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ABSTRACT

Reinforcement learning with verifiable reward (RLVR) has been instrumental in
eliciting strong reasoning capabilities from large language models (LLMs) via
long chains of thought (CoT). During RLVR training, we formalize and system-
ically study an empirical phenomenon whereby a multilingual model’s CoT re-
verts to its dominant pre-training language (e.g., English) even when prompted in
another language, which we term Cross-lingual Collapse. Because the long-CoT
regime magnifies exposure to linguistic priors, the underlying trade-off between
maximizing reasoning depth and preserving target-language fidelity has remained
under-characterized. To examine this trade-off, we train LLMs with Group-
Relative Policy Optimization (GRPO) on translated versions of math datasets
widely used to elicit long-CoT reasoning. Throughout training, we track both task
accuracy and the language consistency of reasoning chains. Our experiments yield
three findings: (i) under RLVR, CoT in LLMs systematically drifts toward the pre-
training dominant language as reasoning performance rises; (ii) English-centric
priors, long-CoT GRPO optimization, task difficulty, and high-entropy decoding
jointly amplify this drift, and the pattern persists beyond mathematics; and (iii) in-
terventions that favor target-language traces—via a language-consistency reward,
decoding-time controls, or more balanced backbones—mitigate collapse but re-
veal a persistent performance–fidelity trade-off.

1 INTRODUCTION

Large language models (LLMs) trained with long chain-of-thought (CoT) supervision have demon-
strated impressive performance across mathematically demanding problems, code generation tasks,
and multi-step logical reasoning benchmarks (Wei et al., 2022; Shao et al., 2024; Yu et al., 2025;
DeepSeek-AI et al., 2025). These models’ strengthened reasoning capabilities not only enable
human-level performance on challenging tasks but also facilitate monitoring of intermediate rea-
soning traces, thereby improving interpretability and enabling more reliable auditing.

Although multilingual competence has been studied during pre-training and instruction tuning (Sha-
ham et al., 2024; Zhong et al., 2024; Kew et al., 2024; Wang et al., 2025), reasoning-centric
models remain comparatively underexplored. We posit an inherent trade-off : pushing for deeper,
verification-driven reasoning with long CoT can come at the expense of target-language fi-
delity. Mechanistically, long CoT increases exposure to pre-training priors; when those priors are
English-dominant—as is the case for most open-source foundation models (OLMo et al., 2024;
Grattafiori et al., 2024; Yoo et al., 2024b; Yang et al., 2025; Team et al., 2025)—reward-seeking
optimization can preferentially route the reasoning trace through English even under non-English
prompts. We refer to the resulting drift as Cross-lingual Collapse: the chain-of-thought reverts to
the pre-training dominant language while task performance continues to rise.

To systematically analyze this performance–fidelity trade-off, we study target-language reasoning
under reinforcement learning with verifiable reward (RLVR). We instantiate Group-Relative Policy
Optimization (GRPO) (Shao et al., 2024) on an English-centric backbone (OLMo et al., 2024) and
non-English-centric backbones (Grattafiori et al., 2024; Yang et al., 2025), using standard math
word-problem corpora widely used to elicit long-CoT reasoning (e.g., GSM8K (Cobbe et al., 2021),
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(b) GSM8K (UK) Performance

Question: Бад готує домашні макарони з сиром раз
                                                . . .

Response (@100 Step): Давайте розберемо
проблему крок за кроком: 1. Бад витрачає 1,00 долар
                                                . . .
означає, що Бад витрачає 10,00 доларів х 32 = 320,00 
доларів на макарони з сиром за рік. \boxed{320,00}

Response (@200 Step): Let's break down the costs step 
by step: 1. Macaroni costs $1.00 per box. 2. Bad
                                                . . .
52 weeks in a year, so the total cost per year is: $10.00
per week x 52 weeks per year = $520.00 \boxed{520}

(c) Response Examples

Figure 1: Illustration of Cross-lingual Collapse. We train Llama-3.2-3B Instruct with GRPO on
a fully Ukrainian translation of GSM8K, seeking Ukrainian-only reasoning. (a) Chain-of-thought
word-ratio in reward warding rollouts over training steps. In the grey band, the share of Ukrainian
tokens plummets, while English abruptly dominates, signaling a language switch within the rollout
reasoning trace. (b) Accuracy on the Ukrainian GSM8K. The sharp rise in accuracy aligns with
the same 100–250-step window, showing that the model scores higher once its reasoning drifts into
English. (c) Representative responses at steps 100 and 200 (answer spans highlighted in purple).
When the model reasons in Ukrainian it produces an incorrect answer, but after switching to English
it solves the problem correctly, exemplifying the collapse from target-language reasoning to the pre-
training-dominant language. The word ratio is measured during training from the rollout samples.

SimpleRL-Zoo (Zeng et al., 2025)) translated into five target languages. Our evaluation tracks (i) task
accuracy and (ii) a target-language word ratio over training, enabling us to quantify language drift
alongside performance. Beyond measurement of Cross-lingual Collapse, we interrogate both the
amplifiers and mechanisms and the mitigations and limits of this behavior. Our novelty is three-fold:

• Phenomenon. We formalize and operationalize Cross-lingual Collapse as a phenomenon
characterized by rising accuracy with systematic drift of CoT into the pre-training dominant
language, quantified via accuracy and word ratios on English and a target language.

• Amplifiers and mechanisms. We show that English-dominant LLMs and long-CoT GRPO
optimization steer reward toward dominant-language traces, and that task difficulty and
high-entropy decoding further exacerbate the drift; the pattern persists beyond math.

• Mitigations and limits. We evaluate intuitive interventions (language-consistency reward,
decoding controls, and multilingual mixing) that partially alleviate collapse, revealing a
persistent performance–fidelity trade-off rather than a one-size-fits-all solution.

2 MOTIVATION

Recent reinforcement learning with verifiable reward (RLVR) methods such as Group-Relative Pol-
icy Optimization (GRPO) (DeepSeek-AI et al., 2025) unlock state-of-the-art reasoning by having
the model speak its thoughts aloud: each answer is preceded by a multi-step chain-of-thought that
can be several hundred tokens long. With this drastic increase in utterance length, the burden on the
model’s linguistic competence also multiplies for every step of the trace.

In non-English contexts, this burden is even greater (Marchisio et al., 2024). For English-centric
LLMs, a single error introduced during an early non-English step can propagate through the entire
chain of reasoning, ultimately compromising the final answer. Early work (Shaham et al., 2024; Kew
et al., 2024) demonstrated that even target-language-centric supervised fine-tuning (SFT) (Ouyang
et al., 2022) on a single language can still coax a model into showing modest generalization beyond
English. However, current evidence is sparse on how reasoning-driven training like GRPO affects
these cross-lingual gains—do they hold steady, or do they shift?

We therefore ran a pilot experiment on the Llama-3.2-3B Instruct, giving it target-language reason-
ing supervision through GRPO. Concretely, we fine-tuned the model on the GSM8K grade-school
arithmetic corpus, translated into Ukrainian so that all intermediate chain-of-thought steps as well as
the final answer were presented in a low-resource language (relatively lower than English (Wenzek
et al., 2020)). As training progressed, however, the chains gradually drifted back to high-resource
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languages, chiefly English, even though the prompts remained Ukrainian. The trend is visualized in
Figure 1. We dub this behavior Cross-lingual Collapse in reasoning models: a systematic collapse
of target-lingual chains-of-thought toward the model’s dominant pre-training language.

In response, this work aims to establish and explain Cross-lingual Collapse under RLVR: we
corroborate the phenomenon across translated long-CoT settings, identify its causal drivers and trig-
gering conditions, and examine how it can be mitigated and to what extent.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Base models. To investigate the influence of foundation model design on reasoning in a target lan-
guage, we categorized base models into two groups: (1) english-dominant LLMs, (2) non-English
dominant LLMs. We selected OLMo2-1B Instruct as an english-dominant LLM (OLMo et al.,
2024), Llama-3.2 3B Instruct (Grattafiori et al., 2024) and Qwen-2.5 1.5B Instruct(Team, 2024)
as representative non-English dominant LLMs. 1 This setup allows us to investigate how the intrin-
sic prior of languages shape the emergence of non-English reasoning abilities when the models are
prompted to reason in a variety of language.

Training configuration. To enhance the reasoning capability of LLMs, we train the base mod-
els with GRPO, a representative RLVR algorithm shown to strengthen reasoning. We used
GSM8K training dataset, the community’s most widely utilized dataset for mathematical prob-
lems (Shao et al., 2024; DeepSeek-AI et al., 2025). Training was conducted within a verl frame-
work (Sheng et al., 2024), using a slightly modified hyperparameter configuration from the Sim-
pleRL project Zeng et al. (2025), which are proven effective for this task. To evaluate the improve-
ment of reasoning ability of a trained language, we translated the entire training corpus into Korean
(KO), Ukrainian (UK), Chinese (ZH), Thai(TH), Japanese(JA) using GPT-4o. These languages span
distinct scripts and a gradient of pre-training resource levels (high-resource: ZH/JA, mid-resource:
KO, lower-resource: TH/UK) and are intended as a representative case rather than exhaustive cover-
age. The quality of the translated data was ensured using quality filtering (Guerreiro et al., 2024), as
detailed in Appendix B.We excluded 15% of training dataset for validation. Unless otherwise noted,
we train GRPO models on the translated GSM8K corpus only. In Sec. 3.3, when studying the effect
of task difficulty, we utilize a mix of a 7k subset of translated SimpleRL-Zoo dataset.

Evaluation dataset. We evaluated our model on the translated GSM8K and MATH500 (Lightman
et al., 2024) test sets across multiple languages. In order to compute the accuracy, we utilize math-
verify library 2 for obtaining robust mathematical expression.

Target Word Ratio (Target WR). To assess whether GRPO training preserves input-output lan-
guage consistency, we computed the word ratio for both the target language and English. We first
remove all LaTeX expressions (e.g., $...$, \begin{...}, \end{...}) from the model’s out-
put. The remaining text is tokenized using simple regular-expression rules, using Multi-bleu 3, so that
punctuation, brackets, and quotes are properly separated. Tokens that consist purely of math expres-
sions, special symbols, or backslash commands are discarded. For each remaining token, we exam-
ine its characters to determine whether they belong exclusively to one of several script ranges, such
as Hangul (U+AC00–U+D7A3), Latin alphabets (A–Z, a–z), CJK characters (U+4E00–U+9FFF,
etc.), or Cyrillic (U+0400–U+04FF). We calculate the Target word ratio of a given language by di-
viding its token count by the total token count. Any token that mixes English letters with another
script is labeled as a code-switching token, whose ratio is similarly tracked. This uniform preprocess-
ing and detection pipeline thus enables a quantitative assessment of how models maintain linguistic
fidelity in multilingual output. Additionally, we also denote English word ratio as EN WR.

1Our classification is based on the models’ technical reports and cards in Huggingface. The OLMo 2 report
only focuses on its English performance, having been trained predominantly on English data. Conversely, the
reports for Qwen-2.5 and Llama-3.2 explicitly detail their multilingual capabilities.

2https://github.com/huggingface/Math-Verify
3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/

multi-bleu.perl

3

https://github.com/huggingface/Math-Verify
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Table 1: Accuracy and target-language word ratio for models fine-tuned with GRPO on translated
GSM8K. We evaluate on the translated GSM8K and MATH500 test sets. Language codes: EN =
English, ZH = Chinese, KO = Korean, UK = Ukrainian, TH: Thai, JA: Japanese. Base Models:
OLMo 2 = OLMo-2-0425-1B-Instruct, Llama = Llama-3.2-3B Instruct, Qwen = Qwen-2.5-1.5B
Instruct. Numbers in parentheses indicate the change relative to these base models. Accuracy (Acc)
and target-language word ratio (WR) are reported for each language-model pair.

Language Model GSM8K MATH500

Target Acc (%) Target WR (%) EN WR (%) Target Acc (%) Target WR (%) EN WR (%)

ZH OLMo2 59.8 (+34.3) 0.3 (-75.5) 80.8 (+73.7) 17.6(+1.9) 26.3 (-10.0) 71.0 (+8.4)
Llama 69.4 (+7.4) 94.1 (-1.4) 8.3 (-0.5) 38.8 (+1.2) 77.5 (-0.4) 18.8 (+0.1)
Qwen 63.4 (+1.3) 92.9 (+0.6) 7.0 (-0.9) 41.9 (+4.7) 79.8 (+0.4) 19.5 (-0.7)

KO OLMo2 46.5 (+39.9) 14.3 (-79.4) 83.5 (+78.3) 12.2 (+5.2) 0.1 (-45.1) 73.0 (+51.3)
Llama 61.3 (+14.5) 82.4 (-8.1) 14.7 (+7.1) 28.5 (+7.2) 70.9 (-17.8) 21.8 (+16.0)
Qwen 42.2 (+3.5) 94.3 (-2.4) 3.1 (+1.9) 27.0 (+6.8) 88.0 (-8.0) 10.1 (+7.7)

UK OLMo2 45.2 (+37.8) 0.3 (-75.5) 85.3 (+79.3) 13.0 (+5.6) 0.1 (-52.3) 72.7 (+56.1)
Llama 70.9 (+17.1) 0.3 (-82.6) 96.8 (+80.8) 47.6 (+12.0) 5.6 (-72.7) 93.4 (+73.1)
Qwen 39.7 (+4.9) 99.3 (+0.5) 0.5 (-0.2) 23.4 (+4.0) 82.8 (-9.8) 9.9 (+8.5)

TH OLMo2 29.7(+27.2) 1.4(-80.3) 90.5(+81.0) 9.8(+5.2) 12.6(-78.4) 84.7(+76.7)
Llama 74.6(+16.3) 84.1(-10.1) 16.6 (+10.5) 50.9(+5.8) 75.4 (-8.1) 16.8(+10.0)
Qwen 68.3 (+31.7) 8.3 (-78.9) 89.9 (+80.5) 43.8(+23.9) 13.1(-76.3) 83.0(+75.5)

JA OLMo2 52.6 (+45.4) 2.3(-83.9) 97.0 (+80.1) 17.0(+2.2) 7.4(-75.5) 90.3(+76.9)
Llama 62.6(+6.6) 96.4 (-0.6) 3.3(+0.5) 37.1(+5.2) 92.1 (+4.1) 5.5(+1.8)
Qwen 43.1 (+7.5) 95.8(-0.7) 2.5 (+1.0) 38.4(+5.7) 98.9(-0.4) 1.0(+0.2)

3.2 EXPERIMENTAL VERIFICATIONS OF CROSS-LINGUAL COLLAPSE

For the main study, to verify Cross-lingual Collapse and analyze its behavior, we examine how
GRPO-trained models behave on mathematical benchmarks in terms of both accuracy and language
fidelity across five non-English target languages.

Performance–fidelity trade-off. Table 1 demonstrates the fine-tuning results across languages
(Chinese, Korean, Japanese, Thai, and Ukrainian) and backbones, where selected languages repre-
sents distinct alphabet scripts and different pre-training resource levels. RLVR consistently improves
target-language accuracy relative to the before fine-tuning (i.e.,SFT models). We can also observe
gains in English accuracy, which remains noticeably higher than that of the target languages (Ta-
ble 6). However, these improvements in the target language often come at the cost of target-language
fidelity. The English-dominant LLM, OLMo2-1B, shows the sharpest trade-off across languages.
RLVR training yields large accuracy gains but drives the Target word ratio (Target WR) almost to
zero and the English Word Ratio (EN WR) toward 80–97%.

On the other hands, multilingual backbones (i.e., Llama-3.2-3B, Qwen-2.5-1.5B) show a resource-
sensitive pattern: high-resource Chinese and Japanese preserve language fidelity (Target WR ≥ 92%,
EN WR ≤ 8%), mid-resource Korean shows a moderate drop in Target WR. Low-resource Thai
and Ukrainian exhibit distinctive behavior, with significant language drift occurring inconsistently
across backbones). Even where Target WR remains high, EN WR is often non-trivial (∼15–20%),
which our qualitative analysis traces to short English scaffolding and Latin-script technical tokens
embedded in target-language CoTs (Appendix D). This performance-fidelity trade-off persists at
larger scales, as detailed in Appendix E, implying that the phenomenon is robust across scales.

Beyond word ratios, we also analyze cross-lingual consistency for a collapsed Chinese GRPO
model. As shown in Appendix F, GRPO increases the proportion of problems that the model solves
correctly in both English and non-English while reducing cases that are solvable only in English.
Combined with the language-fidelity trends in Table 1, this supports the interpretation that the ac-
curacy gains in collapsed models are driven by routing target-language prompts through a stronger
English reasoning mode, rather than by genuinely improved target-language reasoning.

These observations reveal a clear trade-off between accuracy and language fidelity under RLVR:
accuracy rises while Target WR falls and EN WR rises. We refer to this joint pattern as Cross-
lingual Collapse—the chain of thought reverts to the pre-training dominant language.
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Table 2: Harder training triggers Cross-lingual Collapse in Korean. Qwen-2.5-1.5B Instruct trained
on Korean GSM8K alone (Base, 1K/2K) preserves target-language fidelity, whereas mixing
SimpleRL-Zoo (Base+Hard, 2K) collapses Korean word ratio (Target WR) to 14.5%(GSM8K) and
2.1% (MATH500), with accuracy rising to 47.5% and 46.7%. On GSM8K, English word ratio (EN
WR) also increases, indicating drift toward English.

Dataset Steps GSM8K (KO) MATH500 (KO)
Accuracy (%) Target WR (%) EN WR (%) Accuracy (%) Target WR (%) EN WR (%)

Base 1K 42.3 94.3 3.1 25.7 88.0 10.1
2K 43.1 94.0 3.6 27.1 86.5 10.9

Base + Hard 2K 47.5 14.5 80.1 46.7 2.1 87.4
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Figure 2: Figures 2a–2c compare Llama-3.2-3B Instruct trained with GRPO on the Ukrainian-
translated GSM8K with and without the language-consistency reward (Lang loss). The language-
consistency reward reliably preserves the target-language word ratio, yet it also dampens the accu-
racy gains that GRPO would otherwise deliver. In particular, Figures 2a–2c show that the reward
almost completely prevents cross-lingual collapse in the Ukrainian run—though at the cost of a
modest drop in performance

3.3 TRIGGERING CROSS-LINGUAL COLLAPSE

Building on the trade-off established above, we now unpack how the collapse is mechanistically
induced, when it emerges during training, and where it shows up beyond mathematics.

Difficulty triggers collapse beyond GSM8K. We verify our hypothesis that problem difficulty ac-
celerate Cross-lingual Collapse even in mid-resource languages (e.g.,KO). We adopt SimpleRL-Zoo
as a challenging complement to GSM8K. This increased difficulty widens the reasoning between En-
glish and the target language, causing the policy to quickly converge to the more effective English
reasoning path. Concretely, for Qwen-2.5-1.5B trained on the Korean translation, keeping GSM8K
only preserves target-language fidelity after 2K updates (Target WR: GSM8K 94.0%, MATH500
86.5%; Table 2). Introducing the harder SimpleRL-Zoo subset collapses the chain-of-thought into
English by 2K steps: Target WR falls to 14.5% on GSM8K (−79.%5) and to 2.1% on MATH500
(−84.4%), while accuracy rises to 47.5% on GSM8K and 46.7% on MATH500. Furthermore, we
compare SFT approaches in Appendix I. However, SFT approach still show less performance than
GRPO approach and the same performance-fidelity trade off.

Cross-lingual Collapse is initiated during exploration at rollout generation.
Advantage-weighted credit under a correctness-only reward systematically favors English
reasoning trajectories, creating a self-reinforcing drift. Figure 3 illustrates for Qwen-2.5-1.5B on
Korean GSM8K: exploration often uncovers English CoT continuations that solve the problem
more reliably than staying in the target language. Each time such an off-target (English) trajectory
succeeds, its advantage is positive, increasing the log-probability of its tokens and shifting future
rollouts toward English-Target WR declines while English WR increases. The resulting regime
shift—English traces dominating despite non-English prompts—constitutes the rollout-level
mechanism behind Cross-lingual Collapse and foreshadows the accuracy jump and fidelity drop
observed under harder curricula and high-entropy decoding.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Global MMLU-Lite (KO) accuracy and Korean word ratio (Target WR) of CoT outputs for
Qwen-2.5-1.5B Instruct trained on GSM8K (KO) under three settings: Base (GSM8K only), Base
(w/ Lang loss) (GSM8K + language-consistency reward), and Base + Hard (GSM8K + SimpleRL-
Zoo hard curriculum). The hard-curriculum variant achieves the highest accuracy but shows the
language drift (lowest Target WR).

Base Base (w/ Lang loss) Base + Hard
Global MMLU 31.5 31.0 33.4
Target Word ratio 71.6 75.2 23.4
English Word ratio 27.7 20.3 68.3

Beyond math: domain-general drift. The other question is whether Cross-lingual Collapse is
confined to the mathematical reasoning domain or is a general phenomenon. To investigate this,
we evaluated trained models on the Korean question and answer pairs of Global MMLU-Lite (Singh
et al., 2024). Specifically, we evaluate three fine-tuning variants of the Qwen2.5-1.5B Instruct model:
(1) training with GSM8K (KO), (2) training with GSM8K with a language-consistency loss (Lang
loss), and (3) a cross-lingual-collapse setting training with GSM8K and a hard-curriculum dataset
(GSM8K + SimpleRL).

As shown in Table 3, the results show a pattern similar to our primary findings on mathematical
benchmarks. The cross-lingual-collapse model, fine-tuned with the harder curriculum (GSM8K +
SimpleRL), not only achieves the highest performance on MMLU-Lite but also suffers the most
severe language drift, with the Korean token ratio in its outputs falling to 23.4%. Conversely, adding
the language-consistency reward (Lang loss) preserves a higher Korean token ratio (75.2%) at the
cost of a minor dip in performance (31.0). This demonstrates that the trade-off between task ac-
curacy and linguistic fidelity is not confined to mathematics; rather, the pressure to revert to En-
glish reasoning for performance gains appears to be a domain-general effect that also holds for
general-knowledge tasks.

3.4 MITIGATING CROSS-LINGUAL COLLAPSE

Our analyses in §3.3 indicate that cross-lingual collapse is driven by a language-agnostic (accuracy-
only) verification reward and exploratory rollouts that discover and reinforce dominant-language
reasoning. This observation suggests three complementary mitigation ideas that act at different: (1)
reward shaping to inject language fidelity into the objective itself; (2) rollout sampling controls
that constrain exploration so English-only trajectories are less accessible during rollouts; and (3)
training with mixture of multiple languages that regularize the model’s internal arbitration across
languages by aligning training with a more balanced linguistic prior.

Language consistency reward. Following DeepSeek-AI et al. (2025), we augment the verifi-
cation reward with an auxiliary signal that favors target-language CoT tokens, as detailed in Ap-
pendix H. As shown in Figure 2, we add additional reward in which Llama-3.2-3B is training with
GRPO on the Ukrainian GSM8K, once with the language-consistency reward and once without it. In
the vanilla setting (Figures 2a–2c, solid line) the model undergoes a full cross-lingual collapse: the
share of Ukrainian tokens in its chain of thought drops to almost zero while accuracy rises sharply.
Adding the language-consistency reward (dashed line) prevents that collapse—the Ukrainian word
ratio stays high—yet the accuracy gain is noticeably smaller. This shows that forcing GRPO to keep
the reasoning trace in the target language safeguards linguistic fidelity at the cost of some perfor-
mance. Furthermore, we compare SFT approaches in Appendix I. However, SFT baselines yield
lower performance than GRPO, reinforcing the inherent trade-off between accuracy and fidelity.

These results suggest that during GRPO the model actively probes alternative reasoning paths and,
when allowed, gravitates toward high-resource English to maximize reward. Constraining the trace
to a non-English language blocks that shortcut, preserving the intended language but sacrificing part
of the accuracy gain.

Adjusting rollout sampling parameters. Our experiments reveal a consistent dominant-language
reversion in chain-of-thought: even under target-language prompts, the word ratio briefly rises and
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Table 4: Impact of rollout entropy on Llama3.2-3B with GSM8k(UK) through adjusting top
p (Top P) and temperature (Temp.) parameters. The default high-entropy setting (top p=1.0,
Temp=1.0) maximizes accuracy by allowing the model to revert to high-yield English reason-
ing paths. Restricting the decoding space with lower top p or temperature effectively prevents
this language drift, but at the cost of a 5–12 percentage-point drop in accuracy.

Top P Temp. GSM8K (UK) MATH500 (UK)

Accuracy (%) Target WR (%) EN WR(%) Accuracy (%) Target WR (%) EN WR(%)

1.0 1.0 70.9 0.3 96.8 47.6 5.6 93.4
0.8 1.0 64.2 81.9 11.2 35.8 83.2 15.5
0.6 1.0 63.5 80.6 15.0 36.1 82.5 14.5
1.0 0.8 65.6 81.2 16.0 37.4 81.0 16.9

then abruptly flips to the pre-training dominant language (English), coinciding with a sharp accuracy
jump—what we term Cross-lingual Collapse. This pattern suggests that reward optimization exploits
English as a higher-yield reasoning path in English-centric LLMs. In light of evidence that general
language confusion peaks at high-entropy (Marchisio et al., 2024), large-nucleus decoding points
and is partially mitigated by lowering temperature and nucleus size, we posit that collapse is a
sampling-gated manifestation of the same bias: structural but partially controllable at inference.

As shown in Table 4, reducing temperature or top-p attenuates reversion for Llama-3.2-3B on
Ukrainian, though stabilized runs still trail the adding a language consistency reward.

Table 5: Effect of multilingual GRPO training with mix of languages. We train Llama-3.2-3B In-
struct on GSM8K with three mixes—UK only, UK+KO, and UK+KO+ZH+EN—and evaluate on
Ukrainian GSM8K and MATH500, reporting accuracy and the Target word ratio. Adding Korean
alone leaves the model collapsed (near-zero Target WR), whereas a four-language mix largely re-
stores Ukrainian CoT but lowers accuracy.

Languages GSM8K(UK) MATH500(UK)
Accuracy (%) Target WR (%) EN WR(%) Accuracy (%) Target WR (%) EN WR(%)

UK 70.9 0.3 96.8 47.6 5.6 93.4
UK, KO 72.1 0.0 98.7 42.0 6.9 91.7
UK, KO, ZH, EN 63.5 79.6 19.0 33.2 77.5 17.1

Training with multiple languages. Prior work shows that adding a small set of languages dur-
ing instruction tuning is more effective than monolingual insturuction tuning (Kew et al., 2024;
Chen et al., 2024b; Shaham et al., 2024). We test whether the same idea mitigates Cross-lingual
Collapse under RLVR framework. Concretely, we train Llama-3.2-3B Instruct with GRPO on three
GSM8K training mixes: (1) Ukrainian only (UK), (2) bilingual (UK+KO), and (3) four-language
(UK+KO+ZH+EN). We then evaluate on Ukrainian GSM8K and Ukrainian MATH500, reporting
accuracy and the target word ratio of Ukrainian.

As shown in Table 5, adding a single additional language (UK+KO) leaves the model in a collapsed
regime on GSM8K. In contrast, training on four languages largely restores input–output language
consistency on Ukrainian (Target WR ≈ 80% on both test sets), but it reduces accuracy relative to the
collapsed Ukrainian only (GSM8K: −7.4 pp; MATH500: −14.4 pp). Thus, multilingual training acts
as a crude regularizer against collapse, but introduces a pronounced performance–fidelity trade-off,
making it a suboptimal mitigation compared to targeted interventions such as a language-consistency
reward and rollout sampling controls.

4 DISCUSSION

4.1 CROSS-LINGUAL COLLAPSE

The evidence assembled so far paints a coherent picture: (1) Universal Drift. GRPO pushes all
models toward the dominant pre-training language, but the speed and severity of that drift scale with
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resource level based on the prior work (Wenzek et al., 2020): minimal in high-resource (e.g.,ZH,
JA), moderate in mid-resource (e.g., KO), catastrophic in low-resource (e.g.,TH,UK) (Table 1). (2)
Difficulty as a Trigger. A mid-resource model that is stable on GSM8K alone collapses after we
inject a harder curriculum (Table 2), showing that task difficulty, tilts the optimizer toward English
reasoning. (3) Reward Design Matters, but Costs Accuracy. Mitigate algorithms partially prevent
collapse (Figure 2) yet remove much of GRPO’s accuracy gain, implying that the model strategically
chooses English traces to maximize reward under pressure.

These findings confirm our central claim: GRPO amplifies the linguistic prior that best optimizes
reward, and the gap between high- and lower-resource languages widens as tasks grow harder.

4.2 FUTURE RESEARCH DIRECTION

Building on the identification and analysis in Sec. 3.2and Sec. 3.3, we designed and evaluated several
mitigation algorithms; nevertheless, important limitations persist. Taken together, the experimental
results in Sec. 3.4 motivate three research questions to guide future work.

Persistent accuracy–fidelity trade-off. Lowering rollout entropy (e.g., via temperature or top-p)
curbs cross-lingual collapse but also suppresses exploration and hurts accuracy, while higher-entropy
sampling does the opposite. This aligns with evidence that broad, diversified search improves rea-
soning when paired with multi-sample selection or structured exploration—e.g., self-consistency
voting and tree-structured search (Wang et al.; Yao et al., 2023)—and with maximum-entropy prin-
ciples in reinforcement learning that stabilize learning via entropy regularization (Haarnoja et al.,
2018; Cui et al., 2025). At the same time, high entropy increases language confusion in multilingual
models (Marchisio et al., 2024). A promising direction is therefore to redesign exploration mecha-
nism to keep exploration broad in the semantic space while constraining surface form to the target
language.

Drift is merely incidental or actually the optimizer’s “best path” under current objectives.
Our findings are consistent with a reward-shortcut hypothesis under RLVR: high-yield English tra-
jectories discovered during exploration receive positive advantage and become reinforced (Shao
et al., 2024; DeepSeek-AI et al., 2025). Rather than fixing a global weight on language fidelity, we
propose casting training as constrained or multi-objective RL that explicitly traces the Pareto frontier
between accuracy and target-language consistency. Adaptive Lagrangian or primal–dual methods
can strengthen the constraint when early warning signals (e.g., a drop in target-language ratio) are
detected and relax it otherwise, aiming to block the English shortcut without needlessly sacrificing
performance.

Reconsidering the purpose of interpretable CoT in multilingual settings. When, if ever, is it
acceptable to sacrifice on-language reasoning traces to gain accuracy, and what do we lose in in-
terpretability, auditability, education, and localization when we do? One promising compromise is
latent reasoning with target-language summaries: the model reasons internally but must emit con-
cise, on-language plans or explanations for human inspection. Establishing evaluation protocols that
jointly reward task accuracy and on-language interpretability will clarify when fidelity should dom-
inate and when performance gains justify off-language traces.

5 RELATED WORKS

5.1 LONG CHAIN-OF-THOUGHT GENERATION

DeepSeek-AI et al. (2025) push the envelope on reinforcement-learning–based reasoning by in-
troducing DeepSeek-R1-Zero, the open-source model trained with pure RL, specifically Group-
Relative Policy Optimization (GRPO), without any supervised warm-up, and its follow-up
DeepSeek-R1, which adds a small cold-start SFT stage and multi-stage RL to further boost perfor-
mance. Their study demonstrates that large-scale GRPO can elicit impressive gains on mathematics
and coding benchmarks, and that the resulting reasoning patterns can be distilled into much smaller
dense models. Notably, the authors briefly report undesirable “language mixing” and readability is-
sues that emerge during RL, suggesting that reward-driven optimization may inadvertently disrupt
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linguistic fidelity. However, DeepSeek-R1 focuses almost exclusively on English prompts and does
not quantify the extent, or direction, of its language drift. Our work complements these findings by
conducting a systematic, multilingual analysis of GRPO and revealing a pronounced Cross-lingual
Collapse: as RL progresses, chain-of-thought reasoning reverts to the pre-training-dominant lan-
guage, catastrophically eroding performance in low-resource languages.

5.2 MULTILINGUAL INSTRUCTION TUNING

Recent work shows that even a pinch of multilingual data during instruction tuning can unlock
substantial cross-lingual generalization in otherwise English-centric LLMs. Shaham et al. (2024)
demonstrate that fine-tuning with as few as two to three languages is “necessary and sufficient’’
to elicit target-language responses across five downstream tasks, with the marginal benefit largely
determined by how well that language was covered in pre-training. Complementing this, Kew et al.
(2024) find that injecting only 40 non-English instruction–response pairs, or diversifying the tun-
ing mix to merely 2–4 languages, yields instruction-following quality on a par with (or exceeding)
monolingual baselines while slashing per-language data by an order of magnitude. Yoo et al. (2024a)
demonstrate that incorporating a sufficient amount of code-switched data (combining English and
the target language) can effectively adapt an English-centric model, allowing the model to transfer
its English-based knowledge into the target. Those studies therefore argue that massive multilingual
corpora are not a prerequisite for broad cross-lingual utility; rather, strategically chosen seed lan-
guages can act as effective “anchors’’ that bootstrap transfer to unseen languages. Crucially, neither
paper probes how reinforcement-learning–based reasoning objectives interact with this minimalist
recipe, leaving open the question of whether such scarce multilingual supervision can withstand the
linguistic pressures we observe under GRPO.

5.3 MULTILINGUAL REASONING

Mechanistic analyses show that multilingual LLMs are not language-neutral: logit-lens (Schut et al.,
2025) studies find models like Llama-3.1 route concepts through an English-centered space even for
non-English prompts, and steering vectors learned in English transfer more robustly; circuit trac-
ing of Claude 3.5 Haiku reveals language-agnostic subcircuits cooperating with language-specific
pathways, yet English often dominates when languages compete (Lindsey et al., 2025). Building on
this asymmetry, two families of methods explicitly leverage English reasoning to boost multilingual
performance: (i) pivot-translation approaches translate questions or intermediate steps into English
to exploit stronger reasoning priors and tools, then map solutions back to the target language (Zhu
et al., 2024; Chen et al., 2024a; Yoon et al., 2024); and (ii) cross-lingual preference alignment aligns
step-level choices across languages via preference optimization (She et al., 2024). These works
chiefly optimize outcomes rather than explain failure modes. In contrast, we identify when and why
Cross-lingual Collapse emerges in RL-based reasoning and link it to English-biased latent computa-
tion, offering a diagnostic lens complementary to cross-lingual consistency work and clarifying how
language-specific reasoning abilities emerge—and sometimes fail—under optimization pressure.

6 CONCLUSION

This study uncovers and characterizes Cross-lingual Collapse: when trained with reinforcement
learning with verifiable reward and long chain-of-thought, large language models (LLMs) increas-
ingly route their reasoning through the pre-training–dominant language as accuracy rises. Across five
target languages and multiple backbones, we observe a clear resource-sensitivity gradient: negligible
drift in high-resource Chinese/Japanese, moderate in mid-resource Korean, and severe collapse in
low-resource Thai/Ukrainian, with English-centric backbones collapsing fastest. The effect persists
beyond mathematics. A language-consistency reward, entropy reduction at rollout time (e.g., lower
temperature), and multilingual RLVR all preserve target-language traces to varying degrees, but
each incurs a measurable accuracy cost; even broad multilingual mixes largely restore on-language
CoT while lowering scores. These results reveal a persistent performance–fidelity trade-off. We view
this phenomenon as a natural consequence of English-dominant pre-training and argue that securing
linguistic diversity during pre-training is a necessary (though not always sufficient) condition for
maintaining language fidelity in long CoT settings.
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7 REPRODUCE STATEMENT

In order to ensure the reproduceability of the project, we describe details hyperparameter config-
urations and dataset creation pipeline described in Sec. 3.1. We will release the datasets and code
,including configuration files and reproduction scripts, in a public GitHub repository upon publica-
tion to enable end-to-end replication of our results.
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A MAIN TABLE WITH ENGLISH-LANGUAGE ACCURACY

Table 6: Accuracy and target-language word ratio for models fine-tuned with GRPO on translated
GSM8K. We evaluate on the translated GSM8K and MATH500 test sets. Language codes: EN =
English, ZH = Chinese, KO = Korean, UK = Ukrainian. Model keys: OLMo 2 = OLMo-2-0425-1B-
Instruct, Llama = Llama-3.2-3B Instruct, Qwen = Qwen-2.5-1.5B Instruct. Numbers in parentheses
indicate the change relative to the corresponding non-fine-tuned baseline. Accuracy (Acc) and target-
language word ratio (WR) with languages and models arranged as rows.

Language Model GSM8K MATH500

Target Acc (%) Target WR (%) EN Acc (%) Target Acc (%) Target WR (%) EN Acc (%)

ZH OLMo2 59.8 (+34.3) 0.3 (-75.5) 74.8 (+4.0) 17.6(+1.9) 26.3 (-10.0) 21.4 (+0.7)
Llama 69.4 (+7.4) 94.1 (-1.4) 83.5 (+3.4) 38.8 (+1.2) 77.5 (-0.4) 50.3 (+1.8)
Qwen 63.4 (+1.3) 92.9 (+0.6) 77.9 (+4.0) 41.9 (+4.7) 79.8 (+0.4) 55.7 (+7.5)

KO OLMo2 46.5 (+39.9) 14.3 (-79.4) 73.1 (+2.3) 12.2 (+5.2) 0.1 (-45.1) 22.2 (+1.5)
Llama 61.3 (+14.5) 82.4 (-8.1) 81.6 (+1.5) 28.5 (+7.2) 70.9 (-17.8) 49.6 (+1.1)
Qwen 42.2 (+3.5) 94.3 (-2.4) 74.1 (+0.2) 27.0 (+6.8) 80.3 (-12.3) 54.1 (+5.9)

UK OLMo2 45.2 (+37.8) 0.3 (-75.5) 73.7 (+2.9) 13.0 (+5.6) 29.8 (-57.4) 21.6 (+0.7)
Llama 70.9 (+17.1) 0.3 (-97.6) 80.8 (+0.6) 47.6 (+12.0) 5.6 (-72.7) 51.2 (+1.7)
Qwen 39.7 (+4.9) 99.3 (+0.5) 75.4 (+1.6) 23.4 (+4.0) 82.8 (-9.8) 51.2 (+3.0)

B TRANSLATED DATASET DETAILS

To ensure high translation quality, we re-translated the English source with GPT-4o, a model that
exhibits near-professional performance across many language pairs (Yan et al., 2024; Blain et al.,
2023). After each pass we filtered candidates with xCOMET (Guerreiro et al., 2024): only hypothe-
ses that exceeded the Flores dev-set mean for the target language were retained; sentences falling
below the threshold were re-translated.

Moreover, to validate training data quality, we conducted an additional sanity check. We normalized
all numerals across languages to Arabic digits and verified via regex that every number in the English
source appeared unchanged in the translation. This process ensures that all translations properly
preserve the original Arabic digits and equations.
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C ROLLOUT GENERATION EXAMPLE

비고의 나이는 그의 남동생이 2살일 때 남동생 나이의 두 배보다 10살 더 많았습니다. 만약 그의 남동생이 현재 10살이라면,  

(Vigo was 10 years older than twice his younger brother’s age when the brother was 2 years old. If the younger brother is now 10) 

그들 의 나이 합은 얼마입니까? 차근차근 단계별로 논리적으로 풀어주세요, 최종 답은 \boxed{} 안에 넣어주세요. 

(what is the sum of their current ages? Please solve the problem step by step, showing your reasoning logically, and place the final answer 

inside \boxed{}.) 

Rollout Examples during Training 
1. 남동생의 현재 나이를 확인합니다. 문제에서 남동생이 현재 10살이라고 주어졌습니다. 
(1. Confirm the younger brother’s current age. According to the problem, he is now 10 years old.) 
[…] 
남동생이 지금 10살이므로, 비고는 10 + 12 = 22살입니다. 4. 두 사람의 현재 나이 합을 구합니다. 10 + 22 = 32  
따라서, 두 사람의 나이 합은 \boxed{32} 
(Since the younger brother is 10, Vigo is 10 + 12 = 22 years old. 4. Calculate the sum of their current ages: 
10 + 22 = 32. Therefore, the sum of their ages is \boxed{32}) 

Target-language 
Reward 

Let's break this down step by step:\n\n1. **Identify the current age of the younger brother:**\n - 
The problem states that the younger brother is currently 10 years old. 
[…] 
The younger brother is 10 years old.\n - The older brother is 22 years old.\n - The sum of their 
ages is \\(10 + 22 = 32\\).\n\nTherefore, the sum of their ages is \boxed{32} 

Non-target-language 
Reward 

Question (Korean) 

Figure 3: Rollout examples from GRPO training of Qwen-2.5 1.5B on the Korean-translated
GSM8K. Observe that the model often arrives at the right answer via English reasoning (non-
target language); because any correct answer earns full reward, repeated reinforcement of such
off-language traces gradually shifts the chain-of-thought word ratio away from Korean.

D QUALITATIVE ANALYSIS OF LANGUAGE FIDELITY IN REASONING
TRACES

We analyze the inference results of fine-tuned models to study patterns in reasoning traces regarding
language fidelity aspect. We categorize these distinct patterns: (1) Cross-lingual Collapse, where
the model generates both the reasoning trace and the final response in the dominant language (i.e.,
English) regardless of the input language; (2) English Scaffolding and Terminology, where the
model generates the response in the target language but keeps English for structural markers (e.g.,
“Step 1”) or technical terminologies; and (3) Latin Alphabet Tokens, where Latin-script represents
algorithm names, function identifiers, or unit abbreviations.

Here, patterns (2) and (3) are the primary reasons why the English Word Ratio (EN WR) remains
non-zero. Unlike cross-lingual collapse, these patterns result in a mixture of the target language and
English words. In contrast, models that maintain high multilingual fidelity (e.g., Qwen on Ukrainian
tasks) successfully localize both scaffolding and technical terms, thereby achieving a near-zero EN
WR.
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Inference Example 1: Cross-lingual Collapse

Question :花瓶にバラが4本あります.ダリアはバラより7本多いです.花瓶の中に花
は全部で何本ありますか ？

Response :

To determine the total number of flowers in the vase, we need to find the number of each
type of flower and then add them together. Let’s break it down step by step.
1. Number of roses in the vase: - According to the problem, there are 4 roses in the vase.
2. Number of daisies in the vase: - The problem states that the number of daisies is 7 more
than the number of roses. Since there are 4 roses, we need to add 7 to find the number of
daisies.

Number of daisies = 4 + 7 = 11

3. Total number of flowers in the vase:
- Now, we need to find the total number of flowers by adding the number of roses and the
number of daisies.

Total number of flowers = Number of roses + Number of daisies = 4 + 11 = 15

Therefore, the total number of flowers in the vase is 15 .

Inference Example 2: Scaffolding or terminology inside CoT

Question :카를로스는레몬나무를심고있습니다.나무를심는데에는 90달러가듭니다.
이나무에서는매년 7개의레몬이열리고,레몬은개당 1.5달러에팔수있습니다.나무에
물과 비료를 주는 데에는 매년 3달러가 듭니다. 카를로스가 이 나무에서 순수익을 내기
시작하려면몇년이걸릴까요?

Response :
1. Initial Investment:카를로스는레몬나무를심는데 90달러가들었습니다.
2. Annual Revenue: 매년 7개의 레몬이 열리고, 각각 1.5달러에 팔 수 있습니다. 따라서
매년수익은 7× 1.5 = 10.5달러입니다.
3. Annual Expenses:매년 3달러의비용이듭니다.
4. Net Annual Profit:매년수익에서비용을뺀결과는 10.5− 3 = 7.5달러입니다.
5. Time to Break Even: 초기 비용을 빼고, 매년 수익을 빼면, 카를로스가 수익을 내기
시작하려면 90/7.5 = 12년이걸립니다.

최종답: 12 년
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Inference Example 3: Using english Abbreviation term

Question :如果任意一点 A、B、C 或 D出 ，其他三点各一次 ，最短的行程距是多少 ？

Response :

了到任意一点 A、B、C 或D出 ，其他三点各一次的最短行程距 ，我可以考化一 ，其中每
点代表一点 ，每代表一距。我需要到任意一点出 ，其他三点 ，最后回到原点的最短路。

根据目出的 ，我可以看到 ：
- A到 B 的距是 3
- A到 C 的距是 6
- A到 D的距是 5
- B 到 C 的距是 6
- B 到 D的距是 4
- C 到 D的距是 5

了到最短路 ，我可以使用中的最短路算法 ，如Dijkstra算法。但是 ，由于是一的 ，我可
以直接算。

首先 ，我 A出 ， B、C 和 D各一次 ，然后回到 A。最短路可以通以下步算 ：
1. A到 B 的距是 3。
2. B 到 C 的距是 6。
3. C 到 D的距是 5。
4. D到 A的距是 5。

因此 ，最短路是 A → B → C → D → A ，距是 3 + 6 + 5 + 5 = 19。

所以 ，最短的行程距是 19 。
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Table 7: GRPO training results with 7B or 8B backbones on translated GSM8K dataset. We report
accuracy, target-language word ratio (Target WR), and English word ratio (EN WR). Numbers in
parentheses denote the change relative to the corresponding backbone.

Model Language Accuracy (%) Target WR (%) EN WR (%)

OLMo-2-7B-SFT ZH 83.3 (+33.6) 0.3 (-80.9) 87.7 (+83.6)
OLMo-2-7B-SFT KO 71.1 (+58.3) 0.2 (-82.1) 89.1 (+81.8)
Llama-3.1-8B-Instruct KO 76.2 (+7.9) 92.4 (-4.7) 6.8 (+4.3)
Llama-3.1-8B-Instruct ZH 91.3 (+8.3) 90.8 (+6.8) 7.8 (-5.4)

E LARGER MODEL EXPERIMENTS

To verify whether our findings extend to larger models, we conduct additional experiments on two
larger backbones: OLMo-2-7B-SFT and Llama-3.1-8B-Instruct. We follow the same experimental
settings and evaluation metrics as described in Section 3.1, training on translated GSM8K in Chinese
(ZH) and Korean (KO).

Table 7 demonstrate the results. For OLMo-2-7B, GRPO dramatically improves GSM8K accuracy
in both Chinese and Korean, but Target WR drifts to almost zero while the English word ratio rises to
nearly 90%. This reproduces the collapse behavior we observed for the smaller OLMo backbone in
Table 1. On the other hands, Llama-3.1-8B-Instruct have improvment while preserving high target-
language fidelity: the target-language word ratio remains above 90% in both Chinese and Korean,
and English WR retains below 10%. These results indicate that cross-lingual collapse persists at
larger scales and strongly depends on the backbone.
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Table 8: Cross-lingual consistency between English and Chinese on OLMo-2-7B with Chinese
dataset. Each column corresponds to one of three correctness patterns on the same math prob-
lem: (✓, ✓) for both English and Chinese correct, (✓, ✗) for English-only success, and (✗, ✓) for
Chinese-only success. Larger proportion of the agreement case ((✓, ✓)) and smaller proportion of
the disagreement cases ((✗, ✓) and (✓, ✗)) indicates stronger cross-lingual consistency.

Cross-lingual Consistency
(✓, ✓) ↑ (✓, ✗) ↓ (✗, ✓) ↓

OLMo-2(7B) + GRPO (ZH) 79.7 9.9 3.6

OLMo-2(7B) 46.4 35.8 3.1

F CROSS-LINGUAL CONSISTENCY ANALYSIS IN COLLAPSED MODELS

To quantify how GRPO affects alignment between English and Chinese under the Cross-lingual
collapse case, we measure cross-lingual consistency on GSM8K for OLMo-2-7B-SFT before and
after GRPO training on GSM8K(ZH). For each test item, we query the model twice: once with the
original English question and once with the Chinese translation, using the same evaluation. We then
categorize each item according to whether the model is correct (✓) or incorrect (✗) under the English
and Chinese prompts, computing the proportion of three cases: (✓,✓), (✓,✗) and (✗,✓).

Table 8 reports the resulting ratios. For the Instruct backbone, only 46.4% of items are solved in both
languages, while 35.8% are correct in English but wrong in Chinese. After fine-tuning with GRPO,
the collapsed model displays much stronger cross-lingual alignment: the (✓,✓) category increases
to 79.7% and the (✓,✗) category drops to 9.9%, while the (✗,✓) category remains small (3-4%) for
both models. Thus, GRPO largely eliminates cases where the model can solve a problem only in
English but not in the target language.

Consistent with this view, among the problems that the GRPO model solves under Chinese prompts,
95.7% are also solved correctly when the same model is run on the English input. Combined with
the language-fidelity results in Table 1, this supports the interpretation that accuracy gains in the col-
lapsed model come from routing the target language prompts through the model’s stronger English
reasoning, rather than from improved target-language reasoning capabilities

G FURTHER TRAINING OF DISTILLED LRMS

As depicted in Figure 4, we apply a second round of GRPO to the DeepSeek-R1–Distilled Qwen
to test whether continued fine-tuning can correct the entrenched reasoning bias. The results reveal a
steep decline in the target-language word ratio, indicating that the phenomenon is difficult to reverse.
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Figure 4: We continued GRPO fine-tuning of the DeepSeek-R1-Distill Qwen model on the Korean-
translated GSM8K dataset to encourage Korean chain-of-thought reasoning. As Figure 4b shows,
the distilled model still exhibits cross-lingual collapse during training.
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Table 9: Ablation of language-consistency interventions for Llama-3.2-3B Instruct on Ukrainian
GSM8K. All three approaches substantially improve target-language word ratio (Target WR) relative
to vanilla GRPO, at the cost of lower accuracy.

Model / Setting GSM8K (Acc %) Target WR (%) EN WR (%)

GRPO (UK) 70.9 0.3 96.8
GRPO + Language proportion reward 62.5 81.6 16.4
GRPO + Language threshold reward 62.1 85.0 11.9
GRPO + Rollout-level filtering 63.8 88.0 13.0

H ABLATIONS OF LANGUAGE-CONSISTENCY INTERVENTIONS

To analyze how different language-consistency interventions affect cross-lingual collapse at the roll-
out level, we start from the Ukrainian GSM8K setting in Sec. 3.1. For each sampled rollout y we
compute its target-language word ratio TargetWR(y) using the script-based preprocessing pipeline
described in Sec. 3.1.

Language-consistency reward. We study two ways of injecting language fidelity into the scalar
reward:

1. Proportion reward. We add the target-language ratio directly to the correctness reward:

rtotal(y) = rcorr(y) + λ · TargetWR(y),

where λ represents the weight of the language reward. We set λ to 0.5 in all experiments.
2. Threshold reward. We add a fixed bonus of 0.5 if the rollout is mostly in the target lan-

guage and sufficiently long:

rtotal(y) = rcorr(y) + λ · 1[TargetWR(y) ≥ 0.5 ∧ len(y) > 10] ,

where len(y) counts non-LaTeX tokens. The length constraint avoids degenerate short but
the target language responses. We also set λ to 0.5 in the experiment.

We denote the proportion reward and threshold reward as Language proportion reward and Lang
threshold reward in Table 9, respectively. Note that the model with the language reward in Fig. 2
utilizes the proportion reward as an auxiliary reward.

Rollout-level filtering. We also evaluate an alternative that acts on rollout sampling level rather
than on the reward. For each trajectory y we compute the English word ratio ENWR(y). If
ENWR(y) ≥ 0.5, we discard y and resample until the number of valid samples is filled. This
procedure filters out trajectories whose reasoning has already collapsed into predominantly English.
We denote this approach as rollout-level filtering in Table 9

Results. Table 9 reports results for Llama-3.2-3B Instruct trained with GRPO on Ukrainian
GSM8K. All three interventions substantially increase the target-language word ratio (from 0.3%
under vanilla GRPO to 82–88%) and reduce the English word ratio to around 12–16%. However,
they also lower GSM8K accuracy from 70.9% to 62–64%, i.e., by roughly 7–9 percentage points
relative to the correctness-only baseline. Among the three, English-response detection offers the
best accuracy–fidelity trade-off, but it does not remove the underlying performance–fidelity tension
highlighted in Sec. 3.4.
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Table 10: Qwen-2.5-1.5B Instruct on Korean GSM8K and MATH500 under GRPO and super-
vised fine-tuning (SFT). We report accuracy, target-language word ratio (Target WR), and English
word ratio (EN WR) for two curricula: Base (GSM8K(KO) only) and Base+Hard (GSM8K(KO) +
SimpleRL-Zoo)

Dataset GSM8K (KO) MATH500 (KO)
Accuracy (%) Target WR (%) EN WR (%) Accuracy (%) Target WR (%) EN WR (%)

GRPO (Base) 43.1 94.0 3.6 27.1 86.5 10.9
GRPO (Base + Hard) 47.5 14.5 80.1 46.7 2.1 87.4

SFT(Base) 40.9 97.0 2.8 24.0 94.2 4.1
SFT(Base + Hard) 42.5 96.8 3.1 30.9 94.5 5.4

I ADDITIONAL SUPERVISED FINE-TUNING BASELINES

To complement our RLVR results, we conduct an additional supervised fine-tuning (SFT) study
on Korean. Our goal is to test whether enriched target-language math supervision can narrow the
accuracy gap to GRPO-based models and mitigate Cross-lingual Collapse.

Experimental setup. For a fair comparison with the GRPO models, we reuse the same math
datasets as in the main experiments: GSM8K and SimpleRL-Zoo. We build a Korean SFT corpus
by translating the original English CoTs of the dataset into Korean, following exactly the same
translation pipeline in Appendix B.

We consider two SFT configurations for Qwen-2.5-1.5B Instruct: (i) SFT on Korean GSM8K
only(i.e.,SFT(Base)), and (ii) SFT on the union of Korean GSM8K and the hard curriculum
(SimpleRL-Zoo) with their translated responses (SFT(Base+ Hard). In both configurations, we train
for two epochs to mitigate overfitting, using the same optimizer, learning rate, and other hyperpa-
rameters as in the GRPO runs.

Results. Table 10 demonstrates that the accuracy of SFT variants increase while keeping Target
WR high, but they still underperform the GRPO-based models on GSM8K dataset. Moreover, GRPO
(Base + Hard) model attains the highest accuracy at the cost of reduced Target WR and increased
EN WR. This result still shows the accuracy–language fidelity trade-off.
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