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Abstract

It is commonly observed that deep networks trained for classification exhibit class-selective
neurons in their early and intermediate layers. Intriguingly, recent studies have shown that
these class-selective neurons can be ablated without deteriorating network function. But if
class-selective neurons are not necessary, why do they exist? We attempt to answer this
question in a series of experiments on ResNet-50s trained on ImageNet. We first show that
class-selective neurons emerge during the first few epochs of training, before receding rapidly
but not completely; this suggests that class-selective neurons found in trained networks are
in fact vestigial remains of early training. With single-neuron ablation experiments, we then
show that class-selective neurons are important for network function in this early phase of
training. We also observe that the network is close to a linear regime in this early phase; we
thus speculate that class-selective neurons appear early in training as quasi-linear shortcut
solutions to the classification task. Finally, in causal experiments where we regularize against
class selectivity at different points in training, we show that the presence of class-selective
neurons early in training is critical to the successful training of the network; in contrast,
class-selective neurons can be suppressed later in training with little effect on final accuracy.
It remains to be understood by which mechanism the presence of class-selective neurons in
the early phase of training contributes to the successful training of networks.

1 Introduction

A significant body of research has attempted to understand the role of single neuron class-selectivity in the
function of artificial (Zhou et al., |2015; Radford et al.l |2017; |Bau et al.l |2017; |Morcos et al. 2018} Olah
et all 2018} [Rafegas et al., [2020; Dalvi et al., [2019; Meyes et al., [2019; Dhamdhere et al., 2019} [Leavitt
& Morcos, 2021; [Kanda et al., 2020; |Leavitt & Morcos, 2020)), and biological (Sherrington) [1906; |Adrian,
1926; |Granit), |1955; [Hubel & Wiesel, [1959; [Barlowl, [1972)) neural networks. Neurons responding selectively
to specific classes are typically found throughout networks trained for image classification, even in early and
intermediate layers. Interestingly, these class-selective neurons can be ablated (i.e. their activation set to 0;
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Morcos et al.|2018) or class selectivity substantially reduced via regularization |Leavitt & Morcos| (2021 with
little consequence to overall network accuracy—sometimes even improving it. These findings demonstrate
that class selectivity is not necessary for network function, but it remains unknown why class selectivity is
learned if it is largely not necessary for network function.

One notable limitation of many previous studies examining selectivity is that they have largely overlooked
the temporal dimension of neural network training; single unit ablations are performed only at the end
of training (Morcos et al.l |2018; |Amjad et all 2021} |Zhou et al.l 2018} Meyes et al.l [2019; |[Kanda et al.
2020), and selectivity regularization is mostly constant throughout training (Leavitt & Morcos, 2021} 2020)).
However, there are numerous studies demonstrating substantial differences in training dynamics during the
early vs. later phases of neural network training (Sagun et all [2018} |Gur-Ari et al.l 2018} |Golatkar et al.|
2019; |[Frankle et al., |2020b; [Jastrzebski et al., [2020]). Motivated by these studies, we asked a series of questions
about the dynamics of class selectivity during training in an attempt to elucidate why neural networks learn
class selectivity: When in training do class-selective neurons emerge? Where in networks do class-selective
neurons first emerge? Is class selectivity uniformly (ir)relevant for the entirety of training, or are there
critical periods during which class selectivity impacts later network function? We addressed these questions
in experiments conducted in ResNet-50 trained on ImageNet, which led to the following results (Fig :

e The emergence of class-selective neurons in early and intermediate layers follow a non-trivial and
surprising path: after a prominent rise during the first few epochs of training, class selectivity
subsides quickly during the next few epochs, before returning to a baseline level specific to each
layer.

e During this early training phase where average class selectivity is high in early and intermediate
layers, class-selective neurons in these layers are much more important for network function compared
to later in training, as assessed with single-unit ablation.

e During this early, high-selectivity phase of training, the representations of early and latter layers are
much more similar than during later in training, implying that selectivity in early layers could be
leveraged to solve the classification problem by transmission to the latter layers via skip connections.

e In a causal experiment where we prevent class selectivity from rising sharply in early and intermediate
layers during the first epochs of training, we show the network training accuracy suffers from the
suppression of this phenomenon. This indicates that the rapid emergence of class-selective neurons
in early and intermediate layers during the first phase of training plays a useful role in the successful
training of the network.

Together, our results demonstrate that class-selective neurons in early and intermediate layers of deep net-
works are a vestige of their emergence during the first few epochs of training, during which they play a useful
role to the successful training of the network.

2 Related Work

2.1 The Role of Selectivity in Deep Networks

Numerous studies have examined the causal role of class selectivity for network performance, nearly all of
which have relied on single unit ablation as their method of choice. [Morcos et al.|2018| examined a number
of different CNN architectures trained to perform image classification and found that class selectivity for
individual units was uncorrelated (or negatively correlated) with test-set generalization. This finding was
replicated by [Kanda et al.|[2020] and |Amjad et al.|[2021, though the latter study also observed that the
effects can vary when ablating groups of neurons, in which case, selectivity can be beneficial. Furthermore,
Zhou et al|2018 found that ablating class-selective units can impair accuracy for specific classes, but a
corresponding increase in accuracy for other classes can leave overall accuracy unaffected.

Studies using NLP models have also shown varied results. [Donnelly & Roegiest|[2019 ablated the "sentiment
neuron' reported by Radford et al.|2017] and found mixed effects on performance, while |Dalvi et al.|[2019
found networks were more negatively impacted when class-selective units were ablated.
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Figure 1: Summary of results. (a) Class-Selective neurons emerge during the early epochs of training
possibly due to the high representational similarity among layers during the early epochs. In the later epochs,
they remain as a vestige of their emergence during the early epochs. Ablating class-selective neurons during
the early epochs is more damaging to the network accuracy compared to later epochs. (b) Model regularized
against selectivity from epoch 0 onward performs significantly worse than model with no regularization, while
model regularized against selectivity from epoch 5 onward is not substantially different from the model with
no regularization. This indicates that class selectivity is important for learning during the early epochs of
training. Shaded region denotes 95% confidence interval of the mean for N = 5 seeds.

Of particular importance is the work of [Leavitt & Morcos|[2021, which introduced a regularizer for fine-
grained control over the amount of selectivity learned by a network. This regularizer makes it possible to
test whether the presence of selectivity is beneficial, and whether networks need to learn selectivity, two
questions that ablation methods cannot test. By regularizing to discourage or promote the learning of
selectivity, they found that selectivity is neither strictly necessary nor sufficient for network performance.
In follow-up work they also showed that promoting class selectivity with their regularizer confers robustness
to adversarial attacks, while reducing selectivity confers robustness to naturalistic perturbations :Leavitt
|& Morcos), [2020). However, they did not scale their experiments beyond ResNet18 2016) and
Tiny-ImageNet (Fei-Fei et al., 2015). Additionally, with the exception of one set of controls in which the
regularizer was linearly warmed up during the first five epochs of training (Leavitt & Morcos, [2021)), they
did not examine the dynamics of class selectivity’s importance over the training process. Most importantly,
they did not attempt to address why selectivity is learned.

2.2 The Early Phase of Neural Network Training

A breadth of approaches have been used to characterize the differences between the early and later phases of
neural network training and highlight the impact of early-phase interventions on late-phase behavior. The
application of iterative magnitude pruning in the Lottery Ticket approach (Frankle & Carbinl [2019) requires
rewinding to a sufficiently early point in training—within the first few thousand iterations—to prune without
negatively impacting model quality (Frankle et al., 2020a3b)). The local loss landscape also changes rapidly
early in training (Sagun et al. |2018]); the subspace in which gradient descent occurs quickly shrinks into a
very restricted subspace (Gur-Ari et al.l |2018]). |Achille et al.|2018| characterized a critical period of training
by perturbing the training process with corrupted data labels early in training and found that the network’s
final performance was irreparably impaired. Similarly, [Golatkar et al]2019 found that removing some forms
of regularization after the early phase of training, or imposing them after the early phase, had little effect on
network performance. These results emphasize the outsize importance of interventions applied during the
early phase of neural network training, and the relevance of the early phase of training for understanding
why networks learn class selectivity.
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Figure 2: Overview of our methods. (a) We define the early and intermediate layers as the layers
present in the early and intermediate modules of a ResNet-50. (b) Class Selectivity Index is calculated on
individual channels of layers present inside each module. (c) We regularize early and intermediate modules
against selectivity at different stages of training to observe impact on accuracy. Representational similarity is
calculated between all modules throughout training to understand the emergence of class-selective neurons.

3 Approach

3.1 Model Architecture

We use ResNet-50s (He et all [2016) trained on ImageNet for all our experiments. ResNet-50s are formed
of a convolutional stem followed by four successive modules. We define the early and intermediate layers as
the layers present inside the early and intermediate modules shown in Fig[2al Each module is composed of
multiple bottleneck layers. Each bottleneck layer contains one residual (or "skip") connection to the next
bottleneck layer. Further details on the structure of the model can be found in Appendix [A71] Details on
model training can be found in Appendix

3.2 Class Selectivity Index

We refer to the individual channels of the bottleneck layers as "units" or "neurons' for the purpose of our
experiments (Fig . We compute a class selectivity index for each unit of each bottleneck layer of every
module. This index is a measure of how much the unit favors a specific ImageNet class. It is defined as
(Leavitt & Morcos|, [2021)):

SI _ Hmaz — H—mazx (1)
Hmazx + H—mazx + €
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where fi;mq, 1S the largest class-conditional mean activation over all possible classes, averaged within samples
of a class, and averaged over spatial locations for that channel, pi_ 4. is the mean response to the remaining
(i.e. NON-fas) classes, and € is a small value to prevent division by zero (here 107°) in the case of a
dead unit. All activations are assumed to be positive because they are extracted after a ReLU layer. The
selectivity index can range from 0 to 1. A unit with identical average activity for all classes would have a
selectivity of 0, and a unit that only responds to a single class would have a selectivity of 1. We compute
such class selectivity indices across all epochs of training and then we perform various experiments to see
how class selectivity affects learning at different stages of training.

3.3 Quantifying the Relevance of Class-Selective Neurons

We used the following methods to determine whether class-selective neurons are relevant to network function.

Single neuron ablation: This method consists in setting the channel outputs of the bottleneck layers
to 0. In our experiments, we perform progressive ablation of the channels in all bottleneck layer of a given
module, ordered by class selectivity index and starting with the most class-selective channels, or by random
ordering of channels (random control condition). On a fully-trained ResNet-50, we found that ablation of
class-selective neurons is less damaging to network accuracy than ablation of random neurons (Appendix
, consistent with previous reports.

Class-selectivity regularizer: We used [Leavitt & Morcos| (2021))’s selectivity regularizer to either pro-
mote or suppress the emergence of class-selective neurons in different modules and at different epochs of
training. The regularization term is as follows:

1 M 1 B
MSI:MZEZSII’ (2)
m b

where M is the total number of modules, m is the current module, B is the total number of bottleneck layer
in current module M and b is the current bottleneck layer. ST, represents the selectivity indices of the
channels in the current bottleneck layer b.

This term can be added to the loss function as follows:

c
loss = — Z yelog(ye) — apsr (3)

The left hand term of the loss function is the cross-entropy loss where C is the total number of classes, ¢
is class index, y. is true class label and . is the predicted class probability. The right hand side of the
loss function is the regularization term (—augr). The a parameter controls the strength of the regularizer.
A negative value of a will regularize against selectivity and a positive value of « will regularize in favor of
selectivity.

4 Results

4.1 Class-selective neurons emerge during early epochs of training

We began by examining the dynamics of class selectivity in each module over the course of training. It is
possible that selectivity follows a similar pattern as accuracy: increasing quickly over the first few epochs,
then gradually saturating over the remainder of training. We consider this to be the most likely scenario, as it
is follows the dynamics of early and rapid change followed by stabilization observed in many other quantities
during training. Indeed, class selectivity sharply rises during the first epoch of training (Fig |3} analysis of
evolution of selectivity throughout training for individual bottleneck layers can be found in Appendix ,
but after that, the effect varies depending on layer depth: earlier layers (Modules 4-6) show rapid decreases
in selectivity over 3-5 epochs, followed by slow approach to an asymptote over the remainder of training.
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Figure 3: Evolution of class selectivity throughout training in all modules of a ResNet-50. Each
line represents the evolution of average class selectivity of neurons of a given module throughout training for
a ResNet-50 trained on ImageNet. A sharp rise in selectivity can be seen in all modules during the first few
epochs of training, which recedes rapidly for the intermediate modules (modules 4, 5, 6) but not for the last
module (module 7).

In contrast, latter layers (Module 7) do not exhibit any substantial decrease in selectivity after the initial
jump, and selectivity remains high in latter layers throughout training. Furthermore, we separately tracked
class-selectivity indices for animate and inanimate classes of ImageNet—two broadly different subsets of
classes—and found similar dynamics in all cases (Appendix . These dynamic, depth-dependent changes
in selectivity during the first few epochs of training indicate that the role of selectivity could also vary during
training, and in a layer-dependent manner.

4.2 Class-selective neurons support the decision of the network more during early epochs of training
than latter epochs

In order to determine whether the role of class selectivity in network behavior varies over the course of
training, we performed class-selective and random ablations (Section at different points during training
and measured the effect on accuracy. We normalize accuracy between 0 and 100 so that the curves for each
epoch can be plotted together and compared. The right-hand side of Fig[4] shows that the effect on accuracy
is more prominent in the earlier epochs of class-selective ablations. Compared to this, random ablation
curves do not show any significant difference across epochs.

To quantify this phenomenon further, we calculated the area under the ablation curves for each epoch,
obtaining one value per epoch summarizing the sensitivity of the network to ablation, and plotted these
values across epochs. If class-selective ablations were more damaging in the earlier epochs, then this would
correspond to less area under the curve (AUC) in the earlier epochs compared to the latter epochs i.e.,
the curve should show a positive slope across epochs. As illustrated in Fig[d] the class-selective curves for
module 4 and module 6 indeed show a positive slope which is steeper especially at early epochs compared
to the random ablation curve which is relatively flat. These results indicate that class-selective neurons are
more important in the earlier epochs of training compared to the latter epochs as they are more damaging
to the normalized accuracy in the earlier epochs compared to latter epochs. Interestingly, module 5 doesn’t
exhibit this trend as clearly and the effect is much stronger in module 6.

However, the AUC curves in Fig[dalso show that random ablations remain more damaging than class-selective
ablations at all epochs, as they exhibit overall less area under the curve. The important distinction is that
class-selective ablations are more damaging in the earlier epochs relative to the class-selective ablations in
latter epochs while random ablations are roughly equally damaging throughout training. This phenomenon
reverses in module 7 (Fig[5)), where class-selective ablations are more damaging throughout training, which
is expected from the role of these layers to provide class-selective information for the network decision.
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Figure 4: Effect of class-selective ablations and random ablations on normalized network accu-
racy throughout training for early and intermediate modules. The right-hand side of the figure
depicts the effect of class-selective neurons ablations on network accuracy throughout epochs. The effect on
accuracy is more damaging during the earlier epochs of class-selective ablations compared to latter epochs.
The random ablation curves do not show this effect (curves are close to each other). The left-hand side
of the figure depicts the area under the ablation curves (AUC), as calculated by the sum of accuracies for
each epoch-specific curve shown on the right-hand side, summed over ablations. The positive slopes of the
AUC curves for the class-selective ablations, especially visible during the early epochs of training, indicate
that class-selective ablations are more important for network decision during these early epochs compared
to later epochs. Error shades indicate the 95% CI of the mean, calculated over 10 networks trained from
different random initial conditions.
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Figure 5: Effect of class-selective ablations on the latter module. The effect of class-selective
ablations is different in module 7 than in the intermediate modules: class-selective neurons remain important
throughout training, and not just in the early epochs. Error shades indicate the 95% CI of the mean,
calculated over 10 networks trained from different random initial conditions.
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Figure 6: Representational similarity between modules throughout training. We measure the
representational similarity between the early module 4 and latter layers (module 7 layers, fully connected
layer (FC)) using CKA. We find that the similarity between these layers is high at the early epochs of
training, indicating that the network is close to linear at this stage. This linearity might be key to explain
the emergence of class-selective neurons in all layers during the early phase of training (see text). Error
shades indicate the 95% CI of the mean, calculated over 6 networks trained from different random initial
conditions.

4.3 The network is linear at initialization and in early epochs of training, which might explain the
emergence of shortcut decision strategies

Why are neurons learning class-selective features in early and intermediate modules during the early epochs
of training? Here, we postulated that the network is close to being linear at random weight initialization,
such that the neurons of all layers jointly learn to be class-selective, with neurons from latter layers relying
on class-selective features emerging in early and intermediate layers, effectively producing crude shortcut
decision strategies at these early epochs of training.

To test out this hypothesis, we calculated the Centered Kernel Alignment (CKA) (Kornblith et all [2019;
Nguyen et al.l [2021) similarity between all modules. CKA can be used to find representational similarity
between different components of a network. The CKA similarity between early module and latter module
and between early module and the fully connected layer (FC) is indeed high during the first few epochs, and
then recedes to a low level for the rest of the training (Fig @ The CKA similarity across all other pairs of
modules shows a similar trend (Appendix |A.5]).

From these results, the following picture emerges: at the early stages of training where the network is close to
being linear, all layers jointly learn class-selective features, with latter layers piggy-backing on class-selective
features learned by early layers.

4.4 The emergence of class-selective neurons early in training is essential to successful training:
suppressing it impairs learning

Is the emergence of class-selective neurons early in training crucial to learning? To test whether the spike
observed in selectivity during the early epochs (Fig|3) is important to learning, we conducted a series of
regularization experiments. The question which we want to answer is - Will the model be able to learn if we
regularize against selectivity and suppress that spike in selectivity in the early epochs?

We performed experiments to test two scenarios: regularizing against class-selectivity from epoch 0 onward
VS regularizing from epoch 5 onward. Epoch 0 is the randomly initialized model and epoch 5 is approximately
after the spike in selectivity (Fig|3). We hypothesized that if selectivity is important to learning in those
early epochs, then regularizing from epoch 0 onward should lead to a greater decrease in the model accuracy
later on in training as compared to regularizing from epoch 5 onward. As we already know that selectivity
is important to learning in the latter module and as we are interested in understanding the emergence of
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class-selective neurons in early and intermediate modules, we only regularized the early and intermediate
modules against selectivity.

We used a regularizing strength of & = —20 and found that the regularizer prevents the peak of emergence
of class-selective neurons in early epochs of training and that it impairs training and validation accuracy
throughout training if regularized from epoch 0 (Fig|7)). However, in the second scenario where the regularizer
was turned on from epoch 5 onward, the model performed almost as well as the original unregularized model.
These results indicate that the emergence of class-selective neurons in intermediate modules in early epochs
of training is a phenomenon that plays a crucial role in the correct training of the network. Other sets
of experiments with different values of o can be found in Appendix [A.6.1] Additional representational
similarity analyses using CKA confirmed that the regularization also suppressed off-axis class-selectivity
(Appendix . It is worth noting that [Leavitt & Morcos| (2021) found that regularizing beyond the
range of & = [—1, —5]—depending on the model and dataset—had significant negative effects on network
performance, while we were able to increase the magnitude of « all the way to —20 with minimal effect on
network performance, so long as we did not regularize until epoch 5. Regularizing against class selectivity in
early epochs also degrades performance of smaller versions of ResNets i.e., ResNet18 and ResNet34 (Appendix

E}

The model never fully recovers the performance if the regularization is kept on, but if the regularization
is turned off after the first few epochs of training then the network is slowly able to recover from the
perturbation after 20+ epochs of training (Appendix |A.6.3).

4.5 Class Selectivity is most important during the first epoch of training

In the previous set of experiments, we regularized against class-selectivity from epoch 5 onward, which starts
after the spike in selectivity. But the next question which arises is what happens if we regularize in-between
epochs 0 and 57 Fig|8|shows that learning is only impaired if the model is regularized from epoch 0 onward.
Models regularized from epoch 1-5 onward performed similarly to the unregularized model, suggesting that
the most critical phase for class selectivity happens during the very first epoch of training.

4.6 Regularizing in favor of class selectivity does not improve learning

As class-selective neurons are crucial to learning in the early epochs, could increasing the selectivity in those
early epochs further improve learning? To answer this question, we regularized in favor of class-selectivity
(i.e. with positive values of «) during those early epochs. We found that increasing the selectivity in those
early epochs did not improve performance further (Fig Fig [16). Therefore, both an increase and a
decrease in selectivity is harmful to learning, suggesting that the network roughly learns the "right" amount
of selectivity for optimal learning. More details on the regularization for selectivity experiments can be found

in Appendix

4.7 Effect of class selectivity regularization on the balance of class representation

We next explored how the regularization in favor and against class selectivity affects the balance of class
representation in the predictions of the network. We found that, both increasing and decreasing class
selectivity in early and intermediate modules resulted in a poorer diversity of class representation in the
predictions of the network (Appendix . This effect lasted for the few first epochs of training, after
which it was no longer visible. We conclude that tampering with class selectivity in early and intermediate
layers perturbs the correct learning of the network by over-representing certain classes at the prediction stage
during a period which is apparently critical for the correct training of the network.

5 Discussion

Previous experiments have shown that class selectivity in individual units may not be necessary for high
accuracy converged solutions (Morcos et al., |2018; |Amjad et al., 2021} [Donnelly & Roegiest, 2019; [Leavitt
& Morcos, 2021} [Kanda et al.l |2020; Leavitt & Morcos, 2020). We sought to determine why class selectivity
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Figure 7: Regularization against selectivity. (a) Class selectivity indices throughout training for three
models, respectively unregularized, regularized from epoch 0 onward, and regularized from epoch 5 onward.
The effect of regularization on class-selectivity is clearly visible in the second and third plots. Note that only
early and intermediate modules are regularized. The latter module (module 7) is not regularized against
selectivity. Error shades indicate the 95% CI of the mean, calculated over all the bottleneck layers for
each module, averaged over 5 trained instances in each case. (b) Train and Validation accuracies for each
model throughout training averaged over 5 trained instances. The model regularized against selectivity from
epoch 5 onward performs almost as well as the original unregularized model. The model regularized against
selectivity from epoch 0 onward performs significantly worse than the other two models. This result shows
the importance of class selectivity in the early epochs of training.

is learned if it is not necessary. In a series of experiments examining the training dynamics of ResNet50
trained on ImageNet, we found that class selectivity in early and intermediate layers is actually necessary
during a critical period early in training in order for the network to learn high accuracy converged solutions.
Specifically, we observed that class selectivity rapidly emerges within the first epoch of training, before
receding over the next 2-3 epochs in early and intermediate layers. Ablating class-selective neurons during
this critical period has a much greater impact on accuracy than ablating class-selective neurons at the end
of training. Furthermore, we used Leavitt & Morcos| (2021))’s selectivity regularizer and found that strongly
regularizing against class selectivity—to a degree that [Leavitt & Morcos| (2021)) found had catastrophic effects
on network performance—had a negligible effect on network performance if regularization doesn’t occur in
the initial epochs. We also found that the representations of early and latter layers are much more similar
during the early critical period of training compared to later in training, indicating that selectivity in early
layers may be leveraged by latter layers in order to solve the classification problem early in training. Taken
together, our results show that class-selective neurons in early and intermediate layers of deep networks are
a vestige of their emergence during a critical period early in training, during which they are necessary for
successful training of the network.
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Figure 8: Effect of regularization against selectivity when starting from different epochs. Only
the model regularized from epoch 0 onward performs poorly. Models which were regularized starting from
epoch 1-5, all performed similarly. This suggests that the critical phase during which class-selectivity is
important is restricted to the very first epoch of training.

One limitation of the present work is that it is limited to ResNet-50 trained on ImageNet. While [Leavitt
& Morcos| (2021]) found that their results were consistent across a breadth of CNN architectures and image
classification datasets, it is possible that our findings may not generalize to networks trained on NLP tasks,
in which single neuron selectivity is also a topic of interest.

Our observations add to the list of phenomena occurring during the critical phase early in training (see
related work section , and prompts more investigations regarding this phase. In particular, it would be
interesting to understand why the emergence of class-selectivity is necessary in this early phase of training,
and whether this phenomenon connects to other critical-period phenomena, such as the emergence of lottery
ticket subnetworks (Frankle & Carbinl |2019; Paul et al., 2022)), and critical learning flexibility (Achille et al.)
2018). Additional discussions on the significance of studying the phenomenon of class selectivity can be
found in Appendix [A710]
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Figure 9: Structure of ResNet-50. (a) We define the early and intermediate layers as the layers present
in the early and intermediate modules. (b, ¢) Each of these modules are made of multiple bottleneck layers
which are also commonly known as conv blocks and identity blocks in ResNets.

A.1 Structure of ResNet-50

We define early, intermediate, and latter layers as the layers present in the early, intermediate, and latter
modules respectively. (Fig . These modules are made up of bottleneck layers (Fig . We calculate
class selectivity index on individual channels extracted after the ReLU layer of each bottleneck layer.

A.2 Model Training

We trained 10 instances of ResNet-50 on ImageNet using standard training procedure using PyTorch (Paszke
et al} 2019). All instances were trained for 90 epochs with a batch size of 256, learning rate of 0.1, weight
decay of le-4, and momentum of 0.9.

The class selectivity indices were calculated over the validation set of 50k images for every epoch from epoch
0 to epoch 90. All plots were generated using Seaborn Library (Waskom, 2021)). Accuracies shown in all
plots are top-1 ImageNet training/validation accuracy. Error shades in all plots represent the 95% confidence
interval (CI) of the mean.
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A.3 Class-Selective Ablations on a fully-trained network are less damaging than Random Ablations
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Figure 10: Abation of channels in a fully-trained ResNet-50. Surprisingly, ablating channels in a
random order is more damaging to the network accuracy than ablating the most class-selective channels for
modules 4, 5, 6. However, this trend is reversed for module 7. Error shades indicate the 95% CI of the mean,
calculated over 10 networks trained from different random initial conditions.

We find that in the early and intermediate modules (modules 4, 5, 6), an ablation of units ordered by their
class-selectivity rank (i.e. most class-selective units ablated first) affects the network accuracy less than a
control experiment where we ablate channels in a random order (Fig , consistent with the findings of
Morcos et al.| (2018). This result is paradoxical, as it seems to indicate that although class-selective channels
emerge during training in early modules, these channels do not support the decision of the fully-trained
network. In the latter module (module 7), we find that class-selective channels do support the decision of
the network more than random channels (Fig , consistent with our intuition (i.e. the layers near the end
of the network do need to be class-selective for good performance) and previous findings by Morcos et al.
(2018)).

A.4 Class Selectivity Index Across Bottleneck Layers

Fig shows the evolution of class selectivity throughout training for every bottleneck layer inside each
module. An interesting observation here is that for module 6 and 7, the bottleneck layers are increasingly
class-selective with network depth i.e, the latter bottleneck layers are more selective than the earlier ones
inside those modules. For module 5, they exhibit roughly the same amount of selectivity later in training.
However, for module 4, this trend is reversed and the bottleneck layers are decreasingly class-selective with
network depth.

A.5 Centered Kernel Alignment (CKA) Analysis

To check the representational similarity between the modules at different stages of learning we used the
Centered Kernel Alignment (CKA) (Kornblith et al., |2019; Nguyen et al., |2021) metric. To perform the
CKA analysis we used the torch_ cka library (Subramanianl 2021). The CKA similarity across all cases
is high during the early epochs of training (Fig which suggests that the network is jointly learning
to be class-selective, with neurons from latter layers relying on the class-selective features from early and
intermediate layers to produce crude shortcut strategies.
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Figure 11: Evolution of class selectivity throughout training across bottleneck layers. Error
shades indicate the 95% CI of the mean, calculated over the channels of each bottleneck layer.

Fig shows that module 4 has a high representation similarity with module 5, 6, 7 in the first few epochs
which then recedes to a low level for the rest of the training period. After the similarity level recedes,
consistent with our intuition, the similarity decreases with increasing network depth i.e., after the first few
epochs, module 4 is most similar to module 5, then to module 6, and then module 7. The remaining cases
show a similar trend (Fig[12b] Fig [12d]).

A.6 Regularization Experiments
A.6.1 Regularizing against selectivity

We conduct a set of regularization experiments where we regularize against selectivity for different values of
a. We want to test two scenarios: Regularizing from epoch 0 onward VS regularizing from epoch 5 onward
(epoch 5 is approximately after the spike in selectivity). We only regularize the early and intermediate
modules (i.e. module 4, 5, 6) as we are interested in understanding the emergence of class selectivity in those
modules. Also, regularizing only the early and intermediate modules allows us to use a higher values of «
without squashing the network accuracy completely. The results for different values of o are shown in Fig
[[3] The following main observations can be made:

e For a =-1.0, there isn’t much difference between the unregularized model and the models regularized
from epoch 0 and epoch 5 onward.

e For o = -5.0, the model regularized from epoch 0 onward performed worse than the one regularized
from epoch 5 onward.

e For a =-10.0, -20.0, the models regularized from epoch 0 onward performed significantly worse than
the ones regularized from epoch 5 onward.

These results indicate that selectivity is important for learning in those early epochs and suppressing it by
a significant amount impairs learning.
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Figure 12: CKA Analysis between different modules. The representational similarity across all cases
is high during the first few epochs after which it recedes to a low level for the rest of the training period. The
high similarity in the initial epochs might explain the emergence of class-selective neurons as high similarity
suggests the network is learning a crude, joint representation which causes the emergence of these class-
selective neurons. Error shades indicate the 95% CI of the mean, calculated over the 6 different networks
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Figure 13: Regularizing against selectivity for different values of o throughout training.
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Figure 14: Effect of regularization on selectivity indices across modules for different values of a
throughout training. Error shades indicate the 95% CI of the mean, calculated over the bottleneck layers
of each module.
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A.6.2 Regularizing for selectivity

If selectivity is important for learning in the early epochs, then does increasing selectivity further in early
epochs improve learning? To test this, we conducted experiments in which we regularized for selectivity with
different values of «. First, we tried regularizing the early and intermediate modules with large values of «
(410, +20) for the first four epochs, after which the regularizer was turned off. The latter module (module
7) was not regularized for selectivity. We found that in both cases, the model performed much worse as
compared to the original unregularized model (Fig . The large a causes the selectivity index to go close to
1.0. Also, as module 7 was not regularized, its selectivity index ends up being lower than the other modules

(Fig[15)).

Next, we re-did the experiment with smaller values of a (+1, +5) and we also decided to regularize module
7 for selectivity along with the early and intermediate modules. This time, we tried the experiment on two
scenarios:

o Turning the regularizer on for first four epochs for all modules with o« = +1, +5.

o Turning the regularizer on only for epoch 1 (as it is the most important (Section ) for all modules
with a = +1, +5.

In all cases, the increase in selectivity was harmful to performance (Fig . So overall, the results show
that increasing selectivity does not improve performance. Therefore, both an increase and a decrease in
selectivity is harmful to learning.
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Figure 15: Regularizing for selectivity with large values of a. Models regularized for selectivity with
large a in the early epochs are harmful to performance. The regularization was performed on the early and
intermediate modules (module 4, 5, 6) for first 4 epochs of training. Error shades indicate the 95% CI of the
mean, calculated over the bottleneck layers of each module.
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Figure 16: Regularizing for selectivity with smaller values of a. Even models regularized with

smaller values of a do not help in increasing the performance. The regularization was performed on all
modules for two cases: Over first four epochs and only over the first epoch. Error shades indicate the 95%
CI of the mean, calculated over the bottleneck layers of each module.

A.6.3 Can the model eventually recover its performance from the effects of regularization?

The regularization experiments conducted in Section [f.4] and Appendix[A-6.1]are done till epoch 20. So, this
naturally leads to the following questions:

Does the model eventually recover from the effects of regularization if it is trained for more
epochs? We trained the models regularized from epoch 0 onward and the one regularized from epoch 5
onward for 60 epochs while keeping the regularizer on with @ = -20. The model regularized from epoch 0
onward is never able to recover the lost performance (Fig [17al).

Does the model eventually recover from the effects of regularization if the regularization is
turned off after the early epochs? Next, we regularized a third model for only the first four epochs
with a = -20 after which the regularizer was turned off. This model was able to eventually recover the lost
performance by epoch 20 (Fig .

These two experiments confirm that class selectivity plays an important role towards model’s performance.

A.6.4 Effect of regularization on balance of class representation

What happens to the class representation when we regularize against selectivity? To test this, we kept a
count of each class predicted by the model on the validation set for each epoch, and then took the mean of
top-5 class counts for each epoch. One would expect that if the model is regularized against selectivity then
classes won’t be over-represented i.e., the mean of top-5 class counts should be low for each epoch. However,
surprisingly, the mean of top-5 class counts is actually higher in case of the model regularized from epoch 0
when compared to the unregularized model (Fig. So even if the individual neurons aren’t class-selective,
the model ends up over-representing certain classes in the early epochs. We think this might be because if
neurons are not class-selective at all, then the model might have difficulty learning in the early epochs and
so the model as a whole ends up overfitting to a few classes.
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Figure 17: Can the model recover from the effects of regularization? (a) The models are trained
longer with the regularizer kept on at o = -20, but the model trained from epoch 0 is never able to recover.
(b) If the regularizer is only kept on for only first four epochs then the model manages to recover from the
effects of regularization.

Similarly, when the model is regularized in favor of selectivity, the classes again end up being over-represented.
This suggests that tampering with the selectivity in either direction perturbs the correct learning by over-
representing classes.

2250
—— Unregularized Model
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Figure 18: Class representation over epochs. The figure shows the mean of top-5 class counts, where
the class counts are counted as the classes predicted by the model over the validation set in each epoch.
The model regularized from epoch 0 over-represents classes in the early epochs. Error shades indicate the
95% CI of the mean, calculated over the top-5 mean count of two different networks trained from different
random initial conditions.

A.6.5 Testing for off-axis class selectivity in regularized models

Models regularized from epoch 0 onward against class selectivity performed significantly worse than their
unregularized counterparts. However, it is unclear whether our regularizer completely suppressed class selec-
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tivity, or simply rotated the representations in such a way that class selectivity was preserved in directions
orthogonal to single units (i.e. off-axis class selectivity). To answer this question, we calculated CKA sim-
ilarity between representations in unregularized models and models regularized from epoch 0 onward, and
compared this similarity to the one computed between pairs of unregularized models trained from different
random seeds (control condition).

We found that the CKA similarity between two unregularized models is noticeably higher than between an
unregularized model and a model regularized from epoch 0 onward. This effect is especially visible during
the early epochs, i.e. during the critical period of learning (Fig .

The fact that the CKA similarity between an unregularized model and a model regularized from epoch 0
onward is noticeably lower than between two unregularized models indicates that class selectivity is actually
being suppressed, as opposed to simply rotated off-axis.

A.7 Analyzing class selectivity at a sub-epoch resolution

To understand how soon class selectivity rises during the first epoch of training, we analyzed selectivity at
a sub-epoch resolution (Fig . The model was saved 10 times within each epoch, i.e, the model was saved
after every 1000 batches of training with a batch size of 128, for the first few epochs. Fig shows the
evolution of selectivity during the first epoch of training. We can see that the selectivity rises after training
the model on the first 2000 batches (Point 0b2 in Fig [20a)). Fig shows the evolution of selectivity at a
sub-epoch resolution from epoch 0 to epoch 4. We can observe that the selectivity is most prominent during
the first few thousand batches of training after which it starts to settle down.

A.8 Class selectivity across animate and inanimate classes

One question of interest is whether the early rise in class-selectivity in early modules of ResNet are specific to
a particular subset of classes, for example classes that would be easy to learn. In ImageNet, class labels from
0 to 397 correspond to different kinds of animals (animates), while class labels from 398 to 999 correspond
to inanimate objects. We expect the statistics of these two subsets of classes to be substantially different,
and test whether the dynamics of their class selectivity indices differ throughout training. As the number
of inanimate classes is greater than the number of animate classes, we separate the inanimate classes in two
overlapping subsets (398-795, 601-999) which consist of the same number of classes as the animate subset
(0-397), and compute the class selectivity indices on each of these 3 subsets throughout training. We find
that the class selectivity index is roughly the same across all subsets. In particular, the characteristic peak
in class selectivity during the early epochs is observed across all subsets (Fig . We thus demonstrate
that subsets of classes with broadly different statistics exhibit very similar dynamics in their class selectivity
index.

A.9 Class Selectivity in smaller variants of ResNets

In this section, we investigate whether smaller variants of ResNet (i.e. ResNet18/34) also exhibit similar
class selectivity characteristics as a ResNet50. The ResNet18 and ResNet34 variants can also be divided
into four modules like the ResNet50 (Fig E[) Both ResNet18 and ResNet34 have fewer layers and also fewer
channels in each layer compared to a ResNet50.

A.9.1 Evolution of Class Selectivity in all modules

In both ResNet18 and ResNet34, the rise in selectivity in early epochs can only be observed for module 6 and
7 (Fig . The selectivity values then stabilize across all modules just like what was observed in the case of
ResNet50. Another interesting observation is that the stabilized class selectivity values for each module are
approximately the same across all three ResNet architectures, i.e, for module 7 it is &~ 0.7, for module 6 it
is &~ 0.4, for module 5 and 4 it is ~ between 0.2-0.3.

The lower rise in selectivity could possibly be due to smaller depth (fewer layers) and also significantly fewer
channels in each layer. For comparison, in a ResNet50 there are 256, 512, 1024, 2048 channels in each layer
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Figure 19: CKA similarity analysis between unregularized models and models regularized from
epoch 0 onward, for the different modules of ResNet-50. CKA similarity between two unregularized
models is noticeably higher than between an unregularized model and a model regularized from epoch 0
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of module 4, 5, 6 and 7 respectively while in ResNet18/34 there are only 64, 128, 256, 512 channels in each

layer of module 4, 5, 6 and 7 respectively.

A.9.2 Evolution of class selectivity in bottleneck layers

The evolution of selectivity in bottleneck layers of ResNet18 and ResNet34 (Fig Fig show a similar
trend to that of ResNet50 bottleneck layers (Fig . For ResNet34, modules 6 and 7 are increasingly class-
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Figure 20: Evolution of class selectivity at a sub-epoch resolution. The model is saved every 1000
batches of training within an epoch and the labels on the x-axis are of the form (e)b(i) where e represents
the epoch number and i represents the batch number (in multiples of 1000). (a) The selectivity index rises
for all modules after training the model on first 2000 batches. (b) Selectivity is most prominent during the
first few thousand batches after which it starts to settle down.
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Figure 21: Class selectivity index dynamics for animate and inanimate classes of ImageNet. In
ImageNet, class labels from 0 to 397 correspond to different kinds of animals while class labels from 398 to
999 correspond to inanimate objects. We divide the class labels into 3 subsets of equal size, the first subset
containing the animate classes only, and the two other subsets containing inanimate classes only, and find
that class selectivity index dynamics are similar across all subsets. This indicates that broadly different class
statistics do not have a noticeable impact on class selectivity dynamics.

selective with network depth and modules 4 and 5 are decreasingly class-selective with network depth (Fig
. The same effect can be observed for ResNet18 except for module 6 which is decreasingly class-selective
with network depth (Fig .

A.9.3 Regularizing against selectivity

Both ResNet18 and ResNet34 were regularized against selectivity with o = —20. Interestingly, both the
models show a similar regularization result to that of ResNet50. For both ResNet18 and ResNet34, the
models regularized from epoch 0 onward performed worse than the models regularized from epoch 5 onward
(Fig . This indicates that class selectivity is important during the early epochs of training even in
the case of smaller variants of ResNet.
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Figure 22: Evolution of class selectivity throughout training in all modules of ResNetl18 and
ResNet34
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Figure 25: Regularization against selectivity for ResNet18. The regularization result observed for
ResNet50 holds true for ResNet18. a=-20 was used to regularize the models. The model regularized from
epoch 0 onward performs worse than the model regularized from epoch 5 onward.
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Figure 26: Regularization against selectivity for ResNet34. The regularization result observed for
ResNet50 also holds true for ResNet34. a=-20 was used to regularize the models. The model regularized
from epoch 0 onward performs worse than the model regularized from epoch 5 onward.
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A.10 Significance of studying the class selectivity phenomenon

The experiments conducted in this paper give us a better insight as to why neural networks learn class
selectivity, and whether it is necessary for learning high-quality solutions. There is a significant existing
body of research on selectivity: Class selectivity is widely used in interpretability research (Zhou et al.| 2015;
[Olah et all 2017} [Radford et all 2017} [Olah et all [2018} [Hooker et all 2019} Na et all, |2019), and class
selectivity has been extensively studied with regards to generalization and network performance (Morcos
let all [Amjad et all 2021} [Zhou et all, 2018} [Kanda et all [2020; [Dalvi et all, 2019} [Donnelly &
[Roegiest, [2019; [Meyes et al. 2019)). Existing evidence regarding the necessity of class selectivity for high-
quality solutions is mixed—some in favor, some not, and our work reveals nuances that resolve some of these
contradictions in the literature, in particular by showing that class selectivity is necessary during the early
phase of training.

Although we have not demonstrated an immediate benefit of our findings in this paper, there are some novel
empirical findings which may benefit us, as if we understand the critical period of early training better,
we might understand how to deal with training better. Prior work shows that regularizing against class
selectivity improves robustness to Out-of-Distribution (OOD) tasks (Leavitt & Morcos| 2020)). One could
potentially use our findings to design a curriculum of regularization which would not prevent training during
the early critical period where class selectivity is useful, but would improve OOD robustness during the rest
of training.

Intriguingly, the rise of class selectivity during early epochs of training might be connected to the “Lot-
tery Ticket Hypothesis” [Frankle & Carbin| (2019)), a phenomenon where pruning networks after—but not
before—a critical period of training mostly preserve their final performance. Indeed, the critical period
of learning necessary for the emergence of these sparse “lottery tickets” might concur and/or be causally
related to the rise in class selectivity we observe in that early period of training. Further work is necessary
to investigate this potential connection in depth.
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