
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING LONG-HORIZON AGENTS VIA CONTEXT-
FOLDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents are fundamentally constrained by context
length on long-horizon tasks. Existing agent frameworks usually rely on manu-
ally defined context engineering pipelines, such as multi-agent or post-hoc sum-
mary. We introduce Context Folding, a framework that empowers agents to ac-
tively manage their working context. An agent can procedurally branch into a
sub-trajectory to handle a subtask and then fold it upon completion, collapsing the
intermediate steps while retaining a concise summary of the outcome. To make
this behavior learnable, we propose FoldPO, an end-to-end reinforcement learning
framework with specific process rewards to encourage effective task decomposi-
tion and context management. On complex long-horizon tasks, our agent matches
the performance of baselines while using an active context up to 10× smaller, and
significantly outperforms models constrained to the same context size.

1 INTRODUCTION

Large language model (LLM) agents have shown remarkable capabilities in tackling complex, long-
horizon problems that require extensive interaction with an environment, such as deep research [24,
8, 13, 35, 19] and agentic coding [12, 2, 34]. The length of tasks agents can complete is argued to
be growing exponentially, with a doubling time of about 7 months [22].

However, scaling LLM agents to even longer horizons is fundamentally constrained by the design of
agentic frameworks [40]. These frameworks linearly accumulate the entire interaction history into a
single, ever-expanding context, which incurs long-context challenges as horizons scale: (1) degraded
performance, as LLMs struggle to utilize relevant information in exceedingly long contexts [20, 31,
15]; and (2) poor efficiency, stemming from the quadratic scaling of attention mechanisms and the
growing overhead of managing the KV-cache [14].

Existing approaches to scale long-horizon LLM agents largely fall into two classes: (1) Summary-
based methods, which trigger a post-hoc summarization stage when the working context is full [1,
42, 27, 37, 47, 21]. While this compresses the context, it can abruptly disrupt the agent’s working
context and reasoning flow, which may lead to sub-optimal results. (2) Multi-agent systems, which
distribute tasks across specialized agents to manage context length [45, 44, 3, 36]. Yet, these systems
typically depend on handcrafted, problem-specific workflows that are difficult to generalize and
resist end-to-end optimization.

In this paper, we propose Context Folding: an agentic mechanism that allows the model to actively
manage its working context. Specifically, the agent manages its context using two special actions:
(i) a branch action to create a temporary sub-trajectory for a localized subtask; and (ii) a return
action to summarize the outcome and rejoin the main thread, after which the intermediate steps
within the branch are “folded”—removed from the context —leaving only a concise summary from
the return call. Figure 1 illustrates this process on deep research and agentic coding tasks, where
the agent offloads token-intensive actions (e.g., web search or codebase exploration) into branches
and preserves only key findings and insights for high-level reasoning. Compared with existing
methods, context folding enables an agentic approach to active context management, where the
agent’s short-term context remains undisrupted and long-term context is automatically managed.

Based on the context-folding framework, we propose a novel end-to-end reinforcement learning
algorithm for training LLM agents on complex, long-horizon tasks. The key innovation is FoldPO,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Examples of context folding: deep research (left) and agentic coding (right).

which augments the standard GRPO by incorporating (i) dynamic folded LLM contexts and (ii)
dense, token-level process rewards that directly guide context folding behavior. Specifically, our
RL algorithm teaches the model how to effectively decompose a problem into localized sub-tasks
for branching, guided by an Unfolded Token Penalty that discourages token-heavy operations in the
main context. Furthermore, it learns to maintain focus within a sub-task via an Out-of-Scope Penalty,
and to preserve crucial information in its summaries to aid the final objective. By mastering these
skills, the agent can handle vastly longer interaction histories, allowing our framework to scale the
agent’s effective horizon and improve overall system efficiency.

We evaluate our approach on two long-horizon benchmarks, BrowseComp-Plus [6] and SWE-Bench
Verified [12], where our agent achieves strong performance with remarkable efficiency. Despite
using a compact 32K active token budget managed with maximum of 10 branches, our agent, the
Folding Agent, achieves pass@1 scores of 62.0% and 58.0% respectively, surpassing baselines that
require a massive 327K context window and significantly outperforming methods based on context
summarization. The effectiveness of our method is rooted in reinforcement learning, which provides
absolute improvements of 20.0% on BrowseComp-Plus and 8.8% on SWE-Bench. Further analysis
reveals that our agent learns to invoke more tool calls and generate longer outputs to handle complex
problems, and can scale to larger token budgets at inference time to tackle even more challenging
tasks. Together, these results indicate that learning to actively manage context, rather than merely
extending or heuristically compressing it, is a principled path toward scalable long-horizon agency.

In summary, our contributions are threefold: (i) We introduce Context Folding, a mechanism that
enables agents to actively manage their context and mitigate the challenge of linear history growth.
(ii) We present FoldPO, a reinforcement learning framework with dense process rewards that trains
agents to effectively acquire this capability. (iii) We demonstrate promising performance on long-
horizon benchmarks, highlighting our approach as a scalable and extensible path toward stronger
LLM agents.

2 METHODOLOGY

2.1 VANILLA FORMULATION

Given a question q, an agent generates a multi-turn interaction trajectory denoted as

τ := (a1, o1, a2, o2, . . . , aT , oT),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where ai is the LLM output at step i (including reasoning and tool call), and oi is the corresponding
tool-call result. The vanilla ReAct-style agent [40] models the interaction as following,

pReAct
θ (τ | q) =

∏
i∈[T]

πθ
(
ai | q, (a1, o1, . . . , ai−1, oi−1)

)
,

which appends the entire interaction history to the context at each time of LLM generation. However,
in long-horizon agentic tasks like deep research and agentic coding, τ can accumulate rapidly due to
extensive interactions and become prohibitively long which exceeds the working context limit. Also,
when the context is expanding, the reasoning and instruction following capability of the model may
drop, posing further challenges for the agent to complete the long-horizon task.

2.2 OUR METHOD: CONTEXT FOLDING

To address the challenge, we introduce context folding, a mechanism that allows the agent to actively
manage its working context via branching and folding. Specifically, we design two tools that the
agent can call for context management. Starting from a main thread to solve question q, it can:

(i) branch(description, prompt): branch from main thread to use a separate working
context to complete a sub-task q′ for solving q. Here description is a brief summary of
the sub-task, and prompt is a detailed instruction for this branch. The tool returns a template
message indicating that the branch was created.

(ii) return(message): fold the context generated in this branch and return to the main thread.
The message describes the outcome of this branch. Upon calling this tool, the agent context
then switches back to the main thread, appended with the templated message from the branch.

With these two tools, the agent can actively manage its context by (i) branching a separate working
context to solve an independent sub-task, and (ii) folding the intermediate steps in the branch, and
resuming back to the main thread by appending only the result of the branch. To put it formal, the
context-folding agent is modeled as following,

pFold
θ (τ | q) :=

∏
i∈[T]

πθ
(
ai | q,F(τ<i)

)
. (1)

Here T denotes interaction turn number, τ<i = (a1, o1, . . . , ai−1, oi−1) denotes the complete his-
tory of all the action-observation pairs before step i, F is the context manager that folds the interac-
tion history between branch and return tool calls. We illustrate the process using the following
example, where the context manager folds all the action-observation pairs in previous branches:

F
(
a1, o1, a2, o2, a3, o3, a4︸ ︷︷ ︸

branch 1

, o4, a5, o5, a6, o6, a7, o7, a8︸ ︷︷ ︸
branch 2

, o8, a9, o9, a10, o10
)

→
(
a1, o1, a2, o4, a5, o8, a9, o9, a10, o10

)
,

so the segments between a2 and a4 and between a5 and a8 are folded.

Inference efficiency. During inference, the agent manages a context KV-cache: when return
action is called, it rolls back the KV-cache to the corresponding branch position, where the context
prefix matches that before calling the branch action. This makes our context folding approach
efficient in terms of inference.

Instantiation: plan-execution. To instantiate context folding for long-horizon tasks, we adopt a
plan–execution framework, where the agent alternates between two states: (i) Planning State: The
agent performs high-level reasoning in the main thread, decomposes the task, and decides when to
initiate a branch for a sub-task. In this state, token-intensive tool use is discouraged to keep the
main context focused on high-level strategies. (ii) Execution State: The agent operates within an
active branch to complete its assigned sub-task. To maintain a clear structure and prevent nested
complexity, creating new branches is disabled while in execution state.

2.3 FOLDPO: END-TO-END RL FOR CONTEXT-FOLDING AGENT

To optimize the context folding agent, in this section, we introduce an end-to-end RL training frame-
work, namely, Folded-context Group Relative Policy Optimization (FoldPO). FoldPO jointly opti-
mizes the entire interaction trajectory including the main thread and those sub-task branches, while

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: (a) Context Folding: a mechanism that enables the agent to actively manage its context
through branching and return. (b) FoldPO: end-to-end optimization of context folding agent.

it folds the rollout history according to the context folding modeling (1) to maintain a compact work-
ing context during training. Moreover, FoldPO features a novel process reward design to efficiently
guide the training of the branching behavior of the agent. We first introduce the overall algorithm
design in Section 2.3.1 and we present the process reward design in Section 2.3.2.

2.3.1 OVERALL ALGORITHM DESIGN

In each training step of FoldPO, for task q from training dataset D, G trajectories (τ1, τ2, · · · , τG) are
sampled from the old policy πold according to the context folding model (1). Each complete trajec-
tory, e.g., τi = (ai,1, oi,1, · · · , ai,T , oi,T), is a sequence of tokens defined as τi = [τi,1, · · · , τi,|τi|].
Each trajectory τi has a final reward Ri ∈ {0, 1}, following the recipe of RL from verifiable rewards
(RLVR).

Learning objective. The learning objective of FoldPO is defined as:

JFoldPO = E q∼D,
{τi}Gi=1∼πold(·|q)

 1∑G
i=1 |τi|

G∑
i=1

|τi|∑
t=1

min
{
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ϵlow, 1 + ϵhigh

)
Âi,t

} ,

where the importance sampling ratio and the group relative advantage estimator [28] are given by

ri,t(θ) =
πθ(τi,t | q,F(τi,<t))

πθold(τi,t | q,F(τi,<t))
· 1LLM

τi,t , Âi,t =
clip(Ri +Qi,t, 0, 1)−mean({Ri}Gi=1)

std({Ri}Gi=1)
.

Here, 1LLM
τi,t ensures that only those LLM generated tokens are optimized and the tokens from tool

observations are masked; Qi,t is the process reward applied to token t of τi, which we will define in
the next section. In the following, we explain two key features of FoldPO highlighted in red.

(i) Context folding. Unlike vanilla multi-turn LLM RL algorithms that append the entire interac-
tion history to context when optimizing the policy, FoldPO applies context manager F(·) to the
history τi,<t which folds the context for token τi,t based on the branch-return actions.

(ii) Process reward signal. In the calculation of advantage Âi,t, a token-level process reward Qi,t

is added to regularize the model’s branch-return behavior, which is detailed in the next section.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3.2 PROCESS REWARD DESIGN

In RLVR, the agent is typically optimized through a standard binary outcome reward based on task
success or failure. However, we empirically observe that this sparse reward signal is insufficient for
learning effective context folding. Specifically, two critical failure modes emerge: (i) The agent fails
to plan strategically, leaving token-intensive operations unfolded in the main context, which quickly
exhausts the available token budget. (ii) The agent struggles with proper branch management, of-
ten failing to return from a sub-branch after a sub-task is completed and instead continuing the
subsequent work within that same branch. To effectively optimize the folding agent, we introduce
token-level process rewards separately to main-trajectory tokens and branch-trajectory tokens.

Unfolded token penalty. When total context length of the main thread exceeds 50% of the working
context limit, we apply Qi,t = −1 to all the tokens in the main thread, except those tokens in the
turns that create a branch. This penalizes the agent for performing token-heavy actions outside a
branch in the main thread, and encourages the agent to perform those actions in separate branches.

Out-scope penalty. For each branch, we employ GPT-5-nano to judge — based on the branch
prompt and the returned message — whether the agent has conducted actions outside the specified
sub-tasks. If so, we apply Qi,t = −0.2 to all the tokens in this branch to penalize such out of scope
behavior. This encourages the agent to only perform the exact sub-task given to the current branch.

Failure penalty. We apply Qi,t = −1 to all the tokens in a failed tool call turn. In all other cases,
Qi,t = 0.

2.4 HOW DOES CONTEXT FOLDING CONNECT TO OTHER METHODS?

Relationship to multi-agent systems. Context folding can be interpreted as a specific formulation
of a general multi-agent system, where the main agent delegates sub-tasks to sub-agents. Compared
to popular multi-agent systems [9], our design differs in the following ways: (i) Context folding
does not adopt predefined sub-agents; instead, sub-agents are created by the main agent on the fly;
(ii) All the agents share the same context prefix, making it KV-cache friendly, (iii) The main and the
sub agents interleave rather than operating in parallel.

Relationship to context-summarization-based method. Compared with heuristic summarization-
based context management [42, 24], which discards details at arbitrary points, context folding can
be viewed as a learnable summarization mechanism aligned with sub-task boundaries. This ensures
that reasoning is preserved during execution and is only compacted once its utility is realized.

3 EXPERIMENT

3.1 DATASETS

We conduct experiment on two representative long-horizon agent tasks: deep research, and agentic
software engineering:

Deep Research. We use BrowseComp-Plus (BC-Plus) [6], which supplements the original
BrowseComp data with a verified corpus. We use Qwen3-Embed-8B as the retriever. Since the
quality of training data is crucial for the BrowseComp task but existing datasets are typically not
open-sourced [27, 16], we split BrowseComp-Plus into training and evaluation sets to decouple the
effect of data distribution. Our split includes 680 instances for training and 150 for evaluation. For
deep research, the tools are search(query, topk) and open page(url), and the reward is
based on official LLM-based judger [6].

Agentic SWE. We use SWE-Bench Verified (SWEB-V) [12] as the evaluation set. To col-
lect training data, we roll out the baseline agent1 eight times on a subset of the open-source
datasets SWE-Gym [26] and SWE-Rebench [4], and retain the instances where the success rate
is between 0 and 87.5%, resulting in 740 instances. In SWE, the tools are execute bash,
str replace editor, and think [34], and the reward is based on running unit test in instance-
specific sandbox environment.

1Seed-OSS-36B-Instruct with OpenHands and a response length of 65,536.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

BrowseComp-Plus SWE-Bench Verified
Model Peak Length Max #Token Pass@1 Tool Calls Pass@1 Tool Calls

ReAct Agent with 100B+ LLM
GPT-5 327K 327K 0.793 14.2 0.718 42.6
GPT-4.1 327K 327K 0.640 5.6 0.486 28.7
DeepSeek-V3.1 327K 327K 0.613 10.6 0.610 53.2
GLM-4.5-Air 327K 327K 0.566 11.1 0.576 51.2
Qwen3-235B-A22B 327K 327K 0.560 12.8 0.344 32.1

ReAct Agent
Seed-OSS-36B 32K 32K 0.286 (-19.2) 3.8 0.436 (-11.6) 25.8

+ RL (GRPO) 32K 32K 0.446 (-3.2) 5.5 0.480 (-7.2) 27.8
Seed-OSS-36Bψ 327K 327K 0.478 (+0.0) 10.8 0.552 (+0.0) 49.5

+ RL (GRPO) 327K 327K 0.540 (+6.2) 10.2 0.574 (+2.2) 55.4

Summary Agent
Seed-OSS-36B 32K 32K × 10 0.386 (-9.2) 17.4 0.488 (-6.4) 77.0

+ RL (GRPO) 32K 32K × 10 0.527 (+4.9) 18.0 0.550 (-0.2) 74.9

Folding Agent (Ours)
Seed-OSS-36B 32K 32K × 10 0.420 (-5.8) 12.9 0.492 (-6.0) 72.8

+ RL (GRPO) 32K 32K × 10 0.567 (+8.9) 16.0 0.564 (+1.2) 79.5
+ RL (FoldPO) 32K 32K × 10 0.620 (+14.2) 19.2 0.580 (+2.8) 96.5

Table 1: Performance on BrowseComp-Plus (N=150) and SWE-Bench Verified (N=500). Bold-
face indicates the best-performing 36B models. Numbers in parentheses indicate improvement or
reduction compared to 327K ReAct agent Seed-OSS-36B baselineψ .

We group test instances into three levels: easy, medium, and hard. For BrowseComp-Plus, we run a
ReAct agent 8 times per instance and label them by acc@8: easy (≥87.5%), hard (0%), and medium
(everything else), giving 50 instances per level. For SWE-Bench Verified, we follow the dataset’s
time-to-resolve: easy (≤15 min, 194 cases), medium (15–60 min, 261), and hard (≥1 hour, 45). See
Appendix J for the details of system prompt of each datasets.

3.2 IMPLEMENTATION

We use Seed-OSS-36B-Instruct as the base LLM and conduct RL training on it. For RL training, we
build on VeRL and set the rollout batch size to 32, group size to 8, ppo batch size of 128, learning rate
to 1×10−6, no KL term, clip high to 0.28, and clip low to 0.2. We employ asynchronous rollout with
a maximum off-policy step of 5. During training, we implement the context folding operation F by
constructing separate causally conditioned contexts for each branch to improve training efficiency
(See Appendix I for more details.). We train model for 50 steps (about 2 epochs). For the fold
agent, we set the LLM maximum context length to 32,768. We allow up to 10 branches, resulting
in a theoretical maximum of 327,680 tokens. During inference we employ greedy decoding (i.e,
temperature = 0).

3.3 BASELINES

We compare against the following baselines:

ReAct Agent [41], which keeps all context. We consider different context lengths for comparison:
(a) short-context, which has 32,768 tokens, equivalent to our context length; (b) medium-context,
which has intermediate lengths, e.g., 65,536 and 131,072; (c) long-context, which has 327,680 to-
kens, equivalent to our maximum total token cost.

Summary Agent [42, 37], which invokes a summary when the context is full. We set the maximum
context length to 32,768 and allow for 10 summary session for a fair comparison.

For both two baselines, we employ the same base model (i.e., Seed-OSS-36B-Instruct), data, infras-
tructure, and hyperparameters for RL training. In addition to these directly comparable baselines, we
compare our method against previous closed-source and open-source systems on both tasks, includ-
ing GPT-5, GPT-4.1, DeepSeek-V3.1 (2509), GLM-4.5-Air, and Qwen3-235B-A22B-Instruct-2507.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Agent performance on different data difficulty group. RL training yields consistent per-
formance gains across easy, medium, and hard instances.

Figure 4: With RL training, we observe an increase in the number of tool calls, branching behavior,
total number of tokens, and the number of searched pages.

4 EXPERIMENTAL RESULTS

4.1 MAIN RESULTS

Table 1 summarizes our main results on the BrowseComp-Plus and SWE-Bench Verified datasets.
Our findings highlight the critical role of reinforcement learning in unlocking the capabilities of
context folding.

Initially, without performing RL, the context folding agent already surpasses the 32K-context ReAct
and context summarization baselines, though it does not yet match the performance of the long-
context ReAct agent. After RL training, our agent’s performance improves significantly, with a
pass@1 of 0.620 on BrowseComp-Plus (+20%) and 0.580 on SWE-Bench Verified (+8.8%). Our
agent not only outperforms baselines using same 36B models, including the long-context ReAct
agent with same 327K max length. Our model also outperforms some 100B+ LLMs while still
behind top-performing SOTA models such as GPT-5.

Further analysis reveals two key insights. First, an ablation study confirms that our proposed FoldPO
is crucial, yielding significantly better performance than the baseline GRPO algorithm (eg, +7.7%
on BrowseComp and +1.6% on SWE-Bench). Second, the performance gains correlate with an
increased frequency of tool calls, which RL training further encourages.

4.2 PERFORMANCE BY TASK DIFFICULTY

Figure 3 breaks down agent performance by task difficulty, comparing scores before and after rein-
forcement learning. The results clearly show that RL training yields consistent performance gains
across easy, medium, and hard instances. Most notably, the improvements are significantly larger for
the medium and hard subsets. This finding underscores our agent’s enhanced capability to handle
complex problems that require more sophisticated long-context management.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

BrowseComp-Plus SWE-Bench Verified
Finish Main Len Scope # Branch Finish Main Len Scope # Branch

Folding Agent (Seed-OSS-36B) 0.806 12,195 0.774 3.51 0.781 47,475 0.473 3.05
+ RL (GRPO) 0.738 22,285 0.762 3.88 0.612 48,908 0.419 3.80
+ RL (FoldPO) 0.935 7,752 0.895 4.98 0.962 8,885 0.754 5.90

Table 2: Model behavior statistics of different optimization methods. FoldPO encourages fo-
cused branching and condensed main context, boosting both scope accuracy and finish rate.

Figure 4 shows the agent’s learning dynamics during RL training on BrowseComp-Plus. As training
progresses, the agent steadily increases its tool calls, branch creation, response tokens, and number
of pages searched. This growth is most pronounced on harder instances. For example, on the hard
subset, response length rises from about 100K to over 160K tokens. These results show that the
agent learns to allocate more interaction and computation to complex problems.

4.3 ABLATION OF RL ALGORITHM

To understand how our proposed FoldPO shapes agent behavior, we analyze the key statistics in
Table 2. These metrics include the task completion rate (Finish), main trajectory length (Main Len),
the accuracy of sub-trajectories staying on-topic (Scope), and the number of branches created (#
Branch). We can see that, training with a standard GRPO baseline produces poor behaviors: agents
show a lower Finish rate, generate overly long trajectories, and lose focus in sub-tasks, reflected in
reduced Scope accuracy. This indicates a failure to manage context effectively.

By contrast, our FoldPO corrects these issues. It encourages focused branching, sharply boosting
both Scope accuracy and Finish rate. Most notably, it cuts the main trajectory to about 8K tokens
while processing over 100K in total—achieving over 90% context compression and demonstrating
the agent’s ability to condense long interactions into a compact, useful history.

4.4 PERFORMANCE BY CONTEXT LENGTH

Figure 5: Left: Pass@1 vs. token budget.
Right: Pass@1 vs. number of questions.

Effect of Context Length To examine how per-
formance scales with context length, we evaluated
our method on BrowseComp while varying the num-
ber of branches from 0 to 16. As shown in Figure 5
(left), our method consistently surpasses ReAct, and
reinforcement learning provides further gains. How-
ever, performance plateaus beyond 320K tokens be-
cause most task instances are already completed, and
additional context provides limited benefit.

Effect of Task Complexity Following [47], we increase task complexity by combining multiple
questions into a single compound query that the agent must answer in one session (see Figure 7
for an example). Figure 5 (right) shows the results for tasks with 1 to 50 combined questions. For
this setting, we allow unlimited branching and set the context limit for ReAct to 1M tokens. As
task complexity increases, the benefit of context folding becomes more apparent, demonstrating
strong length generalization. Notably, although our agent was trained on tasks requiring at most 10
branches, it adaptively uses an average of 32.6 branches to solve tasks with 50 questions.

4.5 CASE STUDY

Figure 6 shows qualitative examples of our context folding agent on BrowseComp-Plus. Given a
query about finding a research publication with specific conditions, the agent first explores the high-
level topic and identifies a candidate. It then searches to verify conditions, gaining key insights but
failing to confirm all requirements. Next, it expands the search scope and finds the correct answer.
In this process, 4 branches compress the full 107K-token context to just 6K.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

branch: Find publication with specific authors and topics
search: cultural traditions scientific processes culinary innovations[…]
search: assistant professor West Bengal culinary traditions scientific […]
open: https://hithaldia.in/faculty/ft_faculty/RSD/index.htm
search: Thakur R.K. Biswas P.K. Singh M. Das R.S. cultural traditions […]
search: Plant-Based Functional Foods and Phytochemicals From […]
search: Thakur R.K. Biswas P.K. Singh M. Ph.D. authors
return: Value-Added Products with Bioactive Compounds from Fruit […]

search: Thakur R.K. Value-Added Products with Bioactive Compounds […]
search: Thakur R.K. "Value-Added Products with Bioactive Compounds[…]
search: Rahel Suchintita Das three authors cultural traditions scientific […]
search: Rahel Suchintita Das publications Google Scholar
search: "Value-Added Products with Bioactive Compounds from Fruit […]
return: Confirmed Rahel Suchintita Das is an assistant professor in West […]

branch: author count and Ph.D. status

branch: Confirm Das's Ph.D. and co-author details
search: Rahel Suchintita Das Haldia Institute of Technology faculty profile<
search: Thakur R.K. Value-Added Products with Bioactive Compounds […]
search: Biswas P.K. Food Technology Ph.D. West Bengal
search: "Value-Added Products with Bioactive Compounds from Fruit […]
search: Rahel Suchintita Das publications three authors cultural […]
return: searches for co-author Ph.D. credentials but found no definitive results […]

branch: Expand search for three-author publications
search: assistant professor West Bengal food science publications before June […]
open: https://ouci.dntb.gov.ua/en/works/l1wAegO7/
search: The Fundamentals of Bread Making: The Science of Bread publication date
return: Identified a publication meeting all criteria with definitive verification […]

done: The Fundamentals of Bread Making: The Science of Bread✓

Question: Identify the title of a research publication published before June 2023, that mentions Cultural traditions, scientific processes, and
culinary innovations. It is co-authored by three individuals: one of them was an assistant professor in West Bengal and another one holds a Ph.D.

Folded Context Len

Full Context Len

6,524 107,00832,768
(a) Tool Call History (b) Context Length

Figure 6: Example of an agent’s tool call history and context length on BrowseComp-Plus.

5 RELATED WORK

The rapid evolution of LLM agents is driven by a push toward greater autonomy in complex, long-
horizon tasks [12, 25, 46, 22, 17]. Built on agentic architectures that integrate planning, memory,
and tool use [33], research has advanced from simple sequential reasoning to dynamic, multi-path
strategies for exploration and problem-solving [39, 5, 11, 29]. Yet this progress has revealed a key
bottleneck: the finite and costly nature of an agent’s working context [40, 1].

Context management strategies fall into two main paradigms: context summarization, where
agents offload and retrieve information from external memory stores [32, 30, 42, 37, 47], and
multi-agent collaboration, where tasks are divided among specialized agents with focused con-
texts [45, 44, 3, 36]. Besides, existing work has explored managing long context with external
context-preprocessing workers [38, 10, 18] or with two-stage planner–worker frameworks [23, 5].
Both paradigms frame context management as an architectural or retrieval problem, leaving a gap
for an integrated approach where it becomes a learned cognitive skill rather than an external feature.

Reinforcement learning (RL) effectively grounds agents through environmental or human feed-
back [43, 27], but has focused mainly on extrinsic task success [7]. The training of intrinsic
skills—such as how an agent manages its own working memory—remains a underexplored research
area. Our work contributes to this emerging frontier by framing context management as a learnable
skill and using process-level rewards to teach it directly.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced context folding, an agentic mechanism for managing long-horizon tra-
jectories by selectively folding ephemeral sub-trajectories while preserving only essential decision-
relevant information. Coupled with our reinforcement learning framework, context folding enables
efficient credit assignment across tree-structured trajectories and achieves significant improvements
in long-horizon coding and deep-research tasks. Empirical results on two long-context tasks demon-
strate that folding allows agents to match or exceed the performance of baselines with larger context
windows, while improving efficiency and stability relative to summary-based condensation. Several
promising future directions include multi-layer context folding, which develops hierarchical folding
strategies where folds themselves can be further folded for deeper compression.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] All-Hands.dev. Openhands: Context condensation for more efficient ai agents, April 2025.

[2] Anthropic. Claude code, 2025.

[3] Anthropic. How we built our multi-agent research system, June 2025.

[4] Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon
Karasik, Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-
rebench: An automated pipeline for task collection and decontaminated evaluation of software
engineering agents. ArXiv, abs/2505.20411, 2025.

[5] Maciej Besta, Nils Blach, Ale Kubek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: Solving elaborate problems with large language models. In AAAI
Conference on Artificial Intelligence, 2023.

[6] Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, Sahel Sharifymoghaddam, Yanxi Li, Haoran Hong,
Xinyu Shi, Xuye Liu, Nandan Thakur, Crystina Zhang, Luyu Gao, Wenhu Chen, and Jimmy
Lin. Browsecomp-plus: A more fair and transparent evaluation benchmark of deep-research
agent. ArXiv, abs/2508.06600, 2025.

[7] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, M. Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang,
Ruizhe Pan, Runji Wang, R. J. Chen, Ruiqi Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan,
S. S. Li, Shuang Zhou, Shao-Kang Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding
Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xia Yu, Wentao Zhang,
Wangding Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin,
X. Q. Li, Xiangyu Jin, Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan
Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang,
Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia He, Yunfan Xiong, Yu-Wei Luo,
Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yao Li, Yi Zheng, Yuchen
Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren, Zhangli Sha,
Zhe Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan,
Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie, Ziyang Song, Zizheng Pan,
Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. ArXiv, abs/2501.12948, 2025.

[8] Google. Deep research is now available on gemini 2.5 pro ex-
perimental. https://blog.google/products/gemini/
deep-research-gemini-2-5-pro-experimental/, February 2025.

[9] Jeremy Hadfield, Barry Zhang, Kenneth Lien, Florian Scholz, Jeremy Fox, and Daniel
Ford. How we built our multi-agent research system. https://www.anthropic.com/
engineering/multi-agent-research-system, June 13 2025. Accessed: 2025-
09-15.

10

https://blog.google/products/gemini/deep-research-gemini-2-5-pro-experimental/
https://blog.google/products/gemini/deep-research-gemini-2-5-pro-experimental/
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[10] Samuel Holt, Max Ruiz Luyten, and Mihaela van der Schaar. L2mac: Large language model
automatic computer for extensive code generation. 2023.

[11] Wenlong Huang, P. Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. ArXiv, abs/2201.07207,
2022.

[12] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
ArXiv, abs/2310.06770, 2023.

[13] Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
r1: Training llms to reason and leverage search engines with reinforcement learning. ArXiv,
abs/2503.09516, 2025.

[14] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Franccois Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International Conference
on Machine Learning, 2020.

[15] Quinn Leng, Jacob Portes, Sam Havens, Matei A. Zaharia, and Michael Carbin. Long context
rag performance of large language models. ArXiv, abs/2411.03538, 2024.

[16] Kuan Li, Zhongwang Zhang, Huifeng Yin, Rui Ye, Yida Zhao, Liwen Zhang, Litu Ou, Dingchu
Zhang, Xixi Wu, Jialong Wu, Xinyu Wang, Zile Qiao, Zhen Zhang, Yong Jiang, Pengjun Xie,
Fei Huang, and Jingren Zhou. Websailor-v2: Bridging the chasm to proprietary agents via
synthetic data and scalable reinforcement learning. 2025.

[17] Sijie Li, Weiwei Sun, Shanda Li, Ameet Talwalkar, and Yiming Yang. Towards community-
driven agents for machine learning engineering. ArXiv, abs/2506.20640, 2025.

[18] Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. ArXiv,
abs/2501.05366, 2025.

[19] Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen,
and Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research
capability. ArXiv, abs/2504.21776, 2025.

[20] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions
of the Association for Computational Linguistics, 12:157–173, 2023.

[21] Miao Lu, Weiwei Sun, Weihua Du, Zhan Ling, Xuesong Yao, Kang Liu, and Jiecao Chen.
Scaling llm multi-turn rl with end-to-end summarization-based context management. ArXiv,
abs/2510.06727, 2025.

[22] METR. Measuring ai ability to complete long tasks. https://metr.org/blog/
2025-03-19-measuring-ai-ability-to-complete-long-tasks/, March
2025.

[23] Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-
of-thought: Prompting llms for efficient parallel generation. 2023.

[24] OpenAI. Deep research system card. Technical report, OpenAI, February 2025.

[25] OpenAI. Introducing chatgpt agent: bridging research and action. https://openai.com/
index/introducing-chatgpt-agent/, 2025. Accessed: 2025-09-25.

[26] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and
Yizhe Zhang. Training software engineering agents and verifiers with swe-gym. ArXiv,
abs/2412.21139, 2024.

11

https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/
https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/
https://openai.com/index/introducing-chatgpt-agent/
https://openai.com/index/introducing-chatgpt-agent/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[27] Zile Qiao, Guoxin Chen, Xuanzhong Chen, Donglei Yu, Wenbiao Yin, Xinyu Wang, Zhen
Zhang, Baixuan Li, Huifeng Yin, Kuan Li, Rui Min, Minpeng Liao, Yong Jiang, Pengjun Xie,
Fei Huang, and Jingren Zhou. Webresearcher: Unleashing unbounded reasoning capability in
long-horizon agents. 2025.

[28] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[29] Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language
model agents in algorithm search for combinatorial optimization. ArXiv, abs/2504.04310,
2025.

[30] Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Xin-
ming Wei, Peng Xia, Fang Wu, He Zhu, Ge Zhang, Jiaheng Liu, Xingyao Wang, Sirui Hong,
Chenglin Wu, Hao Cheng, Chi Wang, and Wangchunshu Zhou. Agent kb: Leveraging cross-
domain experience for agentic problem solving. ArXiv, abs/2507.06229, 2025.

[31] Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities. ArXiv, abs/2507.06261, 2025.

[32] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu,
Linxi (Jim) Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with
large language models. Trans. Mach. Learn. Res., 2024, 2023.

[33] Lei Wang, Chengbang Ma, Xueyang Feng, Zeyu Zhang, Hao ran Yang, Jingsen Zhang, Zhi-
Yang Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji rong
Wen. A survey on large language model based autonomous agents. ArXiv, abs/2308.11432,
2023.

[34] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang
Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang
Lin, Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open plat-
form for ai software developers as generalist agents. In International Conference on Learning
Representations, 2024.

[35] Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alexandre Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. ArXiv, abs/2504.12516, 2025.

[36] Ryan Wong, Jiawei Wang, Junjie Zhao, Li Chen, Yan Gao, Long Zhang, Xuan Zhou, Zuo
Wang, Kai Xiang, Ge Zhang, Wenhao Huang, Yang Wang, and Ke Wang. Widesearch: Bench-
marking agentic broad info-seeking. ArXiv, abs/2508.07999, 2025.

[37] Xixi Wu, Kuan Li, Yida Zhao, Liwen Zhang, Litu Ou, Huifeng Yin, Zhongwang Zhang, Yong
Jiang, Pengjun Xie, Fei Huang, Minhao Cheng, Shuai Wang, Hong Cheng, and Jingren Zhou.
Resum: Unlocking long-horizon search intelligence via context summarization. 2025.

[38] Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan
Xu. Rewoo: Decoupling reasoning from observations for efficient augmented language mod-
els. ArXiv, abs/2305.18323, 2023.

[39] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language mod-
els. ArXiv, abs/2305.10601, 2023.

[40] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629,
2022.

[41] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[42] Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin
Zhang, Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, and Hao Zhou. Memagent: Reshaping
long-context llm with multi-conv rl-based memory agent. ArXiv, abs/2507.02259, 2025.

[43] Guibin Zhang, Hejia Geng, Xiaohan Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, Yifan Zhou, Yang Chen, Chen Zhang, Yutao Fan,
Zihu Wang, Songtao Huang, Yue Liao, Hongru Wang, Meng Yang, Heng Ji, Michael Littman,
Jun Wang, Shuicheng Yan, Philip Torr, and Lei Bai. The landscape of agentic reinforcement
learning for llms: A survey. 2025.

[44] Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö. Arik. Chain
of agents: Large language models collaborating on long-context tasks. ArXiv, abs/2406.02818,
2024.

[45] Jun Zhao, Can Zu, Haotian Xu, Yi Lu, Wei He, Yiwen Ding, Tao Gui, Qi Zhang, and Xuanjing
Huang. Longagent: Scaling language models to 128k context through multi-agent collabora-
tion. ArXiv, abs/2402.11550, 2024.

[46] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web envi-
ronment for building autonomous agents. ArXiv, abs/2307.13854, 2023.

[47] Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao,
Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and
reasoning for efficient long-horizon agents. ArXiv, abs/2506.15841, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATA EXAMPLE

Figure 7: An example of the model’s input and output for the combined-questions experiment de-
scribed in Section 4.4. In this example, 3 easy questions are combined to form a harder question.

B MODEL EFFICIENCY

Figure 8 shows the stepwise average time for rollout and for each training step. We observe that
the 327K ReAct model requires a longer training time per step. Note that we employ async rollout
(Appendix I.2), and the rollout time shown here measures only the main thread’s time cost on rollout.

Rollout Step
0

1000

2000

3000

4000

5000

6000

7000

1.52x

1.43xReAct (327K)
Ours (32Kx10)

Figure 8: Training time cost. The figure shows the stepwise average time for rollout and for each
training step.

C PARALLEL BRANCHING

Whether the folding agent can benefit from parallel branching — i.e., creating multiple sub-branches
that run simultaneously — remains an open question. We experimented on BrowseComp-Plus by
training an agent that utilizes parallel branching under the same setup as the single-branch agent.
The parallel-branch version achieved a 0.6133 Pass@1 on BrowseComp-Plus, outperforming the
baseline but performing similarly to the single-branch version. Moreover, after training, the parallel-
branch agent created about 2.3 parallel branches on average and read more web pages (110 vs. 80
for the single-branch version). However, it did not achieve a higher score, possibly because the
task characteristics are more depth-first in nature. Other tasks with a breadth-first structure (eg
WideSearch [36]) may be more promising for studying parallelism in LLM agents.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60
Training Steps

0.3

0.4

0.5

0.6
R

ew
ar

d

Training Curves

Run 1
Run 2

0 10 20 30 40 50
Evaluation Steps

0.45

0.50

0.55

0.60

0.65

R
ew

ar
d

Evaluation Curves

Run 1
Run 2

Figure 9: Training and evaluation reward of two repeat runs on BrowseComp-Plus.

0 10 20 30 40 50
Training Steps

7500

10000

12500

15000

17500

20000

22500

25000

To
ke

n

Main Len Ablation Experiment

Main
No Unfold Penalty

0 5 10 15 20
Training Steps

0.4

0.5

0.6

0.7

0.8

A
cc

Scope Judge Ablation Experiment

Main
No Scope Penalty

Figure 10: Ablation study on unfolded penalty and scope penalty.

D REWARD CURVE AND ABLATION

E RELATED WORK DISCUSSION

F TUNING OF SUMMARY AGENT BASELINE

0 20 40 60 80 100
Training Steps

0.25

0.30

0.35

0.40

0.45

0.50

To
ke

n

Summary Agent Ablation

Sample-wise average
Segment-wise average

Figure 11: Ablation study of advantage esti-
mators of summary agent baselines.

We optimize the summary agent baseline as follows:

• Prompt Engineering: For SWE-Bench, we reuse
the condenser prompt from OpenHands [1]. For
BrowseComp-Plus, we evaluate summary prompts
S1, S2, and S3 as shown in Table 4 and adopt S2.

• RL Algorithm: We ablate different advantage es-
timators (e.g., sample-wise average or segment-
wise average [27]) and find that sample-wise aver-
age achieves later but higher coverage scores (Fig-
ure 11), so we adopt it. Note that sample-wise
average is equivalent to treating all segments of
a rollout as a single sequence, while segment-wise
average treats segments as separate sequences as
in [27]. We also enable overlong masking, as dis-
abling it makes the model more likely to collapse
during RL and unable to extend to more segments
in evaluation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ours SummaryAgent ReSum MemAgent MEM1

Context Folded Context Summary Summary Summary Summary
Tasks BrowseComp /

SWE-Bench
BrowseComp /
SWE-Bench

BrowseComp-
en/zh / Gaia

RULER HotpotQA /
WebShop

Tools Search / Browse /
Bash / File Edit

Search /
Browse / Bash
/ File Edit

Search /
Browse

None Search

Summary Trigger Active; when
calling return

Passive; when
context is full

Passive; when
context is full

Every 5K-
token chunk

Every turn

Model Optimization End-to-end End-to-end Separate sum-
marizer

End-to-end End-to-end

Active Context 32K 32K 32K 8K ∼1K
Total Context 320K (train) / 1M

(test-time exten-
sion; Fig. 5)

320K (train) Unknown 32K (train) /
3.5M (test-time
extension)

Unknown

Model Size 36B 36B 30B 14B 7B
RL Algorithm FoldPO GRPO ReSum-GRPO GRPO PPO
Auxiliary Reward Unfold and out-

of-scope penalty
None None None None

Table 3: Comparison of related work.

S1 The current context is full. Your task will be delegate to another agent. Now summarize all your progress, current status, and
what need to do next. Make sure the summary is clear. You summary should track:
USER CONTEXT: (Preserve essential user requirements, goals, and clarifications in concise form)
COMPLETED: (Tasks completed so far, with brief results) PENDING: (Tasks that still need to be done) CURRENT STATE:
(Current variables, data structures, or relevant state)
For code-specific tasks, also include: CODE STATE: File paths, function signatures, data structures TESTS: Failing cases,
error messages, outputs CHANGES: Code edits, variable updates DEPS: Dependencies, imports, external calls VER-
SION CONTROL STATUS: Repository state, current branch, PR status, commit history
PRIORITIZE: 1. Adapt tracking format to match the actual task type 2. Capture key user requirements and goals 3. Distinguish
between completed and pending tasks 4. Keep all sections concise and relevant
SKIP: Tracking irrelevant details for the current task type
Example formats:
For code tasks: USER CONTEXT: Fix FITS card float representation issue COMPLETED: Modified mod float() in card.py, all
tests passing PENDING: Create PR, update documentation CODE STATE: mod float() in card.py updated TESTS: test format()
passed CHANGES: str(val) replaces f”val:.16G” DEPS: None modified VERSION CONTROL STATUS: Branch: fix-float-
precision, Latest commit: a1b2c3d
For other tasks: USER CONTEXT: Write 20 haikus based on coin flip results COMPLETED: 15 haikus written for results
[T,H,T,H,T,H,T,T,H,T,H,T,H,T,H] PENDING: 5 more haikus needed CURRENT STATE: Last flip: Heads, Haiku count: 15/20
Now generate the summary, and put your summary inside tag <summary> </summary>

36.67

S2 Your operational context is full. Generate a concise handover summary by populating the template below. This summary will
be your **sole context** for continuing this task. Be brief but ensure all critical data is present.
—
‘// RESEARCH STATE HANDOVER //‘
1. Mission Objective * **Original Query:** [State the user’s verbatim query.] * **Verification Checklist:** * ‘[Status]‘
[Checklist Item 1] * ‘[Status]‘ [Checklist Item 2] * ... (List all items with status: ‘[VERIFIED]‘, ‘[PENDING]‘, etc.)
2. Key Findings * [List the most critical, verified facts with sources.] * **Fact:** ... **Sources:** [docid) * **Fact:** ...
Sources: [docid) * **Discrepancies:** [Note any conflicting information found between sources.]
3. Tactical Plan * **Promising Leads:** [List the best remaining keywords, sources, or angles to investigate.] * **Known
Dead Ends:** [List queries or sources that proved useless to avoid repetition.] * **Immediate Next Action:** [State the exact
tool call or query you were about to execute next.]
Now generate the summary, and put your summary inside tag <summary> </summary>

38.33

S3 Your operational context is full. Create a concise summary to continue research in a new session.
1. Query Status - **Original Question:** [Exact query] - **Key Requirements:** [Constraints, dates, entities needed] - **Veri-
fication Checklist:** [Each item: VERIFIED / PARTIAL / MISSING]
2. Findings - **Confirmed Facts:** [Fact + Source + Confidence level] - **Unresolved Gaps:** [What’s still needed + why not
found] - **Conflicts:** [Discrepancy + competing sources]
3. Research Intel - **Tool Calls Used:** [Number] - **Working Queries:** [Successful search terms] - **Dead Ends:** [Failed
approaches] - **Best Sources:** [Reliable domains/document types found]
4. Next Actions - **Immediate Priorities:** [Top 3 specific searches needed] - **Alternative Angles:** [If main approach fails,
try these] - **Current Answer Status:** [What can be answered now vs. what’s missing]
Now generate the summary, and put your summary inside tag <summary> </summary>

34.50

Table 4: Candidate summary prompt and BrowseComp-Plus score.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G PREVENTING REWARD HACKING

Outcome Reward For SWE-Bench, we use the annotated unit tests in SWE-Gym and SWE-
Rebench, which rely on an evaluation script that cannot be hacked. For BrowseComp-Plus, we
employ the official reference-based judger [35], which compares the model-predicted entity with
the ground-truth entity. To ensure robustness, we monitored all LLM-judge outputs during our
experiments and complemented them with a traditional Exact Match judger. Through this process,
we identified and corrected three problematic ground-truth labels in BrowseComp-Plus (typos or
entity aliases: “Tobias Smollet”, “Biswaranjan Chattapadhyay”, “Glafcos Clerides: The Path of a
Country”). Aside from these three corrected errors, our manual audit found the LLM judger to be
accurate.

Unfolded-token Penalty The unfolded-token penalty discourages excessive tool calls in the main
thread. The model cannot hack this reward; it can only reduce the main-thread length, which is
desirable.

Out-of-scope Penalty To improve judging reliability, during model training we monitored gpt-5-
nano’s explanations and added corrective examples to the judger prompt to fix notable failure cases
(see below). Empirically, the judge behaves reasonably. However, there is no guarantee, and future
work may design more robust judgers for out-of-scope behavior.

You are an evaluator. Your goal is to determine if a sub-agent's work
stayed strictly within the scope of its assigned task.↪→

Below is an assigned sub-task for an agent, followed by the agents
message after completing it. Your job: Judge whether the agent
stayed focused only on the assigned sub-task or performed any actions
beyond it.

↪→
↪→
↪→

- If the agent does many things beyond the assigned task description,
return <error>.↪→

- If the agent is only slightly out of scope, return <fine>. The
difference between <error> and <fine> is whether the main part of the
sub-agents work stays within the assigned task.

↪→
↪→
- If the agent focuses only on the assigned task, return <good>even if

the task is incomplete, failed, or produced no results. Task success
or failure is irrelevant as long as no unassigned actions are
performed.

↪→
↪→
↪→

Examples:
- If the task is to create new tests, but the agent additionally fixes a

bug <error>.↪→
- If the task is to explore the codebase to identify a bug, but the agent

also creates tests to reproduce the error <error>.↪→
- If the task is to search for X, but the agent also searches for Y

<error>.↪→
- If the task is to fix a bug, but the agent creates a simple test script

to guide the fix <fine>.↪→
- If the task is to review the code, but the agent makes a small edit for

a minor issue <fine>.↪→

In all other cases where the agent remains within the scope of the
assigned task, return <good>.↪→

The completion may include tasks completed before this agent or plans for
the next agent. These do not count toward the current subagents work.
Be relatively conservative when predicting <error>.

↪→
↪→

Now give me your judge of <good> or <error>, and a one-sentence, very
brief explanation.:↪→

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Code Exploration Completed
Key Findings: 1. **Issue Identified**: In ‘/testbed/xarray/core/weighted.py‘, the ‘ sum of weights‘ method at line 145 uses ‘self. reduce(mask, self.weights, ...)‘
where ‘mask‘ and ‘weights‘ are both boolean arrays, causing the dot product to return a boolean instead of numeric result.
2. **Problematic Code**: - Line 143: ‘mask = da.notnull()‘ creates boolean array - Line 145: ‘sum of weights = self. reduce(mask, self.weights, dim=dim,
skipna=False)‘ calls dot product on two boolean arrays
3. **Root Cause**: When both ‘mask‘ and ‘weights‘ are boolean, the ‘dot‘ function returns a boolean result (‘True‘ instead of ‘2‘ in the example), which then causes
incorrect division in ‘ weighted mean‘.
4. **Relevant Files**: - ‘/testbed/xarray/core/weighted.py‘ - Contains the buggy ‘ sum of weights‘ method - ‘/testbed/xarray/core/computation.py‘ - Contains the
‘dot‘ function - ‘/testbed/xarray/tests/test weighted.py‘ - Contains existing tests
Fix Location: The issue is in ‘/testbed/xarray/core/weighted.py‘ line 145 in the ‘ sum of weights‘ method. The fix should convert boolean weights to numeric type
before the dot product calculation.

Test Creation & Verification Completed
Key Outcomes: 1. **Successfully reproduced the issue**: The boolean weights bug is confirmed 2. **Test script confirms**: - Weighted mean returns ‘2.0‘ instead
of expected ‘1.0‘ - Root cause: ‘sum of weights‘ is ‘True‘ (boolean) instead of ‘2‘ (numeric) - Fix works: ‘wgt * 1‘ gives correct ‘sum of weights = 2‘ (int64)
Files Modified: - Test script ‘/testbed/reproduce issue.py‘
Key Insights: - The issue is exactly as described: boolean dot product returns boolean result - The fix is simple: convert weights to numeric before dot product - The
test clearly demonstrates both the problem and the solution
Next Steps: Ready to proceed to Fix Analysis
Implementation phase to modify ‘/testbed/xarray/core/weighted.py‘

Fix Implementation Completed
Key Outcomes: 1. **Successfully implemented the fix**: Modified ‘/testbed/xarray/core/weighted.py‘ line 145-147 to convert boolean weights to numeric before dot
product calculation 2. **Fix verified**: The reproduction script now shows the correct result (‘1.0‘ instead of ‘2.0‘) 3. **Minimal change**: Only 3 lines modified,
maintaining full backward compatibility
Changes Made: - **File**: ‘/testbed/xarray/core/weighted.py‘ - **Lines 145-147**: Added conversion of boolean weights to numeric using ‘weights numeric =
self.weights * 1‘ before the dot product
Technical Details: - The fix ensures that when boolean weights are passed, they are converted to integers (True→1, False→0) before the dot product operation - This
maintains the original weight values while ensuring the dot product returns a numeric result instead of boolean - The change is backward compatible - non-boolean
weights are unaffected since multiplying by 1 has no effect on them
Next Steps: Ready for Code Review phase to validate the fix and ensure no edge cases were missed

Code Review Completed
Key Outcomes: 1. **All existing tests pass**: Ran the full test suite for weighted operations (‘/testbed/xarray/tests/test weighted.py‘) - all 312 tests passed successfully
2. **Fix validated**: The implemented fix correctly handles boolean weights while maintaining backward compatibility 3. **Edge cases verified**: Tested various
scenarios including: - All True boolean weights → works correctly - All False boolean weights → returns NaN as expected - Mixed boolean weights → correct
numeric result - Non-boolean weights (int, float) → unchanged behavior
Files Verified: - ‘/testbed/xarray/core/weighted.py‘ - Fix is correct and minimal - ‘/testbed/xarray/tests/test weighted.py‘ - All existing tests pass
Key Insights: - The fix is robust and doesn’t break any existing functionality - Conversion ‘weights * 1‘ is the perfect solution: - Converts boolean → int (True→1,
False→0) - Leaves non-boolean types unchanged (identity operation) - Maintains all metadata (attrs, coords, etc.) - The fix handles all edge cases properly
Status: Code review complete - fix is validated and ready for verification

Table 5: Branch message example.

H BRANCH MESSAGE EXAMPLES

I ALGORITHM IMPLEMENTATION

I.1 MULTI-TRAJECTORIES COLLECTION

For practical implementation of model training, instead of concatenating all sub-trajectories into one
sequence, we keep them as separate causally conditioned sequences, as shown above. Therefore,
training with context folding is not directly compatible with existing training infrastructures (e.g., in
Verl).

I.2 ASYNCHRONOUS LONG-HORIZON AGENT ROLLOUT

The rollout time of long-horizon agents is imbalanced, which causes a “bubble” in computation,
where faster jobs wait for the longest one to finish. In our training setup, we mitigate this by adding
an additional standalone rollout process: the main rollout process stops once it completes 95% of
the prompts (this hyperparameter is adjusted based on the GPU configuration), and the remaining
jobs are handled by the standalone process. The data used for updating the LM include both (i) the
95% of the current batch and (ii) the prompts from the previous step that were completed by the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

standalone rollout. Note that this part is off-policy; we set the maximum number of off-policy steps
to 5 and observe no performance degradation compared to training on fully on-policy data.

J PROMPT ENGINEERING

J.1 BROWSECOMP-PLUS WORKFLOW

Our prompt for BrowseComp-Plus is inspired by and modified from Claude Deep-Research. Using
Seed-OSS-36B, we found that our system prompt achieves 0.478 accuracy, while the default system
prompt in BrowseComp-Plus achieves only around 0.08.

Phase 1: Deconstruction & Strategy

1. Deconstruct the Query:
* Analyze the user's prompt to identify the core question(s).
* Isolate key entities, concepts, and the relationships between them.
* Explicitly list all constraints, conditions, and required data

points (e.g., dates, quantities, specific names).↪→
2. Hypothesize & Brainstorm:

* Based on your knowledge, brainstorm potential search vectors,
keywords, synonyms, and related topics that could yield relevant
information.

↪→
↪→

* Consider multiple angles of inquiry to approach the problem.
3. Verification Checklist:

* Create a Verification Checklist based on the query's constraints
and required data points. This checklist will be your guide
throughout the process and used for final verification.

↪→
↪→

Phase 2: Iterative Research & Discovery

Tool Usage:
* Tools:

* `search`: Use for broad discovery of sources and to get initial
snippets.↪→

* `open_page`: Mandatory follow-up for any promising `search` result.
Snippets are insufficient; you must analyze the full context of
the source document.

↪→
↪→

* Query Strategy:
* Start with moderately broad queries to map the information

landscape. Narrow your focus as you learn more.↪→

* Do not repeat the exact same query. If a query fails, rephrase it
or change your angle of attack.↪→

* Execute a minimum of 5 tool calls for simple queries and up to 50
tool calls for complex ones. Do not terminate prematurely.↪→

* Post-Action Analysis: After every tool call, briefly summarize the key
findings from the result, extract relevant facts, and explicitly
state how this new information affects your next step in the OODA
loop.

↪→
↪→
↪→

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

* <IMPORTANT>Never simulate tool call output<IMPORTANT>

You will execute your research plan using an iterative OODA loop
(Observe, Orient, Decide, Act).↪→

1. Observe: Review all gathered information. Identify what is known and,
more importantly, what knowledge gaps remain according to your
research plan.

↪→
↪→
2. Orient: Analyze the situation. Is the current line of inquiry

effective? Are there new, more promising avenues? Refine your
understanding of the topic based on the search results so far.

↪→
↪→
3. Decide: Choose the single most effective next action. This could be a

broader query to establish context, a highly specific query to find a
key data point, or opening a promising URL.

↪→
↪→
4. Act: Execute the chosen action using the available tools. After the

action, return to Observe.↪→

Phase 3: Synthesis & Analysis

* Continuous Synthesis: Throughout the research process, continuously
integrate new information with existing knowledge. Build a coherent
narrative and understanding of the topic.

↪→
↪→

* Triangulate Critical Data: For any crucial fact, number, date, or
claim, you must seek to verify it across at least two independent,
reliable sources. Note any discrepancies.

↪→
↪→

* Handle Dead Ends: If you are blocked, do not give up. Broaden your
search scope, try alternative keywords, or research related
contextual information to uncover new leads. Assume a discoverable
answer exists and exhaust all reasonable avenues.

↪→
↪→
↪→

* Maintain a "Fact Sheet": Internally, keep a running list of key facts,
figures, dates, and their supporting sources. This will be crucial
for the final report.

↪→
↪→

Phase 4: Verification & Final Report Formulation

1. Systematic Verification: Before writing the final answer, halt your
research and review your Verification Checklist created in Phase 1.
For each item on the checklist, confirm you have sufficient,
well-supported evidence from the documents you have opened.

↪→
↪→
↪→
2. Mandatory Re-research: If any checklist item is unconfirmed or the

evidence is weak, it is mandatory to return to Phase 2 to conduct
further targeted research. Do not formulate an answer based on
incomplete information.

↪→
↪→
↪→
3. Never give up, no matter how complex the query, you will not give up

until you find the corresponding information.↪→
4. Construct the Final Report:

* Once all checklist items are confidently verified, synthesize all
gathered facts into a comprehensive and well-structured answer.↪→

* Directly answer the user's original query.
* Ensure all claims, numbers, and key pieces of information in your

report are clearly supported by the research you conducted.↪→

J.2 SWE-BENCH WORKFLOW

Our prompt for SWE-Bench follows OpenHands.

Phase 1. READING: read the problem and reword it in clearer terms
1.1 If there are code or config snippets. Express in words any best

practices or conventions in them.↪→
1.2 Hightlight message errors, method names, variables, file names,

stack traces, and technical details.↪→
1.3 Explain the problem in clear terms.
1.4 Enumerate the steps to reproduce the problem.
1.5 Hightlight any best practices to take into account when testing

and fixing the issue↪→

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Phase 2. RUNNING: install and run the tests on the repository
2.1 Follow the readme
2.2 Install the environment and anything needed
2.2 Iterate and figure out how to run the tests

Phase 3. EXPLORATION: find the files that are related to the problem and
possible solutions↪→

3.1 Use `grep` to search for relevant methods, classes, keywords and
error messages.↪→

3.2 Identify all files related to the problem statement.
3.3 Propose the methods and files to fix the issue and explain why.
3.4 From the possible file locations, select the most likely location

to fix the issue.↪→

Phase 4. TEST CREATION: before implementing any fix, create a script to
reproduce and verify the issue.↪→

4.1 Look at existing test files in the repository to understand the
test format/structure.↪→

4.2 Create a minimal reproduction script that reproduces the located
issue.↪→

4.3 Run the reproduction script to confirm you are reproducing the
issue.↪→

4.4 Adjust the reproduction script as necessary.

Phase 5. FIX ANALYSIS: state clearly the problem and how to fix it
5.1 State clearly what the problem is.
5.2 State clearly where the problem is located.
5.3 State clearly how the test reproduces the issue.
5.4 State clearly the best practices to take into account in the fix.
5.5 State clearly how to fix the problem.

Phase 6. FIX IMPLEMENTATION: Edit the source code to implement your
chosen solution.↪→

6.1 Make minimal, focused changes to fix the issue.

Phase 7. VERIFICATION: Test your implementation thoroughly.
7.1 Run your reproduction script to verify the fix works.
7.2 Add edge cases to your test script to ensure comprehensive

coverage.↪→
7.3 Run existing tests related to the modified code to ensure you

haven't broken anything.↪→

8. FINAL REVIEW: Carefully re-read the problem description and compare
your changes with the base commit {{ instance.base_commit }}.↪→

8.1 Ensure you've fully addressed all requirements.
8.2 Run any tests in the repository related to:

8.2.1 The issue you are fixing
8.2.2 The files you modified
8.2.3 The functions you changed

8.3 If any tests fail, revise your implementation until all tests pass

K AGENT SCAFFOLD

K.1 BROWSECOMP-PLUS

Following [6], in BrowseComp-Plus the agent can use the following tools:

search = {
'type': 'function',
'function': {

"name": "search",

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

"description": "Performs a web search: supply a string 'query'
and optional 'topk'. The tool retrieves the top 'topk'
results (default 10) for the query, returning their docid,
url, and document content (may be truncated based on token
limits).",

↪→
↪→
↪→
↪→
"parameters": {

"type": "object",
"properties": {

"query": {
"type": "string",
"description": "The query string for the search."

},
"topk": {

"type": "integer",
"description": "Return the top k pages.",

}
},
"required": [

"query"
]

}
}

}
open_page = {

'type': 'function',
'function': {

'name': 'open_page',
'description': (

"Open a page by docid or URL and return the complete content.
"↪→

"Provide either 'docid' or 'url'; if both are provided,
prefer 'docid'. "↪→

"The docid or URL must come from prior search tool results."
),
'parameters': {

'type': 'object',
'properties': {

'docid': {
'type': 'string',
'description': 'Document ID from search results to

resolve and fetch.',↪→
},
'url': {

'type': 'string',
'description': 'Absolute URL from search results to

fetch.',↪→
},

},
'required': [],

},
},

}
finish = {

'type': 'function',
'function': {

'name': 'finish',
'description': """Return the final result when you have a

definitive answer or cannot progress further. Provide a
concise answer plus a brief, evidence-grounded
explanation.""",

↪→
↪→
↪→
'parameters': {

'type': 'object',
'properties': {

'answer': {
'type': 'string',
'description': 'A succinct, final answer.',

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

},
'explanation': {

'type': 'string',
'description': 'A brief explanation for your final

answer. For this section only, cite evidence
documents inline by placing their docids in
square brackets at the end of sentences (e.g.,
[20]). Do not include citations anywhere else.',

↪→
↪→
↪→
↪→

},
'confidence': {

'type': 'string',
'description': 'Confidence: your confidence score

between 0% and 100% for your answer',↪→
},

},
'required': ['answer', 'explanation'],

},
},

}

Following [6], the search tool retrieves the topk (default as 10) documents using Qwen3-Embed-
8B from the BrowseComp-Plus corpus and displays the first 512 tokens. The open page tool
fetches the full document, which is truncated to the first 4096 tokens. When the agent calls finish,
the answer field is used for correctness evaluation.

The system prompt is as shown in J and the user prompt is question and tool-use description.

K.2 SWE-BENCH

In SWE-Bench, we follow OpenHands [1], the agent can use the following tools:

execute_bash = {
'type': 'function',
'function': {

'name': 'execute_bash',
'description': """Execute a bash command in the terminal.

* Long running commands: For commands that may run indefinitely, it
should be run in the background and the output should be redirected
to a file, e.g. command = `python3 app.py > server.log 2>&1 &`.

↪→
↪→

* One command at a time: You can only execute one bash command at a time.
If you need to run multiple commands sequentially, you can use `&&`
or `;` to chain them together.

↪→
↪→
""",

'parameters': {
'type': 'object',
'properties': {

'command': {
'type': 'string',
'description': 'The bash command to execute. Can be

empty string to view additional logs when
previous exit code is `-1`. Can be `C-c` (Ctrl+C)
to interrupt the currently running process. Note:
You can only execute one bash command at a time.
If you need to run multiple commands
sequentially, you can use `&&` or `;` to chain
them together.',

↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
},
'required': ['command'],

},
},

}

str_replace_editor = {
'type': 'function',

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

'function': {
'name': 'str_replace_editor',
'description': """Custom editing tool for viewing, creating and

editing files in plain-text format↪→

* State is persistent across command calls and discussions with the user
* If `path` is a file, `view` displays the result of applying `cat -n`. If

`path` is a directory, `view` lists non-hidden files and directories
up to 2 levels deep

↪→
↪→

* The `create` command cannot be used if the specified `path` already
exists as a file↪→

* If a `command` generates a long output, it will be truncated and marked
with `<response clipped>`↪→

* The `undo_edit` command will revert the last edit made to the file at
`path`↪→

Notes for using the `str_replace` command:
* The `old_str` parameter should match EXACTLY one or more consecutive

lines from the original file. Be mindful of whitespaces!↪→

* If the `old_str` parameter is not unique in the file, the replacement
will not be performed. Make sure to include enough context in
`old_str` to make it unique

↪→
↪→

* The `new_str` parameter should contain the edited lines that should
replace the `old_str`↪→

""",
'parameters': {

'type': 'object',
'properties': {

'command': {
'description': 'The commands to run. Allowed options

are: `view`, `create`, `str_replace`, `insert`,
`undo_edit`.',

↪→
↪→
'enum': ['view', 'create', 'str_replace', 'insert',

'undo_edit'],↪→
'type': 'string',

},
'path': {

'description': 'Absolute path to file or directory,
e.g. `/workspace/file.py` or `/workspace`.',↪→

'type': 'string',
},
'file_text': {

'description': 'Required parameter of `create`
command, with the content of the file to be
created.',

↪→
↪→
'type': 'string',

},
'old_str': {

'description': 'Required parameter of `str_replace`
command containing the string in `path` to
replace.',

↪→
↪→
'type': 'string',

},
'new_str': {

'description': 'Optional parameter of `str_replace`
command containing the new string (if not given,
no string will be added). Required parameter of
`insert` command containing the string to
insert.',

↪→
↪→
↪→
↪→
'type': 'string',

},
'insert_line': {

'description': 'Required parameter of `insert`
command. The `new_str` will be inserted AFTER the
line `insert_line` of `path`.',

↪→
↪→
'type': 'integer',

},

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

'view_range': {
'description': 'Optional parameter of `view` command

when `path` points to a file. If none is given,
the full file is shown. If provided, the file
will be shown in the indicated line number range,
e.g. [11, 12] will show lines 11 and 12. Indexing
at 1 to start. Setting `[start_line, -1]` shows
all lines from `start_line` to the end of the
file.',

↪→
↪→
↪→
↪→
↪→
↪→
↪→
'items': {'type': 'integer'},
'type': 'array',

},
},
'required': ['command', 'path'],

},
},

}

think = {
'type': 'function',
'function': {

'name': 'think',
'description': """Use the tool to think about something. It will

not obtain new information or make any changes to the
repository, but just log the thought. Use it when complex
reasoning or brainstorming is needed.

↪→
↪→
↪→

Common use cases:
1. When exploring a repository and discovering the source of a bug, call

this tool to brainstorm several unique ways of fixing the bug, and
assess which change(s) are likely to be simplest and most effective.

↪→
↪→
2. After receiving test results, use this tool to brainstorm ways to fix

failing tests.↪→
3. When planning a complex refactoring, use this tool to outline

different approaches and their tradeoffs.↪→
4. When designing a new feature, use this tool to think through

architecture decisions and implementation details.↪→
5. When debugging a complex issue, use this tool to organize your

thoughts and hypotheses.↪→

The tool simply logs your thought process for better transparency and
does not execute any code or make changes.↪→

""",
'parameters': {

'type': 'object',
'properties': {

'content': {'type': 'string', 'description': 'The content
of your thought.'},↪→

},
'required': ['content'],

},
},

}

finish = {
'type': 'function',
'function': {

'name': 'finish',
'description': """Finish the interaction when the task is

complete OR if the assistant cannot proceed further with the
task.""",

↪→
↪→
'parameters': {

'type': 'object',
'properties': {

'message': {
'type': 'string',

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

'description': 'A comprehensive message describing
task completion, results achieved, any state
changes made, key insights discovered, and other
notes.',

↪→
↪→
↪→

},
},
'required': [],

},
},

}

When the agent calls finish, the git diff is fetched from the Docker environment, and the reward
is calculated by applying the git diff to the another Docker environment and running the unit tests.

K.3 CONTEXT FOLDING

For context folding, we implement these tools:

branch = {
'type': 'function',
'function': {

'name': 'branch',
'description': """Create a sub-branch to execute a sub-task.""",
'parameters': {

'type': 'object',
'properties': {

'description': {
'description': 'A concise 3-5 word identifier for the

sub-task.',↪→
'type': 'string'

},
'prompt': {

'description': 'Clear, compact task prompt: state
objectives and critical info to preserve in the
response. Be brief and informative.',

↪→
↪→
'type': 'string'

},
},
'required': ['description', 'prompt'],

},
},

}
return_tool = {

'type': 'function',
'function': {

'name': 'return',
'description': """Finish the interaction when the sub task is

complete OR if the assistant cannot proceed further with the
task.""",

↪→
↪→
'parameters': {

'type': 'object',
'properties': {

'message': {
'type': 'string',
'description': 'A comprehensive message describing

sub task outcome.',↪→
},

},
'required': ['message'],

},
},

}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The branch tool returns a template message, while the return tool rolls back the context to
the previous turn that invoked the branch tool and appends a template message that repeats the
message field.

27

	Introduction
	Methodology
	Vanilla Formulation
	Our Method: Context Folding
	FoldPO: End-to-End RL for Context-Folding Agent
	Overall Algorithm Design
	Process Reward Design

	How does Context Folding Connect to Other Methods?

	Experiment
	Datasets
	Implementation
	Baselines

	Experimental Results
	Main Results
	Performance by Task Difficulty
	Ablation of RL Algorithm
	Performance by Context Length
	Case Study

	Related Work
	Conclusions and Future Work
	Data Example
	Model Efficiency
	Parallel Branching
	Reward Curve and Ablation
	Related Work Discussion
	Tuning of Summary Agent Baseline
	Preventing Reward Hacking
	Branch Message Examples
	Algorithm Implementation
	Multi-Trajectories Collection
	Asynchronous Long-Horizon Agent Rollout

	Prompt Engineering
	BrowseComp-Plus Workflow
	SWE-Bench Workflow

	Agent Scaffold
	BrowseComp-Plus
	SWE-Bench
	Context Folding

