing the profit of 
each employee (rows) for different tasks 
(columns). Task 1 requires exactly 3 people; Task 
2 requires exactly 3 people; Task 3 requires 
exactly 1 person; Task 4 requires exactly 3 people; 
Task 5 requires exactly 2 people. Under the 
constraint that each task must have exactly the 
required number of people, what is the maximum 
total profit achievable by assigning employees? 
Note: All profit values are multiples of 10. Each 
task's total profit is the sum of the profits 
contributed by one or more people assigned to 
that task; not every task must be completed. Each 
person can be assigned to at most one task.

Answer: 710

Figure 15: Data example of Resource Allocation.

Rubik's Cube (Geometry)

Question: This is the expansion diagram of a 
second-order Rubik's Cube. Given the initial state, 
you can perform 18 standard operations. Find the 
minimum number of steps to make the Rubik's 
Cube reach the restored state. The goal is to 
restore the cube to its original state, with green 
on the front face, white on the top, and yellow on 
the bottom, disregarding isomorphic 
configurations.

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is the expansion diagram of a 
second-order Rubik's Cube. Given the initial state, 
you can perform 18 standard operations. Find the 
minimum number of steps to make the Rubik's 
Cube reach the restored state. The goal is to 
restore the cube to its original state, with green 
on the front face, white on the top, and yellow on 
the bottom, disregarding isomorphic 
configurations.

Answer: 5

Question: This is a diagram of a Rubik's Cube. 
Given an initial state (above), you can perform the 
standard 18 operations to find the minimum 
number of moves required to get the Rubik's Cube 
to the given state (below). We disregard 
isomorphism; we only ensure that the 
transformation is valid within the current view.

Answer: 5

Figure 16: Data example of Rubik’s Cube.
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Lights Out (Planning)

Question: Game Rule: Clicking a light toggles itself 
and its adjacent (up, down, left, right) lights. 
What is the minimum number of clicks required to 
turn off all the lights?

Answer: 2

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Game Rule: Clicking a light toggles itself 
and its adjacent (up, down, left, right) lights. 
What is the minimum number of clicks required to 
turn off all the lights?

Answer: 6

Question: Game Rule: Clicking a light toggles itself 
and its diagonal (upper-left, upper-right, lower-
left, lower-right) lights. What is the minimum 
number of clicks required to turn off all the lights?

Answer: 12

Figure 17: Data example of Lights Out.

Snake Game (Search)

Question: This is a snake game. How many steps 
do you need to take from the current state to eat 
the food?

Answer: 6

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is a snake game. How many steps 
do you need to take from the current state to eat 
two foods one after another (regardless of the 
order of the two foods)?

Answer: 13

Question: This is a snake game. How many steps 
do you need to take from the current state to eat 
two foods one after another (regardless of the 
order of the two foods)? At the same time, pay 
attention to avoid obstacles.

Answer: 10

Figure 18: Data example of Snake Game.

Three-Views (Geometry)

Question: Given a description of the three-view 
drawing of a solid figure, find the maximum 
number of small cubes that the solid figure can be 
composed of when the three-view constraints are 
met.

Answer: 7

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given a description of the three-view 
drawing of a solid figure, find the maximum 
number of small cubes that the solid figure can be 
composed of when the three-view constraints are 
met.
Answer: 13

Question: Given a description of the three-view 
drawing of a solid figure, find the maximum 
number of small cubes that the solid figure can be 
composed of when the three-view constraints are 
met.
Answer: 25

Figure 19: Data example of Three-Views.
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Graph Isomorphism (Network)

Question: Determine whether the two graphs 
given in the figure are isomorphic. If you think 
they are isomorphic, answer 1; if you think they 
are not isomorphic, answer 0. 

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Determine whether the two graphs 
given in the figure are isomorphic. If you think 
they are isomorphic, answer 1; if you think they 
are not isomorphic, answer 0.

Answer: 1

Question: Determine whether the two graphs 
given in the figure are isomorphic. If you think 
they are isomorphic, answer 1; if you think they 
are not isomorphic, answer 0.

Answer: 0

Figure 20: Data example of Graph Isomorphism.

Projectile Motion (Physics)

Question: Find the horizontal coordinate of the 
first time the ball hits the ground. The result is 
rounded down to the nearest integer.

Answer: 10

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the horizontal coordinate of the 
first time the ball hits the ground. The result is 
rounded down to the nearest integer. Note that 
there is no energy loss in the event of a collision.

Answer: 21

Question: Find the horizontal coordinate of the 
first time the ball hits the ground. The result is 
rounded down to the nearest integer. Note that 
when a collision occurs, there is no horizontal 
energy loss, and the vertical speed is reduced to 
0.9 times the original speed.

Answer: 23

Figure 21: Data example of Projectile Motion.

Calculation (Computation)

Question: Given the first 8 numbers in the nine-
square grid, calculate the smallest positive integer 
such that the sum of this number plus all previous 
numbers is an integer multiple of 20.

Answer: 9

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the lowest common multiple of all 
numbers in the 25-square grid.

Answer: 3303720

Question: Given the first 35 numbers in a 36-
square grid, find the smallest positive integer 
such that all the numbers in the 36-square grid 
can be divided into two parts of 18 numbers + 18 
numbers, where the sum of the two parts is equal.

Answer: 1

Figure 22: Data example of Calculation.
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Chart (Symbolic)

Question: Find the variance in the following 
histogram, where the data are distributed only 
above tens and the height of the histogram is an 
integer multiple of 5. Keep the result of the 
variance as an integer.

Answer: 814

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given the schedule below, what is the 
maximum total time (in minutes) a person can 
spend in lectures? All time nodes are integer 
multiples of 10 minutes.

Answer: 580

Question: Given the schedule below, what is the 
maximum total time (in minutes) a person can 
spend in lectures? The selected schedule MUST 
include at least one Mathematics lecture and at 
least one Art lecture. In the chart: blue for 
mathematics, green for physics, yellow for art, 
purple for music, and orange for physical 
education. All time nodes are integer multiples of 
10 minutes.

Answer: 570

Figure 23: Data example of Chart.

Circuit Logic (Physics)

Question: This is a digital circuit problem. Given 
known input values for the circuit, determine the 
output value.

Answer: 0

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given some known input values and 
observed outputs, determine how many possible 
combinations exist for the unknown inputs that 
would produce the same outputs.

Answer: 14

Question: Given some known input values and 
observed outputs, determine how many possible 
combinations exist for the unknown inputs that 
would produce the same outputs.

Answer: 0

Figure 24: Data example of Circuit Logic.

House Robber (Planning)

Question: What is the maximum amount of money 
that can be robbed from the houses? The 
neighboring houses cannot be robbed at the same 
time.

Answer: 125

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: What is the maximum amount of money 
that can be robbed from the houses? The 
neighboring houses cannot be robbed at the same 
time.

Answer: 257

Question: What is the maximum amount of money 
that can be robbed from the houses? The 
connected houses cannot be robbed at the same 
time.

Answer: 314

Figure 25: Data example of House Robber.
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Interval DP (Planning)

Question: The picture shows the balloon popping 
problem. You need to pop all the balloons in a 
certain order. The reward for a popped balloon is 
the product of itself and the values on the left 
and right balloons. If there is no balloon on the 
left or right, multiply the value of the balloon on 
the left or right by 1. You need only find the total 
maximum reward. Give me the number. 

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The picture shows the balloon popping 
problem. You need to pop all the balloons in a 
certain order. The reward for a popped balloon is 
the product of itself and the values on the left 
and right balloons. If there is no balloon on the 
left or right, multiply the value of the balloon on 
the left or right by 1. You need only find the total 
maximum reward. Give me the number.

Answer: 1035613

Question: The picture shows the balloon popping 
problem. You need to pop all the balloons in a 
certain order. The reward for popping a red 
balloon is the product of itself and the value on 
the balloons to the left and right. The reward for 
popping a gold balloon is doubled, and the reward 
for popping a black balloon becomes negative. If 
there is no balloon on the left or right, multiply 
the value by 1. You only need to find the maximum 
reward and keep only the final value.

Answer: 1639518

Figure 26: Data example of Interval DP.

N-Puzzle (Search)

Question: This is an 8-digit puzzle. Find the 
minimum number of steps to restore it.

Answer: 3

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is an 8-digit puzzle. Find the 
minimum number of steps to restore it.

Answer: 21

Question: This is an 15-digit puzzle. Find the 
minimum number of steps to restore it.

Answer: 17

Figure 27: Data example of N-Puzzle.

Tableau LP (Planning)

Question: Given the supply, demand, and route 
table for this logistics problem, what is the 
minimum total cost? Please provide the answer as 
an integer.

Answer: 5126

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given the supply, demand, and route 
table for this logistics problem, what is the 
minimum total cost? Please provide the answer as 
an integer.

Answer: 8085

Question: Given the supply, demand, and route 
table for this logistics problem, what is the 
minimum total cost? Please provide the answer as 
an integer.

Answer: 6309

Figure 28: Data example of Tableau LP.
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Area Measurement (Geometry)

Question: Find the area of the following 
quadrilateral, where all points are on integers. The 
result is rounded to 1 decimal place.

Answer: 4.0

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the area of the following 
quadrilateral, where all points are on integers. The 
result is rounded to 1 decimal place.

Answer: 4.0

Question: Find the area of the quadrilateral in the 
figure, where the side length of the square 
border is 10 and the vertices of the quadrilateral 
are all on points that are integer multiples of 0.5. 
The result is rounded to one decimal place.

Answer: 5.6

Figure 29: Data example of Area Measurement.

Ricochet Ball (Physics)

Question: How many ricochets will a ball launched 
from (1.0, 1.0) at 30\u00b0 need to hit the target 
at (9.0, 9.0)? The ball reflects perfectly off the 
arena walls and mirror-obstacles.

Answer: 6

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: How many ricochets will a ball launched 
from (1.0, 1.0) at 15\u00b0 need to hit the target 
at (9.0, 9.0)? The ball reflects perfectly off the 
arena walls and mirror-obstacles.

Answer: 5

Question: How many ricochets will a ball launched 
from (1.0, 1.0) at 20\u00b0 need to hit the target 
at (11.0, 9.0)? The ball reflects perfectly off the 
arena walls and mirror-obstacles.

Answer: 8

Figure 30: Data example of Ricochet Ball.

Bubble Sort (Search)

Question: The figure describes the ball exchange 
problem. The white ball can exchange positions 
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls 
are arranged in the order of red, blue, green, and 
yellow from the upper left corner in the order of 
rows first and columns. How many exchanges are 
needed?

Answer: 3

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The figure describes the ball exchange 
problem. The white ball can exchange positions 
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls 
are arranged in the order of red, blue, green, and 
yellow from the upper left corner in the order of 
rows first and columns. How many exchanges are 
needed?

Answer: 12

Question: The figure describes the ball exchange 
problem. The white ball can exchange positions 
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls 
are arranged in the order of red, blue, green, 
yellow and purple from the upper left corner in 
the order of rows first and columns. How many 
exchanges are needed?

Answer: 12

Figure 31: Data example of Bubble Sort.
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Bounding Box (Location)

Question: Calculate the minimum enclosing 
rectangle area of the following rectangle, where 
the sides of the enclosing rectangle must be 
parallel to the grid.

Answer: 36

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Calculate the area of the circumscribed 
rectangle of each polygon according to its color, 
and then find the sum of the areas of these 
circumscribed rectangle. The final result only 
retains the sum of the areas and retains the 
integer.

Answer: 442

Question: Calculate the area of the minimum 
circumscribed circle of all polygons in the graph, 
and keep the result as an integer.

Answer: 770

Figure 32: Data example of Bounding Box.

Path Counting (Computation)

Question: The green dot in the picture is the 
starting point, and the blue dot is the end point. 
Each move can only go one square to the right or 
down. How many different simple paths are there?

Answer: 11

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The green dot in the picture is the 
starting point, and the blue dot is the end point. 
Each move can only go one square to the right or 
down. How many different simple paths are there?

Answer: 232

Question: In this diagram, the green dot is the 
starting point and the blue dot is the destination. 
How many different simple paths are there?

Answer: 25960704

Figure 33: Data example of Path Counting.

N-Queens (Search)

Question: It is required to place a number of 
queens so that there is a queen in each row and 
column. Find the number of different placements 
of queens that satisfy the constraint that queens 
cannot attack each other. 

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: It is required to place a number of 
queens so that there is a queen in each row and 
column. Find the number of different placements 
of queens that satisfy the constraint that queens 
cannot attack each other. At the same time, the 
newly placed queen cannot be eaten by the 
existing knight, but there is no need to consider 
whether the knight will be attacked by the queen.

Answer: 5

Question: The goal is to place a certain number of 
queens so that there is one queen in each row and 
column. Queens cannot attack each other, and 
newly placed queens cannot be captured by 
existing knights, but there is no need to consider 
whether knights can be attacked by queens. Each 
square on the board has a specific color, 
representing the cost of placing a new queen on 
that square. The goal is to minimize this cost while 
meeting these requirements.

Answer: 170

Figure 34: Data example of N-Queens.
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D EVALUATION DETAILS

We provide the prompts for both direct CoT reasoning and multi-turn TVP reasoning, as illustrated
in Figure 35 and Figure 36.

Prompt for Direct CoT

System Prompt:
You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The 

reasoning process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in 

\\boxed{}. Please note that if the answer requires a numerical value, please keep only the number without 

punctuation, units, formulas or explanations. Don't run code in your own environment.

Figure 35: Prompt for direct CoT reasoning.

Prompt for Multi-turn TVP

System Prompt:
You are a visual reasoning assistant that MUST write executable Python code to solve problems. You can iterate 

through multiple rounds to refine your solution (maximum {N} code executions).

IMPORTANT CODE FORMATTING RULES:

- You MUST wrap your code EXACTLY with <code> and </code> tags

- Do NOT use backticks (`), triple-backticks (```), or any other delimiters

- Inside <code>...</code> put only valid Python code

- Do NOT HTML-escape characters (use <, >, &, not &lt;, &gt;, &amp;)

HELPER FUNCTIONS:

1 import os
 2 import re
 3 import typing
 4 def find_original_image_name(work_dir: str = '.') -> typing.Optional[str]:
 5     '''Find the original image filename, excluding processed versions'''
 6     for f in sorted(os.listdir(work_dir)):
 7         if not f.lower().endswith('.png'): continue
 8         if f.startswith('crop_'): continue
 9         if re.search(r'_m(?:\\d+)?\\.png$', f): continue
10         return f
11     return None
12 def processed_image_name(original_image: str) -> str:
13 '''Return processed image filename for current iteration'''
14     base, ext = os.path.splitext(original_image)
15     return f'{{base}}_m{iteration}{{ext}}'

CODE REQUIREMENTS:

- Use find_original_image_name() to locate the input image

- Save your processed image using processed_image_name() (will be *_m{iteration}.png)
- Use only relative paths and work within the current directory

- Do not access network or write outside the current folder

If iteration == 1:
This is your FIRST iteration. Analyze the image and question carefully, then write Python code to solve it. Focus 

on understanding the problem and implementing a basic solution.

Else:
This is iteration {iteration}/{N}. You can see your previous attempts and their results in the conversation 

history. Analyze what went wrong in previous iterations and improve your approach. Consider the execution results 

and any generated images from previous attempts.

Prompt for Final Answer Integration：
=== FINAL INTEGRATION ===

Based on all your previous attempts, code executions, and any generated images, please provide your final answer 

to the original question. Original question: {question}
Format your final answer using \\boxed{answer} notation.

Figure 36: Prompt for multi-turn TVP reasoning.
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E ADDITIONAL EXPERIMENTAL RESULTS

As a human reference, we randomly sampled 168 instances from the benchmark and invited three
participants to solve these tasks. All participants were PhD students with strong programming back-
grounds. On average, each task required approximately 8 minutes to complete. During the process,
participants were allowed to write code and make use of search engines to access external resources
and tools when necessary.
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Figure 37: Performance comparison of Claude-Sonnet-4 on different tasks under CoT and TVP
(T = 1). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP
over CoT, and Red indicates degradations of TVP over CoT.
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Figure 38: Performance comparison of GPT-4.1 on different tasks under CoT and TVP (T = 5).
Gray indicates the baseline performance of CoT, Green indicates improvements of TVP over CoT,
and Red indicates degradations of TVP over CoT.
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Figure 39: Performance comparison of GPT-4.1-mini on different tasks under CoT and TVP (T =
5). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP over
CoT, and Red indicates degradations of TVP over CoT.
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F ERROR ANALYSIS

To better understand the limitations of TVP, we classify incorrect predictions into six categories:

• Problem Misinterpretation. The model misunderstands the problem requirements or con-
straints, leading it to pursue an incorrect solution approach.

• Program Execution Error. The generated code contains syntax, logical, or runtime errors
that prevent successful execution.

• Visual Perception Error. The model fails to accurately extract relevant information from
visual inputs, such as misrecognizing digits, shapes, or object positions.

• Algorithmic Modeling Error. The model adopts an inappropriate algorithm, data struc-
ture, or fails to encode the relationships and constraints necessary for solving the problem.

• Program Inefficiency. Although the solution logic is correct, the implementation is com-
putationally inefficient and cannot handle the input within reasonable time limits.

• Output Formatting Issue. The model produces outputs in an incorrect format (e.g., ex-
planatory text instead of a numeric answer).

Problem Misinterpretation

Question: Find the variance in the following histogram, where the data are distributed 
only above tens and the height of the histogram is an integer multiple of 5. Keep the 
result of the variance as an integer.

Answer: 825

GPT-4.1 TVP (T=1)

Iteration:1

Code Interpreter 
output: “”

Final Answer: \\boxed{645}.

Error Cause

In the above example, while the model correctly extracted the height of each bar in the bar chart, as shown in its output, it 
failed to understand the meaning of the x-axis.  It incorrectly interpreted the x-axis as representing the values [5, 15, 25, 35, 
45, 55, 65, 75, 85, 95], misinterpreting the question's statement "where the data are distributed only above tens" as only 
considering data values greater than 10, thus resulting in an incorrect answer.

1 import cv2
 2 import numpy as np
 3 import os
 4 ...
 5 heights = [55, 45, 40, 55, 50, 60, 45, 40, 50, 50]
 6 bins = [5, 15, 25, 35, 45, 55, 65, 75, 85, 95]
 7 filtered_bins = []
 8 filtered_heights = []
 9     for midpoint, freq in zip(bins, heights):
10           if midpoint > 10:
11           filtered_bins.append(midpoint)
12              ...
13 # Save the result
14 out_filename = image_filename[:-4] + '_m.png'
15 cv2.imwrite(out_filename, out_img)

Figure 40: Problem Misinterpretation.
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Program Execution Error

Question: This is an 8-digit puzzle. Find the minimum number of steps to restore it.

Answer: 5

GPT-4.1-mini TVP (T=1)

Iteration:1

Code Interpreter
error: Traceback (most recent call last):\n… line 154, in <module>\n    grid[row_i][col_i] = digit\n    ~~~~^^^^^^^\nIndexError: 
list index out of range\n.

Final Answer: The puzzle initial state from the image is:\n\n1 2 3  \n4 6 8  \n7 0 5  \n\n…Using BFS on the 8-puzzle starting 
from the given state to the goal state, the minimum number of steps to solve it is:\n\n\\boxed{6}.

Error Cause

In the initial answer to this question, an array index out-of-bounds error caused the program to crash.  In the subsequent 
summary answer, the model claimed that it had obtained the solution using the BFS algorithm, resulting in 6 steps (presumably 
based on its own reasoning), whereas the correct answer is 5 steps.

1 import cv2
 2 import numpy as np
 3 from collections import deque
 4 ...
 5 def neighbors(state):
 6     idx = state.index(0)
 7     r, c = divmod(idx, 3)
 8     res = []
 9     for dr, dc in [(-1,0),(1,0),(0,-1),(0,1)]:
10           nr, nc = r + dr, c + dc
11           ...
12 # Save the result image
13 cv2.putText(output_img, text, (10, h-10), cv2.FONT_HERSHEY_SIMPLEX, 1,
13 (0,0,255), 2)
14 cv2.imwrite(out_filename, output_img)

Figure 41: Program Execution Error.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Visual Perception Error

Question: Game Rule: Clicking a light toggles itself and its diagonal (upper-left, upper-right, 
lower-left, lower-right) lights. What is the minimum number of clicks required to turn off all the 
lights?

Answer: 10

Gemini-2.5-Flash TVP (T=1)

Iteration:1
The problem describes a \“lights out\” type puzzle where clicking a light toggles its state and the state of its four diagonal 
neighbors…

Code Interpreter
output: Detected grid size: 5 rows x 10 columns\nInitial state grid:\n[[0 1 0 0 1 0 0 1 0 0]…Solution is unique.\nMinimum number 
of clicks required: 31.

Final Answer: The minimum number of clicks required to turn off all the lights is 31.

Error Cause

Based on the description, it seems the model understood the game rules, but differed from standard approaches to solving 
similar puzzle problems. During the code execution, it generated an incorrect matrix representation of the current state, leading 
to an incorrect solution. In the final step of summarizing and organizing the answer, the model failed to detect any anomalies in 
the output image, ultimately resulting in the error.

1 import cv2
 2 import numpy as np
 3 import os
 4 ...
 5 for r_click in range(num_rows):
 6     for c_click in range(num_cols):
 7         k_click = rc_to_idx(r_click, c_click)
 8         A[rc_to_idx(r_click, c_click), k_click] = 1
 9         if r_click - 1 >= 0 and c_click - 1 >= 0:
10                A[rc_to_idx(r_click - 1, c_click - 1), k_click] = 1
11           ...
12 # Save the result image
13 output_filename = os.path.splitext(image_filename)[0] + '_m.png'
14 cv2.imwrite(output_filename, result_img)
15 print(f"Solution image saved as {output_filename}")

Figure 42: Visual Perception Error.
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Algorithmic Modeling Error

Question: Find the horizontal coordinate of the first time the ball hits the 
ground. The result is rounded down to the nearest integer. Note that there is 
no energy loss in the event of a collision.

Answer: 21

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need to:\n\n1. Identify the platform heights and ball's initial position\n…

Code Interpreter
output: The horizontal coordinate of the first time the ball hits the ground is: 20\n.

Final Answer: Looking at the physics problem, I need to simulate the ball's trajectory with elastic collisions…Finally hits the 
ground at x = 20\n\n\\boxed{20}.

Error Cause

This answer contains a clear algorithmic error. While the model correctly understood the question and extracted the relevant 
information, it incorrectly limited the horizontal movement of the ball to a maximum of 20 units during the simulation, whereas 
the correct answer was 21, which exceeded this maximum limit. The model failed to identify this flaw when summarizing and 
finalizing its answer.

1 import os
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 ...
 5 def simulate_trajectory():
 6     x, y = x0, y0
 7     vx_curr, vy_curr = vx, vy
 8     trajectory_x = [x]
 9     trajectory_y = [y]
10      while t < max_time:
11           x_new = x + vx_curr * dt
12           ...
13 plt.savefig(image_filename.replace('.png', '_m.png'), dpi=150,     
13 bbox_inches='tight')
14 print(f"The horizontal coordinate of the first time the ball hits the ground 
14 is: {result}")

Figure 43: Algorithmic Modeling Error.
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Algorithmic Modeling Error

Question: Find the horizontal coordinate of the first time the ball hits the 
ground. The result is rounded down to the nearest integer. Note that when a 
collision occurs, there is no horizontal energy loss, and the vertical speed is 
reduced to 0.9 times the original speed.
Answer: 24

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need to:\n\n1. Identify the platform heights and ball's initial position\n…

Code Interpreter
output: The ball first hits the ground at horizontal coordinate: 10\n.

Final Answer: The ball follows a parabolic trajectory, bounces off the second platform (green, height 4m), and then continues 
until it hits the ground at the first available opportunity.\n\n\\boxed{10}.

Error Cause

The model correctly identified the height and width of the steps and recognized the energy loss during the collision bounce. 
However, its failure to abstract the underlying physical rules led to two major errors. First, the model did not properly abstract 
and implement the collision-detection mechanism, causing the ball to pass through a region that should have been recognized as a 
solid step. Second, the model failed to abstract the physical relationship between motion and trajectory: instead of inferring the 
initial velocity from the provided short trajectory, it arbitrarily assigned an initial velocity based on intuition, resulting in an 
incorrect physical simulation.

1 import os
 2 ...
 3 vx0 = 5.0 
 4 vy0 = 2.0
 5 platforms = [
 6     {'x_start': 0, 'x_end': 3, 'height': 6},
 7     {'x_start': 3, 'x_end': 8, 'height': 4},
 8     {'x_start': 8, 'x_end': 18, 'height': 3}
 9 ]
10 def simulate_trajectory():
11 ...
12           for platform in platforms:
13         if (platform['x_start'] <= x_new <= platform['x_end'] and     
13             y > platform['height'] and y_new <= platform['height']):
14             ... 
15                vy = -0.9 * abs(vy)
16 ...
17 def find_ground_hit():
18 ...
19 result = precise_simulation()

Figure 44: Algorithmic Modeling Error.
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Algorithmic Modeling Error

Question: Estimate the volume of the 3D prism shown in the image. The result should be 
rounded to one decimal place. The side length of each grid on the chessboard is 0.5.
Answer: 2.3

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need to:\n\n1. Identify the platform heights and ball's initial position\n…

Code Interpreter
output: Visual estimated volume: 8.0 cubic units\n.

Final Answer: This appears to be a rectangular prism (cube), so:\n   Volume = length × width × height = 2.0 × 2.0 × 2.0 = 8.0 
cubic units\n\n\\boxed{8.0}.

Error Cause

The model attempts to locate the corner points within the checkerboard grid and then determine the positional relationships 
between the prism’s vertices and the grid corners, as well as estimate the prism’s height, to compute its volume. However, the 
resulting volume estimation is highly inaccurate. Ideally, the model should accurately detect all checkerboard vertices, infer the 
3D–2D coordinate transformation matrix, reconstruct the prism’s 3D vertex coordinates from their 2D projections, and then 
compute the volume. These errors reveal a clear deficiency in the model’s abstraction capabilities: although it can perceive local 
geometric features, it fails to abstract the underlying 3D geometric principles and transformation rules required to solve the 
problem correctly.

1 import os
 2 ...
 3 chessboard_size = (7, 7)  # Internal corners 
 4 found, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
 5 ...
 6 if found:
 7 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
 8 corners = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
 9 ...
10 if contours:
11 largest_contour = max(contours, key=cv2.contourArea)
12 x, y, w, h = cv2.boundingRect(largest_contour)
13 epsilon = 0.02 * cv2.arcLength(largest_contour, True)     
14 approx = cv2.approxPolyDP(largest_contour, epsilon, True)
15 ... 
16 prism_depth = prism_width
17 ...
18 cv2.putText(result_img, f'Estimated Volume: {volume:.1f} cubic units',
19 ...
20 print(f"Visual estimated volume: {volume:.1f} cubic units")

Figure 45: Algorithmic Modeling Error.
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Program Inefficiency

Question: There are some blocks in the picture. Find the smallest 
square area that can place all the small blocks in the area in a suitable 
way without overlapping. Return the length of the square side.

Answer: 4

GPT-4.1-mini TVP (T=1)

Iteration:1

Code Interpreter 
error: Code execution timed out after 60 seconds.

Final Answer: \\boxed{5}.

Error Cause

In the example above, the algorithm first tries to count the total number of small squares, and then starts by trying the 
smallest possible square under those conditions, using a BFS method to find a feasible arrangement. However, this algorithm is 
too inefficient and fails to find a solution within the 60-second time limit. Therefore, the model incorrectly concluded that the 
minimum side length should be at least 5.

1 from PIL import Image
 2 import numpy as np
 3 import os
 4 ...
 5 def can_place(board, block, r, c):
 6     h, w = board.shape
 7     bh, bw = block.shape
 8     if r + bh > h or c + bw > w:
 9         ...
10 def backtrack(board, blocks, idx):
11      if idx == len(blocks):
12         ...
13 blocks = extract_blocks(image)
14 answer = solve(blocks)
15 print(answer)

Figure 46: Program Inefficiency.
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G CASE STUDY

We provide several case studies to analyze the performance of CoT, single-turn TVP, and multi-turn
TVP. As illustrated in Figure 47, the model uses code to abstract three-dimensional views for solving
the task. In contrast, CoT can only describe this process textually, lacking the ability to perform
direct computation or manipulation of the visual input. As illustrated in Figure 48, TVP utilizes
the model’s advanced coding capabilities to accurately model the Rubik’s Cube rotation rules. By
integrating this with a search algorithm, TVP provides a precise solution, demonstrating the power
of visual programming in solving complex tasks. However, for simpler problems shown in Figure
49, writing code may actually introduce errors, as the overhead of coding can outweigh the benefits
of using a more direct reasoning approach. When comparing single-turn TVP with multi-turn TVP,
we observe that the latter enables models to iteratively refine their outputs, effectively correcting
coding mistakes through agentic interaction, as shown in Figure 50. Furthermore, Figure 51 shows
cases where the model employs visualizations as an intermediate verification mechanism, ensuring
that no red points are overlooked and demonstrating reflective reasoning through explicit inspection
of its own outputs.

Three-Views

Question: Given a description of the three-view drawing of a solid 
figure, find the maximum number of small cubes that the solid figure 
can be composed of when the three-view constraints are met.

Answer: 21

GPT-4.1-mini CoT GPT-4.1-mini TVP (T=1)

Iteration:1
<code>\import os\nfrom PIL import Image\n\nimage_filename = None\nfor... 
max_cubes = 0\nfor h in range(height):\n    for w in range(width):\n        
for d in range(depth):\n            if front_grid[h][w] and 
left_grid[h][d] and top_grid[w][d]:\n                max_cubes += 
1\n\n...print(\"Maximum number of small cubes that the solid figure can 
be composed of:\", max_cubes)\n</code>
Code Interpreter: output: Maximum number of small cubes that the solid figure 
can be composed of: 21\n.

Final Answer: \\boxed{21}

Direct Answer:
<think>\nThe three views (front, 
top, left) show which small cubes 
are visible from each 
perspective…Therefore, the 
maximum number of small cubes is 
22.\n\n</think>\n\n\\boxed{22}

Comparative Analysis

By comparing the two approaches, we found that in the direct reasoning (CoT) method, the model determines the total number of 
small cubes by sequentially analyzing whether each position can accommodate a small cube, but this method leads to errors due 
to double-counting. However, the approach using a single code execution (TVP) leverages three-dimensional views to model the 
constraints, allowing for accurate calculation of the maximum number of small cubes that can be accommodated. The advantage 
of using code lies in its greater accuracy when dealing with complex but repetitive (rule-based) calculations.

Figure 47: Case study of Tree-Views.
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Rubik’s Cube

Question: This is the expansion diagram of a second-order Rubik's Cube. Given the initial 
state, you can perform 18 standard operations. Find the minimum number of steps to make 
the Rubik's Cube reach the restored state. The goal is to restore the cube to its original 
state, with green on the front face, white on the top, and yellow on the bottom, 
disregarding isomorphic configurations.

Answer: 2

Claude-Sonnet-4 CoT Claude-Sonnet-4 TVP (T=1)

Iteration:1
I'll solve this step by step by analyzing the Rubik's cube expansion diagram.
<code>\import os\nimport numpy as np\nfrom PIL import Image\nfrom 
collections import deque\nimport hashlib\n...temp = [new_state['U'][0], 
new_state['U'][1]]\n        new_state['U'][0], new_state['U'][1] = 
new_state['R'][1], new_state['R'][3]\n        new_state['R'][1], 
new_state['R'][3] = new_state['D'][3], new_state['D'][2]\n... 
print(f\"\\nResult saved as {output_filename}\")\n</code>
Code Interpreter: output: Initial cube state:\nU: ['B', 'W', 'B', 'R’]\n…Solution 
found in 2 steps:\nL' F\n\nResult saved as image_20_m.png\n

Final Answer: Looking at the code execution result,…guaranteed to be optimal 
(minimum number of steps).\n\n\\boxed{2}

Direct Answer:
<think>\I need to analyze this 2x2 
Rubik's cube expansion diagram to 
find the minimum number of moves 
to solve it.\n...Based on the pattern 
analysis and typical solving 
sequences for 2x2 cubes with this 
level of scrambling, the minimum 
number of steps required 
is:\n\n\\boxed{7}.

Comparative Analysis

The comparison revealed that CoT is ineffective for solving complex search problems with intricate rules, such as solving a 
Rubik's Cube, because such problems are difficult to solve solely through imagination and assumptions. However, in the process 
of using code to solve the problem, TVP leverages the model's strong coding capabilities to accurately model the Rubik's Cube 
rotation rules and, by combining this with a search algorithm, provides an accurate solution. So using code allows us to accomplish 
more complex visual tasks.

Figure 48: Case study of Rubik’s Cube.
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Area Measurement

Question: Find the area of the following quadrilateral, where all points are on integers. The 
result is rounded to 1 decimal place.

Answer: 6.0

Qwen2.5-VL-32B CoT Qwen2.5-VL-32B TVP (T=1)

Iteration:1
I'll solve this step by step by analyzing the Rubik's cube expansion diagram.
<code>\import os\nimport cv2\nimport numpy as np\nimport 
re\n...contours, _ = cv2.findContours(image=mask, mode=cv2. RETR_LIST, 
method=cv2.CHAIN_APPROX_SIMPLE)\ncentroids = []\nfor cnt in contouns:\n    
M = cv2.moments(contour)\n    if M['m00'] != 0:\n        cx = 
int(M['m10'] / M['m00'])\n        cy = int(M['m01'] / M['m00'])\n        
centroids.append((cy, cx))...# Save the marked image\noutput_filename = 
re.sub(r'(\\. png)', '_m\\\\1', 
image_filename)\ncv2.imwrite(output_filename, cv2.cvtColor(image, 
cv2.COLOR_BGR2RGB))\n\n</code>
Code Interpreter: error: ...line 36\n    contours, _ = cv2.findContours\tmask, cv2. 
RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)\n                                                                                
^\nSyntaxError: unmatched ')'\n

Final Answer: None

Direct Answer:
<think>\To find the area of the 
given triangle, we can use the 
Shoelace Theorem...calculate the 
area:\n\n\\[\n\\text{Area} = 
\\frac{1|2 \\cdot 12 = 
6\n\\]\n\nTherefore, the area of 
the triangle is:\n\n\\boxed{6.0}.

Comparative Analysis

Comparing CoT and TVP (T=1), we can see that CoT accurately obtained the coordinates of the points directly from the image 
information and then used the quadrilateral area formula to calculate the area accurately. However, the code provided by TVP 
attempted to identify the vertices of the quadrilateral to calculate the area, but it failed to correctly locate the vertices, 
resulting in an error. Therefore, for models with limited coding capabilities, using code to assist in problem-solving may actually 
lead to lower accuracy than simply providing a direct answer.

Figure 49: Case study of Area Measurement.
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Question: This is the heatmap of the question. Each task can only be assigned to one 
person, and each person can only be assigned one task. How to allocate to maximize total 
profit? (all profits are multiples of ten), and output the maximum profit. Above is the image 
of this question.

Answer: 180

GPT-4.1 TVP (T=1) GPT-4.1 TVP (T=5)

Iteration:1
<code>\import numpy as np\nfrom scipy.optimize import 
linear_sum_assignment\n...print(max_profit)\n</code>
Code Interpreter: error: …NameError: name 'find_original_image_name' is not 
defined\n.

Iteration:2
<code>\import numpy as np\nfrom scipy.optimize import 
linear_sum_assignment\n...print(max_profit)\n</code>
Code Interpreter: output: 180\n.

Iteration:3
<code>\import numpy as np\nfrom scipy.optimize import 
linear_sum_assignment\n...print(\"Maximum Profit:\", 
max_profit)\n</code>
Code Interpreter: output: Allocation (Employee, Task): ... Profit: 180\n.

Iteration:4
<code>\import numpy as np\nfrom scipy.optimize import 
linear_sum_assignment\n...print(\"Maximum Profit:\", 
max_profit)\n</code>
Code Interpreter: output: Employee 1 assigned to Task 2, ...Total Profit: 180\n.

Iteration:5
<code>\import numpy as np\nfrom scipy.optimize import 
linear_sum_assignment\n...print(f\"Maximum Total Profit: 
{max_profit}\")</code>
Code Interpreter: output: Optimal Assignment:\nEmployee 1 -> Task 2...Total 
Profit: 180\n.

Final Answer: \\boxed{180}\n\nOptimal allocation to maximize total profit:\n- 
Employee 1 → Task 2 (Profit: 90)\n- Employee 2 → Task 1 (Profit: 10)\n- Employee 
3 → Task 3 (Profit: 80)

Iteration: 1
<code>\import os\nimport 
cv2\nimport numpy as 
np\nimport 
pytesseract\n...print('Maximum 
Total Profit:', 
max_profit)\n</code>
Code Interpreter: error: Traceback 
(most recent call last):\n...raise 
TesseractNotFoundError()\npytes
seract.pytesseract.TesseractNotF
oundError: tesseract is not 
installed or it's not in your PATH. 
See README file for more 
information.\n

Final Answer: 
\\boxed{230}

Comparative Analysis

Comparing the overall output and final results of single-round and five-round code execution, we can see that in the single-round 
execution, TVP (T=1) encountered an error because it used a library function that was not available in the environment (a non-
standard library). In the five-round execution TVP (T=5), a path loading error occurred during the first code execution, but 
subsequent executions corrected this issue, ultimately producing the correct answer. This demonstrates the advantage of 
multiple rounds of execution: the ability to identify and correct errors.

Resource Allocation

Figure 50: Case study of Area Measurement.
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Point Counting

Question: What is the number of red dots?

Answer: 11

Gemini-2.5-Flash TVP (T=1) Gemini-2.5-Flash TVP (T=3)

Iteration:1
<code>\import cv2\nimport numpy as np\n\n...output_image_path = 
processed_image_name(image_path)\ncv2.imwrite(output_image_path, 
output_image)\n</code>
Code Interpreter: error: …NameError: name 'find_original_image_name' is not 
defined\n.

Iteration:2
The previous attempt failed because…The image processing logic for counting red 
dots.
<code>\ >\import cv2\nimport numpy as np\n\n...output_image_path = 
processed_image_name(image_path)\ncv2.imwrite(output_image_path, 
output_image)\n </code>
Code Interpreter: output: The number of red dots is: 11\n.

Iteration:3
The number of red dots is: 11\n

Final Answer: 
The number of red dots is: \\boxed{11}

Iteration: 1
<code>\import os\nimport 
cv2\nimport numpy as 
np\n\n...cv2.imwrite(output_fi
lename, original_image) 
\n</code>
Code Interpreter: output: Could 
not find a suitable red dot to 
create a template. Falling back to 
direct contour counting.\nNumber 
of red dots (contour fallback): 0\n
Final output：<code>\import 
os\nimport cv2\nimport numpy 
as 
np\n\n...cv2.imwrite(output_fi
lename, original_image) 
\n</code>

Final Answer: 
None

Comparative Analysis

Comparing the overall output and final results of single-round and three-round code execution, we can see that in the single-
round execution, TVP (T=1) encountered an error because the algorithm failed to detect any red points because of an incorrect 
threshold setting. In the three-round execution TVP (T=3), a path loading error occurred during the first code execution, but 
subsequent executions corrected this issue, ultimately producing the correct answer. Next, after receiving the corresponding 
text and image results, it confirmed that all the red dots had been found, thus pre-determining the answer.

Figure 51: Case study of Point Counting.
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Ricochet Ball

Question: How many ricochets will a ball launched from (1.0, 1.0) at 80° need to hit the target at 
(9.0, 9.0)? The ball reflects perfectly off the arena walls and mirror-obstacles.

Answer: 7

Gemini-2.5-Flash TVP (T=3)

Iteration:1
<code>\import math\nimport os\nimport re\nimport typing\nimport 
matplotlib.pyplot as plt\nimport matplotlib.patches as 
patches\n\n...def get_time_to_hit_target(current_pos, current_velocity, 
target_pos, target_radius):\n    dx = current_pos.x - target_pos.x\n    
dy = current_pos.y - target_pos.y\n\n... # Print the final 
answer\nprint(ricochets)</code>
Code Interpreter: output: “7\n”

Iteration:2
The previous iteration‘s code correctly calculated 7 ricochets and produced a visual 
path that supports this answer...
<code>\import math\nimport os\nimport re\nimport typing\nimport 
matplotlib.pyplot as plt\nimport matplotlib.patches as 
patches\n\n...def get_time_to_hit_wall(current_pos, 
current_velocity):\n    dt_x = float('inf')\n    dt_y = 
float('inf')\n\n...# Print the final answer\nprint(ricochets)</code>
Code Interpreter: error: ...^^^^^^^^^^^^^^^^^^^^^^^^\nNameError: name 
'find_original_image_name' is not defined\n

Iteration:3
<code>\import math\nimport os\nimport re\nimport typing\nimport 
matplotlib.pyplot as plt\nimport matplotlib.patches as patches\n\n...# 
Snap position to the wall\n        if abs(current_pos_next.y - Y_MIN) < 
EPS: current_pos_next.y = Y_MIN\n        if abs(current_pos_next.y - 
Y_MAX) < EPS: current_pos_next.y = Y_MAX\n\n...# Print the final 
answer\nprint(ricochets)</code>
Code Interpreter: output: “7\n”

Final Answer: The final answer is $\\boxed{7}$

Gemini-2.5-Flash TVP (T=1)

Iteration: 1
The problem requires simulating 
the path of a ball launched from a 
starting point with a given angle...
<code>\import os\nimport 
math\nfrom PIL import Image, 
ImageDraw\n\n# --- Geometry 
Classes ---\nclass Point:\n    
def __init__(self, x, y):\n... 
# --- Simulation Loop ---\nfor 
step_count in 
range(MAX_SIM_STEPS):\n    # 
Calculate t if the ray hits 
the target directly on its 
current path segment\n    
t_to_target = float('inf')\n    
\n    vec_to_target_x = 
target_pos.x - current_pos.x\n    
vec_to_target_y = target_pos.y 
- current_pos.y\n\n 
...print('Maximum Total 
Profit:', max_profit)\n</code>
Code Interpreter: output: -1\n

Final Answer: 
10

Comparative Analysis

Comparing TVP (T=1) and TVP (T=3), we can see that when only one iteration of the code is used, the model fails to find a solution 
within a certain number of steps due to errors in its modeling of the overall layout, resulting in a return value of -1. However, 
with multiple iterations, although the second iteration encountered a path-related error, the first and third iterations executed 
correctly, and the model successfully used the code to generate a simulated path diagram, which can assist the model in making 
decisions.

Figure 52: Case study of Ricochet Ball.
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