
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PIXELS LIE, CODE DOESN’T: THINKING WITH VI-
SUAL PROGRAMMING FOR “SEEMINGLY IMPOSSIBLE”
MULTIMODAL AGENTIC REASONING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

To overcome the inherent limitations of Chain-of-Thought (CoT) and to further
push the upper bound of multimodal reasoning capabilities, we introduce Think-
ing with Visual Programming (TVP), where models can iteratively interact with an
external code executor to generate, run, and verify both visual and textual agentic
operations as part of the reasoning loop. Motivated by the open question of how
far Multimodal Large Language Models (MLLMs) still lag behind this paradigm,
we introduce MMR-VIP, a MultiModal Agentic Reasoning benchmark built on
Visual Impossible Problems. We design MMR-VIP with two key principles: (1)
We construct a Difficulty Ladder grounded in computational complexity theory,
structuring tasks from easy problems that can be solved with inherent percep-
tion and reasoning, through medium problems that require external computational
tools, to hard problems that remain intractable even with programming assistance.
(2) We decompose the paradigm of Thinking with Visual Programming into three
Cognitive Skills, namely Perception, Abstraction, and Optimization, which
correspond to perceiving visual inputs, abstracting them into problem formula-
tions, and optimizing algorithms to obtain efficient solutions. Our experiments on
MMR-VIP yield the following findings: (1) GPT-5, as a native TVP model, deliv-
ers the strongest overall results, yet its accuracy remains only 38.2%, underscoring
substantial room for progress. (2) For commercial models, multi-turn code execu-
tion consistently surpasses direct CoT and single-turn execution, providing stable
and significant improvements. (3) Across difficulty levels, performance follows a
ladder-shaped trend, with negligible gains on easy tasks, the largest improvements
on medium tasks, and steady advances on hard tasks. (4) From a cognitive per-
spective, TVP enhances optimization by offloading complex computation, search,
and planning, but models still encounter bottlenecks in abstraction.

1 INTRODUCTION

Multimodal reasoning is a defining capability of human intelligence, enabling us to address diverse
challenges such as navigating in the physical world, interpreting scientific figures, and solving ge-
ometry problems (Yue et al., 2024; Lu et al., 2024). Recent advances in Multimodal Large Language
Models (MLLMs) (OpenAI, 2024; DeepMind, 2025; Bai et al., 2025) have demonstrated significant
progress by leveraging Chain-of-Thought (CoT) (Wei et al., 2022; Zhang et al., 2024c), which
bridges perception and reasoning through explicit sequences of textual steps. Nevertheless, exist-
ing improvements remain constrained, since they primarily extend text-based CoT, prolonging the
reasoning process without enhancing the upper bound of the model’s reasoning capabilities.

To address these limitations, “Thinking with Images” (TWI) (Zheng et al., 2025; Su et al., 2025a;c)
has recently been proposed as an emerging paradigm, enabling models to incorporate iterative vi-
sual inspection as part of the reasoning loop. In practice, current methods rely on manipulating
images with external tools (Zhang et al., 2025), such as cropping, zooming, rotating, and other im-
age processing operations. Although such strategies enhance perceptual accuracy, they are limited
to a narrow set of predefined visual tools, thereby rigidifying the reasoning process and restricting its
generality. As various forms of visual manipulation can naturally be expressed and executed through
programming, we propose the paradigm of “Thinking with Visual Programming” (TVP), which
goes beyond fixed tools and allows models like OpenAI’s o4 and GPT-5 (OpenAI, 2025a) to flexibly
generate, execute, and verify both visual and textual operations within the reasoning process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Easy

Question: Place one queen in each row
and column so that no two queens
attack each other. Find the number
of valid placements.

Answer: 1

Question: Place one queen in each row
and column such that no two queens
attack each other, and no queen is
threatened by an existing knight
(knight safety is ignored). Find the
number of valid placements.

Answer: 5

Question: Place one queen in each row
and column such that no two queens
attack each other, and no queen is
threatened by an existing knight
(knight safety is ignored). Each
square has a placement cost based on
its color. Find the arrangement of
queens that satisfies these
constraints with minimum total cost.

Answer: 170

Medium

Hard

Perception

Abstraction

Optimization

Chain-of-Thought
The number of different valid queen placements is: 0
Because: Several queens are already placed (E3, A5, C9, G12) …
… Checking carefully: The already placed queens on E3, A5, C9, G12
already conflict with each other diagonally (E3 and A5 are on the
same diagonal, C9 and G12 are on the same diagonal).
No complete arrangement exists that satisfies the constraints.

Thinking with Visual Programming
I'm considering using image analysis to detect the chess pieces, via
template matching. It could work since we have black queen and
knight icons, plus the coordinates in the squares. I'd need to
segment the image and analyze color intensity. I'll go with the code
approach for detecting pieces more reliably.

<code> Computing per-cell darkness threshold </code>
<code> Computing mapping for top dark count cells </code>

The pieces are located at A5, B4, C9, E3, and G12. After revisiting
the data, I’ll trust the code and place the knight at B4, which leaves
the other pieces as queens.
It looks like the knight's attack squares do indeed prevent new
queen placements but not existing queens. For the remaining queens,
the algorithm should ensure they don't attack each other or land on
knight-attack squares.

<code> Computing knight attack squares </code>

I’ve confirmed that there are only 6 valid knight attack squares
from B4, as some moves fall off the board or into negative columns.
I’m ready to implement the solver with the necessary constraints!
I'll implement the backtracking approach, keeping the knight and
queens’ constraints in check.

<code> Computing valid queen placements with knight
constraints </code>
<code> Verifying queen placement constraints </code>

We found 5 valid queen placements, and I'll double-check
everything.

(1) Difficulty Ladder in MMR-VIP. (4) Performance Across Cognitive Skills.(2) Cognitive Skills of TVP.

(3) Performance Across Difficulty Levels.

Figure 1: Thinking with Visual Programming paradigm. Figure 1(1) illustrates the three difficulty
levels in MMR-VIP using the N-Queens task as an example. Figure 1(2) shows that for a medium-
level problem, direct CoT reasoning fails while TVP succeeds, and in the process three key cognitive
skills emerge. Figure 1(3) compares the average performance of four powerful models (GPT-4.1-
mini, GPT-4.1, Gemini-2.5-Flash, and Claude-Sonnet-4) under CoT and TVP, showing minimal
changes on easy tasks, the largest gains on medium tasks, and clear improvements on hard tasks.
The results exhibit a ladder-shaped performance trend across difficulty levels. Figure 1(4) presents
the performance differences of the four models across cognitive skills, where TVP yields notable
improvements in symbolic (perception), computation, search, and planning (optimization).

Humans inherently solve complex reasoning problems in a programming-like manner by preprocess-
ing visual inputs for better perception, applying algorithmic procedures to derive solutions, and ver-
ifying outcomes through testing. Nevertheless, it remains unclear how far current MLLMs are from
this paradigm. To this end, we introduce MMR-VIP, a MultiModal Agentic Reasoning benchmark
that consists of Visual Impossible Problems. Formally, we refer to Visual Impossible Problems as
problems that appear intractable under CoT-based reasoning, yet become solvable when augmented
with visual programming interactions. We design MMR-VIP with two key considerations:

Difficulty Ladder. We categorize problems into three levels of difficulty, drawing inspiration from
how humans tackle tasks with and without tools, and grounded in computational complexity the-
ory. (1) Easy level requires that the model can reliably solve them using its inherent perception and
reasoning abilities, without any programming assistance. This level corresponds to “low-complexity
problems in P”, where the model can perform reasoning within its working memory; (2) Medium
level is challenging for the model to solve independently, but can be effectively addressed when it is
allowed to use a code interpreter. This level typically involves “polynomial-time solvable problems
in P”, where the model must rely on external computational tools to compute solutions; (3) Hard
level remains unsolved even with programming assistance, often due to their large-scale computa-
tional complexity, highly intricate constraints, or demanding optimization requirements. This level
corresponds conceptually to “NP-hard problems”, which often lie beyond the capabilities of current
models. As shown in Figure 1(1), the three levels form a progressive difficulty ladder, where each
step reflects an increasing demand on the model’s reasoning capacity and reliance on external tools.

Cognitive Skill. We decompose the Thinking with Visual Programming paradigm into three key
cognitive skills, focusing on the core cognitive processes required to perceive, abstract, and opti-
mize multimodal agentic reasoning. Taking the N-Queens problem in Figure 1(2) as an example:
(1) Perception requires the model to transform visual content into structured information, correctly
extracting relevant elements from multimodal inputs (e.g., detecting and locating chess pieces on
the board); (2) Abstraction requires the model to transform structured information to problem for-
mulation, producing computationally useful forms and proposing feasible solutions (e.g., converting
piece positions into symbolic constraints that capture attack rules); (3) Optimization requires the
model to transform problem formulation to algorithmic optimization, optimizing both algorithms

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and computational procedures to obtain correct and efficient answers (e.g., applying a backtracking
algorithm to search for valid queen placements under the given constraints).

MMR-VIP encompasses 28 carefully crafted task types, each designed across three difficulty levels,
resulting in 1,680 instances that provide a comprehensive evaluation of multimodal agentic reason-
ing capabilities. These tasks span a wide spectrum, from basic skills such as counting and height
measurement to advanced challenges including graph coloring and circuit logic. To avoid dataset
contamination and guarantee that models solve tasks via code execution instead of memorized recall,
all problems in MMR-VIP are generated using carefully designed, manually written code.

We conduct a comprehensive evaluation on MMR-VIP across a wide range of MLLMs, including
commercial models such as Claude-Sonnet-4, open-source models such as Qwen2.5-VL-72B, as
well as native TVP models like o4-mini and GPT-5. We further assess different reasoning paradigms,
including direct CoT, single-turn code execution, and multi-turn code execution. We obtain the fol-
lowing conclusions: (1) Our experimental results reveal clear differences across model types and
reasoning paradigms. For open-source models, introducing code execution provides little to no im-
provement, mainly due to their limited visual programming capabilities. For commercial models,
single-turn code execution yields unstable performance, while multi-turn code execution consis-
tently delivers substantial gains. As illustrated in Figure 1(3), multi-turn code execution improves
accuracy on medium-level tasks by 58.4% compared to direct CoT. GPT-5, as a native TVP model,
achieves the best overall performance; however, its accuracy remains only 38.2%, indicating sub-
stantial room for improvement; (2) Performances across different difficulty levels align well with the
design of MMR-VIP, exhibiting a ladder-shaped performance trend. Compared to direct CoT, we
observe that TVP yields minimal changes on easy tasks, the largest gains on medium tasks, and con-
sistent improvements on hard tasks; (3) From the perspective of cognitive skills, TVP shows clear
progress in optimization, as it can leverage programming to offload complex computation, search,
and planning operations. However, its performance still encounters bottlenecks in abstraction, where
models lack the ability to translate visual inputs into high-level problem formulations. We hope that
MMR-VIP will serve as a challenging benchmark to drive future research toward closing this gap.

2 PARADIGM DEFINITIONS

2.1 MULTIMODAL CHAIN-OF-THOUGHT

We formalize the conventional paradigm of Multimodal Chain-of-Thought reasoning. For a model
θ, given an input image I and a textual question x, the CoT process can be defined as:

PCoT(y | I, x) = Pθ(r | I, x) · Pθ(y | I, x, r). (1)

Here, r = (s1, s2, . . . , sn) denotes the intermediate reasoning chain, which explicitly captures the
sequence of textual steps bridging perception and reasoning, while y represents the final answer
conditioned on both the original input (I, x) and the generated textual rationale r.

2.2 THINKING WITH VISUAL PROGRAMMING

We formalize the proposed paradigm of Thinking with Visual Programming. For a model θ, given an
input image I and textual question x, TVP extends conventional CoT by introducing programming
actions at, which are executed through interaction with an external code executor E . Unlike single-
pass reasoning, this is a multi-turn interactive agentic process consisting of T rounds:

PTVP(y | I, x) =
T∏

t=1

Pθ(rt, at | st−1) · Pθ(y | sT). (2)

At each step t, the model generates a reasoning trace rt and a programming action at, executes at
via the external executor E , and incorporates the multimodal execution result E(at) into the state st:

st = st−1 ∪ {rt, at, E(at)}, s0 = {I, x}. (3)

Compared to CoT, TVP offers significant advantages by integrating pixel manipulations and algo-
rithmic computation into the reasoning loop, enabling models to move beyond textual thinking. In
this paper, we do not provide models with fixed external tools. Instead, we allow them to write code
that can call standard libraries, such as PIL, OpenCV, and Matplotlib, among others.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(1) Attribute

Question:
What is
the number
of red dots?

Answer: 29

Difficulty: Hard
Task: Point Counting

Question: What is
the color of the
ball at (2, 2, 2)?
You can choose an
answer from Red,
Green, Orange,
Cyan, Purple, Blue
and Yellow.

Answer: Red

Question: This is a
digital circuit
problem. Given
known input values
for the circuit,
determine the
output value.

Answer: 0

(2) Location

Difficulty: Medium
Task: 3D Location

Difficulty: Easy
Task: Circuit Logic

(3) Symbolic

(4) Geometry

Question: Calculate
the minimum
enclosing rectangle
area of the
following rectangle,
where the sides of
the enclosing
rectangle must be
parallel to the grid.

Answer: 63

Difficulty: Easy
Task: Bounding Box

Question: How many
ricochets will a ball
launched from (1.0,
1.0) at 5° need to hit
the target at (9.0,
9.0)?
The ball reflects
perfectly off the
arena walls and
mirror-obstacles.

Answer: 8

Question: Given the
following four-
coloring problem
graph, where part
of the region has
been pre-colored,
how many coloring
combinations are
there for the
remaining region?

Answer: 34560

(5) Physics

Difficulty: Medium
Task: Ricochet Ball

Difficulty: Hard
Task: Graph Coloring

(6) Network

(7) Search

Question: This is a diagram
of a Rubik's Cube. Given an
initial state (above), you can
perform the standard 18
operations to find the
minimum number of moves
required to get the Rubik's
Cube to the given state
(below).

Answer: 6

Difficulty: Hard
Task: Rubik's Cube

Question: Each
task can only be
assigned to one
person, and
each person can
only be assigned
one task.
Compute the
maximum total
profit.

Answer: 500

Question: Given the
first 8 numbers in
the nine-square
grid, calculate the
smallest positive
integer such that
the sum of this
number plus all
previous numbers is
an integer multiple
of 20.

Answer: 12

(8) Planning

Difficulty: Medium
Task: Resource Allocation

Difficulty: Easy
Task: Calculation

(9) Computation

Figure 2: Evaluation framework of cognitive skills in MMR-VIP.

3 MMR-VIP BENCHMARK

To investigate how far current MLLMs are from the paradigm of TVP, we introduce MMR-VIP,
a MultiModal Agentic Reasoning benchmark that consists of Visual Impossible Problems. These
are carefully designed problems that existing MLLMs cannot reliably solve with conventional CoT
reasoning alone, but instead necessitate interaction with an external code executor. We will detail the
design principles behind MMR-VIP, including its difficulty ladder and cognitive skill dimensions,
and describe the benchmark construction process along with dataset statistics.

3.1 DIFFICULTY LADDER

We categorize problems in MMR-VIP into a three-level Difficulty Ladder, drawing inspiration
from how humans tackle tasks of varying complexity and their reliance on external tools. At the
Easy level, tasks can be reliably solved using the model’s inherent perception and reasoning abili-
ties, without the need for programming assistance. These correspond to “low-complexity problems
in P”, where solutions can be derived directly within the model’s working memory. The Medium
level encompasses tasks that models struggle to solve on their own but can successfully address
when supported by external tools such as code interpreters. These tasks align with “polynomial-time
solvable problems in P,” where deriving solutions requires programmatic operations and computa-
tional tools beyond intuition alone. Finally, the Hard level captures problems that remain unsolved
even with programming assistance, typically due to large-scale computational complexity, intricate
constraints, or challenging optimization requirements. Conceptually, these tasks are analogous to
“NP-hard problems”, which often exceed the practical capabilities of current models. Such a diffi-
culty ladder setting enables a more in-depth examination of the paradigm of TVP.1

1The tasks in MMR-VIP are not strictly designed or guaranteed to align with formal complexity-theoretic
definitions, but rather follow the spirit of increasing computational and cognitive demands.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Mapping between cognitive skills and task types in MMR-VIP.

Category Tasks
Attribute 3D Position, Bin Packing, Graph Coloring, Hanoi Tower, Point Counting, Resource Allocation,

Rubik’s Cube, Sliding Puzzle, Snake Game, Three-Views
Location 3D Position, Bounding Box, Height Measurement, Point Counting, Projectile Motion, Snake

Game, Three-Views
Symbolic Calculation, Chart, Circuit Logic, House Robber, Interval DP, N-Puzzle, Projectile Motion,

Tableau LP
Geometry Area Measurement, Bounding Box, Rubik’s Cube, Three-Views
Physics Circuit Logic, Projectile Motion, Ricochet Ball
Network Graph Coloring, Graph Isomorphism
Search Bin Packing, Bubble Sort, Calculation, Graph Coloring, Maze, N-Puzzle, N-Queens, Path

Counting, Rubik’s Cube, Sliding Puzzle, Snake Game
Planning Chart, Hanoi Tower, House Robber, Interval DP, Lights Out, Resource Allocation, Tableau LP
Computation Calculation, Path Counting

3.2 COGNITIVE SKILL

Beyond task difficulty, we design MMR-VIP to emphasize the underlying Cognitive Skills required
for multimodal agentic reasoning under the TVP paradigm. These skills highlight the essential pro-
cesses through which models must learn to leverage external tools to approach complex problems.
We define three successive skills within TVP: Perception, Abstraction, and Optimization, which
together examine a model’s visual programming ability from complementary dimensions.

Perception: This skill concerns the model’s ability to accurately extract structured information from
raw visual inputs. Unlike direct pattern recognition that relies solely on intrinsic visual perception,
TVP enables models to enhance perception through programmatic operations such as counting,
measuring, and localization. For example, as shown in Figure 2(1), when a task requires precise
object counting, models that rely only on intrinsic perception often fail due to overlapping shapes,
varying sizes, or background noise. In contrast, TVP enables the model to generate code that ana-
lyzes pixel-level cues such as color and boundary lines, allowing it to count objects more accurately.
We evaluate this skill across three dimensions: Attribute (i.e., color, shape, size), Location (i.e.,
positions, distances, spatial relations), and Symbolic (i.e., digits, letters, or graphical symbols).

Abstraction: This skill concerns the model’s ability to transform low-level structured information
into higher-level problem formulations. It requires not only recognizing surface patterns but also
capturing the underlying rules and constraints, and converting them into computationally useful
forms. For instance, as illustrated in Figure 2(6), the model must write code to abstract the puzzle
into a network structure, representing each piece as a node and encoding adjacency relations as
edges. This code-based abstraction allows the model to perform further search or optimization
over the graph. In MMR-VIP, we evaluate abstraction across three dimensions: Geometry (i.e.,
geometric formulations), Physics (i.e., physical laws), and Network (i.e., graph structures).

Optimization: This skill focuses on the model’s ability to transform problem formulations into
efficient algorithmic solutions. It requires not only identifying feasible solutions but also refining
them to satisfy the given conditions. For example, as illustrated in Figure 2(7), the Rubik’s Cube
task requires the model to minimize the number of moves from an initial state to a target state. TVP
enables the model to generate and execute code that systematically explores the space of valid cube
operations, pruning redundant paths and converging to the optimal sequence of moves. We evaluate
this skill across three dimensions: Search (i.e., depth-first search, breadth-first search), Planning
(i.e., dynamic programming, linear programming), and Computation (i.e., numerical calculations).

3.3 BENCHMARK CONSTRUCTION

To ensure that tasks are both solvable in the TVP paradigm and suitable for difficulty control, we
adopt a Code2Task generation framework. We recruited five annotators with strong backgrounds in
programming competitions and instructed them to write code that specifies task rules and automati-
cally generates the corresponding images2, problems, and answers. As task difficulty increased, an-
notators were required to design new rules and introduce greater computational complexity, thereby
enriching the reasoning challenges. To facilitate this process, annotators were permitted to utilize

2We implemented visualization through HTML and Matplotlib.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Experimental results on MMR-VIP. The best performance in each column is highlighted
in bold. Red denotes cases where TVP underperforms CoT, while Green denotes cases where it
outperforms CoT, with darker shades indicating larger magnitude of change.

Model Difficulty Level Cognitive Skill Overall
Easy Mid Hard Att Loc Sym Geo Phy Net Com Sea Pla

Open-source Models

Keye-VL-1.5-8B CoT 28.0 11.4 4.8 12.0 9.3 21.2 11.2 8.3 27.5 35.0 15.6 14.3 14.8
T=1 9.1 3.2 2.5 4.2 3.8 5.2 3.8 4.4 12.5 6.7 4.2 3.8 4.9 (↓ 9.9)

Gemma-3-27B CoT 16.2 5.5 5.0 7.8 6.0 11.9 2.5 10.0 16.7 17.5 10.2 6.0 8.9
T=1 15.5 10.0 4.1 6.2 5.5 17.3 4.2 6.7 22.5 28.3 8.9 10.2 9.9 (↑ 1.0)

Qwen2.5-VL-7B CoT 13.2 7.0 3.9 7.5 3.6 7.3 3.8 8.9 26.7 6.7 6.8 6.4 8.0
T=1 7.3 5.5 1.6 2.5 2.9 7.5 2.1 2.2 17.5 21.7 5.3 1.7 4.8 (↓ 3.2)

Qwen2.5-VL-32B
CoT 24.3 10.9 6.4 13.7 12.6 17.3 8.3 10.0 25.0 29.2 14.7 8.6 13.9
T=1 13.6 4.6 4.1 7.7 8.1 6.9 4.2 9.4 13.3 6.7 5.9 4.8 7.4 (↓ 6.5)

T=3 18.9 9.8 6.8 10.0 8.8 18.3 2.5 7.2 20.8 28.3 13.3 10.7 11.8 (↓ 2.1)

Qwen2.5-VL-72B CoT 23.9 10.4 6.1 12.3 10.7 15.8 12.5 8.9 30.8 20.8 12.1 8.6 13.4
T=1 20.5 9.6 4.5 11.5 11.7 16.2 5.8 7.8 18.3 15.8 9.1 10.9 11.6 (↓ 1.8)

Commercial Models

GPT-4.1-mini
CoT 42.7 20.2 9.8 23.3 23.8 32.1 19.6 21.1 30.8 34.2 18.9 26.9 24.2
T=1 45.5 28.2 14.1 16.0 23.3 49.4 22.1 22.2 35.0 39.2 24.7 37.1 29.3 (↑ 5.1)

T=3 42.1 28.4 14.1 21.8 21.4 45.0 16.2 14.4 31.7 31.7 22.9 40.5 28.2 (↑ 4.0)

GPT-4.1
CoT 42.7 19.1 11.1 23.0 26.9 33.8 20.0 26.1 30.0 35.0 13.9 28.6 24.3
T=1 38.9 18.0 7.1 18.7 23.8 25.4 22.1 27.2 27.5 22.5 17.6 16.4 21.4 (↓ 2.9)

T=3 47.1 25.5 12.1 18.7 25.0 50.4 13.8 32.8 28.3 32.5 20.3 36.9 28.3 (↑ 4.0)

Gemini-2.5-Flash
CoT 46.4 18.0 10.9 17.8 27.6 42.5 26.2 25.6 32.5 40.0 17.7 28.1 25.1
T=1 32.7 14.5 7.9 9.0 17.4 34.2 22.1 25.0 12.5 32.5 14.4 19.5 18.3 (↓ 6.8)

T=3 59.3 34.5 16.1 21.8 30.2 64.6 27.1 33.3 29.2 40.0 30.0 49.0 36.6 (↑ 11.5)

Gemini-2.5-Pro CoT 58.0 20.9 10.4 21.3 25.7 44.4 29.6 29.4 27.5 37.5 26.2 32.9 29.8
T=1 38.8 20.2 11.4 12.7 17.9 38.3 20.0 30.0 27.5 16.7 16.5 29.5 23.4 (↓ 6.4)

Claude-Sonnet-4 CoT 49.6 18.2 8.9 19.5 28.6 38.3 27.1 23.3 26.7 38.3 19.2 28.1 25.6
T=1 49.5 31.6 14.3 22.0 27.6 53.5 19.6 26.1 28.3 45.8 28.6 38.3 31.8 (↑ 6.2)

Native TVP Models
o4-mini 57.7 30.7 17.3 28.0 24.8 55.4 25.4 26.1 35.0 40.0 27.3 55.2 35.2
GPT-5-mini 61.8 29.8 16.8 32.7 29.8 52.9 27.9 26.1 32.5 42.5 28.3 53.3 36.1
GPT-5 65.5 33.8 15.4 27.5 31.7 60.4 30.8 31.1 39.2 39.2 28.2 56.9 38.2

Reference
Human 69.6 55.4 35.7 48.3 54.8 75.0 37.5 27.8 58.3 66.7 50.0 69.1 53.6

AI-assisted code editors (e.g., Cursor). Finally, we conducted cross-validation of all generated code
to verify correctness, where each program was independently reviewed by multiple annotators.

In total, MMR-VIP encompasses 28 carefully crafted task types, each designed across three dif-
ficulty levels. For every task and difficulty, we randomly generated 20 instances, resulting in a
benchmark of 1,680 instances in total. We include detailed examples of each task in the Appendix
C. The mapping between task types and their corresponding cognitive skills is presented in Table 1.
Since all tasks are synthesized from code, MMR-VIP is reproducible and extendable. Researchers
can regenerate new instances by adjusting parameters or extend the benchmark with new task rules,
making MMR-VIP a continuously evolvable framework rather than a fixed dataset.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of existing MLLMs on MMR-VIP. We sys-
tematically evaluate model performance across different difficulty levels and cognitive skills, and
further contrast the effectiveness of CoT and TVP. We also analyze from multiple perspectives, in-
cluding the effect of iteration rounds, the role of input modalities, and the distribution of error types.

4.1 EXPERIMENTAL SETUP

We evaluate three categories of MLLMs on MMR-VIP: commercial models (e.g., GPT-4.1 (Ope-
nAI, 2025b), Gemini-2.5-Flash, Gemini-2.5-Pro (DeepMind, 2025), Claude-Sonnet-4 (Anthropic,
2025)), open-source models (e.g., Qwen2.5-VL (Bai et al., 2025), Gemma-3 (Kamath et al., 2025),
Keye-VL-1.5 (Yang et al., 2025a)), and native TVP models (e.g., o4-mini, GPT-5). We do not
include existing open-source models designed specifically for Thinking with Images, since these
models primarily focus on applying fixed transformations to images rather than freely generating

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Int
erv

al
DP

N-Q
ue

en
s

Tab
lea

u L
P

N-Puz
zle

Poin
t C

ou
nti

ng

Rico
ch

et
Ball

Ligh
ts O

ut

Slid
ing

 Puz
zle

Rub
ik'

s C
ub

e

Path
 Cou

nti
ng

Cha
rt

Heig
ht

Meas
ure

men
t

Reso
urc

e A
llo

cat
ion

Bub
ble

 Sort

Han
oi

Tow
er

Area
 M

eas
ure

men
t

Proj
ect

ile
 M

oti
on

Circ
uit

 Log
ic

Bin
Pack

ing

Bou
nd

ing
 Box

Hou
se

Rob
be

r
Maze

Sna
ke

 G
am

e

3D
 Posi

tio
n

Grap
h I

som
orp

his
m

Grap
h C

olo
rin

g

Calc
ula

tio
n

Thre
e-V

iew
s

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Figure 3: Performance comparison of Gemini-2.5-Flash on different tasks under CoT and TVP
(T = 3). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP
over CoT, and Red indicates degradations of TVP over CoT.

code to support reasoning. Moreover, to assess the effectiveness of different reasoning strategies,
we compare three settings: Chain-of-Thought, single-turn TVP, where the model invokes the code
executor once, and multi-turn TVP, where the model can iteratively generate, execute, and refine
code for up to T = 3, 5, 7 rounds. We provide the detailed prompts used for all settings in the
Appendix D. As a reference, we randomly sample 168 instances and invite human participants to
solve these tasks. Each participant is allowed to leverage search engines and interpreters during the
process. We adopt accuracy as the evaluation metric. We report results along three perspectives:
performance across different difficulty levels, performance across distinct cognitive skills, and the
overall accuracy.

4.2 EXPERIMENTAL RESULTS

As shown in the Table 2, our experiments on MMR-VIP yield several key findings:

(1) Performance differences across model types and reasoning paradigms. For open-source
models like Qwen2.5-VL-72B, introducing TVP offers negligible gains and sometimes results in
performance drops, owing to their limited visual programming capabilities. For commercial mod-
els, single-turn code execution produces unstable results, whereas multi-turn execution consistently
yields significant improvements. For instance, Gemini-2.5-Flash shows an accuracy gain of 18.3%
when increasing from T = 1 to T = 3. For native TVP models, although GPT-5 achieves the highest
performance, it attains only 38.2% accuracy, reflecting the substantial limitations that remain. We
can observe a clear performance gap relative to humans, underscoring that humans are more adept
at leveraging external tools to solve complex visual problems.

(2) Clear difficulty ladder. The results align closely with the benchmark’s design, showing a dis-
tinct ladder-shaped performance trend. Compared to direct CoT, TVP shows negligible differences
on easy tasks, achieves the largest improvements on medium tasks, and delivers consistent gains on
hard tasks. Nevertheless, performance at the hard level remains very low, with the best accuracy
reaching only 17.3%. This demonstrates that MMR-VIP effectively stratifies problems by difficulty,
thereby exposing the limits of current MLLMs’ reasoning capabilities.

(3) Imbalanced cognitive skills. The results reveal marked disparities across cognitive skills. TVP
delivers the most significant improvements in Optimization, where models effectively leverage pro-
grammatic search, planning, and computation to tackle complex problem-solving tasks. As shown
in Figure 3, Gemini-2.5-Flash exhibits large gains on tasks such as Interval Dynamic Program-
ming, N-Queens, Tableau Linear Programming, and N-Puzzle, where code execution is essential to
explore solution spaces. In addition, TVP also enhances Symbolic perception, since code allows
models to precisely recognize, parse, and manipulate digits, letters, or graphical symbols. However,
performance in Abstraction remains the most challenging, where models still struggle to translate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 3 5 7
Rounds

0%

10%

20%

30%

40%

50%

60%

70%

A
cc

ur
ac

y

Gemini-2.5-Flash

0 1 3 5 7
Rounds

0%

10%

20%

30%

40%

50%

60%

70%

A
cc

ur
ac

y

GPT-4.1-mini

0 1 3 5 7
Rounds

0%

10%

20%

30%

40%

50%

60%

70%

A
cc

ur
ac

y

Qwen2.5-VL-32B

0

1000

2000

3000

4000

5000

6000

To
ke

ns

0

1000

2000

3000

4000

5000

6000

To
ke

ns

0

1000

2000

3000

4000

5000

6000

To
ke

ns

Easy Acc Mid Acc Hard Acc Easy Tokens Mid Tokens Hard Tokens

Figure 4: Performance and token consumption under different iteration rounds (T = 0, 1, 3, 5, 7).
T = 0 corresponds to CoT. Green, orange, and red correspond to Easy, Medium, and Hard levels.

(a) Easy level. (b) Medium level. (c) Hard level.

Figure 5: Correctness flow between CoT (T = 0) and TVP (T = 3) for Gemini-2.5-Flash.

low-level visual cues into high-level formulations such as geometric equations, physical laws, or
graph structures. This underscores the necessity of improving their ability to abstract through code.

4.3 ANALYSIS

4.3.1 IMPACT OF ITERATION ROUNDS

We examine the impact of iterative rounds of code execution on model performance across easy,
medium, and hard tasks. As shown in Figure 4, compared to direct CoT, single-turn TVP (T = 1)
often leads to a drop in accuracy. To better understand this phenomenon, we compute the corre-
lation between the performance difference of TVP (T = 1) versus CoT and the success rate of
program execution. The Pearson correlation coefficient is 0.81 (p ≈ 0.05), indicating a strong posi-
tive relationship. A primary source of degradation arises when incorrect code execution propagates
interpreter error messages into the reasoning process, thereby misguiding subsequent inference.

Performance generally peaks at T = 3 or T = 5, where iterative refinement enables more re-
liable program execution and reflective reasoning. As illustrated in Figure 5, we further analyze
the correctness flow between CoT and TVP (T = 3). The results show that the most significant
changes occur at the Medium difficulty level. However, for open-source models like Qwen2.5-VL-
32B, additional iterations fail to bring noticeable gains. This finding highlights that robust visual
programming capabilities are indispensable for open-source models to fully realize the benefits of
TVP. Meanwhile, increasing to T = 7 brings little to no additional gains and instead results in
significantly higher token consumption, highlighting the trade-off between accuracy and efficiency.

4.3.2 INFLUENCE OF INPUT MODALITIES

Table 3: Performance comparison under dif-
ferent input modalities.

Model I T I & T
GPT-4.1-mini 26.3 75.0 76.3
Claude-Sonnet-4 7.5 50.0 63.8
GPT-5-mini 5.0 50.0 53.8
GPT-5 25.0 46.3 70.0

To further investigate the role of input modalities
in TVP, we select four tasks from MMR-VIP that
can be represented in both textual and visual forms:
Tableau LP, Chart, Graph Coloring, and Maze. This
design allows us to directly compare model perfor-
mance under three conditions: (1) image-only input
(I), (2) text-only input (T), and (3) combined im-
age–text input (I & T). Results in Table 3 show that
text input generally outperforms image input, indi-
cating that current models still have weaker visual
reasoning capabilities. Moreover, visual inputs sometimes introduce perception errors, which can

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

19.9%

9.3%

6.3%

34.3%

27.0%

3.1%

GPT-4.1-mini

30.2%

6.5%
3.4%

30.9%

27.1%

2.0%

GPT-4.1

29.2%

8.1%

6.1% 33.9%

21.4%
1.3%

Gemini 2.5 Flash

9.8%

10.6%

1.5%

39.6%

35.0%

3.4%

Claude Sonnet 4

Program Execution Error
Problem Misinterpretation

Output Formatting Issue
Visual Perception Error

Algorithmic Modeling Error
Program Inefficiency

Figure 6: Error analysis of four models under TVP (T = 1).

propagate through subsequent reasoning steps. Nevertheless, combined multimodal input consis-
tently surpasses unimodal input, particularly on tasks where the visual layout conveys structural or
spatial constraints that are difficult to capture with text alone.

4.3.3 ERROR ANALYSIS

To better understand the limitations of TVP, we conduct a detailed error analysis by categorizing
incorrect predictions into six major types: Program Execution Error, Visual Perception Error, Al-
gorithmic Modeling Error, Program Inefficiency, Problem Misinterpretation, and Output Formatting
Issue. The precise definitions and representative examples of each category are provided in the Ap-
pendix F. As illustrated in Figure 6, the most common sources of error are Visual Perception Error,
Algorithmic Modeling Error, and Program Execution Error. These results align with our earlier find-
ings: they reflect (1) the insufficiency of models in Perception and Abstraction, where they struggle
to accurately extract information from visual inputs and transform it into computationally useful for-
mulations, and (2) the limitations of current models’ programming capabilities, where code errors
remain prevalent. We also provide several case studies of CoT and TVP in Appendix G.

5 RELATED WORKS

Multimodal Reasoning. Multimodal reasoning has recently become a prominent frontier in AI re-
search, with an expanding set of benchmarks and investigations underscoring its pivotal importance
across domains such as interpreting scientific diagrams (Yue et al., 2024; Guo et al., 2025), solv-
ing geometry problems (Zhang et al., 2024b; Wang et al., 2024), and tackling visual puzzles (Chia
et al., 2024; Ghosal et al., 2025; Song et al., 2025). Recent work (Huang et al., 2025; Meng et al.,
2025; Chris et al., 2025; Hong et al., 2025; Deng et al., 2025; Wang et al., 2025c;b) has focused on
enhancing models’ reasoning ability through reinforcement learning, thereby extending reasoning
depth, enabling reflection and verification, and improving performance on complex tasks. However,
some studies argue that RL is constrained by an invisible leash (Wu et al., 2025a), preventing it from
discovering new reasoning trajectories beyond the model’s initial capabilities (Lin & Xu, 2025).

Visual Programming. Visual programming (Yang et al., 2025b; Surı́s et al., 2023; Hu et al., 2024b)
requires models to generate executable code based on visual inputs. MMCode (Li et al., 2024)
evaluates MLLMs’ code generation abilities on competitive-programming problems presented with
visual contexts. HumanEval-V (Zhang et al., 2024a) is a benchmark designed to evaluate complex
diagram understanding and visual reasoning abilities in programming contexts. It assesses whether
models can accurately infer the underlying rules embedded in visual diagrams and subsequently gen-
erate correct programs that satisfy the corresponding test cases. Moreover, SWE-bench Multimodal
(Yang et al., 2025b) evaluates agents on their ability to fix bugs in visual, user-facing JavaScript soft-
ware, with tasks that incorporate images within their problem statements or test cases. Built upon
the Mini-level of the XLogoOnline platform, XLogoOnline-Mini (Wen et al., 2025) requires mod-
els to synthesize programs that control a turtle navigating through a grid to accomplish a specified
goal. The benchmark evaluates a broad spectrum of capabilities, including mathematical reasoning,
logical reasoning, spatial understanding, and planning. The primary difference of our work, MMR-
VIP, is that it aims to evaluate a model’s multimodal reasoning capabilities, where code serves only
as an optional tool to enhance reasoning rather than being the final output. All code generated in
MMR-VIP is free-form and intended solely to assist in problem-solving.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Tool-Integrated Reasoning. Rather than relying solely on parametric knowledge within the model,
tool-integrated reasoning (TIR) (Jin et al., 2025; Li et al., 2025; Xue et al., 2025; Feng et al., 2025;
Dong et al., 2025) enables the model to reason with external tools, such as a Python interpreter. Ex-
tending this idea to multimodal settings, the paradigm of Thinking with Images (TWI) has emerged
as an effective approach (Lu et al., 2025; Su et al., 2025b;a; Lai et al., 2025; Wang et al., 2025d; Wu
et al., 2025b; Zhou et al., 2025). Instead of relying solely on textual reasoning, models are equipped
with a predefined set of visual tools such as cropping, zooming, or rotating, which allow them to
refine perception during problem solving. Recently, there has been a growing trend of enabling
MLLMs to generate executable code as part of the reasoning process (Tang et al., 2025; Zhao et al.,
2025; Hu et al., 2024a; Zhang et al., 2025; Wang et al., 2025a), showcasing the potential of the TVP.

6 CONCLUSION

In this work, we introduced MMR-VIP, a benchmark designed to evaluate multimodal agentic rea-
soning under the Thinking with Visual Programming paradigm. Beyond text-based CoT and fixed
visual tools, TVP allows models to flexibly generate, execute, and refine programmatic code, which
serve as intermediate reasoning steps to facilitate multimodal problem solving. MMR-VIP is specif-
ically crafted for this paradigm, featuring problems that are unsolvable under CoT-based reasoning
but become tractable when integrated with visual programming interactions. Progress in multimodal
agentic reasoning will depend critically on strengthening models’ coding proficiency, enhancing
their visual abstraction ability, and equipping them with multi-round iterative reasoning strategies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All experimental procedures involving human participants were conducted in accordance with the
relevant ethical guidelines. Moreover, all data instances in our benchmark are puzzle-style prob-
lems that are automatically synthesized through scripts rather than collected from real-world human
data. As such, the dataset contains no personal, harmful, or biased information. This ensures that
MMR-VIP is entirely safe for research and avoids introducing any sensitive or ethically problematic
content.

REPRODUCIBILITY STATEMENT

Our dataset is entirely script-synthesized rather than manually annotated or generated by LLMs, en-
suring full reproducibility. To facilitate this, we will release the synthesis scripts with fixed random
seeds alongside the final MMR-VIP dataset. We also provide data examples in the supplementary
materials. In addition, we provide detailed prompts used in all experiments in Appendix D, and
we will open-source the evaluation code together with the Python interpreter environment. This
guarantees that researchers can faithfully reproduce our experimental results.

REFERENCES

Anthropic. Introducing claude 4, May 2025. URL https://www.anthropic.com/news/
claude-4.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
CoRR, abs/2502.13923, 2025. doi: 10.48550/ARXIV.2502.13923. URL https://doi.org/
10.48550/arXiv.2502.13923.

Yew Ken Chia, Vernon Toh, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. Puz-
zlevqa: Diagnosing multimodal reasoning challenges of language models with abstract vi-
sual patterns. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 16259–16273. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024.FINDINGS-ACL.962. URL https://doi.org/10.18653/v1/
2024.findings-acl.962.

Chris, Yichen Wei, Yi Peng, Xiaokun Wang, Weijie Qiu, Wei Shen, Tianyidan Xie, Jiangbo Pei,
Jianhao Zhang, Yunzhuo Hao, Xuchen Song, Yang Liu, and Yahui Zhou. Skywork R1V2: multi-
modal hybrid reinforcement learning for reasoning. CoRR, abs/2504.16656, 2025. doi: 10.48550/
ARXIV.2504.16656. URL https://doi.org/10.48550/arXiv.2504.16656.

Google DeepMind. Gemini flash, 2025. URL https://deepmind.google/
technologies/gemini/flash/.

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
An early exploration to complex vision-language reasoning via iterative self-improvement. CoRR,
abs/2503.17352, 2025. doi: 10.48550/ARXIV.2503.17352. URL https://doi.org/10.
48550/arXiv.2503.17352.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and
Zhicheng Dou. Agentic reinforced policy optimization. CoRR, abs/2507.19849, 2025. doi: 10.
48550/ARXIV.2507.19849. URL https://doi.org/10.48550/arXiv.2507.19849.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
CoRR, abs/2504.11536, 2025. doi: 10.48550/ARXIV.2504.11536. URL https://doi.org/
10.48550/arXiv.2504.11536.

11

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://doi.org/10.48550/arXiv.2502.13923
https://doi.org/10.48550/arXiv.2502.13923
https://doi.org/10.18653/v1/2024.findings-acl.962
https://doi.org/10.18653/v1/2024.findings-acl.962
https://doi.org/10.48550/arXiv.2504.16656
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://doi.org/10.48550/arXiv.2503.17352
https://doi.org/10.48550/arXiv.2503.17352
https://doi.org/10.48550/arXiv.2507.19849
https://doi.org/10.48550/arXiv.2504.11536
https://doi.org/10.48550/arXiv.2504.11536

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Deepanway Ghosal, Vernon Toh, Yew Ken Chia, and Soujanya Poria. Algopuzzlevqa: Diagnos-
ing multimodal reasoning challenges of language models with algorithmic multimodal puzzles.
In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA,
April 29 - May 4, 2025, pp. 9615–9632. Association for Computational Linguistics, 2025. doi:
10.18653/V1/2025.NAACL-LONG.486. URL https://doi.org/10.18653/v1/2025.
naacl-long.486.

Ziyu Guo, Renrui Zhang, Hao Chen, Jialin Gao, Dongzhi Jiang, Jiaze Wang, and Pheng-Ann Heng.
Sciverse: Unveiling the knowledge comprehension and visual reasoning of lmms on multi-modal
scientific problems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Findings of the Association for Computational Linguistics, ACL 2025, Vienna,
Austria, July 27 - August 1, 2025, pp. 19683–19704. Association for Computational Linguistics,
2025. URL https://aclanthology.org/2025.findings-acl.1010/.

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai He,
Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Boyan Shi, Changyu Pang, Chenhui
Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiali Chen, Jing Chen, Jinhao Chen,
Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi Pan, Mingzhi Zhang,
Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu,
Shengbiao Meng, Tianshu Zhang, Tianwei Luo, Tianxiang Hao, Wenkai Li, Wei Jia, Xin Lyu,
Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yifan An, Yifan Du, Yiming
Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li, Yutao Zhang, Yuxuan
Zhang, Zhanxiao Du, Zhenyu Hou, Zhao Xue, Zhengxiao Du, Zihan Wang, Peng Zhang, Debing
Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie Tang. Glm-4.1v-thinking: Towards
versatile multimodal reasoning with scalable reinforcement learning. CoRR, abs/2507.01006,
2025. doi: 10.48550/ARXIV.2507.01006. URL https://doi.org/10.48550/arXiv.
2507.01006.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A.
Smith, and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought
for multimodal language models. In Amir Globersons, Lester Mackey, Danielle Bel-
grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
fb82011040977c7712409fbdb5456647-Abstract-Conference.html.

Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ran-
jay Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic
reasoning into vision-language models. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pp. 9590–9601. IEEE, 2024b.
doi: 10.1109/CVPR52733.2024.00916. URL https://doi.org/10.1109/CVPR52733.
2024.00916.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
CoRR, abs/2503.06749, 2025. doi: 10.48550/ARXIV.2503.06749. URL https://doi.org/
10.48550/arXiv.2503.06749.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
r1: Training llms to reason and leverage search engines with reinforcement learning. CoRR,
abs/2503.09516, 2025. doi: 10.48550/ARXIV.2503.09516. URL https://doi.org/10.
48550/arXiv.2503.09516.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Ta-
tiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geof-
frey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot,
Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton

12

https://doi.org/10.18653/v1/2025.naacl-long.486
https://doi.org/10.18653/v1/2025.naacl-long.486
https://aclanthology.org/2025.findings-acl.1010/
https://doi.org/10.48550/arXiv.2507.01006
https://doi.org/10.48550/arXiv.2507.01006
http://papers.nips.cc/paper_files/paper/2024/hash/fb82011040977c7712409fbdb5456647-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/fb82011040977c7712409fbdb5456647-Abstract-Conference.html
https://doi.org/10.1109/CVPR52733.2024.00916
https://doi.org/10.1109/CVPR52733.2024.00916
https://doi.org/10.48550/arXiv.2503.06749
https://doi.org/10.48550/arXiv.2503.06749
https://doi.org/10.48550/arXiv.2503.09516
https://doi.org/10.48550/arXiv.2503.09516

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tsitsulin, Róbert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil
Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter,
Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin
Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu
Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alexan-
der Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano
Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy,
Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le
Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisen-
bud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug
Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick
Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucinska, Harman
Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, and
Ivan Nardini. Gemma 3 technical report. CoRR, abs/2503.19786, 2025. doi: 10.48550/ARXIV.
2503.19786. URL https://doi.org/10.48550/arXiv.2503.19786.

Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, and Hengshuang Zhao. Mini-o3: Scaling up
reasoning patterns and interaction turns for visual search, 2025. URL https://arxiv.org/
abs/2509.07969.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiyong Huang, and Jing Ma. Mmcode:
Benchmarking multimodal large language models for code generation with visually rich pro-
gramming problems. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA,
November 12-16, 2024, pp. 736–783. Association for Computational Linguistics, 2024. doi: 10.
18653/V1/2024.FINDINGS-EMNLP.42. URL https://doi.org/10.18653/v1/2024.
findings-emnlp.42.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated RL. CoRR,
abs/2503.23383, 2025. doi: 10.48550/ARXIV.2503.23383. URL https://doi.org/10.
48550/arXiv.2503.23383.

Heng Lin and Zhongwen Xu. Understanding tool-integrated reasoning, 2025. URL https://
arxiv.org/abs/2508.19201.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=KUNzEQMWU7.

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic
framework with extensible tools for complex reasoning. CoRR, abs/2502.11271, 2025. doi: 10.
48550/ARXIV.2502.11271. URL https://doi.org/10.48550/arXiv.2502.11271.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Bo-
tian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang,
and Wenqi Shao. Mm-eureka: Exploring visual aha moment with rule-based large-scale rein-
forcement learning. CoRR, abs/2503.07365, 2025. doi: 10.48550/ARXIV.2503.07365. URL
https://doi.org/10.48550/arXiv.2503.07365.

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025a.

OpenAI. Gpt-4.1. https://openai.com/index/gpt-4-1/, 2025b.

Yueqi Song, Tianyue Ou, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang Yue. Visualpuzzles:
Decoupling multimodal reasoning evaluation from domain knowledge. CoRR, abs/2504.10342,
2025. doi: 10.48550/ARXIV.2504.10342. URL https://doi.org/10.48550/arXiv.
2504.10342.

13

https://doi.org/10.48550/arXiv.2503.19786
https://arxiv.org/abs/2509.07969
https://arxiv.org/abs/2509.07969
https://doi.org/10.18653/v1/2024.findings-emnlp.42
https://doi.org/10.18653/v1/2024.findings-emnlp.42
https://doi.org/10.48550/arXiv.2503.23383
https://doi.org/10.48550/arXiv.2503.23383
https://arxiv.org/abs/2508.19201
https://arxiv.org/abs/2508.19201
https://openreview.net/forum?id=KUNzEQMWU7
https://doi.org/10.48550/arXiv.2502.11271
https://doi.org/10.48550/arXiv.2503.07365
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/gpt-4-1/
https://doi.org/10.48550/arXiv.2504.10342
https://doi.org/10.48550/arXiv.2504.10342

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: Incentiviz-
ing pixel-space reasoning with curiosity-driven reinforcement learning. CoRR, abs/2505.15966,
2025a. doi: 10.48550/ARXIV.2505.15966. URL https://doi.org/10.48550/arXiv.
2505.15966.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie
Chen, Jiawei Gu, Juntao Li, Xiaoye Qu, and Yu Cheng. Openthinkimg: Learning to think with
images via visual tool reinforcement learning. CoRR, abs/2505.08617, 2025b. doi: 10.48550/
ARXIV.2505.08617. URL https://doi.org/10.48550/arXiv.2505.08617.

Zhaochen Su, Peng Xiang, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li,
Kaide Zeng, Zhengyuan Yang, Linjie Li, Yu Cheng, Heng Ji, Junxian He, and Yi R. (May) Fung.
Thinking with images for multimodal reasoning: Foundations, methods, and future frontiers.
CoRR, abs/2506.23918, 2025c. doi: 10.48550/ARXIV.2506.23918. URL https://doi.org/
10.48550/arXiv.2506.23918.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,
France, October 1-6, 2023, pp. 11854–11864. IEEE, 2023. doi: 10.1109/ICCV51070.2023.
01092. URL https://doi.org/10.1109/ICCV51070.2023.01092.

Bohao Tang, Yan Ma, Fei Zhang, Jiadi Su, Ethan Chern, Zhulin Hu, Zhixin Wang, Pengfei Liu, and
Ya Zhang. Visual programmability: A guide for code-as-thought in chart understanding, 2025.
URL https://arxiv.org/abs/2509.09286.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,
and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Con-
ference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/ad0edc7d5fa1a783f063646968b7315b-Abstract-Datasets_
and_Benchmarks_Track.html.

Ke Wang, Junting Pan, Linda Wei, Aojun Zhou, Weikang Shi, Zimu Lu, Han Xiao, Yunqiao Yang,
Houxing Ren, Mingjie Zhan, and Hongsheng Li. Mathcoder-vl: Bridging vision and code for
enhanced multimodal mathematical reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 2505–2534. Associa-
tion for Computational Linguistics, 2025a. URL https://aclanthology.org/2025.
findings-acl.128/.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang
Liu, Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin
Yang, Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding,
Changyao Tian, Zhenyu Wu, JingJing Xie, Zehao Li, Bowen Yang, Yuchen Duan, Xuehui Wang,
Zhi Hou, Haoran Hao, Tianyi Zhang, Songze Li, Xiangyu Zhao, Haodong Duan, Nianchen Deng,
Bin Fu, Yinan He, Yi Wang, Conghui He, Botian Shi, Junjun He, Yingtong Xiong, Han Lv, Lijun
Wu, Wenqi Shao, Kaipeng Zhang, Huipeng Deng, Biqing Qi, Jiaye Ge, Qipeng Guo, Wenwei
Zhang, Songyang Zhang, Maosong Cao, Junyao Lin, Kexian Tang, Jianfei Gao, Haian Huang,
Yuzhe Gu, Chengqi Lyu, Huanze Tang, Rui Wang, Haijun Lv, Wanli Ouyang, Limin Wang, Min
Dou, Xizhou Zhu, Tong Lu, Dahua Lin, Jifeng Dai, Weijie Su, Bowen Zhou, Kai Chen, Yu Qiao,
Wenhai Wang, and Gen Luo. Internvl3.5: Advancing open-source multimodal models in versatil-
ity, reasoning, and efficiency. CoRR, abs/2508.18265, 2025b. doi: 10.48550/ARXIV.2508.18265.
URL https://doi.org/10.48550/arXiv.2508.18265.

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
visual reasoning self-improvement. CoRR, abs/2504.07934, 2025c. doi: 10.48550/ARXIV.2504.
07934. URL https://doi.org/10.48550/arXiv.2504.07934.

14

https://doi.org/10.48550/arXiv.2505.15966
https://doi.org/10.48550/arXiv.2505.15966
https://doi.org/10.48550/arXiv.2505.08617
https://doi.org/10.48550/arXiv.2506.23918
https://doi.org/10.48550/arXiv.2506.23918
https://doi.org/10.1109/ICCV51070.2023.01092
https://arxiv.org/abs/2509.09286
http://papers.nips.cc/paper_files/paper/2024/hash/ad0edc7d5fa1a783f063646968b7315b-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/ad0edc7d5fa1a783f063646968b7315b-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/ad0edc7d5fa1a783f063646968b7315b-Abstract-Datasets_and_Benchmarks_Track.html
https://aclanthology.org/2025.findings-acl.128/
https://aclanthology.org/2025.findings-acl.128/
https://doi.org/10.48550/arXiv.2508.18265
https://doi.org/10.48550/arXiv.2504.07934

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ye Wang, Qianglong Chen, Zejun Li, Siyuan Wang, Shijie Guo, Zhirui Zhang, and Zhongyu Wei.
Simple o3: Towards interleaved vision-language reasoning, 2025d. URL https://arxiv.
org/abs/2508.12109.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Chao Wen, Jacqueline Staub, and Adish Singla. Program synthesis benchmark for visual program-
ming in XLogoOnline environment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15812–15838, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.769. URL https://aclanthology.org/2025.acl-long.769/.

Fang Wu, Weihao Xuan, Ximing Lu, Zaı̈d Harchaoui, and Yejin Choi. The invisible leash: Why
RLVR may not escape its origin. CoRR, abs/2507.14843, 2025a. doi: 10.48550/ARXIV.2507.
14843. URL https://doi.org/10.48550/arXiv.2507.14843.

Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, and Tieniu
Tan. Reinforcing spatial reasoning in vision-language models with interwoven thinking and
visual drawing. CoRR, abs/2506.09965, 2025b. doi: 10.48550/ARXIV.2506.09965. URL
https://doi.org/10.48550/arXiv.2506.09965.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning, 2025. URL
https://arxiv.org/abs/2509.02479.

Biao Yang, Bin Wen, Boyang Ding, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao,
Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Guowang Zhang, Han Shen, Hao Peng,
Haojie Ding, Hao Wang, Haonan Fan, Hengrui Ju, Jiaming Huang, Jiangxia Cao, Jiankang Chen,
Jingyun Hua, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Muhao Wei, Qiang Wang, Ruitao
Wang, Sen Na, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei
Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yi-Fan Zhang, Yiping Yang, Yulong Chen,
Zeyi Lu, Zhenhua Wu, Zhixin Ling, Zhuoran Yang, Ziming Li, Di Xu, Haixuan Gao, Hang Li,
Jing Wang, Lejian Ren, Qigen Hu, Qianqian Wang, Shiyao Wang, Xinchen Luo, Yan Li, Yuhang
Hu, and Zixing Zhang. Kwai keye-vl 1.5 technical report, 2025a. URL https://arxiv.
org/abs/2509.01563.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida Wang, and
Ofir Press. Swe-bench multimodal: Do AI systems generalize to visual software domains? In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025b. URL https://openreview.net/forum?
id=riTiq3i21b.

Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. MMMU: A massive multi-discipline multimodal understanding and reason-
ing benchmark for expert AGI. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pp. 9556–9567. IEEE, 2024.
doi: 10.1109/CVPR52733.2024.00913. URL https://doi.org/10.1109/CVPR52733.
2024.00913.

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen,
and Jacky Keung. Humaneval-v: Evaluating visual understanding and reasoning abilities of large

15

https://arxiv.org/abs/2508.12109
https://arxiv.org/abs/2508.12109
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://aclanthology.org/2025.acl-long.769/
https://doi.org/10.48550/arXiv.2507.14843
https://doi.org/10.48550/arXiv.2506.09965
https://arxiv.org/abs/2509.02479
https://arxiv.org/abs/2509.01563
https://arxiv.org/abs/2509.01563
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

multimodal models through coding tasks. CoRR, abs/2410.12381, 2024a. doi: 10.48550/ARXIV.
2410.12381. URL https://doi.org/10.48550/arXiv.2410.12381.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Yu Qiao, Peng Gao, and Hongsheng Li. MATHVERSE: does your
multi-modal LLM truly see the diagrams in visual math problems? In Ales Leonardis, Elisa
Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), Computer Vi-
sion - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024,
Proceedings, Part VIII, volume 15066 of Lecture Notes in Computer Science, pp. 169–186.
Springer, 2024b. doi: 10.1007/978-3-031-73242-3\ 10. URL https://doi.org/10.
1007/978-3-031-73242-3_10.

Yifan Zhang, Xingyu Lu, Shukang Yin, Chaoyou Fu, Wei Chen, Xiao Hu, Bin Wen, Kaiyu Jiang,
Changyi Liu, Tianke Zhang, Haonan Fan, Kaibing Chen, Jiankang Chen, Haojie Ding, Kaiyu
Tang, Zhang Zhang, Liang Wang, Fan Yang, Tingting Gao, and Guorui Zhou. Thyme: Think
beyond images. CoRR, abs/2508.11630, 2025. doi: 10.48550/ARXIV.2508.11630. URL https:
//doi.org/10.48550/arXiv.2508.11630.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. Trans. Mach. Learn. Res., 2024, 2024c. URL
https://openreview.net/forum?id=y1pPWFVfvR.

Shitian Zhao, Haoquan Zhang, Shaoheng Lin, Ming Li, Qilong Wu, Kaipeng Zhang, and Chen Wei.
Pyvision: Agentic vision with dynamic tooling, 2025. URL https://arxiv.org/abs/
2507.07998.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
Xing Yu. Deepeyes: Incentivizing ”thinking with images” via reinforcement learning. CoRR,
abs/2505.14362, 2025. doi: 10.48550/ARXIV.2505.14362. URL https://doi.org/10.
48550/arXiv.2505.14362.

Zetong Zhou, Dongping Chen, Zixian Ma, Zhihan Hu, Mingyang Fu, Sinan Wang, Yao Wan, Zhou
Zhao, and Ranjay Krishna. Reinforced visual perception with tools, 2025. URL https://
arxiv.org/abs/2509.01656.

16

https://doi.org/10.48550/arXiv.2410.12381
https://doi.org/10.1007/978-3-031-73242-3_10
https://doi.org/10.1007/978-3-031-73242-3_10
https://doi.org/10.48550/arXiv.2508.11630
https://doi.org/10.48550/arXiv.2508.11630
https://openreview.net/forum?id=y1pPWFVfvR
https://arxiv.org/abs/2507.07998
https://arxiv.org/abs/2507.07998
https://doi.org/10.48550/arXiv.2505.14362
https://doi.org/10.48550/arXiv.2505.14362
https://arxiv.org/abs/2509.01656
https://arxiv.org/abs/2509.01656

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In this work, Large Language Models (LLMs) were used solely as general-purpose auxiliary tools.
Their role was limited to polishing grammar and phrasing to enhance the clarity of the manuscript,
as well as assisting in the generation of Python and LaTeX code for creating figures and tables. No
parts of the research ideation, experimental design, analysis, or substantive writing relied on LLMs.

B DISCUSSION

Here, we would like to discuss the relationship between Thinking with Images (TWI) and Thinking
with Visual Programming (TVP).

Existing approaches under the Thinking with Images paradigm typically rely on a predefined set of
visual tools, such as cropping, zooming, and rotating. These operations can indeed enhance per-
ceptual accuracy, especially for handling high-resolution images or focusing attention on relevant
regions. However, their scope is inherently narrow. While effective for improving low-level per-
ception, such fixed transformations provide limited support for deep reasoning tasks that require
abstraction, planning, or algorithmic optimization. In other words, current Thinking with Images
primarily enhances seeing more carefully, but does not necessarily enable thinking more deeply.

In contrast, Thinking with Visual Programming generalizes beyond fixed toolkits by allowing mod-
els to write and execute code, thus treating visual operations themselves as programmable functions.
This enables not only flexible tool selection but also the creation of new tools on demand, allowing
the reasoning process to adapt dynamically to the task at hand. Under this view, cropping or rotat-
ing an image represents only one instance within a broader spectrum of programmable operations,
which may also involve algorithmic simulation, complex computation, or visualization.

From this perspective, TWI can be regarded as a subset of TVP, serving as a valuable stepping stone
but not the ultimate goal. As our experimental results demonstrate, current models remain far from
fully realizing the TVP paradigm. While existing studies have already achieved promising outcomes
under the TWI framework, a substantial gap persists between these methods and the broader vision
of TVP. Bridging this gap requires equipping models with stronger visual programming capabili-
ties and more advanced visual abstraction skills, enabling them to move beyond fixed perceptual
tools toward flexible, programmable reasoning. On this foundation, agentic reinforcement learning
can become truly effective. In the future, we envision equipping MLLMs with access to external
resources such as web browsers. This would allow them not only to autonomously create tools
through code but also to search for and integrate existing tools from the internet.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C BENCHMARK DETAILS

To ensure the data quality of MMR-VIP, we provided annotators with a detailed guideline:

All tasks must:
(1) Be code-synthesizable (problems, images, and solutions are generated by code).
(2) Be aligned with cognitive skills (at least 1, at most 3 from the given taxonomy).
(3) Be stratified into difficulty levels (Easy / Medium / Hard).
(4) Be suitable for programmatic reasoning (problems solvable or aided by code execution).
Cognitive Skills
(1) Attribute: identify colors, shapes, sizes.
(2) Location: detect positions, distances, spatial relations.
(3) Symbolic: recognize digits, letters, or visual symbols.
(4) Geometry: formulate geometric equations or relations.
(5) Physics: model dynamics using physical laws.
(6) Network: construct graph structures (nodes, edges, constraints).
(7) Search: implement DFS, BFS, or other exploration methods.
(8) Planning: apply dynamic/linear programming to solve constrained problems.
(9) Computation: perform numerical calculations or algorithmic procedures.
Difficulty Levels
(1) Easy: solvable using intrinsic perceptual and reasoning abilities, without code execution.
(2) Medium: requiring programmatic operations, where external computation is essential.
(3) Hard: remaining challenging even with programming support, typically due to high algo-
rithmic complexity or intricate constraints.
Workflow
Annotators should first define the problem (including its target cognitive skills and difficulty
levels), then implement code that generates instances and computes the ground-truth solution.
Next, the problem must be visualized using standard libraries to ensure clarity. Each program
should support batch generation of images, questions, and answers across difficulty levels.
Finally, the generated code must undergo validation, where outputs are independently reviewed
to ensure correctness and consistency between problem, visualization, and answer.

Hanoi Tower (Attribute)

Question: Find the minimum number of moves
required to get from the Tower of Hanoi state
described in the figure to the completed state.

Answer: 28

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the minimum number of moves
required to get from the Tower of Hanoi state
described in the figure to the completed state.

Answer: 52

Question: Find the minimum number of moves
required to get from the Tower of Hanoi state
described in the figure to the completed state.

Answer: 26

Figure 7: Data example of Hanoi Tower.

Sliding Puzzle (Search)

Question: At each time, any colored ball can be
exchanged with the white ball. How many such
exchanges are needed at least to make all the red
balls arranged in front of the green balls (white
ball positions are arbitrary)?

Answer: 5

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: At each time, any colored ball can be
exchanged with the white ball. How many such
exchanges are needed at least to make all the red
balls arranged in front of the green balls (white
ball positions are arbitrary)?

Answer: 9

Question: At each time, any colored ball can be
exchanged with the white ball. How many such
exchanges are needed at least to make all the red
balls arranged in front of the blue balls and blue
balls in front of the yellow balls (white ball
positions are arbitrary)?

Answer: 9

Figure 8: Data example of Sliding Puzzle.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

3D Position (Location)

Question: What is the color of the ball at (2, 2, 2)?
The answer is the name of the color, with the
first letter capitalized. You can choose an answer
from Red, Green, Orange, Cyan, Purple, Blue,
Yellow and Magenta.

Answer: Purple

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: What is the color of the ball at (2, 2, 2)?
The answer is the name of the color, with the
first letter capitalized. You can choose an answer
from Red, Green, Orange, Cyan, Purple, Blue and
Yellow.

Answer: Yellow

Question: What is the color of the ball at (2, 4, 3)?
The answer is the name of the color, with the
first letter capitalized. You can choose an answer
from Red, Green, Orange, Cyan, Purple, Blue and
Yellow.

Answer: Purple

Figure 9: Data example of 3D Position.

Bin Packing (Search)

Question: There are some blocks in the picture.
Find the smallest square area that can place all
the small blocks in the area in a suitable way
without overlapping. Return the length of the
square side.

Answer: 5

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: There are some blocks in the picture.
You are required to piece them together into a
rectangle. Please return the perimeter of the
rectangle.

Answer: 22

Question: There are some blocks in the picture.
Find the smallest square area that can place all
the small blocks in the area in a suitable way
without overlapping. Return the length of the
square side.

Answer: 8

Figure 10: Data example of Bin Packing.

Graph Coloring (Network)

Question: Given the following four-coloring
problem graph, where part of the region has been
pre-colored, how many coloring combinations are
there for the remaining region?

Answer: 56

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given the following four-coloring
problem graph, where part of the region has been
pre-colored, how many coloring combinations are
there for the remaining region?

Answer: 131

Question: Given the following four-coloring
problem graph, where part of the region has been
pre-colored, how many coloring combinations are
there for the remaining region?

Answer: 14862336

Figure 11: Data example of Graph Coloring.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Maze (Search)

Question: The picture describes a maze problem,
where green is the starting position and red is the
end point. Find the length of the shortest path.
Each grid square has a length of 1.

Answer: 44

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The picture describes a maze problem,
where green is the starting position and red is the
end point. Find the length of the shortest path.吧
Each grid square has a length of 1.

Answer: 104

Question: The picture describes a maze problem,
where green is the starting position and red is the
end point. Find the length of the shortest path.
Each grid square has a length of 1.

Answer: 102

Figure 12: Data example of Maze.

Point Counting (Attribute)

Question: What is the number of red dots?

Answer: 10

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: What is the number of red dots?

Answer: 32

Question: What is the number of red dots?

Answer: 12

Figure 13: Data example of Point Counting.

Height Measurement (Location)

Question: Detect the length of the red line,
where the side length of each grid on the
chessboard is 0.5. The length of the red line is an
integer multiple of the length of the floor tile.
How long is the red line in the picture?

Answer: 1.5

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Detect the diagonal length of the red
line, where the side length of each grid square is
0.5. The result should be rounded to one decimal
place.

Answer: 2.2

Question: Estimate the volume of the 3D prism
shown in the image. The result should be rounded
to one decimal place. The side length of each grid
on the chessboard is 0.5.

Answer: 1.3

Figure 14: Data example of Height Measurement.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Resource Allocation (Planning)

Question: This is the heatmap of the question.
Each task can only be assigned to one person, and
each person can only be assigned one task. How to
allocate to maximize total profit? (all profits are
multiples of ten), and output the maximum profit.

Answer: 210

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is the heatmap of the question.
Each task can only be assigned to one person, and
each person can only be assigned one task. How to
allocate to maximize total profit? (all profits are
multiples of ten), and output the maximum profit.

Answer: 440

Question: This is a heatmap showing the profit of
each employee (rows) for different tasks
(columns). Task 1 requires exactly 3 people; Task
2 requires exactly 3 people; Task 3 requires
exactly 1 person; Task 4 requires exactly 3 people;
Task 5 requires exactly 2 people. Under the
constraint that each task must have exactly the
required number of people, what is the maximum
total profit achievable by assigning employees?
Note: All profit values are multiples of 10. Each
task's total profit is the sum of the profits
contributed by one or more people assigned to
that task; not every task must be completed. Each
person can be assigned to at most one task.

Answer: 710

Figure 15: Data example of Resource Allocation.

Rubik's Cube (Geometry)

Question: This is the expansion diagram of a
second-order Rubik's Cube. Given the initial state,
you can perform 18 standard operations. Find the
minimum number of steps to make the Rubik's
Cube reach the restored state. The goal is to
restore the cube to its original state, with green
on the front face, white on the top, and yellow on
the bottom, disregarding isomorphic
configurations.

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is the expansion diagram of a
second-order Rubik's Cube. Given the initial state,
you can perform 18 standard operations. Find the
minimum number of steps to make the Rubik's
Cube reach the restored state. The goal is to
restore the cube to its original state, with green
on the front face, white on the top, and yellow on
the bottom, disregarding isomorphic
configurations.

Answer: 5

Question: This is a diagram of a Rubik's Cube.
Given an initial state (above), you can perform the
standard 18 operations to find the minimum
number of moves required to get the Rubik's Cube
to the given state (below). We disregard
isomorphism; we only ensure that the
transformation is valid within the current view.

Answer: 5

Figure 16: Data example of Rubik’s Cube.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lights Out (Planning)

Question: Game Rule: Clicking a light toggles itself
and its adjacent (up, down, left, right) lights.
What is the minimum number of clicks required to
turn off all the lights?

Answer: 2

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Game Rule: Clicking a light toggles itself
and its adjacent (up, down, left, right) lights.
What is the minimum number of clicks required to
turn off all the lights?

Answer: 6

Question: Game Rule: Clicking a light toggles itself
and its diagonal (upper-left, upper-right, lower-
left, lower-right) lights. What is the minimum
number of clicks required to turn off all the lights?

Answer: 12

Figure 17: Data example of Lights Out.

Snake Game (Search)

Question: This is a snake game. How many steps
do you need to take from the current state to eat
the food?

Answer: 6

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is a snake game. How many steps
do you need to take from the current state to eat
two foods one after another (regardless of the
order of the two foods)?

Answer: 13

Question: This is a snake game. How many steps
do you need to take from the current state to eat
two foods one after another (regardless of the
order of the two foods)? At the same time, pay
attention to avoid obstacles.

Answer: 10

Figure 18: Data example of Snake Game.

Three-Views (Geometry)

Question: Given a description of the three-view
drawing of a solid figure, find the maximum
number of small cubes that the solid figure can be
composed of when the three-view constraints are
met.

Answer: 7

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given a description of the three-view
drawing of a solid figure, find the maximum
number of small cubes that the solid figure can be
composed of when the three-view constraints are
met.
Answer: 13

Question: Given a description of the three-view
drawing of a solid figure, find the maximum
number of small cubes that the solid figure can be
composed of when the three-view constraints are
met.
Answer: 25

Figure 19: Data example of Three-Views.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Graph Isomorphism (Network)

Question: Determine whether the two graphs
given in the figure are isomorphic. If you think
they are isomorphic, answer 1; if you think they
are not isomorphic, answer 0.

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Determine whether the two graphs
given in the figure are isomorphic. If you think
they are isomorphic, answer 1; if you think they
are not isomorphic, answer 0.

Answer: 1

Question: Determine whether the two graphs
given in the figure are isomorphic. If you think
they are isomorphic, answer 1; if you think they
are not isomorphic, answer 0.

Answer: 0

Figure 20: Data example of Graph Isomorphism.

Projectile Motion (Physics)

Question: Find the horizontal coordinate of the
first time the ball hits the ground. The result is
rounded down to the nearest integer.

Answer: 10

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the horizontal coordinate of the
first time the ball hits the ground. The result is
rounded down to the nearest integer. Note that
there is no energy loss in the event of a collision.

Answer: 21

Question: Find the horizontal coordinate of the
first time the ball hits the ground. The result is
rounded down to the nearest integer. Note that
when a collision occurs, there is no horizontal
energy loss, and the vertical speed is reduced to
0.9 times the original speed.

Answer: 23

Figure 21: Data example of Projectile Motion.

Calculation (Computation)

Question: Given the first 8 numbers in the nine-
square grid, calculate the smallest positive integer
such that the sum of this number plus all previous
numbers is an integer multiple of 20.

Answer: 9

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the lowest common multiple of all
numbers in the 25-square grid.

Answer: 3303720

Question: Given the first 35 numbers in a 36-
square grid, find the smallest positive integer
such that all the numbers in the 36-square grid
can be divided into two parts of 18 numbers + 18
numbers, where the sum of the two parts is equal.

Answer: 1

Figure 22: Data example of Calculation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Chart (Symbolic)

Question: Find the variance in the following
histogram, where the data are distributed only
above tens and the height of the histogram is an
integer multiple of 5. Keep the result of the
variance as an integer.

Answer: 814

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given the schedule below, what is the
maximum total time (in minutes) a person can
spend in lectures? All time nodes are integer
multiples of 10 minutes.

Answer: 580

Question: Given the schedule below, what is the
maximum total time (in minutes) a person can
spend in lectures? The selected schedule MUST
include at least one Mathematics lecture and at
least one Art lecture. In the chart: blue for
mathematics, green for physics, yellow for art,
purple for music, and orange for physical
education. All time nodes are integer multiples of
10 minutes.

Answer: 570

Figure 23: Data example of Chart.

Circuit Logic (Physics)

Question: This is a digital circuit problem. Given
known input values for the circuit, determine the
output value.

Answer: 0

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given some known input values and
observed outputs, determine how many possible
combinations exist for the unknown inputs that
would produce the same outputs.

Answer: 14

Question: Given some known input values and
observed outputs, determine how many possible
combinations exist for the unknown inputs that
would produce the same outputs.

Answer: 0

Figure 24: Data example of Circuit Logic.

House Robber (Planning)

Question: What is the maximum amount of money
that can be robbed from the houses? The
neighboring houses cannot be robbed at the same
time.

Answer: 125

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: What is the maximum amount of money
that can be robbed from the houses? The
neighboring houses cannot be robbed at the same
time.

Answer: 257

Question: What is the maximum amount of money
that can be robbed from the houses? The
connected houses cannot be robbed at the same
time.

Answer: 314

Figure 25: Data example of House Robber.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Interval DP (Planning)

Question: The picture shows the balloon popping
problem. You need to pop all the balloons in a
certain order. The reward for a popped balloon is
the product of itself and the values on the left
and right balloons. If there is no balloon on the
left or right, multiply the value of the balloon on
the left or right by 1. You need only find the total
maximum reward. Give me the number.

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The picture shows the balloon popping
problem. You need to pop all the balloons in a
certain order. The reward for a popped balloon is
the product of itself and the values on the left
and right balloons. If there is no balloon on the
left or right, multiply the value of the balloon on
the left or right by 1. You need only find the total
maximum reward. Give me the number.

Answer: 1035613

Question: The picture shows the balloon popping
problem. You need to pop all the balloons in a
certain order. The reward for popping a red
balloon is the product of itself and the value on
the balloons to the left and right. The reward for
popping a gold balloon is doubled, and the reward
for popping a black balloon becomes negative. If
there is no balloon on the left or right, multiply
the value by 1. You only need to find the maximum
reward and keep only the final value.

Answer: 1639518

Figure 26: Data example of Interval DP.

N-Puzzle (Search)

Question: This is an 8-digit puzzle. Find the
minimum number of steps to restore it.

Answer: 3

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: This is an 8-digit puzzle. Find the
minimum number of steps to restore it.

Answer: 21

Question: This is an 15-digit puzzle. Find the
minimum number of steps to restore it.

Answer: 17

Figure 27: Data example of N-Puzzle.

Tableau LP (Planning)

Question: Given the supply, demand, and route
table for this logistics problem, what is the
minimum total cost? Please provide the answer as
an integer.

Answer: 5126

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Given the supply, demand, and route
table for this logistics problem, what is the
minimum total cost? Please provide the answer as
an integer.

Answer: 8085

Question: Given the supply, demand, and route
table for this logistics problem, what is the
minimum total cost? Please provide the answer as
an integer.

Answer: 6309

Figure 28: Data example of Tableau LP.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Area Measurement (Geometry)

Question: Find the area of the following
quadrilateral, where all points are on integers. The
result is rounded to 1 decimal place.

Answer: 4.0

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Find the area of the following
quadrilateral, where all points are on integers. The
result is rounded to 1 decimal place.

Answer: 4.0

Question: Find the area of the quadrilateral in the
figure, where the side length of the square
border is 10 and the vertices of the quadrilateral
are all on points that are integer multiples of 0.5.
The result is rounded to one decimal place.

Answer: 5.6

Figure 29: Data example of Area Measurement.

Ricochet Ball (Physics)

Question: How many ricochets will a ball launched
from (1.0, 1.0) at 30\u00b0 need to hit the target
at (9.0, 9.0)? The ball reflects perfectly off the
arena walls and mirror-obstacles.

Answer: 6

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: How many ricochets will a ball launched
from (1.0, 1.0) at 15\u00b0 need to hit the target
at (9.0, 9.0)? The ball reflects perfectly off the
arena walls and mirror-obstacles.

Answer: 5

Question: How many ricochets will a ball launched
from (1.0, 1.0) at 20\u00b0 need to hit the target
at (11.0, 9.0)? The ball reflects perfectly off the
arena walls and mirror-obstacles.

Answer: 8

Figure 30: Data example of Ricochet Ball.

Bubble Sort (Search)

Question: The figure describes the ball exchange
problem. The white ball can exchange positions
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls
are arranged in the order of red, blue, green, and
yellow from the upper left corner in the order of
rows first and columns. How many exchanges are
needed?

Answer: 3

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The figure describes the ball exchange
problem. The white ball can exchange positions
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls
are arranged in the order of red, blue, green, and
yellow from the upper left corner in the order of
rows first and columns. How many exchanges are
needed?

Answer: 12

Question: The figure describes the ball exchange
problem. The white ball can exchange positions
with the adjacent colored balls in the 4-
neighborhood. The target state is that all balls
are arranged in the order of red, blue, green,
yellow and purple from the upper left corner in
the order of rows first and columns. How many
exchanges are needed?

Answer: 12

Figure 31: Data example of Bubble Sort.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Bounding Box (Location)

Question: Calculate the minimum enclosing
rectangle area of the following rectangle, where
the sides of the enclosing rectangle must be
parallel to the grid.

Answer: 36

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: Calculate the area of the circumscribed
rectangle of each polygon according to its color,
and then find the sum of the areas of these
circumscribed rectangle. The final result only
retains the sum of the areas and retains the
integer.

Answer: 442

Question: Calculate the area of the minimum
circumscribed circle of all polygons in the graph,
and keep the result as an integer.

Answer: 770

Figure 32: Data example of Bounding Box.

Path Counting (Computation)

Question: The green dot in the picture is the
starting point, and the blue dot is the end point.
Each move can only go one square to the right or
down. How many different simple paths are there?

Answer: 11

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: The green dot in the picture is the
starting point, and the blue dot is the end point.
Each move can only go one square to the right or
down. How many different simple paths are there?

Answer: 232

Question: In this diagram, the green dot is the
starting point and the blue dot is the destination.
How many different simple paths are there?

Answer: 25960704

Figure 33: Data example of Path Counting.

N-Queens (Search)

Question: It is required to place a number of
queens so that there is a queen in each row and
column. Find the number of different placements
of queens that satisfy the constraint that queens
cannot attack each other.

Answer: 1

Difficulty: Easy Difficulty: Medium Difficulty: Hard

Question: It is required to place a number of
queens so that there is a queen in each row and
column. Find the number of different placements
of queens that satisfy the constraint that queens
cannot attack each other. At the same time, the
newly placed queen cannot be eaten by the
existing knight, but there is no need to consider
whether the knight will be attacked by the queen.

Answer: 5

Question: The goal is to place a certain number of
queens so that there is one queen in each row and
column. Queens cannot attack each other, and
newly placed queens cannot be captured by
existing knights, but there is no need to consider
whether knights can be attacked by queens. Each
square on the board has a specific color,
representing the cost of placing a new queen on
that square. The goal is to minimize this cost while
meeting these requirements.

Answer: 170

Figure 34: Data example of N-Queens.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D EVALUATION DETAILS

We provide the prompts for both direct CoT reasoning and multi-turn TVP reasoning, as illustrated
in Figure 35 and Figure 36.

Prompt for Direct CoT

System Prompt:
You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The

reasoning process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in

\\boxed{}. Please note that if the answer requires a numerical value, please keep only the number without

punctuation, units, formulas or explanations. Don't run code in your own environment.

Figure 35: Prompt for direct CoT reasoning.

Prompt for Multi-turn TVP

System Prompt:
You are a visual reasoning assistant that MUST write executable Python code to solve problems. You can iterate

through multiple rounds to refine your solution (maximum {N} code executions).

IMPORTANT CODE FORMATTING RULES:

- You MUST wrap your code EXACTLY with <code> and </code> tags

- Do NOT use backticks (`), triple-backticks (```), or any other delimiters

- Inside <code>...</code> put only valid Python code

- Do NOT HTML-escape characters (use <, >, &, not <, >, &)

HELPER FUNCTIONS:

1 import os
 2 import re
 3 import typing
 4 def find_original_image_name(work_dir: str = '.') -> typing.Optional[str]:
 5 '''Find the original image filename, excluding processed versions'''
 6 for f in sorted(os.listdir(work_dir)):
 7 if not f.lower().endswith('.png'): continue
 8 if f.startswith('crop_'): continue
 9 if re.search(r'_m(?:\\d+)?\\.png$', f): continue
10 return f
11 return None
12 def processed_image_name(original_image: str) -> str:
13 '''Return processed image filename for current iteration'''
14 base, ext = os.path.splitext(original_image)
15 return f'{{base}}_m{iteration}{{ext}}'

CODE REQUIREMENTS:

- Use find_original_image_name() to locate the input image

- Save your processed image using processed_image_name() (will be *_m{iteration}.png)
- Use only relative paths and work within the current directory

- Do not access network or write outside the current folder

If iteration == 1:
This is your FIRST iteration. Analyze the image and question carefully, then write Python code to solve it. Focus

on understanding the problem and implementing a basic solution.

Else:
This is iteration {iteration}/{N}. You can see your previous attempts and their results in the conversation

history. Analyze what went wrong in previous iterations and improve your approach. Consider the execution results

and any generated images from previous attempts.

Prompt for Final Answer Integration：
=== FINAL INTEGRATION ===

Based on all your previous attempts, code executions, and any generated images, please provide your final answer

to the original question. Original question: {question}
Format your final answer using \\boxed{answer} notation.

Figure 36: Prompt for multi-turn TVP reasoning.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

As a human reference, we randomly sampled 168 instances from the benchmark and invited three
participants to solve these tasks. All participants were PhD students with strong programming back-
grounds. On average, each task required approximately 8 minutes to complete. During the process,
participants were allowed to write code and make use of search engines to access external resources
and tools when necessary.

N-Puz
zle

Int
erv

al
DP

N-Q
ue

en
s

Poin
t C

ou
nti

ng

Slid
ing

 Puz
zle

Ligh
ts O

ut

Path
 Cou

nti
ng

Hou
se

Rob
be

r

Circ
uit

 Log
ic

Rub
ik'

s C
ub

e

Han
oi

Tow
er

Reso
urc

e A
llo

cat
ion

Heig
ht

Meas
ure

men
t

Proj
ect

ile
 M

oti
on

Grap
h I

som
orp

his
m

Grap
h C

olo
rin

g

Calc
ula

tio
n

Maze

3D
 Posi

tio
n

Bub
ble

 Sort

Rico
ch

et
Ball

Bin
Pack

ing

Thre
e-V

iew
s

Sna
ke

 G
am

e

Tab
lea

u L
P

Area
 M

eas
ure

men
t

Bou
nd

ing
 Box

Cha
rt

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Figure 37: Performance comparison of Claude-Sonnet-4 on different tasks under CoT and TVP
(T = 1). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP
over CoT, and Red indicates degradations of TVP over CoT.

Int
erv

al
DP

N-Puz
zle

N-Q
ue

en
s

Tab
lea

u L
P

Poin
t C

ou
nti

ng

Rico
ch

et
Ball

Thre
e-V

iew
s

Heig
ht

Meas
ure

men
t

Ligh
ts O

ut

Calc
ula

tio
n

Rub
ik'

s C
ub

e

Grap
h C

olo
rin

g

Sna
ke

 G
am

e
Maze

Path
 Cou

nti
ng

Hou
se

Rob
be

r

Han
oi

Tow
er

Circ
uit

 Log
ic

Bub
ble

 Sort

Grap
h I

som
orp

his
m

Area
 M

eas
ure

men
t

Cha
rt

Proj
ect

ile
 M

oti
on

Bin
Pack

ing

Slid
ing

 Puz
zle

Bou
nd

ing
 Box

3D
 Posi

tio
n

Reso
urc

e A
llo

cat
ion

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Figure 38: Performance comparison of GPT-4.1 on different tasks under CoT and TVP (T = 5).
Gray indicates the baseline performance of CoT, Green indicates improvements of TVP over CoT,
and Red indicates degradations of TVP over CoT.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Int
erv

al
DP

N-Puz
zle

Tab
lea

u L
P

Reso
urc

e A
llo

cat
ion

N-Q
ue

en
s

Ligh
ts O

ut

Bub
ble

 Sort
Cha

rt

Thre
e-V

iew
s

Poin
t C

ou
nti

ng

Slid
ing

 Puz
zle

Hou
se

Rob
be

r

Grap
h I

som
orp

his
m

Calc
ula

tio
n

Circ
uit

 Log
ic

Rico
ch

et
Ball

Maze

Path
 Cou

nti
ng

Heig
ht

Meas
ure

men
t

Grap
h C

olo
rin

g

Han
oi

Tow
er

Bou
nd

ing
 Box

Sna
ke

 G
am

e

Rub
ik'

s C
ub

e

Area
 M

eas
ure

men
t

3D
 Posi

tio
n

Bin
Pack

ing

Proj
ect

ile
 M

oti
on

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Figure 39: Performance comparison of GPT-4.1-mini on different tasks under CoT and TVP (T =
5). Gray indicates the baseline performance of CoT, Green indicates improvements of TVP over
CoT, and Red indicates degradations of TVP over CoT.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F ERROR ANALYSIS

To better understand the limitations of TVP, we classify incorrect predictions into six categories:

• Problem Misinterpretation. The model misunderstands the problem requirements or con-
straints, leading it to pursue an incorrect solution approach.

• Program Execution Error. The generated code contains syntax, logical, or runtime errors
that prevent successful execution.

• Visual Perception Error. The model fails to accurately extract relevant information from
visual inputs, such as misrecognizing digits, shapes, or object positions.

• Algorithmic Modeling Error. The model adopts an inappropriate algorithm, data struc-
ture, or fails to encode the relationships and constraints necessary for solving the problem.

• Program Inefficiency. Although the solution logic is correct, the implementation is com-
putationally inefficient and cannot handle the input within reasonable time limits.

• Output Formatting Issue. The model produces outputs in an incorrect format (e.g., ex-
planatory text instead of a numeric answer).

Problem Misinterpretation

Question: Find the variance in the following histogram, where the data are distributed
only above tens and the height of the histogram is an integer multiple of 5. Keep the
result of the variance as an integer.

Answer: 825

GPT-4.1 TVP (T=1)

Iteration:1

Code Interpreter
output: “”

Final Answer: \\boxed{645}.

Error Cause

In the above example, while the model correctly extracted the height of each bar in the bar chart, as shown in its output, it
failed to understand the meaning of the x-axis. It incorrectly interpreted the x-axis as representing the values [5, 15, 25, 35,
45, 55, 65, 75, 85, 95], misinterpreting the question's statement "where the data are distributed only above tens" as only
considering data values greater than 10, thus resulting in an incorrect answer.

1 import cv2
 2 import numpy as np
 3 import os
 4 ...
 5 heights = [55, 45, 40, 55, 50, 60, 45, 40, 50, 50]
 6 bins = [5, 15, 25, 35, 45, 55, 65, 75, 85, 95]
 7 filtered_bins = []
 8 filtered_heights = []
 9 for midpoint, freq in zip(bins, heights):
10 if midpoint > 10:
11 filtered_bins.append(midpoint)
12 ...
13 # Save the result
14 out_filename = image_filename[:-4] + '_m.png'
15 cv2.imwrite(out_filename, out_img)

Figure 40: Problem Misinterpretation.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Program Execution Error

Question: This is an 8-digit puzzle. Find the minimum number of steps to restore it.

Answer: 5

GPT-4.1-mini TVP (T=1)

Iteration:1

Code Interpreter
error: Traceback (most recent call last):\n… line 154, in <module>\n grid[row_i][col_i] = digit\n ~~~~^^^^^^^\nIndexError:
list index out of range\n.

Final Answer: The puzzle initial state from the image is:\n\n1 2 3 \n4 6 8 \n7 0 5 \n\n…Using BFS on the 8-puzzle starting
from the given state to the goal state, the minimum number of steps to solve it is:\n\n\\boxed{6}.

Error Cause

In the initial answer to this question, an array index out-of-bounds error caused the program to crash. In the subsequent
summary answer, the model claimed that it had obtained the solution using the BFS algorithm, resulting in 6 steps (presumably
based on its own reasoning), whereas the correct answer is 5 steps.

1 import cv2
 2 import numpy as np
 3 from collections import deque
 4 ...
 5 def neighbors(state):
 6 idx = state.index(0)
 7 r, c = divmod(idx, 3)
 8 res = []
 9 for dr, dc in [(-1,0),(1,0),(0,-1),(0,1)]:
10 nr, nc = r + dr, c + dc
11 ...
12 # Save the result image
13 cv2.putText(output_img, text, (10, h-10), cv2.FONT_HERSHEY_SIMPLEX, 1,
13 (0,0,255), 2)
14 cv2.imwrite(out_filename, output_img)

Figure 41: Program Execution Error.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Visual Perception Error

Question: Game Rule: Clicking a light toggles itself and its diagonal (upper-left, upper-right,
lower-left, lower-right) lights. What is the minimum number of clicks required to turn off all the
lights?

Answer: 10

Gemini-2.5-Flash TVP (T=1)

Iteration:1
The problem describes a \“lights out\” type puzzle where clicking a light toggles its state and the state of its four diagonal
neighbors…

Code Interpreter
output: Detected grid size: 5 rows x 10 columns\nInitial state grid:\n[[0 1 0 0 1 0 0 1 0 0]…Solution is unique.\nMinimum number
of clicks required: 31.

Final Answer: The minimum number of clicks required to turn off all the lights is 31.

Error Cause

Based on the description, it seems the model understood the game rules, but differed from standard approaches to solving
similar puzzle problems. During the code execution, it generated an incorrect matrix representation of the current state, leading
to an incorrect solution. In the final step of summarizing and organizing the answer, the model failed to detect any anomalies in
the output image, ultimately resulting in the error.

1 import cv2
 2 import numpy as np
 3 import os
 4 ...
 5 for r_click in range(num_rows):
 6 for c_click in range(num_cols):
 7 k_click = rc_to_idx(r_click, c_click)
 8 A[rc_to_idx(r_click, c_click), k_click] = 1
 9 if r_click - 1 >= 0 and c_click - 1 >= 0:
10 A[rc_to_idx(r_click - 1, c_click - 1), k_click] = 1
11 ...
12 # Save the result image
13 output_filename = os.path.splitext(image_filename)[0] + '_m.png'
14 cv2.imwrite(output_filename, result_img)
15 print(f"Solution image saved as {output_filename}")

Figure 42: Visual Perception Error.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithmic Modeling Error

Question: Find the horizontal coordinate of the first time the ball hits the
ground. The result is rounded down to the nearest integer. Note that there is
no energy loss in the event of a collision.

Answer: 21

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need to:\n\n1. Identify the platform heights and ball's initial position\n…

Code Interpreter
output: The horizontal coordinate of the first time the ball hits the ground is: 20\n.

Final Answer: Looking at the physics problem, I need to simulate the ball's trajectory with elastic collisions…Finally hits the
ground at x = 20\n\n\\boxed{20}.

Error Cause

This answer contains a clear algorithmic error. While the model correctly understood the question and extracted the relevant
information, it incorrectly limited the horizontal movement of the ball to a maximum of 20 units during the simulation, whereas
the correct answer was 21, which exceeded this maximum limit. The model failed to identify this flaw when summarizing and
finalizing its answer.

1 import os
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 ...
 5 def simulate_trajectory():
 6 x, y = x0, y0
 7 vx_curr, vy_curr = vx, vy
 8 trajectory_x = [x]
 9 trajectory_y = [y]
10 while t < max_time:
11 x_new = x + vx_curr * dt
12 ...
13 plt.savefig(image_filename.replace('.png', '_m.png'), dpi=150,
13 bbox_inches='tight')
14 print(f"The horizontal coordinate of the first time the ball hits the ground
14 is: {result}")

Figure 43: Algorithmic Modeling Error.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Algorithmic Modeling Error

Question: Find the horizontal coordinate of the first time the ball hits the
ground. The result is rounded down to the nearest integer. Note that when a
collision occurs, there is no horizontal energy loss, and the vertical speed is
reduced to 0.9 times the original speed.
Answer: 24

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need to:\n\n1. Identify the platform heights and ball's initial position\n…

Code Interpreter
output: The ball first hits the ground at horizontal coordinate: 10\n.

Final Answer: The ball follows a parabolic trajectory, bounces off the second platform (green, height 4m), and then continues
until it hits the ground at the first available opportunity.\n\n\\boxed{10}.

Error Cause

The model correctly identified the height and width of the steps and recognized the energy loss during the collision bounce.
However, its failure to abstract the underlying physical rules led to two major errors. First, the model did not properly abstract
and implement the collision-detection mechanism, causing the ball to pass through a region that should have been recognized as a
solid step. Second, the model failed to abstract the physical relationship between motion and trajectory: instead of inferring the
initial velocity from the provided short trajectory, it arbitrarily assigned an initial velocity based on intuition, resulting in an
incorrect physical simulation.

1 import os
 2 ...
 3 vx0 = 5.0
 4 vy0 = 2.0
 5 platforms = [
 6 {'x_start': 0, 'x_end': 3, 'height': 6},
 7 {'x_start': 3, 'x_end': 8, 'height': 4},
 8 {'x_start': 8, 'x_end': 18, 'height': 3}
 9]
10 def simulate_trajectory():
11 ...
12 for platform in platforms:
13 if (platform['x_start'] <= x_new <= platform['x_end'] and
13 y > platform['height'] and y_new <= platform['height']):
14 ...
15 vy = -0.9 * abs(vy)
16 ...
17 def find_ground_hit():
18 ...
19 result = precise_simulation()

Figure 44: Algorithmic Modeling Error.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Algorithmic Modeling Error

Question: Estimate the volume of the 3D prism shown in the image. The result should be
rounded to one decimal place. The side length of each grid on the chessboard is 0.5.
Answer: 2.3

Claude-Sonnet-4 TVP (T=1)

Iteration:1
Looking at this physics problem, I need to:\n\n1. Identify the platform heights and ball's initial position\n…

Code Interpreter
output: Visual estimated volume: 8.0 cubic units\n.

Final Answer: This appears to be a rectangular prism (cube), so:\n Volume = length × width × height = 2.0 × 2.0 × 2.0 = 8.0
cubic units\n\n\\boxed{8.0}.

Error Cause

The model attempts to locate the corner points within the checkerboard grid and then determine the positional relationships
between the prism’s vertices and the grid corners, as well as estimate the prism’s height, to compute its volume. However, the
resulting volume estimation is highly inaccurate. Ideally, the model should accurately detect all checkerboard vertices, infer the
3D–2D coordinate transformation matrix, reconstruct the prism’s 3D vertex coordinates from their 2D projections, and then
compute the volume. These errors reveal a clear deficiency in the model’s abstraction capabilities: although it can perceive local
geometric features, it fails to abstract the underlying 3D geometric principles and transformation rules required to solve the
problem correctly.

1 import os
 2 ...
 3 chessboard_size = (7, 7) # Internal corners
 4 found, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
 5 ...
 6 if found:
 7 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
 8 corners = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
 9 ...
10 if contours:
11 largest_contour = max(contours, key=cv2.contourArea)
12 x, y, w, h = cv2.boundingRect(largest_contour)
13 epsilon = 0.02 * cv2.arcLength(largest_contour, True)
14 approx = cv2.approxPolyDP(largest_contour, epsilon, True)
15 ...
16 prism_depth = prism_width
17 ...
18 cv2.putText(result_img, f'Estimated Volume: {volume:.1f} cubic units',
19 ...
20 print(f"Visual estimated volume: {volume:.1f} cubic units")

Figure 45: Algorithmic Modeling Error.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Program Inefficiency

Question: There are some blocks in the picture. Find the smallest
square area that can place all the small blocks in the area in a suitable
way without overlapping. Return the length of the square side.

Answer: 4

GPT-4.1-mini TVP (T=1)

Iteration:1

Code Interpreter
error: Code execution timed out after 60 seconds.

Final Answer: \\boxed{5}.

Error Cause

In the example above, the algorithm first tries to count the total number of small squares, and then starts by trying the
smallest possible square under those conditions, using a BFS method to find a feasible arrangement. However, this algorithm is
too inefficient and fails to find a solution within the 60-second time limit. Therefore, the model incorrectly concluded that the
minimum side length should be at least 5.

1 from PIL import Image
 2 import numpy as np
 3 import os
 4 ...
 5 def can_place(board, block, r, c):
 6 h, w = board.shape
 7 bh, bw = block.shape
 8 if r + bh > h or c + bw > w:
 9 ...
10 def backtrack(board, blocks, idx):
11 if idx == len(blocks):
12 ...
13 blocks = extract_blocks(image)
14 answer = solve(blocks)
15 print(answer)

Figure 46: Program Inefficiency.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

G CASE STUDY

We provide several case studies to analyze the performance of CoT, single-turn TVP, and multi-turn
TVP. As illustrated in Figure 47, the model uses code to abstract three-dimensional views for solving
the task. In contrast, CoT can only describe this process textually, lacking the ability to perform
direct computation or manipulation of the visual input. As illustrated in Figure 48, TVP utilizes
the model’s advanced coding capabilities to accurately model the Rubik’s Cube rotation rules. By
integrating this with a search algorithm, TVP provides a precise solution, demonstrating the power
of visual programming in solving complex tasks. However, for simpler problems shown in Figure
49, writing code may actually introduce errors, as the overhead of coding can outweigh the benefits
of using a more direct reasoning approach. When comparing single-turn TVP with multi-turn TVP,
we observe that the latter enables models to iteratively refine their outputs, effectively correcting
coding mistakes through agentic interaction, as shown in Figure 50. Furthermore, Figure 51 shows
cases where the model employs visualizations as an intermediate verification mechanism, ensuring
that no red points are overlooked and demonstrating reflective reasoning through explicit inspection
of its own outputs.

Three-Views

Question: Given a description of the three-view drawing of a solid
figure, find the maximum number of small cubes that the solid figure
can be composed of when the three-view constraints are met.

Answer: 21

GPT-4.1-mini CoT GPT-4.1-mini TVP (T=1)

Iteration:1
<code>\import os\nfrom PIL import Image\n\nimage_filename = None\nfor...
max_cubes = 0\nfor h in range(height):\n for w in range(width):\n
for d in range(depth):\n if front_grid[h][w] and
left_grid[h][d] and top_grid[w][d]:\n max_cubes +=
1\n\n...print(\"Maximum number of small cubes that the solid figure can
be composed of:\", max_cubes)\n</code>
Code Interpreter: output: Maximum number of small cubes that the solid figure
can be composed of: 21\n.

Final Answer: \\boxed{21}

Direct Answer:
<think>\nThe three views (front,
top, left) show which small cubes
are visible from each
perspective…Therefore, the
maximum number of small cubes is
22.\n\n</think>\n\n\\boxed{22}

Comparative Analysis

By comparing the two approaches, we found that in the direct reasoning (CoT) method, the model determines the total number of
small cubes by sequentially analyzing whether each position can accommodate a small cube, but this method leads to errors due
to double-counting. However, the approach using a single code execution (TVP) leverages three-dimensional views to model the
constraints, allowing for accurate calculation of the maximum number of small cubes that can be accommodated. The advantage
of using code lies in its greater accuracy when dealing with complex but repetitive (rule-based) calculations.

Figure 47: Case study of Tree-Views.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Rubik’s Cube

Question: This is the expansion diagram of a second-order Rubik's Cube. Given the initial
state, you can perform 18 standard operations. Find the minimum number of steps to make
the Rubik's Cube reach the restored state. The goal is to restore the cube to its original
state, with green on the front face, white on the top, and yellow on the bottom,
disregarding isomorphic configurations.

Answer: 2

Claude-Sonnet-4 CoT Claude-Sonnet-4 TVP (T=1)

Iteration:1
I'll solve this step by step by analyzing the Rubik's cube expansion diagram.
<code>\import os\nimport numpy as np\nfrom PIL import Image\nfrom
collections import deque\nimport hashlib\n...temp = [new_state['U'][0],
new_state['U'][1]]\n new_state['U'][0], new_state['U'][1] =
new_state['R'][1], new_state['R'][3]\n new_state['R'][1],
new_state['R'][3] = new_state['D'][3], new_state['D'][2]\n...
print(f\"\\nResult saved as {output_filename}\")\n</code>
Code Interpreter: output: Initial cube state:\nU: ['B', 'W', 'B', 'R’]\n…Solution
found in 2 steps:\nL' F\n\nResult saved as image_20_m.png\n

Final Answer: Looking at the code execution result,…guaranteed to be optimal
(minimum number of steps).\n\n\\boxed{2}

Direct Answer:
<think>\I need to analyze this 2x2
Rubik's cube expansion diagram to
find the minimum number of moves
to solve it.\n...Based on the pattern
analysis and typical solving
sequences for 2x2 cubes with this
level of scrambling, the minimum
number of steps required
is:\n\n\\boxed{7}.

Comparative Analysis

The comparison revealed that CoT is ineffective for solving complex search problems with intricate rules, such as solving a
Rubik's Cube, because such problems are difficult to solve solely through imagination and assumptions. However, in the process
of using code to solve the problem, TVP leverages the model's strong coding capabilities to accurately model the Rubik's Cube
rotation rules and, by combining this with a search algorithm, provides an accurate solution. So using code allows us to accomplish
more complex visual tasks.

Figure 48: Case study of Rubik’s Cube.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Area Measurement

Question: Find the area of the following quadrilateral, where all points are on integers. The
result is rounded to 1 decimal place.

Answer: 6.0

Qwen2.5-VL-32B CoT Qwen2.5-VL-32B TVP (T=1)

Iteration:1
I'll solve this step by step by analyzing the Rubik's cube expansion diagram.
<code>\import os\nimport cv2\nimport numpy as np\nimport
re\n...contours, _ = cv2.findContours(image=mask, mode=cv2. RETR_LIST,
method=cv2.CHAIN_APPROX_SIMPLE)\ncentroids = []\nfor cnt in contouns:\n
M = cv2.moments(contour)\n if M['m00'] != 0:\n cx =
int(M['m10'] / M['m00'])\n cy = int(M['m01'] / M['m00'])\n
centroids.append((cy, cx))...# Save the marked image\noutput_filename =
re.sub(r'(\\. png)', '_m\\\\1',
image_filename)\ncv2.imwrite(output_filename, cv2.cvtColor(image,
cv2.COLOR_BGR2RGB))\n\n</code>
Code Interpreter: error: ...line 36\n contours, _ = cv2.findContours\tmask, cv2.
RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)\n
^\nSyntaxError: unmatched ')'\n

Final Answer: None

Direct Answer:
<think>\To find the area of the
given triangle, we can use the
Shoelace Theorem...calculate the
area:\n\n\\[\n\\text{Area} =
\\frac{1|2 \\cdot 12 =
6\n\\]\n\nTherefore, the area of
the triangle is:\n\n\\boxed{6.0}.

Comparative Analysis

Comparing CoT and TVP (T=1), we can see that CoT accurately obtained the coordinates of the points directly from the image
information and then used the quadrilateral area formula to calculate the area accurately. However, the code provided by TVP
attempted to identify the vertices of the quadrilateral to calculate the area, but it failed to correctly locate the vertices,
resulting in an error. Therefore, for models with limited coding capabilities, using code to assist in problem-solving may actually
lead to lower accuracy than simply providing a direct answer.

Figure 49: Case study of Area Measurement.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Question: This is the heatmap of the question. Each task can only be assigned to one
person, and each person can only be assigned one task. How to allocate to maximize total
profit? (all profits are multiples of ten), and output the maximum profit. Above is the image
of this question.

Answer: 180

GPT-4.1 TVP (T=1) GPT-4.1 TVP (T=5)

Iteration:1
<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(max_profit)\n</code>
Code Interpreter: error: …NameError: name 'find_original_image_name' is not
defined\n.

Iteration:2
<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(max_profit)\n</code>
Code Interpreter: output: 180\n.

Iteration:3
<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(\"Maximum Profit:\",
max_profit)\n</code>
Code Interpreter: output: Allocation (Employee, Task): ... Profit: 180\n.

Iteration:4
<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(\"Maximum Profit:\",
max_profit)\n</code>
Code Interpreter: output: Employee 1 assigned to Task 2, ...Total Profit: 180\n.

Iteration:5
<code>\import numpy as np\nfrom scipy.optimize import
linear_sum_assignment\n...print(f\"Maximum Total Profit:
{max_profit}\")</code>
Code Interpreter: output: Optimal Assignment:\nEmployee 1 -> Task 2...Total
Profit: 180\n.

Final Answer: \\boxed{180}\n\nOptimal allocation to maximize total profit:\n-
Employee 1 → Task 2 (Profit: 90)\n- Employee 2 → Task 1 (Profit: 10)\n- Employee
3 → Task 3 (Profit: 80)

Iteration: 1
<code>\import os\nimport
cv2\nimport numpy as
np\nimport
pytesseract\n...print('Maximum
Total Profit:',
max_profit)\n</code>
Code Interpreter: error: Traceback
(most recent call last):\n...raise
TesseractNotFoundError()\npytes
seract.pytesseract.TesseractNotF
oundError: tesseract is not
installed or it's not in your PATH.
See README file for more
information.\n

Final Answer:
\\boxed{230}

Comparative Analysis

Comparing the overall output and final results of single-round and five-round code execution, we can see that in the single-round
execution, TVP (T=1) encountered an error because it used a library function that was not available in the environment (a non-
standard library). In the five-round execution TVP (T=5), a path loading error occurred during the first code execution, but
subsequent executions corrected this issue, ultimately producing the correct answer. This demonstrates the advantage of
multiple rounds of execution: the ability to identify and correct errors.

Resource Allocation

Figure 50: Case study of Area Measurement.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Point Counting

Question: What is the number of red dots?

Answer: 11

Gemini-2.5-Flash TVP (T=1) Gemini-2.5-Flash TVP (T=3)

Iteration:1
<code>\import cv2\nimport numpy as np\n\n...output_image_path =
processed_image_name(image_path)\ncv2.imwrite(output_image_path,
output_image)\n</code>
Code Interpreter: error: …NameError: name 'find_original_image_name' is not
defined\n.

Iteration:2
The previous attempt failed because…The image processing logic for counting red
dots.
<code>\ >\import cv2\nimport numpy as np\n\n...output_image_path =
processed_image_name(image_path)\ncv2.imwrite(output_image_path,
output_image)\n </code>
Code Interpreter: output: The number of red dots is: 11\n.

Iteration:3
The number of red dots is: 11\n

Final Answer:
The number of red dots is: \\boxed{11}

Iteration: 1
<code>\import os\nimport
cv2\nimport numpy as
np\n\n...cv2.imwrite(output_fi
lename, original_image)
\n</code>
Code Interpreter: output: Could
not find a suitable red dot to
create a template. Falling back to
direct contour counting.\nNumber
of red dots (contour fallback): 0\n
Final output：<code>\import
os\nimport cv2\nimport numpy
as
np\n\n...cv2.imwrite(output_fi
lename, original_image)
\n</code>

Final Answer:
None

Comparative Analysis

Comparing the overall output and final results of single-round and three-round code execution, we can see that in the single-
round execution, TVP (T=1) encountered an error because the algorithm failed to detect any red points because of an incorrect
threshold setting. In the three-round execution TVP (T=3), a path loading error occurred during the first code execution, but
subsequent executions corrected this issue, ultimately producing the correct answer. Next, after receiving the corresponding
text and image results, it confirmed that all the red dots had been found, thus pre-determining the answer.

Figure 51: Case study of Point Counting.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Ricochet Ball

Question: How many ricochets will a ball launched from (1.0, 1.0) at 80° need to hit the target at
(9.0, 9.0)? The ball reflects perfectly off the arena walls and mirror-obstacles.

Answer: 7

Gemini-2.5-Flash TVP (T=3)

Iteration:1
<code>\import math\nimport os\nimport re\nimport typing\nimport
matplotlib.pyplot as plt\nimport matplotlib.patches as
patches\n\n...def get_time_to_hit_target(current_pos, current_velocity,
target_pos, target_radius):\n dx = current_pos.x - target_pos.x\n
dy = current_pos.y - target_pos.y\n\n... # Print the final
answer\nprint(ricochets)</code>
Code Interpreter: output: “7\n”

Iteration:2
The previous iteration‘s code correctly calculated 7 ricochets and produced a visual
path that supports this answer...
<code>\import math\nimport os\nimport re\nimport typing\nimport
matplotlib.pyplot as plt\nimport matplotlib.patches as
patches\n\n...def get_time_to_hit_wall(current_pos,
current_velocity):\n dt_x = float('inf')\n dt_y =
float('inf')\n\n...# Print the final answer\nprint(ricochets)</code>
Code Interpreter: error: ...^^^^^^^^^^^^^^^^^^^^^^^^\nNameError: name
'find_original_image_name' is not defined\n

Iteration:3
<code>\import math\nimport os\nimport re\nimport typing\nimport
matplotlib.pyplot as plt\nimport matplotlib.patches as patches\n\n...#
Snap position to the wall\n if abs(current_pos_next.y - Y_MIN) <
EPS: current_pos_next.y = Y_MIN\n if abs(current_pos_next.y -
Y_MAX) < EPS: current_pos_next.y = Y_MAX\n\n...# Print the final
answer\nprint(ricochets)</code>
Code Interpreter: output: “7\n”

Final Answer: The final answer is $\\boxed{7}$

Gemini-2.5-Flash TVP (T=1)

Iteration: 1
The problem requires simulating
the path of a ball launched from a
starting point with a given angle...
<code>\import os\nimport
math\nfrom PIL import Image,
ImageDraw\n\n# --- Geometry
Classes ---\nclass Point:\n
def __init__(self, x, y):\n...
--- Simulation Loop ---\nfor
step_count in
range(MAX_SIM_STEPS):\n #
Calculate t if the ray hits
the target directly on its
current path segment\n
t_to_target = float('inf')\n
\n vec_to_target_x =
target_pos.x - current_pos.x\n
vec_to_target_y = target_pos.y
- current_pos.y\n\n
...print('Maximum Total
Profit:', max_profit)\n</code>
Code Interpreter: output: -1\n

Final Answer:
10

Comparative Analysis

Comparing TVP (T=1) and TVP (T=3), we can see that when only one iteration of the code is used, the model fails to find a solution
within a certain number of steps due to errors in its modeling of the overall layout, resulting in a return value of -1. However,
with multiple iterations, although the second iteration encountered a path-related error, the first and third iterations executed
correctly, and the model successfully used the code to generate a simulated path diagram, which can assist the model in making
decisions.

Figure 52: Case study of Ricochet Ball.

43

	Introduction
	Paradigm Definitions
	Multimodal Chain-of-Thought
	Thinking with Visual Programming

	MMR-VIP Benchmark
	Difficulty Ladder
	Cognitive Skill
	Benchmark Construction

	Experiments
	Experimental Setup
	Experimental Results
	Analysis
	Impact of Iteration Rounds
	Influence of Input Modalities
	Error Analysis

	Related Works
	Conclusion
	LLM Usage Statement
	Discussion
	Benchmark Details
	Evaluation Details
	Additional Experimental Results
	Error Analysis
	Case Study

