Under review as a conference paper at ICLR 2026

P1XELS L1E, CODE DOESN’T: THINKING WITH VI-
SUAL PROGRAMMING FOR “SEEMINGLY IMPOSSIBLE”
MULTIMODAL AGENTIC REASONING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

To overcome the inherent limitations of Chain-of-Thought (CoT) and to further
push the upper bound of multimodal reasoning capabilities, we introduce Think-
ing with Visual Programming (TVP), where models can iteratively interact with an
external code executor to generate, run, and verify both visual and textual agentic
operations as part of the reasoning loop. Motivated by the open question of how
far Multimodal Large Language Models (MLLMs) still lag behind this paradigm,
we introduce MMR-VIP, a MultiModal Agentic Reasoning benchmark built on
Visual Impossible Problems. We design MMR-VIP with two key principles: (1)
We construct a Difficulty Ladder grounded in computational complexity theory,
structuring tasks from easy problems that can be solved with inherent percep-
tion and reasoning, through medium problems that require external computational
tools, to hard problems that remain intractable even with programming assistance.
(2) We decompose the paradigm of Thinking with Visual Programming into three
Cognitive Skills, namely Perception, Abstraction, and Optimization, which
correspond to perceiving visual inputs, abstracting them into problem formula-
tions, and optimizing algorithms to obtain efficient solutions. Our experiments on
MMR-VIP yield the following findings: (1) GPT-5, as a native TVP model, deliv-
ers the strongest overall results, yet its accuracy remains only 38.2%, underscoring
substantial room for progress. (2) For commercial models, multi-turn code execu-
tion consistently surpasses direct CoT and single-turn execution, providing stable
and significant improvements. (3) Across difficulty levels, performance follows a
ladder-shaped trend, with negligible gains on easy tasks, the largest improvements
on medium tasks, and steady advances on hard tasks. (4) From a cognitive per-
spective, TVP enhances optimization by offloading complex computation, search,
and planning, but models still encounter bottlenecks in abstraction.

1 INTRODUCTION

Multimodal reasoning is a defining capability of human intelligence, enabling us to address diverse
challenges such as navigating in the physical world, interpreting scientific figures, and solving ge-
ometry problems (Yue et al., 2024; Lu et al., 2024). Recent advances in Multimodal Large Language
Models (MLLMs) (OpenAl, 2024; DeepMind, 2025; Bai et al., 2025) have demonstrated significant
progress by leveraging Chain-of-Thought (CoT) (Wei et al., 2022; Zhang et al., 2024c), which
bridges perception and reasoning through explicit sequences of textual steps. Nevertheless, exist-
ing improvements remain constrained, since they primarily extend text-based CoT, prolonging the
reasoning process without enhancing the upper bound of the model’s reasoning capabilities.

To address these limitations, “Thinking with Images” (TWI) (Zheng et al., 2025; Su et al., 2025a;c)
has recently been proposed as an emerging paradigm, enabling models to incorporate iterative vi-
sual inspection as part of the reasoning loop. In practice, current methods rely on manipulating
images with external tools (Zhang et al., 2025), such as cropping, zooming, rotating, and other im-
age processing operations. Although such strategies enhance perceptual accuracy, they are limited
to a narrow set of predefined visual tools, thereby rigidifying the reasoning process and restricting its
generality. As various forms of visual manipulation can naturally be expressed and executed through
programming, we propose the paradigm of “Thinking with Visual Programming” (TVP), which
goes beyond fixed tools and allows models like OpenAI’s 04 and GPT-5 (OpenAl, 2025a) to flexibly
generate, execute, and verify both visual and textual operations within the reasoning process.

Under review as a conference paper at ICLR 2026

Question: Place one queen in each row
and column so that no two queens
attack each other. Find the number
of valid placements.

(e

Medium

Question: Place one queen in each row
and column such that no two queens
attack each other, and no queen is
threatened by an existing knight
(knight safety is ignored). Find the
number of valid placements.

Answer: 5

Hard

Question: Place one queen in each row
and column such that o two queens
attack each other, and no queen is
threatened by an existing knight

Chain-of - Thought 50 10
The number of different valid queen placements is: 0
Because: Several queens are already placed (E3, A5, €9, 612) .
.. Checking carefully: The already placed queens on E3, A5, €9, 612
already conflict with each other diagonally (E3 and A5 are on the
same diagonal, €9 and 612 are on the same diagonal).
No complete arrangement exists that satisfies the constraints.

o
™vP

v Thinking with Visual Programming
I'm considering using image analysis to detect the chess pieces, via |
template matching. It could work since we have black queen and
knight icons, plus the coordinates in the squares. T'd need fo
Perception |segment the image and analyze color intensity. I'll go with the code

approach for detecting pieces more reliably.
=<

<code> Computing per-cell darkness threshold </code
[<code> Computing mapping for top dark count cells </code))

Easy

(3) Performance Across Difficulty Levels.
Attribute

Medium Hard

The pieces are located at A5, B4, €9, E3, and 612. After revisiting
the data, Tl trust the code and place the knight at B4, which leaves
the other pieces as queens.

_|Tt looks like the knight's attack squares do indeed prevent new

Abstraction queen placements but not existing queens. For the remaining queens.
the algorithm should ensure they don't attack each other or land on;
knight-attack squares.

Plannij

o0

[<code> Computing knight attack squares </code)] 2

Search 10
T've confirmed that there are only 6 valid knight attack squares
from B4, as some moves fall of f the board or info negative columns.
I'm ready fo implement the solver with the necessary constraints!
I'll implement the backtracking approach, keeping the knight and
queens’ constraints in check.

(knight safety is ignored). Each
square has a placement cost based on
its color. Find the arrangement of
queens that satisfies these
constraints with minimum total cost.

Computhion

Gometry

OPT"""“" <code> Computing valid queen placements with knight
constraints </code)]

il code> Verifying queen placement constraints </code.

We found 5 valid queen placements, and I'll double-check
everything. Co

(2) Cognitive Skills of TVP.

Network ————Physics

Answer: 170 o

(1) Difficulty Ladder in MMR-VIP. (4) Performance Across Cognitive Skills.

Figure 1: Thinking with Visual Programming paradigm. Figure (1) illustrates the three difficulty
levels in MMR-VIP using the N-Queens task as an example. Figure 1(2) shows that for a medium-
level problem, direct CoT reasoning fails while TVP succeeds, and in the process three key cognitive
skills emerge. Figure [(3) compares the average performance of four powerful models (GPT-4.1-
mini, GPT-4.1, Gemini-2.5-Flash, and Claude-Sonnet-4) under CoT and TVP, showing minimal
changes on easy tasks, the largest gains on medium tasks, and clear improvements on hard tasks.
The results exhibit a ladder-shaped performance trend across difficulty levels. Figure 1(4) presents
the performance differences of the four models across cognitive skills, where TVP yields notable
improvements in symbolic (perception), computation, search, and planning (optimization).

Humans inherently solve complex reasoning problems in a programming-like manner by preprocess-
ing visual inputs for better perception, applying algorithmic procedures to derive solutions, and ver-
ifying outcomes through testing. Nevertheless, it remains unclear how far current MLLMs are from
this paradigm. To this end, we introduce MMR-VIP, a MultiModal Agentic Reasoning benchmark
that consists of Visual Impossible Problems. Formally, we refer to Visual Impossible Problems as
problems that appear intractable under CoT-based reasoning, yet become solvable when augmented
with visual programming interactions. We design MMR-VIP with two key considerations:

Difficulty Ladder. We categorize problems into three levels of difficulty, drawing inspiration from
how humans tackle tasks with and without tools, and grounded in computational complexity the-
ory. (1) Easy level requires that the model can reliably solve them using its inherent perception and
reasoning abilities, without any programming assistance. This level corresponds to “low-complexity
problems in P”, where the model can perform reasoning within its working memory; (2) Medium
level is challenging for the model to solve independently, but can be effectively addressed when it is
allowed to use a code interpreter. This level typically involves “polynomial-time solvable problems
in P”, where the model must rely on external computational tools to compute solutions; (3) Hard
level remains unsolved even with programming assistance, often due to their large-scale computa-
tional complexity, highly intricate constraints, or demanding optimization requirements. This level
corresponds conceptually to “NP-hard problems”, which often lie beyond the capabilities of current
models. As shown in Figure 1(1), the three levels form a progressive difficulty ladder, where each
step reflects an increasing demand on the model’s reasoning capacity and reliance on external tools.

Cognitive Skill. We decompose the Thinking with Visual Programming paradigm into three key
cognitive skills, focusing on the core cognitive processes required to perceive, abstract, and opti-
mize multimodal agentic reasoning. Taking the N-Queens problem in Figure [(2) as an example:
(1) Perception requires the model to transform visual content into structured information, correctly
extracting relevant elements from multimodal inputs (e.g., detecting and locating chess pieces on
the board); (2) Abstraction requires the model to transform structured information to problem for-
mulation, producing computationally useful forms and proposing feasible solutions (e.g., converting
piece positions into symbolic constraints that capture attack rules); (3) Optimization requires the
model to transform problem formulation to algorithmic optimization, optimizing both algorithms

Under review as a conference paper at ICLR 2026

and computational procedures to obtain correct and efficient answers (e.g., applying a backtracking
algorithm to search for valid queen placements under the given constraints).

MMR-VIP encompasses 28 carefully crafted task types, each designed across three difficulty levels,
resulting in 1,680 instances that provide a comprehensive evaluation of multimodal agentic reason-
ing capabilities. These tasks span a wide spectrum, from basic skills such as counting and height
measurement to advanced challenges including graph coloring and circuit logic. To avoid dataset
contamination and guarantee that models solve tasks via code execution instead of memorized recall,
all problems in MMR-VIP are generated using carefully designed, manually written code.

We conduct a comprehensive evaluation on MMR-VIP across a wide range of MLLMs, including
commercial models such as Claude-Sonnet-4, open-source models such as Qwen2.5-VL-72B, as
well as native TVP models like 04-mini and GPT-5. We further assess different reasoning paradigms,
including direct CoT, single-turn code execution, and multi-turn code execution. We obtain the fol-
lowing conclusions: (1) Our experimental results reveal clear differences across model types and
reasoning paradigms. For open-source models, introducing code execution provides little to no im-
provement, mainly due to their limited visual programming capabilities. For commercial models,
single-turn code execution yields unstable performance, while multi-turn code execution consis-
tently delivers substantial gains. As illustrated in Figure [(3), multi-turn code execution improves
accuracy on medium-level tasks by 58.4% compared to direct CoT. GPT-5, as a native TVP model,
achieves the best overall performance; however, its accuracy remains only 38.2%, indicating sub-
stantial room for improvement; (2) Performances across different difficulty levels align well with the
design of MMR-VIP, exhibiting a ladder-shaped performance trend. Compared to direct CoT, we
observe that TVP yields minimal changes on easy tasks, the largest gains on medium tasks, and con-
sistent improvements on hard tasks; (3) From the perspective of cognitive skills, TVP shows clear
progress in optimization, as it can leverage programming to offload complex computation, search,
and planning operations. However, its performance still encounters bottlenecks in abstraction, where
models lack the ability to translate visual inputs into high-level problem formulations. We hope that
MMR-VIP will serve as a challenging benchmark to drive future research toward closing this gap.

2 PARADIGM DEFINITIONS

2.1 MULTIMODAL CHAIN-OF-THOUGHT

We formalize the conventional paradigm of Multimodal Chain-of-Thought reasoning. For a model
6, given an input image I and a textual question z, the CoT process can be defined as:

PCOT(y|[,I):PQ(T|I,I)'Pg(y|[,IE,T’). (D
Here, r = (s1, S2, ..., $») denotes the intermediate reasoning chain, which explicitly captures the

sequence of textual steps bridging perception and reasoning, while y represents the final answer
conditioned on both the original input (I, z) and the generated textual rationale 7.

2.2 THINKING WITH VISUAL PROGRAMMING

We formalize the proposed paradigm of Thinking with Visual Programming. For a model 6, given an
input image I and textual question x, TVP extends conventional CoT by introducing programming
actions a, which are executed through interaction with an external code executor £. Unlike single-
pass reasoning, this is a multi-turn interactive agentic process consisting of 7" rounds:

T
Pryp(y | I,x) = [[Po(re.ae | si-1) - Poly | sr).)

t=1
At each step ¢, the model generates a reasoning trace r; and a programming action a;, executes a
via the external executor £, and incorporates the multimodal execution result £ (a;) into the state s;:

s¢ =81 U{ry,a,E(ar)}, so={1,x}. 3)

Compared to CoT, TVP offers significant advantages by integrating pixel manipulations and algo-
rithmic computation into the reasoning loop, enabling models to move beyond textual thinking. In
this paper, we do not provide models with fixed external tools. Instead, we allow them to write code
that can call standard libraries, such as PIL, OpenCV, and Matplotlib, among others.

Under review as a conference paper at ICLR 2026

(1) Attribute

Difficulty: Hard
Task: Point Counting

(4) Geometry

Question: Calculate
the minimum
enclosing rectangle
area of the
following rectangle,
where the sides of
the enclosing
rectangle must be
parallel to the grid.

Answer: 63

Difficulty:
Task: Bounding Box

(7) Search

Question: This is a diagram
of aRubik's Cube. Given an
initial state (above), you can
perform the standard 18
operations to find the
minimum number of moves
required to get the Rubik's
Cube to the given state
(below).

Answer: 6

Difficulty: Hard
Task: Rubik's Cube

(2) Location

(3) Symbolic

L] ° °®
./ ® e g AN
R ° > / Question:
.o \ o What is
o o . the number ||,
.. ° of red dots?
. .0
4 ® ° e Answer: 29
.0 ® .
>
° ° ° °

the color of the
ball at (2, 2, 2)?
You can choose an
answer from Red,
Green, Orange,

e o e®
S0

| @ e o Cyan, Purple, Blue
«\\\ ~| and Yellow.
v I, ¢ ok Answer: Red

Question: What is ||

Question: This is a
digital circuit
problem. Given
known input values
for the circuit,
determine the
output value.

Answer: 0

Difficulty: Medium
Task: 3D Location

(5) Physics

Question: How many
ricochets will a ball
launched from (1.0,
1.0) at 5° need to hit
the target at (9.0,
9.0)?

The ball reflects
perfectly of f the
arena walls and
mirror-obstacles.

Answer: 8

Difficulty: Medium
Task: Ricochet Ball

(8) Planning

Question: Each
task can only be
“| assigned to one
“| person, and

| each person can
=| only be assigned
.| one task.

.| Compute the
maximum total
profit.

Difficulty:
Task: Circuit Logic

(6) Network

Question: Given the
following four-
coloring problem
graph, where part
of the region has
been pre-colored,
how many coloring
combinations are
there for the
remaining region?

Answer: 34560
Difficulty: Hard

Task: Graph Coloring
(9) Computation

Q ion: Given the

Answer: 500

Difficulty: Medium
Task: Resource Allocation

first 8 numbers in
the nine-square
grid, calculate the
smallest positive
integer such that
the sum of this
number plus all
previous numbers is
an integer multiple
of 20.

36 77 15

84 80 73

45 18

Answer: 12

Difficulty:
Task: Calculation

Figure 2: Evaluation framework of cognitive skills in MMR-VIP.

3 MMR-VIP BENCHMARK

To investigate how far current MLLMs are from the paradigm of TVP, we introduce MMR-VIP,
a MultiModal Agentic Reasoning benchmark that consists of Visual Impossible Problems. These
are carefully designed problems that existing MLLMs cannot reliably solve with conventional CoT
reasoning alone, but instead necessitate interaction with an external code executor. We will detail the
design principles behind MMR-VIP, including its difficulty ladder and cognitive skill dimensions,
and describe the benchmark construction process along with dataset statistics.

3.1 DIFFICULTY LADDER

We categorize problems in MMR-VIP into a three-level Difficulty Ladder, drawing inspiration
from how humans tackle tasks of varying complexity and their reliance on external tools. At the
Easy level, tasks can be reliably solved using the model’s inherent perception and reasoning abili-
ties, without the need for programming assistance. These correspond to “low-complexity problems
in P”, where solutions can be derived directly within the model’s working memory. The Medium
level encompasses tasks that models struggle to solve on their own but can successfully address
when supported by external tools such as code interpreters. These tasks align with “polynomial-time
solvable problems in P,” where deriving solutions requires programmatic operations and computa-
tional tools beyond intuition alone. Finally, the Hard level captures problems that remain unsolved
even with programming assistance, typically due to large-scale computational complexity, intricate
constraints, or challenging optimization requirements. Conceptually, these tasks are analogous to
“NP-hard problems”, which often exceed the practical capabilities of current models. Such a diffi-
culty ladder setting enables a more in-depth examination of the paradigm of TVP.

!The tasks in MMR-VIP are not strictly designed or guaranteed to align with formal complexity-theoretic
definitions, but rather follow the spirit of increasing computational and cognitive demands.

Under review as a conference paper at ICLR 2026

Table 1: Mapping between cognitive skills and task types in MMR-VIP.

Category Tasks

Attribute 3D Position, Bin Packing, Graph Coloring, Hanoi Tower, Point Counting, Resource Allocation,
Rubik’s Cube, Sliding Puzzle, Snake Game, Three-Views

Location 3D Position, Bounding Box, Height Measurement, Point Counting, Projectile Motion, Snake
Game, Three-Views

Symbolic Calculation, Chart, Circuit Logic, House Robber, Interval DP, N-Puzzle, Projectile Motion,
Tableau LP

Geometry Area Measurement, Bounding Box, Rubik’s Cube, Three-Views

Physics Circuit Logic, Projectile Motion, Ricochet Ball

Network Graph Coloring, Graph Isomorphism

Search Bin Packing, Bubble Sort, Calculation, Graph Coloring, Maze, N-Puzzle, N-Queens, Path
Counting, Rubik’s Cube, Sliding Puzzle, Snake Game

Planning Chart, Hanoi Tower, House Robber, Interval DP, Lights Out, Resource Allocation, Tableau LP

Computation Calculation, Path Counting

3.2 COGNITIVE SKILL

Beyond task difficulty, we design MMR-VIP to emphasize the underlying Cognitive Skills required
for multimodal agentic reasoning under the TVP paradigm. These skills highlight the essential pro-
cesses through which models must learn to leverage external tools to approach complex problems.
We define three successive skills within TVP: Perception, Abstraction, and Optimization, which
together examine a model’s visual programming ability from complementary dimensions.

Perception: This skill concerns the model’s ability to accurately extract structured information from
raw visual inputs. Unlike direct pattern recognition that relies solely on intrinsic visual perception,
TVP enables models to enhance perception through programmatic operations such as counting,
measuring, and localization. For example, as shown in Figure 2(1), when a task requires precise
object counting, models that rely only on intrinsic perception often fail due to overlapping shapes,
varying sizes, or background noise. In contrast, TVP enables the model to generate code that ana-
lyzes pixel-level cues such as color and boundary lines, allowing it to count objects more accurately.
We evaluate this skill across three dimensions: Attribute (i.e., color, shape, size), Location (i.e.,
positions, distances, spatial relations), and Symbolic (i.e., digits, letters, or graphical symbols).

Abstraction: This skill concerns the model’s ability to transform low-level structured information
into higher-level problem formulations. It requires not only recognizing surface patterns but also
capturing the underlying rules and constraints, and converting them into computationally useful
forms. For instance, as illustrated in Figure 2(6), the model must write code to abstract the puzzle
into a network structure, representing each piece as a node and encoding adjacency relations as
edges. This code-based abstraction allows the model to perform further search or optimization
over the graph. In MMR-VIP, we evaluate abstraction across three dimensions: Geometry (i.e.,
geometric formulations), Physics (i.e., physical laws), and Network (i.e., graph structures).

Optimization: This skill focuses on the model’s ability to transform problem formulations into
efficient algorithmic solutions. It requires not only identifying feasible solutions but also refining
them to satisfy the given conditions. For example, as illustrated in Figure 2(7), the Rubik’s Cube
task requires the model to minimize the number of moves from an initial state to a target state. TVP
enables the model to generate and execute code that systematically explores the space of valid cube
operations, pruning redundant paths and converging to the optimal sequence of moves. We evaluate
this skill across three dimensions: Search (i.e., depth-first search, breadth-first search), Planning
(i.e., dynamic programming, linear programming), and Computation (i.e., numerical calculations).

3.3 BENCHMARK CONSTRUCTION

To ensure that tasks are both solvable in the TVP paradigm and suitable for difficulty control, we
adopt a Code2Task generation framework. We recruited five annotators with strong backgrounds in
programming competitions and instructed them to write code that specifies task rules and automati-
cally generates the corresponding images-, problems, and answers. As task difficulty increased, an-
notators were required to design new rules and introduce greater computational complexity, thereby
enriching the reasoning challenges. To facilitate this process, annotators were permitted to utilize

>We implemented visualization through HTML and Matplotlib.

Under review as a conference paper at ICLR 2026

Table 2: Experimental results on MMR-VIP. The best performance in each column is highlighted

in bold. Red denotes cases where TVP underperforms CoT, while Green denotes cases where it
outperforms CoT, with darker shades indicating larger magnitude of change.

Difficulty Level Cognitive Skill
Easy Mid Hard Att Loc Sym Geo Phy Net Com Sea Pla

Open-source Models
CoT 280 114 48 120 93 212 112 83 275 350 156 143 14.8
=1 | 9.1 32 25 42 38 52 38 44 125 67 42 38 4.9 (199
CoT 162 55 50 78 60 119 25 100 167 175 102 6.0 8.9

Model Overall

Keye-VL-1.5-8B

Gemma-3-278 =1 155 100 41 62 55 173 42 67 225 283 89 102 9910
QwenzsvLgp COT 132 70 39 75 36 73 38 89 267 67 68 64 8.0
: =1 73 55 16 25 29 75 21 22 175 217 53 17 48432
CoT 243 109 64 137 126 173 83 100 250 292 147 86 13.9

Qwen2.5-VL-32B T=1 13.6 4.6 4.1 77 81 69 42 94 133 67 59 48 7.4 65
=3 189 98 6.8 100 88 183 25 72 208 283 133 107 11.8¢2n

CoT 239 104 6.1 123 107 158 125 89 308 208 121 8.6 13.4
=1 205 96 45 115 117 162 58 7.8 183 158 91 109 11.61s)

Commercial Models
CoT 427 202 98 233 238 321 19.6 21.1 308 342 189 269 242
GPT-4.1-mini =1 455 282 141 160 233 494 221 222 350 392 247 37.1 293¢5
T=3 42.1 284 141 218 214 450 162 144 31.7 31.7 229 40.5 28240
CoT 427 19.1 11.1 230 269 338 200 26.1 300 350 139 28.6 24.3
GPT-4.1 =1 389 180 7.1 187 238 254 221 272 275 225 176 164 21429
T=3 47.1 255 12.1 187 250 504 138 328 283 325 203 369 283140
CoT 464 18.0 109 17.8 27.6 425 262 256 325 400 17.7 28.1 25.1
Gemini-2.5-Flash =1 327 145 79 9.0 174 342 221 250 125 325 144 195 18368
T=3 593 345 16.1 21.8 302 646 27.1 333 292 400 30.0 49.0 36.61 115
CoT 580 209 104 213 257 444 296 294 275 375 262 329 29.8

Qwen2.5-VL-72B

Gemini-25-Pro | 3g'g 202 114 [127 179 383 200" 300 275 167 165 295 234 (64
CluudeSomners COT 496 182 89 195 286 383 271 233 267 383 192 281 256
T=1 495 316 143 220 276 535 196 261 283 458 286 383 31862
Native TVP Models
od-mini 577 307 173 280 248 554 254 261 350 400 273 552 352
GPT-5-mini 618 298 168 327 298 529 279 261 325 425 283 533 361
GPT-5 655 338 154 275 317 604 308 311 392 392 282 569 382
Reference
Human 69.6 554 357 483 548 750 375 278 583 667 500 69.0 536

Al-assisted code editors (e.g., Cursor). Finally, we conducted cross-validation of all generated code
to verify correctness, where each program was independently reviewed by multiple annotators.

In total, MMR-VIP encompasses 28 carefully crafted task types, each designed across three dif-
ficulty levels. For every task and difficulty, we randomly generated 20 instances, resulting in a
benchmark of 1,680 instances in total. We include detailed examples of each task in the Appendix

. The mapping between task types and their corresponding cognitive skills is presented in Table
Since all tasks are synthesized from code, MMR-VIP is reproducible and extendable. Researchers
can regenerate new instances by adjusting parameters or extend the benchmark with new task rules,
making MMR-VIP a continuously evolvable framework rather than a fixed dataset.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of existing MLLMs on MMR-VIP. We sys-
tematically evaluate model performance across different difficulty levels and cognitive skills, and
further contrast the effectiveness of CoT and TVP. We also analyze from multiple perspectives, in-
cluding the effect of iteration rounds, the role of input modalities, and the distribution of error types.

4.1 EXPERIMENTAL SETUP

We evaluate three categories of MLLMs on MMR-VIP: commercial models (e.g., GPT-4.1 (Ope-
nAl, 2025b), Gemini-2.5-Flash, Gemini-2.5-Pro (DeepMind, 2025), Claude-Sonnet-4 (Anthropic,
2025)), open-source models (e.g., Qwen2.5-VL (Bai et al., 2025), Gemma-3 (Kamath et al., 2025),
Keye-VL-1.5 (Yang et al., 2025a)), and native TVP models (e.g., 0o4-mini, GPT-5). We do not
include existing open-source models designed specifically for Thinking with Images, since these
models primarily focus on applying fixed transformations to images rather than freely generating

Under review as a conference paper at ICLR 2026

100
801
e
X 60
S
% -
oy
g
3
S 401
<
]
]
[
]
0 . —— . —— e .
& @ P &S P .o S o
&QQ &z)‘ \’VQ & 3 Sl Ko o&\ & ¢ O\m\ &‘“@\ Q\\e“ %06&0& &z‘;@'\@ \968 6"\(& PSS > 6\& & \.‘\é\ “&Q&\ o’;\‘\w\ﬁ;‘é\@?‘qx
& FF X IS & & & NI e K& &
¢ T N OEC W eSO SRS I O P A S & SR
& & @Q\ & VTS \z,@' & & & B = «,Q\\@é‘ 8 &
4 o O
& e < R

Figure 3: Performance comparison of Gemini-2.5-Flash on different tasks under CoT and TVP
(T' = 3). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP
over CoT, and Red indicates degradations of TVP over CoT.

code to support reasoning. Moreover, to assess the effectiveness of different reasoning strategies,
we compare three settings: Chain-of-Thought, single-turn TVP, where the model invokes the code
executor once, and multi-turn TVP, where the model can iteratively generate, execute, and refine
code for up to T' = 3,5, 7 rounds. We provide the detailed prompts used for all settings in the
Appendix D. As a reference, we randomly sample 168 instances and invite human participants to
solve these tasks. Each participant is allowed to leverage search engines and interpreters during the
process. We adopt accuracy as the evaluation metric. We report results along three perspectives:
performance across different difficulty levels, performance across distinct cognitive skills, and the
overall accuracy.

4.2 EXPERIMENTAL RESULTS

As shown in the Table 2, our experiments on MMR-VIP yield several key findings:

(1) Performance differences across model types and reasoning paradigms. For open-source
models like Qwen2.5-VL-72B, introducing TVP offers negligible gains and sometimes results in
performance drops, owing to their limited visual programming capabilities. For commercial mod-
els, single-turn code execution produces unstable results, whereas multi-turn execution consistently
yields significant improvements. For instance, Gemini-2.5-Flash shows an accuracy gain of 18.3%
when increasing from 7" = 1 to T = 3. For native TVP models, although GPT-5 achieves the highest
performance, it attains only 38.2% accuracy, reflecting the substantial limitations that remain. We
can observe a clear performance gap relative to humans, underscoring that humans are more adept
at leveraging external tools to solve complex visual problems.

(2) Clear difficulty ladder. The results align closely with the benchmark’s design, showing a dis-
tinct ladder-shaped performance trend. Compared to direct CoT, TVP shows negligible differences
on easy tasks, achieves the largest improvements on medium tasks, and delivers consistent gains on
hard tasks. Nevertheless, performance at the hard level remains very low, with the best accuracy
reaching only 17.3%. This demonstrates that MMR-VIP effectively stratifies problems by difficulty,
thereby exposing the limits of current MLLMSs’ reasoning capabilities.

(3) Imbalanced cognitive skills. The results reveal marked disparities across cognitive skills. TVP
delivers the most significant improvements in Optimization, where models effectively leverage pro-
grammatic search, planning, and computation to tackle complex problem-solving tasks. As shown
in Figure 3, Gemini-2.5-Flash exhibits large gains on tasks such as Interval Dynamic Program-
ming, N-Queens, Tableau Linear Programming, and N-Puzzle, where code execution is essential to
explore solution spaces. In addition, TVP also enhances Symbolic perception, since code allows
models to precisely recognize, parse, and manipulate digits, letters, or graphical symbols. However,
performance in Abstraction remains the most challenging, where models still struggle to translate

Under review as a conference paper at ICLR 2026

Easy Acc Mid Ace —+— Hard Acc Easy Tokens Mid Tokens ---- Hard Tokens

70% Gemini-2.5-Flash 70% GPT-4.1-mini 6000 70% Qwen2.5-VL-32B
o 6000 o o

6000

60% % 15000 60% 5000 60% 5000

50% e 50% 50%

y 4000 4000 4000

40% :
A 3000

40%

=
S
=

ens

- 13000 _ 3000

Accuracy
Tokens
Accuracy
Tokens
Accuracy

Tok

30% 30% 30%

N o~ 2000 Jptes 2000 ot 2000
20%1 2 A 20% 20% o

> e =
o \/P/‘s‘ 000 jgf ez 1000 g0, he 1000
-~ g

0% 0 0% 0 0% 0
0 1 3 5 7 0 1 3 5 7 0 1 3 5 7

Rounds Rounds Rounds

Figure 4: Performance and token consumption under different iteration rounds (7" = 0,1, 3,5, 7).
T = 0 corresponds to CoT. , orange, and red correspond to Easy, Medium, and Hard levels.
Correct (CoT)
Correct (TVP) Wrong (TVP)
‘Wrong (CoT) Wrong (CoT) ‘Wrong (TVP)
‘Wrong (CoT)
Wrong (TVP) Correct (TVP)
Correct (CoT) e T Correct (TVP)
(a) Easy level. (b) Medium level. (c) Hard level.

Figure 5: Correctness flow between CoT (T" = 0) and TVP (I" = 3) for Gemini-2.5-Flash.

low-level visual cues into high-level formulations such as geometric equations, physical laws, or
graph structures. This underscores the necessity of improving their ability to abstract through code.

4.3 ANALYSIS

4.3.1 IMPACT OF ITERATION ROUNDS

We examine the impact of iterative rounds of code execution on model performance across easy,
medium, and hard tasks. As shown in Figure 4, compared to direct CoT, single-turn TVP (T' = 1)
often leads to a drop in accuracy. To better understand this phenomenon, we compute the corre-
lation between the performance difference of TVP (1" = 1) versus CoT and the success rate of
program execution. The Pearson correlation coefficient is 0.81 (p ~ 0.05), indicating a strong posi-
tive relationship. A primary source of degradation arises when incorrect code execution propagates
interpreter error messages into the reasoning process, thereby misguiding subsequent inference.

Performance generally peaks at 7' = 3 or T' = 5, where iterative refinement enables more re-
liable program execution and reflective reasoning. As illustrated in Figure 5, we further analyze
the correctness flow between CoT and TVP (I' = 3). The results show that the most significant
changes occur at the Medium difficulty level. However, for open-source models like Qwen2.5-VL-
32B, additional iterations fail to bring noticeable gains. This finding highlights that robust visual
programming capabilities are indispensable for open-source models to fully realize the benefits of
TVP. Meanwhile, increasing to 7' = 7 brings little to no additional gains and instead results in
significantly higher token consumption, highlighting the trade-off between accuracy and efficiency.

4.3.2 INFLUENCE OF INPUT MODALITIES

To further investigate the role of input modalities Table 3: Performance comparison under dif-
in TVP, we select four tasks from MMR-VIP that ferent input modalities.

can be represented in both textual and visual forms:

Tableau LP, Chart, Graph Coloring, and Maze. This Model I T I&T
design allows us to directly compare model perfor- —

mance under three conditions: (1) image-only input ~ GPT-4.1-mini 263 750 7763
(@), (2) text-only input (T), and (3) combined im- Claude-Sonnet-4 7.5 50.0 ~ 63.8
age—text input (I & T). Results in Table 3 show that ~ GPT-5-mini 5.0 500 5338
text input generally outperforms image input, indi- GPT-5 25.0 463 700
cating that current models still have weaker visual

reasoning capabilities. Moreover, visual inputs sometimes introduce perception errors, which can

Under review as a conference paper at ICLR 2026

I Program Execution Error I Output Formatting Issue Algorithmic Modeling Error
Problem Misinterpretation Visual Perception Error Program Inefficiency
GPT-4.1-mini GPT-4.1 Gemini 2.5 Flash Claude Sonnet 4
1% 0% % 4%
21.4%
27.0% 27.1% 10.6%

N\ 35.0%
9.3% .

(6.% 8.1%
33.9%
34.3% 30.9% ’ 39.6%

Figure 6: Error analysis of four models under TVP (I" = 1).

propagate through subsequent reasoning steps. Nevertheless, combined multimodal input consis-
tently surpasses unimodal input, particularly on tasks where the visual layout conveys structural or
spatial constraints that are difficult to capture with text alone.

4.3.3 ERROR ANALYSIS

To better understand the limitations of TVP, we conduct a detailed error analysis by categorizing
incorrect predictions into six major types: Program Execution Error, Visual Perception Error, Al-
gorithmic Modeling Error, Program Inefficiency, Problem Misinterpretation, and Output Formatting
Issue. The precise definitions and representative examples of each category are provided in the Ap-
pendix . As illustrated in Figure 6, the most common sources of error are Visual Perception Error,
Algorithmic Modeling Error, and Program Execution Error. These results align with our earlier find-
ings: they reflect (1) the insufficiency of models in Perception and Abstraction, where they struggle
to accurately extract information from visual inputs and transform it into computationally useful for-
mulations, and (2) the limitations of current models’ programming capabilities, where code errors
remain prevalent. We also provide several case studies of CoT and TVP in Appendix G.

5 RELATED WORKS

Multimodal Reasoning. Multimodal reasoning has recently become a prominent frontier in Al re-
search, with an expanding set of benchmarks and investigations underscoring its pivotal importance
across domains such as interpreting scientific diagrams (Yue et al., 2024; Guo et al., 2025), solv-
ing geometry problems (Zhang et al., 2024b; Wang et al., 2024), and tackling visual puzzles (Chia
et al., 2024; Ghosal et al., 2025; Song et al., 2025). Recent work (Huang et al., 2025; Meng et al.,
2025; Chris et al., 2025; Hong et al., 2025; Deng et al., 2025; Wang et al., 2025¢;b) has focused on
enhancing models’ reasoning ability through reinforcement learning, thereby extending reasoning
depth, enabling reflection and verification, and improving performance on complex tasks. However,
some studies argue that RL is constrained by an invisible leash (Wu et al., 20252), preventing it from
discovering new reasoning trajectories beyond the model’s initial capabilities (Lin & Xu, 2025).

Visual Programming. Visual programming (Yang et al., 2025b; Suris et al., 2023; Hu et al., 2024b)
requires models to generate executable code based on visual inputs. MMCode (Li et al., 2024)
evaluates MLLMs’ code generation abilities on competitive-programming problems presented with
visual contexts. HumanEval-V (Zhang et al., 2024a) is a benchmark designed to evaluate complex
diagram understanding and visual reasoning abilities in programming contexts. It assesses whether
models can accurately infer the underlying rules embedded in visual diagrams and subsequently gen-
erate correct programs that satisfy the corresponding test cases. Moreover, SWE-bench Multimodal
(Yang et al., 2025b) evaluates agents on their ability to fix bugs in visual, user-facing JavaScript soft-
ware, with tasks that incorporate images within their problem statements or test cases. Built upon
the Mini-level of the XLogoOnline platform, XLogoOnline-Mini (Wen et al., 2025) requires mod-
els to synthesize programs that control a turtle navigating through a grid to accomplish a specified
goal. The benchmark evaluates a broad spectrum of capabilities, including mathematical reasoning,
logical reasoning, spatial understanding, and planning. The primary difference of our work, MMR-
VIP, is that it aims to evaluate a model’s multimodal reasoning capabilities, where code serves only
as an optional tool to enhance reasoning rather than being the final output. All code generated in
MMR-VIP is free-form and intended solely to assist in problem-solving.

Under review as a conference paper at ICLR 2026

Tool-Integrated Reasoning. Rather than relying solely on parametric knowledge within the model,
tool-integrated reasoning (TIR) (Jin et al., 2025; Li et al., 2025; Xue et al., 2025; Feng et al., 2025;
Dong et al., 2025) enables the model to reason with external tools, such as a Python interpreter. Ex-
tending this idea to multimodal settings, the paradigm of Thinking with Images (TWI) has emerged
as an effective approach (Lu et al., 2025; Su et al., 2025b;a; Lai et al., 2025; Wang et al., 2025d; Wu
et al., 2025b; Zhou et al., 2025). Instead of relying solely on textual reasoning, models are equipped
with a predefined set of visual tools such as cropping, zooming, or rotating, which allow them to
refine perception during problem solving. Recently, there has been a growing trend of enabling
MLLMs to generate executable code as part of the reasoning process (Tang et al., 2025; Zhao et al.,
2025; Hu et al., 2024a; Zhang et al., 2025; Wang et al., 2025a), showcasing the potential of the TVP.

6 CONCLUSION

In this work, we introduced MMR-VIP, a benchmark designed to evaluate multimodal agentic rea-
soning under the Thinking with Visual Programming paradigm. Beyond text-based CoT and fixed
visual tools, TVP allows models to flexibly generate, execute, and refine programmatic code, which
serve as intermediate reasoning steps to facilitate multimodal problem solving. MMR-VIP is specif-
ically crafted for this paradigm, featuring problems that are unsolvable under CoT-based reasoning
but become tractable when integrated with visual programming interactions. Progress in multimodal
agentic reasoning will depend critically on strengthening models’ coding proficiency, enhancing
their visual abstraction ability, and equipping them with multi-round iterative reasoning strategies.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All experimental procedures involving human participants were conducted in accordance with the
relevant ethical guidelines. Moreover, all data instances in our benchmark are puzzle-style prob-
lems that are automatically synthesized through scripts rather than collected from real-world human
data. As such, the dataset contains no personal, harmful, or biased information. This ensures that
MMR-VIP is entirely safe for research and avoids introducing any sensitive or ethically problematic
content.

REPRODUCIBILITY STATEMENT

Our dataset is entirely script-synthesized rather than manually annotated or generated by LLMs, en-
suring full reproducibility. To facilitate this, we will release the synthesis scripts with fixed random
seeds alongside the final MMR-VIP dataset. We also provide data examples in the supplementary
materials. In addition, we provide detailed prompts used in all experiments in Appendix D, and
we will open-source the evaluation code together with the Python interpreter environment. This
guarantees that researchers can faithfully reproduce our experimental results.

REFERENCES

Anthropic. Introducing claude 4, May 2025. URL https://www.anthropic.com/news/
claude—4.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqgiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v] technical report.
CoRR, abs/2502.13923, 2025. doi: 10.48550/ARXIV.2502.13923. URL https://doi.org/
10.48550/arXiv.2502.13923.

Yew Ken Chia, Vernon Toh, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. Puz-
zlevqa: Diagnosing multimodal reasoning challenges of language models with abstract vi-
sual patterns. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 16259-16273. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024. FINDINGS-ACL.962. URL https://doi.org/10.18653/v1/
2024 .findings—-acl.962.

Chris, Yichen Wei, Yi Peng, Xiaokun Wang, Weijie Qiu, Wei Shen, Tianyidan Xie, Jiangbo Pei,
Jianhao Zhang, Yunzhuo Hao, Xuchen Song, Yang Liu, and Yahui Zhou. Skywork R1V2: multi-
modal hybrid reinforcement learning for reasoning. CoRR, abs/2504.16656, 2025. doi: 10.48550/
ARXIV.2504.16656. URL https://doi.org/10.48550/arXiv.2504.16656.

Google DeepMind. Gemini flash, 2025. URL https://deepmind.google/
technologies/gemini/flash/.

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
An early exploration to complex vision-language reasoning via iterative self-improvement. CoRR,
abs/2503.17352, 2025. doi: 10.48550/ARXIV.2503.17352. URL https://doi.org/10.
48550/arXiv.2503.17352.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and
Zhicheng Dou. Agentic reinforced policy optimization. CoRR, abs/2507.19849, 2025. doi: 10.
48550/ARX1IV.2507.19849. URL https://doi.org/10.48550/arXiv.2507.198409.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
CoRR, abs/2504.11536, 2025. doi: 10.48550/ARXIV.2504.11536. URL https://doi.org/
10.48550/arXiv.2504.11536.

11

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://doi.org/10.48550/arXiv.2502.13923
https://doi.org/10.48550/arXiv.2502.13923
https://doi.org/10.18653/v1/2024.findings-acl.962
https://doi.org/10.18653/v1/2024.findings-acl.962
https://doi.org/10.48550/arXiv.2504.16656
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://doi.org/10.48550/arXiv.2503.17352
https://doi.org/10.48550/arXiv.2503.17352
https://doi.org/10.48550/arXiv.2507.19849
https://doi.org/10.48550/arXiv.2504.11536
https://doi.org/10.48550/arXiv.2504.11536

Under review as a conference paper at ICLR 2026

Deepanway Ghosal, Vernon Toh, Yew Ken Chia, and Soujanya Poria. Algopuzzlevqa: Diagnos-
ing multimodal reasoning challenges of language models with algorithmic multimodal puzzles.
In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA,
April 29 - May 4, 2025, pp. 9615-9632. Association for Computational Linguistics, 2025. doi:
10.18653/V1/2025.NAACL-LONG.486. URL https://doi.org/10.18653/v1/2025.
naacl-long.486.

Ziyu Guo, Renrui Zhang, Hao Chen, Jialin Gao, Dongzhi Jiang, Jiaze Wang, and Pheng-Ann Heng.
Sciverse: Unveiling the knowledge comprehension and visual reasoning of Imms on multi-modal
scientific problems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Findings of the Association for Computational Linguistics, ACL 2025, Vienna,
Austria, July 27 - August 1, 2025, pp. 19683-19704. Association for Computational Linguistics,
2025. URL https://aclanthology.org/2025.findings—acl1.1010/.

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai He,
Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Boyan Shi, Changyu Pang, Chenhui
Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiali Chen, Jing Chen, Jinhao Chen,
Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi Pan, Mingzhi Zhang,
Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu,
Shengbiao Meng, Tianshu Zhang, Tianwei Luo, Tianxiang Hao, Wenkai Li, Wei Jia, Xin Lyu,
Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yifan An, Yifan Du, Yiming
Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li, Yutao Zhang, Yuxuan
Zhang, Zhanxiao Du, Zhenyu Hou, Zhao Xue, Zhengxiao Du, Zihan Wang, Peng Zhang, Debing
Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie Tang. Glm-4.1v-thinking: Towards
versatile multimodal reasoning with scalable reinforcement learning. CoRR, abs/2507.01006,
2025. doi: 10.48550/ARXIV.2507.01006. URL https://doi.org/10.48550/arXiv.
2507.01006.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A.
Smith, and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought
for multimodal language models. In Amir Globersons, Lester Mackey, Danielle Bel-
grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
fb82011040977c7712409fbdb5456647-Abstract—-Conference.html.

Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ran-
jay Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic
reasoning into vision-language models. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pp. 9590-9601. IEEE, 2024b.
doi: 10.1109/CVPR52733.2024.00916. URL https://doi.org/10.1109/CVPR52733.
2024.00916.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-rl: Incentivizing reasoning capability in multimodal large language models.
CoRR, abs/2503.06749, 2025. doi: 10.48550/ARXIV.2503.06749. URL https://doi.org/
10.48550/arXiv.2503.067409.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
rl: Training 1lms to reason and leverage search engines with reinforcement learning. CoRR,
abs/2503.09516, 2025. doi: 10.48550/ARXIV.2503.09516. URL https://doi.org/10.
48550/arXiv.2503.09516.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Ta-
tiana Matejovicova, Alexandre Ramé, Morgane Riviere, Louis Rouillard, Thomas Mesnard, Geof-
frey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot,
Ivo Penchev, Gaél Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton

12

https://doi.org/10.18653/v1/2025.naacl-long.486
https://doi.org/10.18653/v1/2025.naacl-long.486
https://aclanthology.org/2025.findings-acl.1010/
https://doi.org/10.48550/arXiv.2507.01006
https://doi.org/10.48550/arXiv.2507.01006
http://papers.nips.cc/paper_files/paper/2024/hash/fb82011040977c7712409fbdb5456647-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/fb82011040977c7712409fbdb5456647-Abstract-Conference.html
https://doi.org/10.1109/CVPR52733.2024.00916
https://doi.org/10.1109/CVPR52733.2024.00916
https://doi.org/10.48550/arXiv.2503.06749
https://doi.org/10.48550/arXiv.2503.06749
https://doi.org/10.48550/arXiv.2503.09516
https://doi.org/10.48550/arXiv.2503.09516

Under review as a conference paper at ICLR 2026

Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil
Mustafa, Tain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter,
Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin
Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu
Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alexan-
der Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, Andrds Gyorgy, André Susano
Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy,
Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le
Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisen-
bud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug
Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick
Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucinska, Harman
Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, and
Ivan Nardini. Gemma 3 technical report. CoRR, abs/2503.19786, 2025. doi: 10.48550/ARXIV.
2503.19786. URL https://doi.org/10.48550/arXiv.2503.19786.

Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, and Hengshuang Zhao. Mini-o3: Scaling up
reasoning patterns and interaction turns for visual search, 2025. URL https://arxiv.org/
abs/2509.079609.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiyong Huang, and Jing Ma. Mmcode:
Benchmarking multimodal large language models for code generation with visually rich pro-
gramming problems. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA,
November 12-16, 2024, pp. 736-783. Association for Computational Linguistics, 2024. doi: 10.
18653/V1/2024 FINDINGS-EMNLP42. URL https://doi.org/10.18653/v1/2024.
findings—-emnlp.42.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated RL. CoRR,
abs/2503.23383, 2025. doi: 10.48550/ARXIV.2503.23383. URL https://doi.org/10.
48550/arXiv.2503.23383.

Heng Lin and Zhongwen Xu. Understanding tool-integrated reasoning, 2025. URL https://
arxiv.org/abs/2508.19201.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=KUNzEQMWU7.

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic
framework with extensible tools for complex reasoning. CoRR, abs/2502.11271, 2025. doi: 10.
48550/ARX1IV.2502.11271. URL https://doi.org/10.48550/arXiv.2502.11271.

Fanging Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Bo-
tian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang,
and Wenqi Shao. Mme-eureka: Exploring visual aha moment with rule-based large-scale rein-
forcement learning. CoRR, abs/2503.07365, 2025. doi: 10.48550/ARXIV.2503.07365. URL
https://doi.org/10.48550/arXiv.2503.07365.

OpenAl. Hello gpt-40, 2024. URL https://openai.com/index/hello-gpt-40/.

OpenAl Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025a.

OpenAl. Gpt-4.1. https://openai.com/index/gpt-4-1/,2025b.

Yueqi Song, Tianyue Ou, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang Yue. Visualpuzzles:
Decoupling multimodal reasoning evaluation from domain knowledge. CoRR, abs/2504.10342,
2025. doi: 10.48550/ARXIV.2504.10342. URL https://doi.org/10.48550/arXiv.
2504.10342.

13

https://doi.org/10.48550/arXiv.2503.19786
https://arxiv.org/abs/2509.07969
https://arxiv.org/abs/2509.07969
https://doi.org/10.18653/v1/2024.findings-emnlp.42
https://doi.org/10.18653/v1/2024.findings-emnlp.42
https://doi.org/10.48550/arXiv.2503.23383
https://doi.org/10.48550/arXiv.2503.23383
https://arxiv.org/abs/2508.19201
https://arxiv.org/abs/2508.19201
https://openreview.net/forum?id=KUNzEQMWU7
https://doi.org/10.48550/arXiv.2502.11271
https://doi.org/10.48550/arXiv.2503.07365
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/gpt-4-1/
https://doi.org/10.48550/arXiv.2504.10342
https://doi.org/10.48550/arXiv.2504.10342

Under review as a conference paper at ICLR 2026

Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: Incentiviz-
ing pixel-space reasoning with curiosity-driven reinforcement learning. CoRR, abs/2505.15966,
2025a. doi: 10.48550/ARXIV.2505.15966. URL https://doi.org/10.48550/arxXiv.
2505.159066.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie
Chen, Jiawei Gu, Juntao Li, Xiaoye Qu, and Yu Cheng. Openthinkimg: Learning to think with
images via visual tool reinforcement learning. CoRR, abs/2505.08617, 2025b. doi: 10.48550/
ARXIV.2505.08617. URL https://doi.org/10.48550/arXiv.2505.08617.

Zhaochen Su, Peng Xiang, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li,
Kaide Zeng, Zhengyuan Yang, Linjie Li, Yu Cheng, Heng Ji, Junxian He, and Yi R. (May) Fung.
Thinking with images for multimodal reasoning: Foundations, methods, and future frontiers.
CoRR, abs/2506.23918, 2025c. doi: 10.48550/ARX1IV.2506.23918. URL https://doi.org/
10.48550/arXiv.2506.23918.

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,
France, October 1-6, 2023, pp. 11854-11864. IEEE, 2023. doi: 10.1109/ICCV51070.2023.
01092. URL https://doi.org/10.1109/ICCV51070.2023.01092.

Bohao Tang, Yan Ma, Fei Zhang, Jiadi Su, Ethan Chern, Zhulin Hu, Zhixin Wang, Pengfei Liu, and
Ya Zhang. Visual programmability: A guide for code-as-thought in chart understanding, 2025.
URL https://arxiv.org/abs/2509.09286.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,
and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Con-
ference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024,2024. URL http://papers.nips.cc/paper_files/paper/
2024 /hash/ad0edc7d5fala783f063646968b7315b—-Abstract—-Datasets__
and_Benchmarks_Track.html.

Ke Wang, Junting Pan, Linda Wei, Aojun Zhou, Weikang Shi, Zimu Lu, Han Xiao, Yungiao Yang,
Houxing Ren, Mingjie Zhan, and Hongsheng Li. Mathcoder-vl: Bridging vision and code for
enhanced multimodal mathematical reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 2505-2534. Associa-
tion for Computational Linguistics, 2025a. URL https://aclanthology.org/2025.
findings-acl.128/.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang
Liu, Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin
Yang, Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding,
Changyao Tian, Zhenyu Wu, Jingling Xie, Zehao Li, Bowen Yang, Yuchen Duan, Xuehui Wang,
Zhi Hou, Haoran Hao, Tianyi Zhang, Songze Li, Xiangyu Zhao, Haodong Duan, Nianchen Deng,
Bin Fu, Yinan He, Yi Wang, Conghui He, Botian Shi, Junjun He, Yingtong Xiong, Han Lv, Lijun
Wu, Wengqi Shao, Kaipeng Zhang, Huipeng Deng, Biging Qi, Jiaye Ge, Qipeng Guo, Wenwei
Zhang, Songyang Zhang, Maosong Cao, Junyao Lin, Kexian Tang, Jianfei Gao, Haian Huang,
Yuzhe Gu, Chengqi Lyu, Huanze Tang, Rui Wang, Haijun Lv, Wanli Ouyang, Limin Wang, Min
Dou, Xizhou Zhu, Tong Lu, Dahua Lin, Jifeng Dai, Weijie Su, Bowen Zhou, Kai Chen, Yu Qiao,
Wenhai Wang, and Gen Luo. Internvl3.5: Advancing open-source multimodal models in versatil-
ity, reasoning, and efficiency. CoRR, abs/2508.18265, 2025b. doi: 10.48550/ARXIV.2508.18265.
URL https://doi.org/10.48550/arXiv.2508.18265.

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
visual reasoning self-improvement. CoRR, abs/2504.07934, 2025c¢. doi: 10.48550/ARXIV.2504.
07934. URL https://doi.org/10.48550/arXiv.2504.07934.

14

https://doi.org/10.48550/arXiv.2505.15966
https://doi.org/10.48550/arXiv.2505.15966
https://doi.org/10.48550/arXiv.2505.08617
https://doi.org/10.48550/arXiv.2506.23918
https://doi.org/10.48550/arXiv.2506.23918
https://doi.org/10.1109/ICCV51070.2023.01092
https://arxiv.org/abs/2509.09286
http://papers.nips.cc/paper_files/paper/2024/hash/ad0edc7d5fa1a783f063646968b7315b-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/ad0edc7d5fa1a783f063646968b7315b-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/ad0edc7d5fa1a783f063646968b7315b-Abstract-Datasets_and_Benchmarks_Track.html
https://aclanthology.org/2025.findings-acl.128/
https://aclanthology.org/2025.findings-acl.128/
https://doi.org/10.48550/arXiv.2508.18265
https://doi.org/10.48550/arXiv.2504.07934

Under review as a conference paper at ICLR 2026

Ye Wang, Qianglong Chen, Zejun Li, Siyuan Wang, Shijie Guo, Zhirui Zhang, and Zhongyu Wei.
Simple 03: Towards interleaved vision-language reasoning, 2025d. URL https://arxiv.
org/abs/2508.121009.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4fl15af0f7b3labcad—-Abstract-Conference.html.

Chao Wen, Jacqueline Staub, and Adish Singla. Program synthesis benchmark for visual program-
ming in XLogoOnline environment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15812—15838, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.769. URL https://aclanthology.org/2025.acl-long.769/.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why
RLVR may not escape its origin. CoRR, abs/2507.14843, 2025a. doi: 10.48550/ARXIV.2507.
14843. URL https://doi.org/10.48550/arXiv.2507.14843.

Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, and Tieniu
Tan. Reinforcing spatial reasoning in vision-language models with interwoven thinking and
visual drawing. CoRR, abs/2506.09965, 2025b. doi: 10.48550/ARXIV.2506.09965. URL
https://doi.org/10.48550/arXiv.2506.09965.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning, 2025. URL
https://arxiv.org/abs/2509.02479.

Biao Yang, Bin Wen, Boyang Ding, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao,
Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Guowang Zhang, Han Shen, Hao Peng,
Haojie Ding, Hao Wang, Haonan Fan, Hengrui Ju, Jiaming Huang, Jiangxia Cao, Jiankang Chen,
Jingyun Hua, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Muhao Wei, Qiang Wang, Ruitao
Wang, Sen Na, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei
Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yi-Fan Zhang, Yiping Yang, Yulong Chen,
Zeyi Lu, Zhenhua Wu, Zhixin Ling, Zhuoran Yang, Ziming Li, Di Xu, Haixuan Gao, Hang Li,
Jing Wang, Lejian Ren, Qigen Hu, Qiangian Wang, Shiyao Wang, Xinchen Luo, Yan Li, Yuhang
Hu, and Zixing Zhang. Kwai keye-vl 1.5 technical report, 2025a. URL https://arxiv.
org/abs/2509.01563.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida Wang, and
Ofir Press. Swe-bench multimodal: Do Al systems generalize to visual software domains? In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025b. URL https://openreview.net/forum?
id=riTig3i21b.

Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. MMMU: A massive multi-discipline multimodal understanding and reason-
ing benchmark for expert AGI. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pp. 9556-9567. IEEE, 2024.
doi: 10.1109/CVPR52733.2024.00913. URL https://doi.org/10.1109/CVPR52733.
2024.00913.

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen,
and Jacky Keung. Humaneval-v: Evaluating visual understanding and reasoning abilities of large

15

https://arxiv.org/abs/2508.12109
https://arxiv.org/abs/2508.12109
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://aclanthology.org/2025.acl-long.769/
https://doi.org/10.48550/arXiv.2507.14843
https://doi.org/10.48550/arXiv.2506.09965
https://arxiv.org/abs/2509.02479
https://arxiv.org/abs/2509.01563
https://arxiv.org/abs/2509.01563
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913

Under review as a conference paper at ICLR 2026

multimodal models through coding tasks. CoRR, abs/2410.12381, 2024a. doi: 10.48550/ARXIV.
2410.12381. URL https://doi.org/10.48550/arXiv.2410.12381.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Yu Qiao, Peng Gao, and Hongsheng Li. MATHVERSE: does your
multi-modal LLM truly see the diagrams in visual math problems? In Ales Leonardis, Elisa
Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Giil Varol (eds.), Computer Vi-
sion - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024,
Proceedings, Part VIII, volume 15066 of Lecture Notes in Computer Science, pp. 169—186.
Springer, 2024b. doi: 10.1007/978-3-031-73242-3_10. URL https://doi.org/10.
1007/978-3-031-73242-3_10.

Yifan Zhang, Xingyu Lu, Shukang Yin, Chaoyou Fu, Wei Chen, Xiao Hu, Bin Wen, Kaiyu Jiang,
Changyi Liu, Tianke Zhang, Haonan Fan, Kaibing Chen, Jiankang Chen, Haojie Ding, Kaiyu
Tang, Zhang Zhang, Liang Wang, Fan Yang, Tingting Gao, and Guorui Zhou. Thyme: Think
beyond images. CoRR, abs/2508.11630, 2025. doi: 10.48550/ARXIV.2508.11630. URL https:
//doi.org/10.48550/arXiv.2508.11630.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. Trans. Mach. Learn. Res., 2024, 2024c. URL
https://openreview.net/forum?id=ylpPWFV{vR.

Shitian Zhao, Haoquan Zhang, Shaoheng Lin, Ming Li, Qilong Wu, Kaipeng Zhang, and Chen Wei.
Pyvision: Agentic vision with dynamic tooling, 2025. URL https://arxiv.org/abs/
2507.07998.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
Xing Yu. Deepeyes: Incentivizing “thinking with images” via reinforcement learning. CoRR,
abs/2505.14362, 2025. doi: 10.48550/ARXIV.2505.14362. URL https://doi.org/10.
48550/arXiv.2505.14362.

Zetong Zhou, Dongping Chen, Zixian Ma, Zhihan Hu, Mingyang Fu, Sinan Wang, Yao Wan, Zhou
Zhao, and Ranjay Krishna. Reinforced visual perception with tools, 2025. URL https://
arxiv.org/abs/2509.01656.

16

https://doi.org/10.48550/arXiv.2410.12381
https://doi.org/10.1007/978-3-031-73242-3_10
https://doi.org/10.1007/978-3-031-73242-3_10
https://doi.org/10.48550/arXiv.2508.11630
https://doi.org/10.48550/arXiv.2508.11630
https://openreview.net/forum?id=y1pPWFVfvR
https://arxiv.org/abs/2507.07998
https://arxiv.org/abs/2507.07998
https://doi.org/10.48550/arXiv.2505.14362
https://doi.org/10.48550/arXiv.2505.14362
https://arxiv.org/abs/2509.01656
https://arxiv.org/abs/2509.01656

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In this work, Large Language Models (LLMs) were used solely as general-purpose auxiliary tools.
Their role was limited to polishing grammar and phrasing to enhance the clarity of the manuscript,
as well as assisting in the generation of Python and LaTeX code for creating figures and tables. No
parts of the research ideation, experimental design, analysis, or substantive writing relied on LLMs.

B DISCUSSION

Here, we would like to discuss the relationship between Thinking with Images (TWI) and Thinking
with Visual Programming (TVP).

Existing approaches under the Thinking with Images paradigm typically rely on a predefined set of
visual tools, such as cropping, zooming, and rotating. These operations can indeed enhance per-
ceptual accuracy, especially for handling high-resolution images or focusing attention on relevant
regions. However, their scope is inherently narrow. While effective for improving low-level per-
ception, such fixed transformations provide limited support for deep reasoning tasks that require
abstraction, planning, or algorithmic optimization. In other words, current Thinking with Images
primarily enhances seeing more carefully, but does not necessarily enable thinking more deeply.

In contrast, Thinking with Visual Programming generalizes beyond fixed toolkits by allowing mod-
els to write and execute code, thus treating visual operations themselves as programmable functions.
This enables not only flexible tool selection but also the creation of new tools on demand, allowing
the reasoning process to adapt dynamically to the task at hand. Under this view, cropping or rotat-
ing an image represents only one instance within a broader spectrum of programmable operations,
which may also involve algorithmic simulation, complex computation, or visualization.

From this perspective, TWI can be regarded as a subset of TVP, serving as a valuable stepping stone
but not the ultimate goal. As our experimental results demonstrate, current models remain far from
fully realizing the TVP paradigm. While existing studies have already achieved promising outcomes
under the TWI framework, a substantial gap persists between these methods and the broader vision
of TVP. Bridging this gap requires equipping models with stronger visual programming capabili-
ties and more advanced visual abstraction skills, enabling them to move beyond fixed perceptual
tools toward flexible, programmable reasoning. On this foundation, agentic reinforcement learning
can become truly effective. In the future, we envision equipping MLLMs with access to external
resources such as web browsers. This would allow them not only to autonomously create tools
through code but also to search for and integrate existing tools from the internet.

17

Under review as a conference paper at ICLR 2026

C BENCHMARK DETAILS

To ensure the data quality of MMR-VIP, we provided annotators with a detailed guideline:

All tasks must:

(1) Be code-synthesizable (problems, images, and solutions are generated by code).

(2) Be aligned with cognitive skills (at least 1, at most 3 from the given taxonomy).

(3) Be stratified into difficulty levels (Easy / Medium / Hard).

(4) Be suitable for programmatic reasoning (problems solvable or aided by code execution).
Cognitive Skills

(1) Attribute: identify colors, shapes, sizes.

(2) Location: detect positions, distances, spatial relations.

(3) Symbolic: recognize digits, letters, or visual symbols.

(4) Geometry: formulate geometric equations or relations.

(5) Physics: model dynamics using physical laws.

(6) Network: construct graph structures (nodes, edges, constraints).

(7) Search: implement DFS, BFS, or other exploration methods.

(8) Planning: apply dynamic/linear programming to solve constrained problems.

(9) Computation: perform numerical calculations or algorithmic procedures.

Difficulty Levels

(1) Easy: solvable using intrinsic perceptual and reasoning abilities, without code execution.
(2) Medium: requiring programmatic operations, where external computation is essential.

(3) Hard: remaining challenging even with programming support, typically due to high algo-
rithmic complexity or intricate constraints.

Workflow

Annotators should first define the problem (including its target cognitive skills and difficulty
levels), then implement code that generates instances and computes the ground-truth solution.
Next, the problem must be visualized using standard libraries to ensure clarity. Each program
should support batch generation of images, questions, and answers across difficulty levels.
Finally, the generated code must undergo validation, where outputs are independently reviewed
to ensure correctness and consistency between problem, visualization, and answer.

Hanoi Tower (Attribute)

= 1 1 & 1 1 &= 1 &

Question: Find the minimum number of moves Question: Find the minimum number of moves Question: Find the minimum number of moves
required to get from the Tower of Hanoi state required to get from the Tower of Hanoi state required to get from the Tower of Hanoi state
described in the figure fo the completed state. described in the figure to the completed state. described in the figure to the completed state.
Answer: 28 Answer: 52 Answer: 26

Difficulty: Difficulty: Medium Difficulty: Hard

Figure 7: Data example of Hanoi Tower.
Sliding Puzzle (Search)

(Y XXX X XX X) 00000 0000OOCO (X XOF] (XX X JoX |

Question: At each time, any colored ball can be Question: At each fime, any colored ball can be Question: At each time, any colored ball can be
exchanged with the white ball. How many such exchanged with the white ball. How many such exchanged with the white ball. How many such
exchanges are needed at least to make all the red | exchanges are needed at least to make all the red | exchanges are needed at least to make all the red
balls arranged in front of the green balls (white balls arranged in front of the green balls (white balls arranged in front of the blue balls and blue
ball positions are arbitrary)? ball positions are arbitrary)? balls in front of the yellow balls (white ball
positions are arbitrary)?
Answer: 5 Answer: 9
Answer: 9
Difficulty: Difficulty: Medium Difficulty: Hard

Figure 8: Data example of Sliding Puzzle.

18

Under review as a conference paper at ICLR 2026

Question: What is the color of the ball at (2, 2, 2)?
The answer is the name of the color, with the

first letter capitalized. You can choose an answer
from Red, Green, Orange, Cyan, Purple, Blue,
Yellow and Magenta.

Answer: Purple

Difficulty:

3D Position (Location)

Question: What is the color of the ball at (2, 2, 2)?
The answer is the name of the color, with the

first letter capitalized. You can choose an answer
from Red, Green, Orange, Cyan, Purple, Blue and
Yellow.

Answer: Yellow

Difficulty: Medium

Question: What is the color of the ball at (2, 4, 3)?
The answer is the name of the color, with the

first letter capitalized. You can choose an answer
from Red, Green, Orange, Cyan, Purple, Blue and
Yellow.

Answer: Purple

Difficulty: Hard

Figure 9: Data example of 3D Position.

Question: There are some blocks in the picture.
Find the smallest square area that can place all
the small blocks in the area in a suitable way
without overlapping. Return the length of the
square side.

Answer: 5

Difficulty:

Bin Packing (Search)

Question: There are some blocks in the picture.
You are required to piece them together into a
rectangle. Please return the perimeter of the
rectangle.

Answer: 22

Difficulty: Medium

ig = +
B T-kph

Question: There are some blocks in the picture.
Find the smallest square area that can place all
the small blocks in the area in a suitable way
without overlapping. Return the length of the
square side.

Answer: 8

Difficulty: Hard

Figure 10: Data example of Bin Packing.

Question: Given the following four-coloring
problem graph, where part of the region has been
pre-colored, how many coloring combinations are
there for the remaining region?

Answer: 56

Difficulty:

Graph Coloring (Network)

Question: Given the following four-coloring
problem graph, where part of the region has been
pre-colored, how many coloring combinations are
there for the remaining region?

Answer: 131

Difficulty: Medium

Question: Given the following four-coloring
problem graph, where part of the region has been
pre-colored, how many coloring combinations are
there for the remaining region?

Answer: 14862336

Difficulty: Hard

Figure 11: Data example of Graph Coloring.

19

Under review as a conference paper at ICLR 2026

Question: The picture describes a maze problem,
where green is the starting position and red is the
end point. Find the length of the shortest path.
Each grid square has a length of 1.

Answer: 44
Difficulty:
®
® ° N ®
[] ° ° []
° oo
[]
o
[]
o ° o ©
[]
[] o ®

Question: What is the number of red dots?

Answer: 10

Difficulty:

Maze (Search)

Question: The picture describes a maze problem,

where green is the starting position and red is the
end point. Find the length of the shortest path.i
Each grid square has a length of 1.

Answer: 104

Difficulty: Medium

Point Counting (Attribute)

. .
. .
. L
. .
.
. .
. . .
o . . .
. . .
. - .
. e " .
.
. . . .
o o o o o
., . O .
. g . ® .
o e .
.

Question: What is the number of red dots?

Answer: 32

Difficulty: Medium

Question: The picture describes a maze problem,
where green is the starting position and red is the
end point. Find the length of the shortest path.
Each grid square has a length of 1.

Answer: 102

Difficulty: Hard

Figure 12: Data example of Maze.

Question: What is the number of red dots?

Answer: 12

Difficulty: Hard

Figure 13: Data example of Point Counting.

Question: Detect the length of the red line,
where the side length of each grid on the
chessboard is 0.5. The length of the red line is an
integer multiple of the length of the floor tile.
How long is the red line in the picture?

Answer: 1.5

Difficulty:

Height Measurement (Location)

Question: Detect the diagonal length of the red
line, where the side length of each grid square is
0.5. The result should be rounded to one decimal

Answer: 2.2

Difficulty: Medium

TN

Question: Estimate the volume of the 3D prism
shown in the image. The result should be rounded
to one decimal place. The side length of each grid
on the chessboard is 0.5.

Answer: 1.3

Difficulty: Hard

Figure 14: Data example of Height Measurement.

20

Under review as a conference paper at ICLR 2026

Employee |

Profit

Employee 3

Tkl Tek2 Teks
Tasks

Question: This is the heatmap of the question.

Each task can only be assigned to one person, and
each person can only be assigned one task. How to
allocate to maximize total profit? (all profits are
multiples of ten), and output the maximum profit.

Answer: 210

Difficulty:

Resource Allocation (Planning)

Tukl Twk2 Tmkd Takd TakS Tesk6
Tasks

Question: This is the heatmap of the question.
Each task can only be assigned to one person, and
each person can only be assigned one task. How to
allocate to maximize total profit? (all profits are
multiples of ten), and output the maximum profit.

Answer: 440

Difficulty: Medium

Resource Allocation Problem 1

®

Employee |
Employee 2 o
Employee 3 o
Employee 4 o
Employee 5 .
s

Employee 6
Employee 7 “
Employee 8 30
Employee 9 "

Employee 10
o

N " s>]
PEEEIE

Employees
Profit

Tasks

Question: This is a heatmap showing the profit of
each employee (rows) for different tasks
(columns). Task 1 requires exactly 3 people; Task
2 requires exactly 3 people; Task 3 requires
exactly 1 person; Task 4 requires exactly 3 people;
Task 5 requires exactly 2 people. Under the
constraint that each task must have exactly the
required number of people, what is the maximum
total profit achievable by assigning employees?
Note: All profit values are multiples of 10. Each
task's total profit is the sum of the profits
contributed by one or more people assigned to
that task: not every task must be completed. Each
person can be assigned to at most one task.

Answer: 710

Difficulty: Hard

Figure 15: Data example of Resource Allocation.

Question: This is the expansion diagram of a

second-order Rubik's Cube. Given the initial state,

you can perform 18 standard operations. Find the
minimum number of steps to make the Rubik's
Cube reach the restored state. The goal is to
restore the cube to its original state, with green
on the front face, white on the top, and yellow on
the bottom, disregarding isomorphic
configurations.

Answer: 1

Difficulty:

Rubik's Cube (Geometry)

Question: This is the expansion diagram of a

second-order Rubik's Cube. Given the initial state,

you can perform 18 standard operations. Find the
minimum number of steps to make the Rubik's
Cube reach the restored state. The goal is to
restore the cube to its original state, with green
on the front face, white on the top, and yellow on
the bottom, disregarding isomorphic
configurations.

Answer: 5

Difficulty: Medium

Question: This is a diagram of a Rubik's Cube.
Given an initial state (above), you can perform the
standard 18 operations to find the minimum
number of moves required to get the Rubik's Cube
to the given state (below). We disregard
isomorphism; we only ensure that the
transformation is valid within the current view.

Answer: 5

Difficulty: Hard

Figure 16: Data example of Rubik’s Cube.

21

Under review as a conference paper at ICLR 2026

Question: Game Rule: Clicking a light toggles itself
and its adjacent (up, down, left, right) lights.
What is the minimum number of clicks required to
turn off all the lights?

Answer: 2

Difficulty:

Lights Out (Planning)

Question: Game Rule: Clicking a light toggles itself
and its adjacent (up, down, left, right) lights.
What is the minimum number of clicks required to
turn off all the lights?

Answer: 6

Difficulty: Medium

000000000

Question: Game Rule: Clicking a light toggles itself
and its diagonal (upper-left, upper-right, lower-
left, lower-right) lights. What is the minimum
number of clicks required fo turn off all the lights?

Answer: 12

Difficulty: Hard

Figure 17: Data example of Lights Out.

Snake Game (Search)

Question: This is a snake game. How many steps
do you need to take from the current state to eat
the food?

Answer: 6

Difficulty:

Question: This is a snake game. How many steps
do you need to take from the current state to eat
two foods one after another (regardless of the
order of the two foods)?

Answer: 13

Difficulty: Medium

Question: This is a snake game. How many steps
do you need to take from the current state fo eat
two foods one after another (regardless of the
order of the two foods)? At the same time, pay
attention to avoid obstacles.

Answer: 10

Difficulty: Hard

Figure 18: Data example of Snake Game.

Question: Given a description of the three-view
drawing of a solid figure, find the maximum
number of small cubes that the solid figure can be
composed of when the three-view constraints are
met.

Answer: 7

Difficulty:

Three-Views (Geometry)

Question: Given a description of the three-view
drawing of a solid figure, find the maximum
number of small cubes that the solid figure can be
composed of when the three-view constraints are
met.

Answer: 13

Difficulty: Medium

Question: Given a description of the three-view
drawing of a solid figure, find the maximum
number of small cubes that the solid figure can be
composed of when the three-view constraints are
met.

Answer: 25

Difficulty: Hard

Figure 19: Data example of Three-Views.

22

Under review as a conference paper at ICLR 2026

L&

Question: Determine whether the two graphs
given in the figure are isomorphic. If you think
they are isomorphic, answer 1; if you think they
are not isomorphic, answer O.

Answer: 1

Difficulty:

Graph Isomorphism (Network)

Question: Determine whether the two graphs
given in the figure are isomorphic. If you think
they are isomorphic, answer 1; if you think they
are not isomorphic, answer 0.

Answer: 1

Difficulty: Medium

A\
D&

Question: Determine whether the two graphs
given in the figure are isomorphic. If you think
they are isomorphic, answer 1; if you think they
are not isomorphic, answer 0.

Answer: 0

Difficulty: Hard

Figure 20: Data example of Graph Isomorphism.

Height (m)

Horizontal Posiion (m)

Question: Find the horizontal coordinate of the
first time the ball hits the ground. The result is
rounded down to the nearest integer.

Answer: 10

Difficulty:

Projectile Motion (Physics)

Question: Find the horizontal coordinate of the
first time the ball hits the ground. The result is
rounded down to the nearest integer. Note that

there is no energy loss in the event of a collision.

Answer: 21

Difficulty: Medium

Question: Find the horizontal coordinate of the
first time the ball hits the ground. The result is
rounded down to the nearest integer. Note that
when a collision occurs, there is no horizontal
energy loss, and the vertical speed is reduced to
0.9 times the original speed.

Answer: 23

Difficulty: Hard

Figure 21: Data example of Projectile Motion.

29 61 16

86 9 29

Question: Given the first 8 numbers in the nine-
square grid, calculate the smallest positive integer
such that the sum of this number plus all previous
numbers is an integer multiple of 20.

Answer: 9

Difficulty:

Calculation (Computation)

14 27 3 9 3
30 19 28 30 1
4 4 20 27 12
3 6 27 23 5
9 24 6 20 23

Question: Find the lowest common multiple of all
numbers in the 25-square grid.

Answer: 3303720

Difficulty: Medium

Question: Given the first 35 numbers in a 36-
square grid, find the smallest positive integer
such that all the numbers in the 36-square grid
can be divided into two parts of 18 numbers + 18
numbers, where the sum of the two parts is equal.

Answer: 1

Difficulty: Hard

Figure 22: Data example of Calculation.

23

Under review as a conference paper at ICLR 2026

Question: Find the variance in the following
histogram, where the data are distributed only
above tens and the height of the histogram is an
integer multiple of 5. Keep the result of the
variance as an integer.

Answer: 814

Difficulty:

= NAND
A = XoR

= NoR

= Negate

Question: This is a digital circuit problem. Given
known input values for the circuit, determine the
output value.

Answer: 0

Difficulty:

Chart (Symbolic)

[[T | | I [
—] [| | |

(NN () (N (N (R
ul | | | [|
T

| I L

Question: Given the schedule below, what is the
maximum total time (in minutes) a person can
spend in lectures? All time nodes are integer
multiples of 10 minutes.

Answer: 580

Difficulty: Medium

Figure 23: Data example of Chart.

Circuit Logic (Physics)

[,
ROV 0

NOR
Negate

Question: Given some known input values and
observed outputs, determine how many possible
combinations exist for the unknown inputs that
would produce the same outputs.

Answer: 14

Difficulty: Medium

Question: Given the schedule below, what is the
maximum total time (in minutes) a person can
spend in lectures? The selected schedule MUST
include at least one Mathematics lecture and at
least one Art lecture. In the chart: blue for
mathematics, green for physics, yellow for art,
purple for music, and orange for physical
education. All fime nodes are integer multiples of
10 minutes.

Answer: 570

Difficulty: Hard

Question: Given some known input values and
observed outputs, determine how many possible
combinations exist for the unknown inputs that
would produce the same outputs.

Answer: 0

Difficulty: Hard

Figure 24: Data example of Circuit Logic.

A_A_ A&

Question: What is the maximum amount of money
that can be robbed from the houses? The
neighboring houses cannot be robbed at the same
time.

Answer: 125

Difficulty:

House Robber (Planning)

48" w745 s 122" s €31
ah

- S, G G+

R S S S

Question: What is the maximum amount of money
that can be robbed from the houses? The
neighboring houses cannot be robbed at the same
time.

Answer: 257

Difficulty: Medium

Question: What is the maximum amount of money
that can be robbed from the houses? The
connected houses cannot be robbed at the same
time.

Answer: 314

Difficulty: Hard

Figure 25: Data example of House Robber.

24

Under review as a conference paper at ICLR 2026

P 9 % ¢ 9

Question: The picture shows the balloon popping
problem. You need to pop all the balloons in a
certain order. The reward for a popped balloon is
the product of itself and the values on the left
and right balloons. If there is no balloon on the
left or right, multiply the value of the balloon on
the left or right by 1. You need only find the total
maximum reward. Give me the number.

Answer: 1

Difficulty:

Interval DP (Planning)

99?9999

Question: The picture shows the balloon popping
problem. You need to pop all the balloons in a
certain order. The reward for a popped balloon is
the product of itself and the values on the left
and right balloons. If there is no balloon on the
left or right, multiply the value of the balloon on
the left or right by 1. You need only find the total
maximum reward. Give me the number.

Answer: 1035613

Difficulty: Medium

(PPP79999¢

Question: The picture shows the balloon popping
problem. You need to pop all the balloons in a
certain order. The reward for popping a red
balloon is the product of itself and the value on
the balloons to the left and right. The reward for
popping a gold balloon is doubled, and the reward
for popping a black balloon becomes negative. If
there is no balloon on the left or right, multiply
the value by 1. You only need to find the maximum
reward and keep only the final value.

Answer: 1639518

Difficulty: Hard

Figure 26: Data example of Interval DP.

4
718

Question: This is an 8-digit puzzle. Find the
minimum number of steps to restore it.

Answer: 3

Difficulty:

N-Puzzle (Search)

234
8|1
576

Question: This is an 8-digit puzzle. Find the
minimum number of steps to restore it.

Answer: 21

Difficulty: Medium

9 (5 |15|11

14 (13| 12

Question: This is an 15-digit puzzle. Find the
minimum number of steps to restore it.

Answer: 17

Difficulty: Hard

Figure 27: Data example of N-Puzzle.

Problem 1: Network Parameters

il [CosE ($)] Capaci
[Valiie T o Sio
[0 7= T
o0 = T
o7 = 5 51
o 1 = o ToF
= 3 17

Question: Given the supply, demand, and route
table for this logistics problem, what is the
minimum total cost? Please provide the answer as
an infeger.

Answer: 5126

Difficulty:

Tableau LP (Planning)

Problem 1: Network Parameters

Question: Given the supply, demand, and route
table for this logistics problem, what is the
minimum total cost? Please provide the answer as
an integer.

Answer: 8085

Difficulty: Medium

Problem 1: Network Parameters

Route—[Cast ()] Capelt

Question: Given the supply, demand, and route
table for this logistics problem, what is the
minimum total cost? Please provide the answer as
an integer.

Answer: 6309

Difficulty: Hard

Figure 28: Data example of Tableau LP.

25

Under review as a conference paper at ICLR 2026

Question: Find the area of the following
quadrilateral, where all points are on integers. The
result is rounded to 1 decimal place.

Answer: 4.0

Difficulty:

Area Measurement (Geometry)

Question: Find the area of the following

quadrilateral, where all points are on integers. The

result is rounded to 1 decimal place.

Answer: 4.0

Difficulty: Medium

Question: Find the area of the quadrilateral in the
figure, where the side length of the square
border is 10 and the vertices of the quadrilateral
are all on points that are integer multiples of 0.5.
The result is rounded to one decimal place.

Answer: 5.6

Difficulty: Hard

Figure 29: Data example of Area Measurement.

Question: How many ricochets will a ball launched
from (1.0, 1.0) at 30\u00bO need to hit the target
at (9.0, 9.0)? The ball reflects perfectly of f the
arena walls and mirror-obstacles.

Answer: 6

Difficulty:

Ricochet Ball (Physics)

Question: How many ricochets will a ball launched
from (1.0, 1.0) at 15\u00bO0 need to hit the target

at (9.0, 9.0)? The ball reflects perfectly of f the
arena walls and mirror-obstacles.

Answer: 5

Difficulty: Medium

e

LA 4 NP L
JESangs

Question: How many ricochets will a ball launched
from (1.0, 1.0) at 20\u00bO need to hit the target
at (11.0, 9.0)? The ball reflects perfectly of f the
arena walls and mirror-obstacles.

Answer: 8

Difficulty: Hard

Figure 30: Data example of Ricochet Ball.

Question: The figure describes the ball exchange
problem. The white ball can exchange positions
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls
are arranged in the order of red, blue, green, and
yellow from the upper left corner in the order of
rows first and columns. How many exchanges are
needed?

Answer: 3

Difficulty:

Bubble Sort (Search)

Question: The figure describes the ball exchange
problem. The white ball can exchange positions
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls
are arranged in the order of red, blue, green, and
yellow from the upper left corner in the order of
rows first and columns. How many exchanges are
needed?

Answer: 12

Difficulty: Medium

Question: The figure describes the ball exchange
problem. The white ball can exchange positions
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls
are arranged in the order of red, blue, green,
yellow and purple from the upper left corner in
the order of rows first and columns. How many
exchanges are needed?

Answer: 12

Difficulty: Hard

Figure 31: Data example of Bubble Sort.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Bounding Box (Location)

Question: Calculate the minimum enclosing
rectangle area of the following rectangle, where
the sides of the enclosing rectangle must be
parallel to the grid.

Question: Calculate the area of the circumscribed
rectangle of each polygon according o its color,
and then find the sum of the areas of these
circumscribed rectangle. The final result only
retains the sum of the areas and retains the

Question: Calculate the area of the minimum
circumscribed circle of all polygons in the graph,
and keep the result as an integer.

Answer: 770

Answer: 36 integer.
Answer: 442
Difficulty: Difficulty: Medium Difficulty: Hard
Figure 32: Data example of Bounding Box.
Path Counting (Computation)
ERmmERER R H
.

Question: The green dot in the picture is the
starting point, and the blue dot is the end point.
Each move can only go one square to the right or
down. How many different simple paths are there?

Answer: 11

Question: The green dot in the picture is the
starting point, and the blue dot is the end point.
Each move can only go one square to the right or
down. How many different simple paths are there?

Answer: 232

Question: In this diagram, the green dot is the
starting point and the blue dot is the destination.
How many different simple paths are there?

Answer: 25960704

Difficulty:

Difficulty: Medium

Difficulty: Hard

Figure 33: Data example of Path Counting.

Question: It is required to place a number of
queens so that there is a queen in each row and
column. Find the number of different placements
of queens that satisfy the constraint that queens
cannot attack each other.

Answer: 1

N-Queens (Search)

Question: It is required to place a number of
queens so that there is a queen in each row and
column. Find the number of different placements
of queens that satisfy the constraint that queens
cannot attack each other. At the same time, the
newly placed queen cannot be eaten by the
existing knight, but there is no need to consider
whether the knight will be attacked by the queen.

Answer: 5

Question: The goal is to place a certain number of
queens so that there is one queen in each row and
column. Queens cannot attack each other, and
newly placed queens cannot be captured by
existing knights, but there is no need to consider
whether knights can be attacked by queens. Each
square on the board has a specific color,
representing the cost of placing a new queen on
that square. The goal is to minimize this cost while
meeting these requirements.

Answer: 170

Difficulty:

Difficulty: Medium

Difficulty: Hard

Figure 34: Data example of N-Queens.

27

Under review as a conference paper at ICLR 2026

D EVALUATION DETAILS

We provide the prompts for both direct CoT reasoning and multi-turn TVP reasoning, as illustrated
in Figure 35 and Figure

Prompt for Direct CoT

System Prompt:

You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The
reasoning process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in
\\boxed{ }. Please note that if the answer requires a numerical value, please keep only the number without
punctuation, units, formulas or explanations. Don't run code in your own environment.

Figure 35: Prompt for direct CoT reasoning.

Prompt for Multi-turn TVP

System Prompt:

You are a visual reasoning assistant that MUST write executable Python code to solve problems. You can iterate
through multiple rounds to refine your solution (maximum {N} code executions).

IMPORTANT CODE FORMATTING RULES:

- You MUST wrap your code EXACTLY with <code> and </code> tags

- Do NOT use backticks (), triple-backticks ("**), or any other delimiters

- Inside <code>...</code> put only valid Python code

- Do NOT HTML-escape characters (use <, >, &, not <, >, &)

HELPER FUNCTIONS:

import os
import re
import typing
def find_original_image_name(work_dir: str = '.') -> typing.Optional[str]:
Find the original image filename, excluding processed versions'''
for f in sorted(os.listdir(work_dir)):
if not f.lower().endswith('.png'): continue
if f.startswith('crop_'): continue
if re.search(r'_m(?:\\d+)?\\.png$', f): continue
return f
return None
def processed_image_name(original_image: str) -> str:
'"'Return processed image filename for current iteration'"'
base, ext = os.path.splitext(original_image)
return f'{{base}} m{iteration}{{ext}}"'

o

CODE REQUIREMENTS:

- Use find_original_image_name() to locate the input image

- Save your processed image using processed_image_name() (will be *_m{iteration}.png)
- Use only relative paths and work within the current directory

- Do not access network or write outside the current folder

If iteration ==

This is your FIRST iteration. Analyze the image and question carefully, then write Python code to solve it. Focus
on understanding the problem and implementing a basic solution.

Else:

This is iteration {iteration}/{N}. You can see your previous attempts and their results in the conversation
history. Analyze what went wrong in previous iterations and improve your approach. Consider the execution results
and any generated images from previous attempts.

Prompt for Final Answer Integration:

=== FINAL INTEGRATION ===

Based on all your previous attempts, code executions, and any generated images, please provide your final answer
to the original question. Original question: {question}

Format your final answer using \\boxed{answer} notation.

Figure 36: Prompt for multi-turn TVP reasoning.

28

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

As a human reference, we randomly sampled 168 instances from the benchmark and invited three
participants to solve these tasks. All participants were PhD students with strong programming back-
grounds. On average, each task required approximately 8 minutes to complete. During the process,
participants were allowed to write code and make use of search engines to access external resources
and tools when necessary.

100

801

o
604
<
>
Q
IS
=
3
3 401
< []
I
201 ... I
0 T
¢ R & &N D E S N F S & . & D & ¢ & & &
F &SP ST TS S FFITSFTIFFITF TS VP d‘é\
%go & CP\,\ ¢§° %{\e oo\,o & W - &8 \Q@ & S & ¢ Qo\(’ SRR < 6(9 & & &‘&
@ 9 N & N o\ S N S AL) & N &
F TV T I T T I SIS T P T TS T
N
] & 3 PRI &
RS v

Figure 37: Performance comparison of Claude-Sonnet-4 on different tasks under CoT and TVP
(I' = 1). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP
over CoT, and Red indicates degradations of TVP over CoT.

100

80

60

Accuracy (%)

—
201

f & & 3 y & LS S <& &S v N F .S .
H o &L & F &Y PSS ¢ & & &SN S S
é%o & R F T ITTIFTFTS S & & < & &
9 & N N N & &) r & & S SN
& » O Ny N < & 9 SRS, D
& IS TSI VIT T T TE ST ST
s S & o <
o A pt

Figure 38: Performance comparison of GPT-4.1 on different tasks under CoT and TVP (T" = 5).
Gray indicates the baseline performance of CoT, Green indicates improvements of TVP over CoT,
and Red indicates degradations of TVP over CoT.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

100

Accuracy (%)

Figure 39: Performance comparison of GPT-4.1-mini on different tasks under CoT and TVP (IT' =
5). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP over
CoT, and Red indicates degradations of TVP over CoT.

30

Under review as a conference paper at ICLR 2026

F ERROR ANALYSIS

To better understand the limitations of TVP, we classify incorrect predictions into six categories:

* Problem Misinterpretation. The model misunderstands the problem requirements or con-
straints, leading it to pursue an incorrect solution approach.

* Program Execution Error. The generated code contains syntax, logical, or runtime errors
that prevent successful execution.

* Visual Perception Error. The model fails to accurately extract relevant information from
visual inputs, such as misrecognizing digits, shapes, or object positions.

e Algorithmic Modeling Error. The model adopts an inappropriate algorithm, data struc-
ture, or fails to encode the relationships and constraints necessary for solving the problem.

* Program Inefficiency. Although the solution logic is correct, the implementation is com-
putationally inefficient and cannot handle the input within reasonable time limits.

* QOutput Formatting Issue. The model produces outputs in an incorrect format (e.g., ex-
planatory text instead of a numeric answer).

(Problem Misinterpretation)
. Question: Find the variance in the following histogram, where the data are distributed
. only above tens and the height of the histogram is an integer multiple of 5. Keep the

result of the variance as an integer.
I I Answer: 825
GPT-4.1 TVP (T=1)
Iteration:1
import cv2
import numpy as np
import os
heights = [55, 45, 40, 55, 50, 60, 45, 40, 50, 50]
bins = [5, 15, 25, 35, 45, 55, 65, 75, 85, 95]
filtered_bins = []
filtered_heights = []
for midpoint, freq in zip(bins, heights):
if midpoint > 10:
filtered_bins.append(midpoint)
Save the result
out_filename = image_filename[:-4] + '_m.png'
cv2.imwrite(out_filename, out_img)
Code Interpreter Vertonce: 645
output: ™" B I
Final Answer: \\boxed{645}. .
Error Cause
In the above example, while the model correctly extracted the height of each bar in the bar chart, as shown in its output, it
failed to understand the meaning of the x-axis. It incorrectly interpreted the x-axis as representing the values [5, 15, 25, 35,
45,55, 65, 75, 85, 95], misinterpreting the question's statement "where the data are distributed only above tens" as only
considering data values greater than 10, thus resulting in an incorrect answer.
G J

Figure 40: Problem Misinterpretation.

31

Under review as a conference paper at ICLR 2026

4 A
Program Execution Error
1] 2 Question: This is an 8-digit puzzle. Find the minimum number of steps to restore it.
Answer: 5
GPT-4.1-mini TVP (T=1)
Iteration:1
import cv2
import numpy as np
from collections import deque
def neighbors(state):
idx = state.index(@)
r, ¢ = divmod(idx, 3)
res = []
for dr, dc in [(-1,0),(1,0),(0,-1),(0,1)]:
nr, nc = r + dr, c + dc
Save the result image
cv2.putText(output_img, text, (10, h-10), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0,0,255), 2)
cv2.imwrite(out_filename, output_img)
Code Interpreter
error: Traceback (most recent call last):\n... line 154, in <module>\n grid[row_i][col_i] = digit\n ~~~~~""""2""\nIndexError:
list index out of range\n.
Final Answer: The puzzle initial state from the image is:\n\n1 2 3 \n4 6 8 \n7 0 5 \n\n..Using BFS on the 8-puzzle starting
from the given state fo the goal state, the minimum number of steps to solve it is:\n\n\\boxed{6}.
Error Cause
In the initial answer to this question, an array index out-of-bounds error caused the program to crash. In the subsequent
summary answer, the model claimed that it had obtained the solution using the BFS algorithm, resulting in 6 steps (presumably
based on its own reasoning), whereas the correct answer is 5 steps.
\\

Figure 41: Program Execution Error.

32

Under review as a conference paper at ICLR 2026

Visual Perception Error

Question: Game Rule: Clicking a light toggles itself and its diagonal (upper-left, upper-right,
lower-left, lower-right) lights. What is the minimum number of clicks required to turn off all the

lights?
Answer: 10
Gemini-2.5-Flash TVP (T=1)
Iteration:1
The problem describes a \"lights out\" type puzzle where clicking a light toggles its state and the state of its four diagonal
neighbors...
import cv2
import numpy as np
import os

for r_click in range(num_rows):
for c_click in range(num_cols):
k_click = rc_to_idx(r_click, c_click)
A[rc_to_idx(r_click, c_click), k_click] = 1
if r_click - 1 >= @ and c_click - 1 >= 0:
A[rc_to_idx(r_click - 1, c_click - 1), k_click] =1

Save the result image

output_filename = os.path.splitext(image_filename)[0] +
cv2.imwrite(output_filename, result_img)
print(f"Solution image saved as {output filename}")

_m.png’

Code Interpreter
output: Detected grid size: 5 rows x 10 columns\nInitial state grid:\n[[0 10010 0 1 0 0]..Solution is unique.\nMinimum number
of clicks required: 31.

Final Answer: The minimum number of clicks required to turn off all the lights is 31.

Error Cause

Based on the description, it seems the model understood the game rules, but differed from standard approaches to solving
similar puzzle problems. During the code execution, it generated an incorrect matrix representation of the current state, leading
to an incorrect solution. In the final step of summarizing and organizing the answer, the model failed to detect any anomalies in
the output image, ultimately resulting in the error.

Figure 42: Visual Perception Error.

33

Under review as a conference paper at ICLR 2026

Algorithmic Modeling Error

Question: Find the horizontal coordinate of the first time the ball hits the
ground. The result is rounded down fo the nearest integer. Note that there is
no energy loss in the event of a collision.

Answer: 21

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need to:\n\nl. Identify the platform heights and ball's initial position\n...

import os
import numpy as np
import matplotlib.pyplot as plt

def simulate_trajectory():
X, Yy = X0, yo
VX_curr, vy_curr = vX, Vy
trajectory_x = [x]
trajectory_y = [y]
while t < max_time:
X_new = X + vx_curr * dt

plt.savefig(image_filename.replace('.png', '_m.png'), dpi=150,
bbox_inches="tight")

print(f"The horizontal coordinate of the first time the ball hits the ground
is: {result}")

Code Interpreter
output: The horizontal coordinate of the first time the ball hits the ground is: 20\n.

Final Answer: Looking at the physics problem, I need to simulate the ball's trajectory with elastic collisions...Finally hits the
ground at x = 20\n\n\\boxed{20}.

Error Cause

This answer contains a clear algorithmic error. While the model correctly understood the question and extracted the relevant
information, it incorrectly limited the horizontal movement of the ball to a maximum of 20 units during the simulation, whereas
the correct answer was 21, which exceeded this maximum limit. The model failed to identify this flaw when summarizing and
finalizing its answer.

Figure 43: Algorithmic Modeling Error.

34

Under review as a conference paper at ICLR 2026

Algorithmic Modeling Error

ik ()

Pt Mot i Thes S (g 6.

Question: Find the horizontal coordinate of the first time the ball hits the
ground. The result is rounded down fo the nearest integer. Note that when a
collision occurs, there is no horizontal energy loss, and the vertical speed is
reduced to 0.9 times the original speed.

Answer: 24

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need fo:\n\nl. Identify the platform heights and ball's initial position\n...

import os
vx0 = 5.0
vyo = 2.0

platforms = [
{'x_start': @, 'x_end': 3, ‘'height': 6},
{'x_start': 3, 'x_end': 8, ‘'height': 4},
{'x_start': 8, 'x_end': 18, ‘'height': 3}
]

def simulate_trajectory():
for platform in platforms:
if (platform['x_start'] <= x_new <= platform['x_end'] and
y > platform['height'] and y_new <= platform['height']):
vy = -0.9 * abs(vy)
def find_ground_hit():

result = precise_simulation()

Code Interpreter
output: The ball first hits the ground at horizontal coordinate: 10\n.

Final Answer: The ball follows a parabolic trajectory, bounces off the second platform (green, height 4m), and then continues
until it hits the ground at the first available opportunity.\n\n\\boxed{10}.

Error Cause

The model correctly identified the height and width of the steps and recognized the energy loss during the collision bounce.
However, its failure fo abstract the underlying physical rules led to two major errors. First, the model did not properly abstract
and implement the collision-detection mechanism, causing the ball to pass through a region that should have been recognized as a
solid step. Second, the model failed to abstract the physical relationship between motion and trajectory: instead of inferring the
initial velocity from the provided short trajectory, it arbitrarily assigned an initial velocity based on intuition, resulting in an
incorrect physical simulation.

Figure 44: Algorithmic Modeling Error.

35

Under review as a conference paper at ICLR 2026

4 . . .
Algorithmic Modeling Error
Question: Estimate the volume of the 3D prism shown in the image. The result should be
rounded to one decimal place. The side length of each grid on the chessboard is 0.5.
Answer: 2.3
-
Claude-Sonnet-4 TVP (T=1)
Iteration:1
Looking at this physics problem, I need to:\n\nl. Identify the platform heights and ball's initial position\n...
import os
chessboard_size = (7, 7) # Internal corners
found, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
if found:
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
corners = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
if contours:
largest_contour = max(contours, key=cv2.contourArea)
X, Y, W, h = cv2.boundingRect(largest_contour)
epsilon = ©.02 * cv2.arclLength(largest_contour, True)
approx = cv2.approxPolyDP(largest_contour, epsilon, True)
prism_depth = prism_width
cv2.putText(result_img, f'Estimated Volume: {volume:.1f} cubic units',
print(f"Visual estimated volume: {volume:.1f} cubic units")
Code Interpreter
output: Visual estimated volume: 8.0 cubic units\n.
Final Answer: This appears to be a rectangular prism (cube), so:\n Volume = length x width x height = 2.0 x 2.0 x 2.0 = 8.0
cubic units\n\n\\boxed{8.0}.
Error Cause
The model attempts to locate the corner points within the checkerboard grid and then determine the positional relationships
between the prism's vertices and the grid corners, as well as estimate the prism's height, to compute its volume. However, the
resulting volume estimation is highly inaccurate. Ideally, the model should accurately detect all checkerboard vertices, infer the
3D-2D coordinate transformation matrix, reconstruct the prism's 3D vertex coordinates from their 2D projections, and then
compute the volume. These errors reveal a clear deficiency in the model's abstraction capabilities: although it can perceive local
geometric features, it fails to abstract the underlying 3D geometric principles and transformation rules required to solve the
problem correctly.
G

Figure 45: Algorithmic Modeling Error.

36

Under review as a conference paper at ICLR 2026

(e
Program Inefficiency
Question: There are some blocks in the picture. Find the smallest
... .. square area that can place all the small blocks in the area in a suitable
- .- -. way without overlapping. Return the length of the square side.
anEe g — —
GPT-4.1-mini TVP (T=1)
Iteration:1
from PIL import Image
import numpy as np
import os
def can_place(board, block, r, c):
h, w = board.shape
bh, bw = block.shape
if r+ bh > horc+bw>w:
def backtrack(board, blocks, idx):
if idx == len(blocks):
blocks = extract_blocks(image)
answer = solve(blocks)
print(answer)
Code Interpreter
error: Code execution timed out after 60 seconds.
Final Answer: \\boxed{5}.
Error Cause
In the example above, the algorithm first tries to count the total number of small squares, and then starts by trying the
smallest possible square under those conditions, using a BFS method to find a feasible arrangement. However, this algorithm is
too inefficient and fails to find a solution within the 60-second time limit. Therefore, the model incorrectly concluded that the
minimum side length should be at least 5.
|

Figure 46: Program Inefficiency.

37

Under review as a conference paper at ICLR 2026

G CASE STUDY

We provide several case studies to analyze the performance of CoT, single-turn TVP, and multi-turn
TVP. As illustrated in Figure 47, the model uses code to abstract three-dimensional views for solving
the task. In contrast, CoT can only describe this process textually, lacking the ability to perform
direct computation or manipulation of the visual input. As illustrated in Figure 48, TVP utilizes
the model’s advanced coding capabilities to accurately model the Rubik’s Cube rotation rules. By
integrating this with a search algorithm, TVP provides a precise solution, demonstrating the power
of visual programming in solving complex tasks. However, for simpler problems shown in Figure
49, writing code may actually introduce errors, as the overhead of coding can outweigh the benefits
of using a more direct reasoning approach. When comparing single-turn TVP with multi-turn TVP,
we observe that the latter enables models to iteratively refine their outputs, effectively correcting
coding mistakes through agentic interaction, as shown in Figure 50. Furthermore, Figure 51 shows
cases where the model employs visualizations as an intermediate verification mechanism, ensuring
that no red points are overlooked and demonstrating reflective reasoning through explicit inspection
of its own outputs.

(N\
Three-Views

Question: Given a description of the three-view drawing of a solid
figure, find the maximum number of small cubes that the solid figure
can be composed of when the three-view constraints are met.

Answer: 21

& 6PT-4.1-mini coT v/ GPT-4.1-mini TVP (T=1)
Direct Answer: Iteration:1
<think>\nThe three views (front, <code>\import os\nfrom PIL import Image\n\nimage_filename = None\nfor...
top, left) show which small cubes max_cubes = @\nfor h in range(height):\n for w in range(width):\n
are visible from each for d in range(depth):\n if front_grid[h][w] and
perspective...Therefore, the left_grid[h][d] and top_grid[w][d]:\n max_cubes +=
maximum number of small cubes is 1\n\n...print(\"Maximum number of small cubes that the solid figure can
22.\n\n</think>\n\n\\boxed{22} be composed of:\", max_cubes)\n</code>

Code Interpreter: output: Maximum number of small cubes that the solid figure
can be composed of: 21\n.

Final Answer: \\boxed{21}

Comparative Analysis

By comparing the two approaches, we found that in the direct reasoning (CoT) method, the model determines the total number of
small cubes by sequentially analyzing whether each position can accommodate a small cube, but this method leads to errors due
to double-counting. However, the approach using a single code execution (TVP) leverages three-dimensional views to model the
constraints, allowing for accurate calculation of the maximum number of small cubes that can be accommodated. The advantage

of using code lies in its greater accuracy when dealing with complex but repetitive (rule-based) calculations.

Figure 47: Case study of Tree-Views.

38

Under review as a conference paper at ICLR 2026

Rubik's Cube

‘ Claude-Sonnet-4 CoT

Direct Answer:

<think>\I need to analyze this 2x2
Rubik's cube expansion diagram to
find the minimum number of moves
to solve it.\n...Based on the pattern
analysis and typical solving
sequences for 2x2 cubes with this
level of scrambling, the minimum
number of steps required
is:\n\n\\boxed{7}.

more complex visual tasks.

Answer: 2

Question: This is the expansion diagram of a second-order Rubik's Cube. Given the initial
state, you can perform 18 standard operations. Find the minimum number of steps to make
the Rubik's Cube reach the restored state. The goal is to restore the cube to its original
state, with green on the front face, white on the top, and yellow on the bottom,
disregarding isomorphic configurations.

v Claude-Sonnet-4 TVP (T=1)

Iteration:1

I'll solve this step by step by analyzing the Rubik's cube expansion diagram.
<code>\import os\nimport numpy as np\nfrom PIL import Image\nfrom
collections import deque\nimport hashlib\n...temp = [new_state['U'][@],
new_state['U']J[1]]\n new_state['U'][0], new_state['U'][1] =
new_state['R"][1], new_state['R'][3]\n new_state['R"'][1],
new_state['R'][3] = new_state['D'][3], new_state['D'][2]\n...
print(f\"\\nResult saved as {output_filename}\")\n</code>

Code Interpreter: output: Initial cube state:\nU: ['B', 'W', 'B', 'R']\n..Solution
found in 2 steps:\nL' F\n\nResult saved as image_20_m.png\n

Final Answer: Looking at the code execution result,..guaranteed to be optimal
(minimum number of steps).\n\n\\boxed{2}

Comparative Analysis

The comparison revealed that CoT is ineffective for solving complex search problems with intricate rules, such as solving a
Rubik's Cube, because such problems are difficult to solve solely through imagination and assumptions. However, in the process
of using code to solve the problem, TVP leverages the model's strong coding capabilities to accurately model the Rubik's Cube
rotation rules and, by combining this with a search algorithm, provides an accurate solution. So using code allows us to accomplish

Figure 48: Case study of Rubik’s Cube.

39

Under review as a conference paper at ICLR 2026

(
Area Measurement
Question: Find the area of the following quadrilateral, where all points are on integers. The
result is rounded to 1 decimal place.
Answer: 6.0
+/ Qwen2.5-VL-32B CoT . Qwen2.5-VL-32B TVP (T=1)
Direct Answer: Iteration:1
<think>\To find the area of the I'll solve this step by step by analyzing the Rubik's cube expansion diagram.
given triangle, we can use the <code>\import os\nimport cv2\nimport numpy as np\nimport
Shoelace Theorem...calculate the re\n...contours, _ = cv2.findContours(image=mask, mode=cv2. RETR_LIST,
area:\n\n\\[\n\\text{Area} = method=cv2.CHAIN_APPROX_SIMPLE)\ncentroids = []\nfor cnt in contouns:\n
\\frac{1]2 \\cdot 12 = M = cv2.moments(contour)\n if M['mee'] != @:\n X =
6\n\\]\n\nTherefore, the area of int(M['m1@'] / M['mee'])\n cy = int(M['me1'] / M['mee@'])\n
the triangle is:\n\n\\boxed{6.0}. centroids.append((cy, cx))...# Save the marked image\noutput_filename =
re.sub(r'(\\. png)', '_m\\\\1',
image_filename)\ncv2.imwrite(output_filename, cv2.cvtColor(image,
cv2.COLOR_BGR2RGB))\n\n</code>
Code Interpreter: error: ..line 36\n contours, _ = cv2.findContours\tmask, cv2.
RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)\n
“\nSyntaxError: unmatched ‘)'\n
Final Answer: None
Comparative Analysis
Comparing CoT and TVP (T=1), we can see that CoT accurately obtained the coordinates of the points directly from the image
information and then used the quadrilateral area formula to calculate the area accurately. However, the code provided by TVP
attempted to identify the vertices of the quadrilateral to calculate the area, but it failed to correctly locate the vertices
resulting in an error. Therefore, for models with limited coding capabilities, using code to assist in problem-solving may actually
lead to lower accuracy than simply providing a direct answer.
.

Figure 49: Case study of Area Measurement.

40

Under review as a conference paper at ICLR 2026

Resource Allocation

" Question: This is the heatmap of the question. Each task can only be assigned to one
. person, and each person can only be assigned one task. How to allocate to maximize total
profit? (all profits are multiples of ten), and output the maximum profit. Above is the image
of this question.

R erT-a1 TVP (T=1)

Iteration: 1

<code>\import os\nimport
cv2\nimport numpy as
np\nimport
pytesseract\n...print('Maximum
Total Profit:',
max_profit)\n</code>

Code Interpreter: error: Traceback
(most recent call last):\n...raise
TesseractNotFoundError()\npytes
seract.pytesseract.TesseractNotF
oundError: tesseract is not
installed or it's not in your PATH.
See README file for more
information.\n

Final Answer:
\\boxed{230}

Answer: 180

v 6PT-4.1 TVP (T=5)

Iteration:1

<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(max_profit)\n</code>

Code Interpreter: error: ..NameError: name 'find_original_image_name' is not
defined\n.

Iteration:2

<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(max_profit)\n</code>
Code Interpreter: output: 180\n.

Iteration:3

<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(\"Maximum Profit:\",
max_profit)\n¢</code>

Code Interpreter: output: Allocation (Employee, Task): ... Profit: 180\n.

Iteration:4

<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(\"Maximum Profit:\",
max_profit)\n</code>

Code Interpreter: output: Employee 1 assigned to Task 2, ...Total Profit: 180\n.

Iteration:5

<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(f\"Maximum Total Profit:
{max_profit}\")</code>

Code Interpreter: output: Optimal Assignment:\nEmployee 1 -> Task 2...Total
Profit: 180\n.

Final Answer: \\boxed{180}\n\nOptimal allocation to maximize total profit:\n-

Employee 1 — Task 2 (Profit: 90)\n- Employee 2 — Task 1 (Profit: 10)\n- Employee
3 — Task 3 (Profit: 80)

Comparative Analysis

Comparing the overall output and final results of single-round and five-round code execution, we can see that in the single-round
execution, TVP (T=1) encountered an error because it used a library function that was not available in the environment (a non-
standard library). In the five-round execution TVP (T=5), a path loading error occurred during the first code execution, but

subsequent executions corrected this issue, ultimately producing the correct answer. This demonstrates the advantage of
multiple rounds of execution: the ability to identify and correct errors.

Figure 50: Case study of Area Measurement.

41

Under review as a conference paper at ICLR 2026

Point Counting

3 Gemini-2.5-Flash TVP (T=1)

Iteration: 1

<code>\import os\nimport
cv2\nimport numpy as
np\n\n...cv2.imwrite(output_fi
lename, original_image)
\n</code>

Code Interpreter: output: Could
not find a suitable red dot to
create a template. Falling back to
direct contour counting.\nNumber
of red dots (contour fallback): 0\n
Final output: <code>\import
os\nimport cv2\nimport numpy
as
np\n\n...cv2.imwrite(output_fi
lename, original_image)
\n</code>

Final Answer:
None

- Question: What is the number of red dots?
I ° °
® e T Answer: 11
L4 °
L]
° s °
'Y L]

v Gemini-2.5-Flash TVP (T=3)

Iteration:1

<code>\import cv2\nimport numpy as np\n\n...output_image_path =
processed_image_name(image_path)\ncv2.imwrite(output_image_path,
output_image) \n</code>

Code Interpreter: error: ..NameError: name 'find_original_image_name' is not
defined\n.

Iteration:2

The previous attempt failed because... The image processing logic for counting red
dots.

<code>\ >\import cv2\nimport numpy as np\n\n...output_image_path =
processed_image_name(image_path)\ncv2.imwrite(output_image_path,
output_image)\n </code>

Code Interpreter: output: The number of red dots is: 11\n.

°
°
® ® e .
L J ° °)
° o,
Iteration:3 i K .
The number of red dots is: 11\n
° °

Final Answer:
The number of red dots is: \\boxed{11}

Comparative Analysis

Comparing the overall output and final results of single-round and three-round code execution, we can see that in the single-
round execution, TVP (T=1) encountered an error because the algorithm failed to detect any red points because of an incorrect
threshold setting. In the three-round execution TVP (T=3), a path loading error occurred during the first code execution, but
subsequent executions corrected this issue, ultimately producing the correct answer. Next, after receiving the corresponding
text and image results, it confirmed that all the red dots had been found, thus pre-determining the answer.

Figure 51: Case study of Point Counting.

42

Under review as a conference paper at ICLR 2026

Ricochet Ball

[] Question: How many ricochets will a ball launched from (1.0, 1.0) at 80° need to hit the target at

(9.0, 9.0)? The ball reflects perfectly off the arena walls and mirror-obstacles.

- Answer: 7

& Gemini-2.5-Flash TVP (T=1)

Iteration: 1

The problem requires simulating
the path of a ball launched from a
starting point with a given angle...
<code>\import os\nimport
math\nfrom PIL import Image,
ImageDraw\n\n# --- Geometry
Classes ---\nclass Point:\n
def __init_ (self, x, y):\n...
--- Simulation Loop ---\nfor
step_count in

range (MAX_SIM_STEPS):\n #
Calculate t if the ray hits
the target directly on its
current path segment\n
t_to_target = float('inf')\n
\n vec_to_target_x =
target_pos.x - current_pos.x\n
vec_to_target_y = target_pos.y
- current_pos.y\n\n
...print('Maximum Total
Profit:', max_profit)\n¢</code>
Code Interpreter: output: -1\n

Final Answer:
10

v Gemini-2.5-Flash TVP (T=3)

Iteration:1

<code>\import math\nimport os\nimport re\nimport typing\nimport
matplotlib.pyplot as plt\nimport matplotlib.patches as
patches\n\n...def get_time_to_hit_target(current_pos, current_velocity,
target_pos, target_radius):\n dx = current_pos.x - target_pos.x\n
dy = current_pos.y - target_pos.y\n\n... # Print the final
answer\nprint(ricochets)</code>

Code Interpreter: output: “7\n"

Iteration:2

The previous iteration's code correctly calculated 7 ricochets and produced a visual
path that supports this answer-...

<code>\import math\nimport os\nimport re\nimport typing\nimport
matplotlib.pyplot as plt\nimport matplotlib.patches as
patches\n\n...def get_time_to_hit_wall(current_pos,
current_velocity):\n dt_x = float('inf')\n dt_y =
float('inf')\n\n...# Print the final answer\nprint(ricochets)</code>
Code Interpreter: error: .. ~""""""222222822822 22222\ nNameError: name
'find_original_image_name" is not defined\n

Iteration:3
<code>\import math\nimport os\nimport re\nimport typing\nimport
matplotlib.pyplot as plt\nimport matplotlib.patches as patches\n\n...#
Snap position to the wall\n if abs(current_pos_next.y - Y_MIN) <
EPS: current_pos_next.y = Y_MIN\n if abs(current_pos_next.y -
Y_MAX) < EPS: current_pos_next.y = Y_MAX\n\n...# Print the final
answer\nprint(ricochets)</code>
Code Interpreter: output: “7\n"

Final Answer: The final answer is $\\boxed{7}$

Comparative Analysis

Comparing TVP (T=1) and TVP (T=3), we can see that when only one iteration of the code is used, the model fails to find a solution
within a certain number of steps due fo errors in its modeling of the overall layout, resulting in a return value of -1. However,
with multiple iterations, although the second iteration encountered a path-related error, the first and third iterations executed

correctly, and the model successfull

decisions.

used the code to generate a simulated path diagram, which can assist the model in makin

Figure 52: Case study of Ricochet Ball.

43

	Introduction
	Paradigm Definitions
	Multimodal Chain-of-Thought
	Thinking with Visual Programming

	MMR-VIP Benchmark
	Difficulty Ladder
	Cognitive Skill
	Benchmark Construction

	Experiments
	Experimental Setup
	Experimental Results
	Analysis
	Impact of Iteration Rounds
	Influence of Input Modalities
	Error Analysis

	Related Works
	Conclusion
	LLM Usage Statement
	Discussion
	Benchmark Details
	Evaluation Details
	Additional Experimental Results
	Error Analysis
	Case Study

