
Learning Event Completeness for Weakly Supervised Video Anomaly Detection

Yu Wang 1 Shiwei Chen 2

Abstract
Weakly supervised video anomaly detection
(WS-VAD) is tasked with pinpointing tempo-
ral intervals containing anomalous events within
untrimmed videos, utilizing only video-level an-
notations. However, a significant challenge
arises due to the absence of dense frame-level
annotations, often leading to incomplete local-
ization in existing WS-VAD methods. To ad-
dress this issue, we present a novel LEC-VAD,
Learning Event Completeness for Weakly Su-
pervised Video Anomaly Detection, which fea-
tures a dual structure designed to encode both
category-aware and category-agnostic semantics
between vision and language. Within LEC-VAD,
we devise semantic regularities that leverage an
anomaly-aware Gaussian mixture to learn precise
event boundaries, thereby yielding more complete
event instances. Besides, we develop a novel
memory bank-based prototype learning mecha-
nism to enrich concise text descriptions associ-
ated with anomaly-event categories. This innova-
tion bolsters the text’s expressiveness, which is
crucial for advancing WS-VAD. Our LEC-VAD
demonstrates remarkable advancements over the
current state-of-the-art methods on two bench-
mark datasets XD-Violence and UCF-Crime.

1. Introduction
In recent years, video anomaly detection (VAD) has gar-
nered increasing interest due to its widespread applications
(Carreira & Zisserman, 2017; Dosovitskiy & et al, 2021;
Radford et al., 2021), such as intelligent surveillance (Sul-
tani et al., 2018; Wang et al., 2024), multimedia content
review (Zhu et al., 2023), and intelligent manufacturing
(Gupta et al., 2024). VAD aims to predict temporal intervals
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of anomaly events in arbitrarily long and untrimmed videos.
However, a major challenge faced by VAD is its reliance on
costly and dense annotations that precisely mark the start
and end of each anomaly event. To mitigate this depen-
dency, weakly supervised VAD (WS-VAD) is introduced.
This paradigm facilitates training with only video-level an-
notations, thereby streamlining the annotation process and
enhancing the feasibility of VAD in practical applications.

The majority of contemporary methods (Wu et al., 2024b;
Liu et al., 2024; Wu et al., 2024d; Zhou et al., 2023; Cho
et al., 2023b; Luo et al., 2021; Ramachandra et al., 2020;
Wang et al., 2023a; Feng et al., 2021) for WS-VAD adhere
to a systematic pipeline. Initially, the process entails extract-
ing frame-level features by leveraging pre-trained models
(Radford et al., 2021; Jia et al., 2021). Following this, these
extracted features are input into binary classifiers and in-
tegrated with a multiple instance learning (MIL) strategy
(Paul et al., 2018). Ultimately, the identification of abnor-
mal events is achieved through the analysis of the predicted
anomaly confidences. Despite achieving promising results,
such a classification paradigm assigns each video frame to
zero or more anomaly categories. During inference, it relies
on manually designed post-processing steps to aggregate
these frame-level predictions into consecutive anomaly snip-
pets with explicit boundaries. However, this paradigm often
results in incomplete and fragmented anomaly segments, as
shown in Figure. 1.

To address the challenge of incomplete anomaly event
detection in such a paradigm, we propose LEC-VAD,
Learning Event Completeness for Weakly Supervised Video
Anomaly Detection, including two novel mechanisms: mem-
ory bank-based prototype learning strategy and Gaussian
mixture prior-based local consistency learning. For the for-
mer, we resort to textual descriptions of anomaly-category
and devise a dual structure to encode both coarse-grained
and fine-grained semantics between vision and language. In
this procedure, textual expressions of anomaly categories
are typically concise and limited in expression, so an in-
novative memory bank-based prototype learning strategy
is developed to strengthen the text’s entropy. Besides, we
also dynamically enhance text representations by integrat-
ing learnable text-condition visual prompts. For the latter,
since the model is trained to perform frame-wise prediction,
it lacks an explicit understanding of anomaly event bound-
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Figure 1: Yellow denotes ground truth anomaly intervals,
Blue denotes the prediction intervals, and the black lines
depict the predicted confidences. We observe that ex-
isting methods, exemplified by ReFLIP, typically suffer
from the fragmentation of intervals, ultimately yielding in-
complete anomaly instances. Instead, our LEC-VAD pro-
duces smoother scoring patterns, leading to more complete
anomaly intervals.

aries, thus resulting in an objective discrepancy between the
classification-based training and localization-based infer-
ence. To bridge this gap, we hypothesize that prediction re-
sults should exhibit local consistency. To explicitly enforce
this prior, we refine anomaly scores with learnable Gaussian
mixture masks. This enables anomaly scores to incorpo-
rate contextual information from nearby frames, thereby
improving the smoothness of predicted anomaly snippets.

The main contributions of this paper are five-fold: 1) We
propose LEC-VAD, a novel method to learn event com-
pleteness for video anomaly detection with only video-level
annotations. 2) A dual structure is devised to mine both
category-aware and category-agnostic semantics between
vision and language. 3) Since text descriptions of anomaly
categories are typically concise and limited in expression,
we develop a memory bank-based prototype learning mech-
anism to enrich textual representations. 4) Based on our
hypothesis that prediction results should exhibit local consis-
tency, we propose a prior-driven event completeness learn-
ing paradigm to refine anomaly scores equipped with learn-
able Gaussian mixture masks. 5) Extensive evaluations on
the XD-Violence and UCF-Crime datasets have shown that
our LEC-VAD achieves state-of-the-art performance. No-
tably, it demonstrates a significant advantage over existing
methods for finer-grained anomaly-event detection, outper-
forming them by a substantial margin.

2. Related Work
2.1. Vision-Language Pre-training

Cross-modal vision-language understanding (Jian et al.,
2024; Wu et al., 2023; Wei et al., 2024) is a fundamental task
that necessitates precise representation alignment between

language and vision. The mainstream approaches can be
grouped into two categories, i.e., joint encoder and dual en-
coder. Methods with a joint encoder (Li et al., 2021; Lu et al.,
2019; Zhang et al., 2021) employ a multi-modal encoder to
facilitate fine-grained interactions between vision and lan-
guage. However, despite their promising performance, these
methods suffer from a notable drawback in that they neces-
sitate processing each text-image pair individually during
inference, leading to significant inefficiencies. In contrast,
approaches employing the dual-encoder structure (Radford
et al., 2021; Jia et al., 2021) utilize two separate encoders
to extract visual and linguistic features. Recently, signifi-
cant advances have been attributed to large-scale contrastive
pre-training within this paradigm, which has dramatically
enhanced the performance of numerous multi-modal tasks,
including text-image retrieval (Wang et al., 2023b; Jiang &
Ye, 2023), visual question answering (Sima et al., 2025; Lin
et al., 2023b), and video grounding (Lin et al., 2023a; Xiao
et al., 2024). In this paper, we embrace CLIP (Radford et al.,
2021) and transfer it for video anomaly detection.

2.2. Weakly Supervised Video Anomaly Detection

Weakly Supervised video anomaly detection (WS-VAD) has
attracted considerable attention in recent years due to its
broad applicability (Wang et al., 2025; 2024; Zhu et al.,
2023; Gupta et al., 2024; Sultani et al., 2018) and manage-
able computational requirements. Sultani et al. (Sultani
et al., 2018) are pioneers in this field, collecting a large-
scale dataset for video anomaly detection annotated at the
video level and employing a multiple instance ranking strat-
egy to pinpoint anomalous events. Subsequent research
endeavors have focused on various aspects of enhancing
WS-VAD performance. One line of research (Zhong et al.,
2019; Tian et al., 2021; Zhong et al., 2024; Li et al., 2022;
Huang et al., 2022; Zhou et al., 2023) has explored cap-
turing the temporal relationships among video segments.
This has been achieved through the use of graph structures
(Zhong et al., 2019), self-attention strategies (Tian et al.,
2021; Zhou et al., 2023), and transformers (Lv et al., 2023;
Huang et al., 2022; Li et al., 2022). These methods provide
a deeper understanding of how different parts of a video
interact, which is crucial for accurately detecting anoma-
lies. Another paradigm has been to investigate self-training
schemes (Yang et al., 2024; Rai et al., 2024; Zhang et al.,
2023; Feng et al., 2021). These schemes generate snippet-
level pseudo-labels, which are then used to iteratively refine
the anomaly scores. This process helps in improving the
accuracy of anomaly detection by providing more granular
feedback. Besides, Sapkota et al. (Sapkota & Yu, 2022)
and Zaheer et al. (Zaheer et al., 2024) seek solutions to
alleviate the impact of false positives. Recently, there has
been a surge in efforts to leverage multi-modal knowledge
to boost WS-VAD performance. For example, PEL4VAD
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Figure 2: Overview of the proposed LEC-VAD. We develop a dual-structured framework to perceive both category-agnostic
and category-aware anomaly clues. We incorporate textual expressions of anomaly categories into WS-VAD, and develop a
novel memory bank-based prototype learning mechanism to enrich concise textual descriptions associated with anomaly-
event categories. Besides, Gaussian mixture prior-based semantic regularities are devised to learn complete event boundaries.

(Pu et al., 2024), VadCLIP (Wu et al., 2024d), and ITC (Liu
et al., 2024) inject text clues of anomaly-event categories for
WS-VAD, while PE-MIL (Chen et al., 2024) and MACIL-
SD (Yu et al., 2022) introduce audio elements to enhance
their capabilities. These innovations have yielded promising
results. Wu et al. (Wu et al., 2024a) have gone further by
developing a framework that can retrieve video anomalies
based on language queries or synchronous audio. They (Wu
et al., 2024b) have also proposed an open-vocabulary video
anomaly detection paradigm to identify both known and
novel anomalies in open-world settings. Besides, the use
of pre-trained vision-language models, i.e., CLIP (Radford
et al., 2021), has also emerged as a powerful tool for extract-
ing robust representations (Zhu & Pang, 2024; Wu et al.,
2024d; Dev et al., 2024; Yang et al., 2024). For example,
Yang et al. (Yang et al., 2024) utilize pre-trained CLIP to
generate reliable pseudo-labels. Lv et al. (Lv et al., 2023)
devise an unbiased multiple-instance strategy to learn in-
variant representations. STPrompt (Wu et al., 2024c) learns
spatio-temporal prompt embeddings based on pre-trained

vision-language models.

Despite significant advances, these existing works fail to
harness the principle that predictions should exhibit local
consistency. In contrast, our proposed LEC-VAD learns
Gaussian mixture masks alongside multi-granularity seman-
tics to ensure the completeness of anomaly event detection.

3. Methodology
In this section, we first introduce the proposed dual-
structured framework LEC-VAD. Then, we elaborate on
the proposed memory bank-based prototype learning mech-
anism and Gaussian mixture prior-based local consistency
learning strategy in Section 3.2 and Section 3.3 respectively.

3.1. Overview

Problem Definition. Given a dataset consisting of n videos
V = {vi}ni=1 with different annotation granularities, each
video vi is annotated with coarse-grained and fine-grained
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video-level labels yi ∈ {0, 1} and gi ∈ {0, .., C} respec-
tively, where C is the number of anomaly categories. If
vi is flagged as normal, yi = 0 and gi = 0, otherwise
yi = 1 and gi is assigned a specific category. Coarse-
grained WS-VAD needs to predict the likelihood of each
snippet containing an anomaly. Fine-grained WS-VAD de-
mands the prediction of specific anomaly event instances,
denoted as {sj , ej , gj , wj}. Here, sj and ej denote the start
and end timestamps of the j-th anomaly instance, gj repre-
sents the anomaly category, and wj signifies the prediction
confidence for the j-th instance.

Framework. This paper proposes a novel dual-structured
framework, LEC-VAD, for WS-VAD, as illustrated in Fig-
ure. 2. The core idea is to learn anomaly event complete-
ness in the absence of dense annotations. To accomplish
this goal, we endeavor to capture both category-aware and
category-agnostic anomaly knowledge through a dual struc-
ture, avoiding subtle clues being overwhelmed by salient
features. This allows our model to grasp a comprehen-
sive understanding of event concepts. Besides, to ensure
local consistency of predictions, learnable Gaussian mix-
ture masks are developed to improve the smoothness of
predicted anomaly snippets. Specifically, we initially em-
ploy pre-trained image encoders to extract visual features
Xvideo ∈ RT×d, where T denotes the number of snippets
and d is the feature dimension. As in (Wu et al., 2024d),
in order to capture local temporal dependencies, we divide
the frame-level features into overlapping windows of equal
length. Subsequently, we apply a local transformer layer
with constrained attention scopes (Liu et al., 2021), ensur-
ing no information exchange between these windows. This
process results in the enhanced feature Xl ∈ RT×d. Then,
to further capture global temporal dependencies, we apply
a GCN module on Xl. Specifically, following the setup in
(Wu et al., 2024d), global temporal associations of features
are modeled based on their similarity. This process can be
summarized as follows:

Fvideo = GELU(Softmax(A)XlW ),

A =
XlX

T
l

||Xl||2 · ||Xl||2
,

(1)

where A is the adjacency matrix, the Softmax operation is
used to ensure that the sum of each row equals one, W is the
learnable weight, and Fvideo is the enhanced video feature.

Besides, a pre-trained text encoder is adopted to extract
linguistic features of all anomaly-event categories Ftext ∈
R(C+1)×d. Then, we apply a fully-connected layer, fol-
lowed by a softmax operation, on Fvideo to perform bi-
nary classification for category-agnostic anomaly detection
and multivariate classification for category-aware anomaly
detection, yielding prediction results sb ∈ RT×2 and
sm ∈ RT×C . For sb, we compute the average of the top-K
scores over the temporal dimension, specifically for the c-th

category (belongs to {0, 1}) category, as follows:

pbc = max
H⊆{1,...,T}

|H|=K

1

K

∑
j∈H

sbjc, (2)

where H denotes the index set of K snippets, and pbc is the
category-agnostic predictions. Then, a binary cross-entropy
loss is imposed on pb and ground truth y:

Lagnostic = −
∑

c∈{0,1}

yc log(p
b
c). (3)

Furthermore, although sm reflects category-aware anomaly
information, it lacks associations with textual descriptions.
To this end, we model cross-modal interactions through a
cross-attention operation. Here the text feature Ftext serves
as the query, while the video feature Fvideo acts as the key
and value, resulting in an enhanced representation Ftv ∈
R(C+1)×d. The computation is outlined as follows:

Q = Ftext ·Wq,K = Fvideo ·Wk, V = Fvideo ·Wv,

Ftv = softmax(
Q ·KT

√
d

) · V,
(4)

where Wq, Wk, and Wv are learnable projection matrices
in Rd×d. Furthermore, given the concise and limited ex-
pressive nature of textual descriptions for anomaly-event
categories, we develop a memory bank-based mechanism to
store category prototypes. These prototypes are leveraged
to acquire enhanced text descriptions Faug. The ultimate
text representation, Fctg, is a fusion of Ftv and Faug, for-
mulated as Fctg = Ftv + Faug. Furthermore, we utilize
an external memory bank to strengthen text expressiveness,
acquiring an enhanced feature Faug . After that, we perform
category-aware detection through a dot product of Fctg and
video features Fvideo, which is presented as follows:

stv = norm(Fvideo) · norm(FT
ctg), (5)

where norm denotes the ℓ2 normalization. Finally, we
obtain the category-aware anomaly detection logit by inte-
grating stv and sm, formulated as saware = sm + stv . This
logit is then utilized via the MIL principle to yield video-
level classification outcomes. More precisely, for the c-th
anomaly category, the logit pmc is calculated as follows:

pmc = max
H⊆{1,...,T}

|H|=K

1

K

∑
j∈H

saware
jc . (6)

Subsequently, a cross-entropy constraint is imposed to su-
pervise the process of fine-grained anomaly classification:

Laware = −
C∑

c=0

gc log(p
m
c ). (7)

4



Learning Event Completeness for Weakly Supervised Video Anomaly Detection

To learn complete anomaly events and improve the smooth-
ness of snippets, we hypothesize that prediction scores
should be locally consistent. Based on this hypothesis,
we propose a Gaussian mixture prior-based local consis-
tency learning mechanism, encoding multiple anomaly cate-
gories as GMM components, thereby generating anomaly
constraint scores sgmm ∈ RT . sgmm is then adopted to
regularize the predicted anomaly scores sb as follows:

Lgmm =

√√√√ T∑
t=1

(sgmm[t]− sb[t, 1])2. (8)

Besides, to guarantee the consistency of the category-
agnostic anomaly score, i.e., 1 − sm[t, 0], and category-
aware anomaly score, i.e., sb[t, 1], for each snippet, we
introduce a ℓ1 regularization loss, formulated as follows:

Lreg =
1

T

T∑
t=1

|1− sm[t, 0]− sb[t, 1]|. (9)

Overall, the optimization loss of the proposed LEC-VAD is
summarized as follows:

Lall = Lagnostic + Laware + λLgmm + γLreg, (10)

where λ and γ are weights that balance different terms.

3.2. Memory Bank-based Prototype Learning

Since text descriptions of anomaly-event categories are gen-
erally concise and expressive-limited, we construct an ex-
ternal memory bank to retain a group of textual prototypes,
denoted as M ∈ R(C+1)×d. These prototypes are sub-
sequently leveraged to strengthen textual representations.
In particular, we initialize M with the original CLIP fea-
tures corresponding to the anomaly-event categories. Dur-
ing training, the enhanced text features Ftv are concate-
nated with the contents of M to produce context-aware
features Fcte ∈ R(2C+2)×d. Subsequently, we apply m self-
attention blocks on Fcte to absorb semantic knowledge from
prototype features M, thereby acquiring the augmented rep-
resentation F ′

cte ∈ R(2C+2)×d. For F ′
cte, we extract the

first C + 1 representations along the first dimension, de-
noted as Faug ∈ R(T+1)×d, as the refined text representa-
tions. Meanwhile, prototype features in M are updated in a
momentum-based fashion, specifically as follows:

M = η ×M+ (1− η)× Faug, (11)

where η denotes the momentum coefficient for an update.

3.3. Gaussian Mixture Prior-based (GMP-based) Local
Consistency Learning

This paper proposes the hypothesis that prediction scores
ought to exhibit local consistency. To explicitly enforce
this prior and learn complete instances, we model anomaly
scores with learnable Gaussian Mixture Models (GMMs) for
each temporal position t, where each component of GMM is
tailored to encode category-specific anomaly mask. In par-
ticular, we first concatenate Faug with the visual feature of
each snippet Fvideo by a broadcast mechanism in Python to
get integrated multi-modal representation Fm ∈ RT×C×d.
Based on Fm, we utilize a shared fully-connected layer to
predict Gaussian kernels {σt

c, µ
t
c}Tt=1 of Gaussian masks

for each category. Finally, we generate anomaly scores
sgauss(t) at t-th temporal position from the t-th Gaussian
mixture mask. The detailed procedure is as follows:

Gt =

C∑
c=0

αt
cG

t
c(t), where α

t
c = sm[t, c],

Gt
c = exp(−β(j/T − µt

c)
2

(σt
c)

2
)Tj=1,

sgmm(t) = {Gt(t)}Tt=1,

(12)

where αt
c indicates the probability of each abnormal event

occurring, assigned sm[t, c]. β controls the variance of the
Gaussian mask Gt

c. In this manner, these masks exhibit
local smoothness, rendering them suitable for constraining
anomaly scores sb, as defined in Eq. 8.

3.4. Inference

During inference, for the coarse-grained WS-VAD, we cal-
culate the average value of 1−sm[t, 0] and sb[t, 1] as the t-th
frame’s anomaly confidence. For fine-grained WS-VAD, we
adopt a two-step thresholding strategy to generate anomaly
instances. Specifically, we first retain these anomaly cate-
gories with video-level activations exceeding a predefined
threshold rcls. Then, for each retained anomaly category,
we select snippets with fine-grained matching scores in sm

exceeding the threshold rano as candidates. These tempo-
rally consecutive candidates are merged to form anomaly
instances. Following AutoLoc (Shou et al., 2018), the outer-
inner score of each instance based on sm is regarded as the
confidence score of each instance. Based on these confi-
dence scores, we apply a non-maximal suppression (NMS)
to avoid redundant proposals.

4. Experiments
4.1. Experimental Settings

Datasets. UCF-Crime (Sultani et al., 2018) consists of
1900 untrimmed videos, spanning across 13 categories of
anomalous events. These videos are collected from surveil-

5



Learning Event Completeness for Weakly Supervised Video Anomaly Detection

Supervision Modality Methods Feature AP(%)

Unsupervised RGB+Audio LTR (Hasan et al., 2016) I3D+VGGish 30.77

Weakly
Supervised

RGB+Audio

CTRFD (Wu & Liu, 2021) I3D+VGGish 75.90
WS-AVVD (Wu et al., 2022) I3D+VGGish 78.64
ECU (Zhang et al., 2023) I3D+VGGish 81.43
DMU (Zhou et al., 2023) I3D+VGGish 81.77
MACIL-SD (Yu et al., 2022) I3D+VGGish 83.40
PE-MIL (Chen et al., 2024) I3D+VGGish 88.21

RGB

RAD (Sultani et al., 2018) C3D 73.20
RTFML (Tian et al., 2021) I3D 77.81
ST-MSL (Li et al., 2022) I3D 78.28
LA-Net (Pu & Wu, 2022) I3D 80.72
CoMo (Cho et al., 2023a) I3D 81.30
DMU (Zhou et al., 2023) I3D 82.41
PEL4VAD (Pu et al., 2024) I3D 85.59
PE-MIL (Chen et al., 2024) I3D 88.05
LEC-VAD (Ours) I3D 88.47

OVVAD (Wu et al., 2024b) CLIP 66.53
CLIP-TSA (Joo et al., 2023) CLIP 82.19
IFS-VAD (Zhong et al., 2024) CLIP 83.14
TPWNG (Yang et al., 2024) CLIP 83.68
VadCLIP (Wu et al., 2024d) CLIP 84.51
ITC (Liu et al., 2024) CLIP 85.45
ReFLIP (Dev et al., 2024) CLIP 85.81
LEC-VAD (Ours) CLIP 86.56

Table 1: Coarse-grained comparisons on XD-Violence.

Supervision Methods Feature AUC(%)

Unsupervised
LTR (Hasan et al., 2016) I3D+VGGish 50.60
GODS (Wang & Cherian, 2019) I3D 70.46
GCL (Zaheer et al., 2022) I3D 71.04

Weakly
Supervised

TCN-CIBL (Zhang et al., 2019) C3D 78.66
GCN-Anomaly (Zhong et al., 2019) C3D 81.08
GLAWS (Zaheer et al., 2020) C3D 83.03
LEC-VAD (Ours) C3D 84.75

RAD (Sultani et al., 2018) I3D 77.92
WS-AVVD (Wu et al., 2022) I3D 82.44
RTFML (Tian et al., 2021) I3D 84.30
CTRFD (Wu & Liu, 2021) I3D 84.89
LA-Net (Pu & Wu, 2022) I3D 85.12
ST-MSL (Li et al., 2022) I3D 85.30
IFS-VAD (Zhong et al., 2024) I3D 85.47
NG-MIL (Park et al., 2023) I3D 85.63
CLAV (Cho et al., 2023b) I3D 86.10
ECU (Zhang et al., 2023) I3D 86.22
DMU (Zhou et al., 2023) I3D 86.75
PE-MIL (Chen et al., 2024) I3D 86.83
MGFN (Chen et al., 2023) I3D 86.98
LEC-VAD (Ours) I3D 88.21

Ju et al. (Ju et al., 2022) CLIP 84.72
OVVAD (Wu et al., 2024b) CLIP 86.40
IFS-VAD (Zhong et al., 2024) CLIP 86.57
UMIL (Lv et al., 2023) CLIP 86.75
CLIP-TSA (Joo et al., 2023) CLIP 87.58
TPWNG (Yang et al., 2024) CLIP 87.79
VadCLIP (Wu et al., 2024d) CLIP 88.02
STPrompt (Wu et al., 2024c) CLIP 88.08
ReFLIP (Dev et al., 2024) CLIP 88.57
ITC (Liu et al., 2024) CLIP 89.04
LEC-VAD (Ours) CLIP 89.97

Table 2: Coarse-grained comparisons on UCF-Crime.

Methods
mAP@IoU

0.1 0.2 0.3 0.4 0.5 AVG

RAD (Sultani et al., 2018) 22.72 15.57 9.98 6.20 3.78 11.65
AVVD (Wu et al., 2022) 30.51 25.75 20.18 14.83 9.79 20.21
VadCLIP (Wu et al., 2024d) 37.03 30.84 23.38 17.90 14.31 24.70
ITC (Liu et al., 2024) 40.83 32.80 25.42 19.65 15.47 26.83
ReFLIP (Dev et al., 2024) 39.24 33.45 27.71 20.86 17.22 27.36
LEC-VAD (Ours) 48.78 40.94 34.28 28.02 23.68 35.14

Table 3: Fine-grained comparisons on XD-Violence.

Methods
mAP@IoU

0.1 0.2 0.3 0.4 0.5 AVG

RAD (Sultani et al., 2018) 5.73 4.41 2.69 1.93 1.44 3.24
AVVD (Wu et al., 2022) 10.27 7.01 6.25 3.42 3.29 6.05
VadCLIP (Wu et al., 2024d) 11.72 7.83 6.40 4.53 2.93 6.68
ITC (Liu et al., 2024) 13.54 9.24 7.45 5.46 3.79 7.90
ReFLIP (Dev et al., 2024) 14.23 10.34 9.32 7.54 6.81 9.62
LEC-VAD (Ours) 19.65 17.17 14.37 9.45 7.18 13.56

Table 4: Fine-grained comparisons on UCF-Crime.
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Figure 3: The representation visualization for 7 categories in
XD-Violence testing set by using the t-SNE method (Van der
Maaten & Hinton, 2008).

lance footage captured in various indoor settings and street
scenarios. We adhere to a standard data split, where the
training set and testing set comprise 1610 and 290 videos,
respectively. XD-Violence (Wu et al., 2020) is a larger-scale
benchmark comprising 4754 untrimmed videos sourced
from movies and YouTube, encompassing 6 violence event
categories. 3954 videos and 800 videos are employed for
training and testing respectively.

Evaluation Protocol. For coarse-grained WS-VAD, we
adopt frame-level Average Prevision (AP) for XD-Violence
and frame-level AUC for UCF-Crime. For fine-grained
WS-VAD, we follow previous works (Wu et al., 2024d;
Liu et al., 2024) and compute the mean Average Precision
(mAP) across IoU thresholds from 0.1 to 0.5 in increments
of 0.1. Besides, an average of mAP (AVG) is also reported
for a more comprehensive evaluation.

Implementation Details. The pre-trained text encoder of
CLIP (ViT-B/16) is adopted and multiple vision encoders
including I3D (Carreira & Zisserman, 2017), C3D (Tran
et al., 2015), and the CLIP (ViT-B/16) are explored to extract
frame features. The value of K is determined as K =
max(⌊T/16⌋, 1), and the momentum coefficient η is set to
0.99. We adopt the AdamW optimizer and train our LEC-
VAD with a batch size of 64. The learning rate is set to 3e-5
and the model is trained for 10 epochs. We apply NMS with
an IoU threshold of 0.5, and set the threshold rcls, and rano
to 0.1 and 0.2. The hyper-parameters β, λ, γ, and m are
explored in the experimental sections (Figure 5).
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VOB CMB mAP@IoU
0.1 0.2 0.3 0.4 0.5 AVG

✓ 42.86 33.82 30.58 24.66 18.92 30.17
✓ 46.03 38.87 32.18 27.02 22.04 33.23

✓ ✓ 48.78 40.94 34.28 28.02 22.68 34.94

Table 5: Explorations of the model structure. “VOB” de-
notes the vision-only anomaly-aware branch, and “CMB”
denotes the cross-modal anomaly-aware branch.

Lreg Lgmm
mAP@IoU

0.1 0.2 0.3 0.4 0.5 AVG

44.59 36.34 28.97 22.83 17.45 30.04

✓ 47.04 38.52 31.23 25.38 20.26 32.49
✓ 46.69 39.51 32.17 27.16 22.01 33.51

✓ ✓ 48.78 40.94 34.28 28.02 22.68 34.94

Table 6: Ablation studies of loss function.

4.2. Main Results

We undertake a comprehensive evaluation of LEC-VAD’s
anomaly detection capabilities by benchmarking it against
widely-used approaches across two datasets. The resultant
findings underscore that our LEC-VAD achieves state-of-
the-art performance across all evaluation metrics and at
various granularity levels. We will elaborate on it below.

First, we assess coarse-grained anomaly detection on XD-
Violence and UCF-Crime, with the respective results pre-
sented in Table 1 and Table 2. For XD-Violence, we employ
I3D and CLIP features of videos, achieving state-of-the-art
performance. Specifically, our method achieves an impres-
sive 88.47 AP using I3D features, marking a 0.42 absolute
gain compared to PE-MIL. Similarly, utilizing CLIP features
results in an 86.56 AP, which acquires a 0.75 absolute gain
over ReFLIP. Notably, our approach even surpasses methods
that incorporate additional audio features. For UCF-Crime,
we adopt C3D, I3D, and CLIP features of videos, all achiev-
ing remarkable results. Specifically, our method achieves
an impressive 84.75 AP when employing C3D features,
making a significant 1.72 absolute improvement compared
to CLAWS. Similarly, our method demonstrated an 88.21
AP with I3D features and an even higher 89.97 AP with
CLIP features, translating to 1.23 and 0.93 absolute gains re-
spectively, compared to the best practices. These presented
results demonstrate our model’s superiority and robustness
when utilizing diverse visual features.

Furthermore, our method manifests more powerful advan-
tages for fine-grained anomaly detection. As shown in Table
3, our method exhibits significant improvements across all
evaluation metrics on the XD-Violence, culminating in an
outstanding AVG of 35.14. This represents a considerable
improvement of 28.44% over the ReFLIP-VAD method.
Also, on the more challenging UCF-Crime, as shown in Ta-

VAP PMB mAP@IoU
0.1 0.2 0.3 0.4 0.5 AVG

42.17 34.66 27.98 22.47 17.24 28.90

✓ 46.24 38.75 31.97 26.63 20.05 32.73
✓ 46.01 38.24 31.80 26.56 20.04 32.53

✓ ✓ 48.78 40.94 34.28 28.02 22.68 34.94

Table 7: Ablation studies of text enhancement. “VAP” de-
notes the vision-aware prompt strategy and “PMB” denotes
the prototype-based memory bank mechanism.

ble 4, our method consistently exhibits remarkable improve-
ments across all evaluation metrics, achieving an amazing
AVG of 13.56. This represents a substantial improvement of
40.96% over the ReFLIP-VAD method. Notably, our LEC-
VAD brings more gains when using more stringent evalu-
ation criteria (larger IoU). For instance, on XD-Violence,
LEC-VAD gets a 37.51% relative boost when IoU is 0.5 and
a 19.47% relative boost when IoU is 0.1. This reveals that
LEC-VAD can learn more complete instances. A similar
phenomenon occurs in UCF-Crime. These observations re-
veal the superiority of our proposed algorithm in discerning
subtle distinctions among diverse anomaly events.

To further investigate our model’s capability in learning
discriminative visual representations for different anomaly
categories, we visualize the feature distributions extracted
by the original CLIP and our model on the XD-Violence
test set, as shown in Figure 3. From the visualization, we
observe that the distribution of original CLIP features ex-
hibits significant overlap and confusion among different
categories. In contrast, our model’s extracted features for
each category form more concentrated clusters with well-
defined boundaries. This reveals that our model possesses
the capability to learn discriminative features despite the
absence of explicit snippet-level supervision. This property
is advantageous for our LEC-VAD, enabling it to detect
anomaly events with greater completeness and confidence.

4.3. Ablation Study

We conduct thorough ablation studies on XD-Violence and
systematically report fine-grained anomaly detection results
across different evaluation metrics to dissect the contribu-
tions of diverse factors to the overall performance.

Model components. In Table 5, we conduct an in-depth
analysis to examine the impact of various model compo-
nents on anomaly detection performance. Specifically, we
investigate the utilities of the vision-only anomaly-aware
branch (VOB) and the cross-modal anomaly-aware branch
(CMB), aiming to gain insights into how these components
contribute to the overall performance of our model. Over-
all, the fully intact model demonstrates superiority over its
castrated counterparts across all evaluated metrics. This ob-
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Figure 4: Visualization about the utility of our GMP.
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Figure 5: Effects of hyper-parameters.

servation indicates that both VOB and CMB are beneficial
to WS-VAD. Notably, CMB brings more gains compared to
VOB, with an AVG of 33.23 versus 30.17. This reflects the
importance of cross-modal interactions for WS-VAD.

Loss functions. In Table 6, we delve into the impact of
Gaussian mixture prior and score regularization by carefully
controlling the loss terms Lreg and Lgmm within the loss
function. Undoubtedly, the overall loss achieves optimal
performance compared to the castrated counterparts. Be-
sides, we observe that as we apply more rigorous constraint
evaluation criteria (characterized by larger IoU values), us-
ing Lgmm can bring more gains. This phenomenon suggests
that introducing the Gaussian mixture prior can help detect
more complete abnormal events. We also provide some
visualized comparisons in Figure 4, which illustrates the

Ground Truth
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0

1

Ground Truth

0

1

ReFLIP

0

1

LEC-VAD (Ours)

0

1

0
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Figure 6: Visualization of coarse-grained anomaly detection
results compared with ReFLIP.

differences in outcomes when incorporating Gaussian-based
scores versus not using them. From the results, we observe
that employing GMP yields more comprehensive and sound
outcomes.

Text enhancement. This paper introduces textual descrip-
tions of anomaly categories to facilitate cross-modal seman-
tic interactions. Consequently, we explore the proposed en-
hancement mechanism for concise text descriptions, as illus-
trated in Table 7. We observe that employing the developed
vision-aware prompt strategy (VAP) and prototype-based
memory bank mechanism significantly improves anomaly
detection performance compared to the variants lacking
these components. The integration of these two mechanisms
further obtains an impressive AVG of 34.94, achieving an
improvement of 20.90% over the variant without them.

Hyper-parameters. We conduct an extensive exploration
of the hyper-parameter configuration for β, λ, γ, and m,
as illustrated in Figure 5. For β, we incrementally adjust
it from 0.1 to 0.9 in increments of 0.2, and the optimal is
obtained at β = 0.7, demonstrating that relatively larger
variances of Gaussian masks are beneficial to guarantee
local consistency. The hyper-parameters λ and γ are metic-
ulously tuned to ascertain their optimal values, ultimately
determining λ = 0.3 and γ =1e-4 as the most effective
configuration. Besides, our investigation into the number of
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Figure 7: Visualization of fine-grained predictions.

prototype-based attention blocks m, revealed that m = 4 is
sufficient for achieving optimal performance. Increasing m
is observed to potentially induce overfitting.

4.4. Qualitative Results

To further demonstrate the superiority of the proposed LEC-
VAD for WS-VAD, we have visualized several examples in
Figure 6 and Figure 7. Figure 6 compares the anomaly de-
tection outcomes of our LEC-VAD with the state-of-the-art
ReFLIP method. In the upper section of the figure, an ex-
ample depicting the “explosion” anomaly event showcases
the coarse-grained detection results of both methods. Upon
examination, it becomes evident that our LEC-VAD is capa-
ble of detecting more complete anomaly events with greater
confidence than the highly competitive ReFLIP method. It
appears that ReFLIP primarily relies on the visual pres-
ence of fire to judge explosion anomalies in this scenario,
whereas our method possesses a deeper understanding of
the semantic content and context associated with explosions.
Consequently, our LEC-VAD can detect more complete
instances. An additional example depicting the “arrest”

anomaly event displays coarse-grained detection results at
the bottom. We observe that ReFLIP incorrectly identifies
segments featuring people (such as pedestrians) as clues
to anomaly events in this example, failing to discern be-
havioral differences. In contrast, our LEC-VAD accurately
focuses on the behavioral characteristics associated with an
“arrest”, demonstrating its sensitivity to specific contextual
and behavioral clues.

Furthermore, Figure 7 presents some fine-grained visual-
ization results to investigate the inter-relationships between
predictive scores across multiple anomaly classes. Instead
of a blended outcome from multiple categories, we observed
that the true anomaly class has been accurately identified.

5. Conclusion
This paper proposed a novel LEC-VAD for WS-VAD, en-
gineered to encode category-aware and category-agnostic
semantics of anomaly events. We hypothesize local con-
sistency in predictions and develop a prior-driven learning
mechanism with learnable Gaussian masks. Besides, a mem-
ory bank-based prototype learning mechanism was proposed
to enrich textual features. Overall, LEC-VAD achieved re-
markable advances in XD-Violence and UCF-Crime.
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