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Abstract

The integration of language and 3D perception is critical for embodied Al and
robotic systems to perceive, understand, and interact with the physical world. Spa-
tial reasoning, a key capability for understanding spatial relationships between
objects, remains underexplored in current 3D vision-language research. Existing
datasets often mix semantic cues (e.g., object name) with spatial context, leading
models to rely on superficial shortcuts rather than genuinely interpreting spatial
relationships. To address this gap, we introduce SURPRISE3D, a novel dataset
designed to evaluate language-guided spatial reasoning segmentation in complex
3D scenes. SURPRISE3D consists of more than 200k vision language pairs across
900+ detailed indoor scenes from ScanNet++ v2, including more than 2.8k unique
object classes. The dataset contains 89k+ human-annotated spatial queries delib-
erately crafted without object name, thereby mitigating shortcut biases in spatial
understanding. These queries comprehensively cover various spatial reasoning
skills, such as relative position, narrative perspective, parametric perspective, and
absolute distance reasoning. Initial benchmarks demonstrate significant challenges
for current state-of-the-art expert 3D visual grounding methods and 3D-LLMs, un-
derscoring the necessity of our dataset and the accompanying 3D Spatial Reasoning
Segmentation (3D-SRS) benchmark suite. SURPRISE3D and 3D-SRS aim to facili-
tate advancements in spatially aware Al, paving the way for effective embodied
interaction and robotic planning.

1 Introduction

Spatial reasoning lies at the heart of embodied Al and robotic systems [5, 30, 32, 8]. For agents to
navigate real-world environments, manipulate objects, or interact meaningfully with humans, they
must interpret instructions that are deeply rooted in 3D spatial layouts and context. Consider a robot
waiter tasked with serving drinks to the table to the left of the couch, or a household assistant that
infers from I am thirsty the intention of regaining the nearest cup. In both scenarios, the agent must
go beyond identifying object categories, reasoning about spatial relationships, viewpoint-dependent
references, and pragmatic intent. This type of language-guided spatial understanding is critical for
tasks such as navigation, manipulation, and human-robot interaction [38].

However, despite its importance, existing 3D vision-language grounding benchmarks do not faithfully
capture or evaluate spatial reasoning. Most prior datasets rely heavily on explicit object references,
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allowing models to localize targets by matching named categories or rigid templates, without re-
quiring genuine spatial inference. As a result, current models achieve strong performance not by
understanding spatial context but by exploiting superficial textual patterns or semantic shortcuts.
This phenomenon, known as shortcut bias, was explicitly discussed by [46], who showed that
models tend to rely on object names rather than appearance or spatial relations, leading to imbalanced
learning. When object names are replaced by neutral placeholders (e.g., "object"), model performance
drops sharply—confirming the dominance of name-based shortcuts in existing visual grounding
benchmarks.

We identify three major limitations of current 3D vision-language datasets:

(1) Overreliance on explicit queries. Datasets such as ScanRefer [6] and ReferIt3D [3] provide
queries that including a object name (e.g., chair). Although challenging before the emergence of
large language models (LLMs), such datasets have become increasingly solvable through category
detection, often requiring little or no reasoning.

(2) Limited and shallow reasoning coverage. Recent efforts such as Intent3D [26], ScanReason [57],
Reason3D [21] and Instruct3D [15] have taken steps towards incorporating implicit queries and
common sense. However, these benchmarks remain narrow in scope—ScanReason, for instance,
contains only 10K Q&A pairs across five loosely defined reasoning types, and does not provide a
rigorous or fine-grained definition of spatial reasoning in 3D contexts [55].

(3) Template-driven or trivial spatial queries. Many datasets [17] formulate spatial queries using
basic patterns (e.g., 'the object to the left’) that do not require understanding geometric variability or
occlusion and can often be resolved using positional heuristics.

These limitations lead to a recurring problem: models perform well by leveraging semantic priors
and dataset biases rather than learning spatial reasoning. There is a critical need for a benchmark
that disentangles spatial understanding from semantic recognition and poses queries that necessitate
interpreting the scene geometry in context. To address this gap, we introduce SURPRISE3D: a large-
scale dataset and benchmark designed from the first principles to evaluate language-guided spatial
reasoning in complex 3D scenes. Built on top of 900+ richly annotated indoor environments from
ScanNet++ v2 [49], SURPRISE3D includes more than 200,000 query-object mask pairs, covering
2,800+ object classes. It is the first benchmark to support spatial reasoning segmentation at this scale,
breadth, and level of annotation precision. Key features of SURPRISE3D include:

Complex spatial queries: Notably, we find that LLMs and MLLMs are incapable of generating
spatial reasoning annotations with sufficient fidelity, necessitating a human-in-the-loop annotation
process. 89K+ human-generated questions that require varied spatial reasoning. Queries investigate
relative position recall (‘the vase next to the left door’), narrative perspective reasoning (describing
objects from a moving observer’s point of view), parametric perspective reasoning (specifying angles
or offsets) and absolute distance reasoning ('the plamp 2 meters above the floor’).

Pragmatic language quality with Human Check: All expressions follow Gricean conversational
maxims (clarity, relevance, and brevity) and are vetted by multiple annotators to avoid ambiguity or
bias. To resolve ambiguous references in cluttered environments, we adopt Gricean maxims to ensure
clarity and informativeness, and introduce category-specific disambiguation rules that favor spatial,
functional, or visual attributes depending on context.

3D-SRS benchmark suite. We introduce a formal evaluation framework tailored for 3D reasoning
segmentation. It includes task definitions, metrics such as mask IoU and grounding precision, and
diagnostic breakdowns between reasoning types. Our results demonstrate that state-of-the-art 3D
vision-language models, when deprived of explicit naming, perform significantly worse, revealing
their limitations in spatial understanding.

Common sense and human intention reasoning. Beyond spatial queries, we incorporate 110K
LLM-generated questions focusing on knowleage-based reasoning: for example, "the object used
to sit” (common sense) or ‘the item someone might be reaching for’ (human intention). These
complement spatial cues with functional and behavioral semantics, which are essential for embodied
interaction.

By combining linguistic subtlety and geometric complexity, SURPRISE3D establishes a comprehen-
sive testbed for 3D spatial reasoning. Unlike previous datasets, our queries are implicit, ambiguous,
and semantically lightweight—models must infer the correct object through reasoning, not recog-



Table 1: Comparison of major 3D vision-language datasets. *Multi-target’ indicates if a query
refers to multiple objects. *Lang Source’ denotes whether language queries are human-annotated
or generated via template or LLM. st observ.” refers to descriptions written from a first-person
observer perspective (i.e., egocentric viewpoint). *Shortcut Free’ indicates if object names are avoided
in queries.

Dataset Output Multi-target Lang. Source Spatial Reason 1st obseryv. Shortcut Free
CLEVR3D [47] Lang - Template X - -
Scan2Cap [7] Lang - Human X - -
ScanQA [4] Lang X Human X - -
3DVQA [12] Lang X Human X - -
SQA3D [39] Lang - Human v v X
ScanScribe [58] Lang X Template, LLM - -
3DMV-VQA [16] Lang - Template X X X
M3DBench [29] Lang v LLM X X X
SceneVerse [24] Lang X Template, LLM X X -
MSQA [33] Lang - Human,LLM v v X
VLA-3D [53] Lang v Template v v X
ExCap3D [50] Lang v LLM X 4 X
ReferIt3D [3] BBox v Human, Template X v X
ScanRefer [6] BBox X Human X v X
3D-DenseOG [23] BBox v Human X v X
Grounded 3D-LLM [11] Mask X Template, LLM v X X
ScanEnts3D [1] BBox v Human v X X
PhraseRefer [51] BBox v Human X X X
EmbodiedScan [43] BBox v Template, LLM v v X
3D-LLM [17] Lang + BBox v LLM v X X
LL3DA [9] Lang + BBox v Template, LLM X v X
3DMIT [31] Lang + BBox X LLM X v X
3D-GRAND [48] Lang + BBox v Template, LLM X X X
Segpoint [15] Mask X LLM v X v
ScanReason [57] BBox X LLM v X v
Reason3D [21] Mask X - v X v
Intent3D [26] BBox v LLM X X v
SURPRISE3D (Ours) Mask v Human,LLM v v v

nition. This aligns with recent calls to evaluate deeper 3D spatial understanding [57]. Table 1
summarizes key differences from prior benchmarks.

Error Analysis and Future Directions. Despite its overall challenge, SURPRISE3D reveals consistent
weaknesses in perspective-taking queries, where all evaluated models perform poorly under both
zero-shot and fine-tuned settings. We hypothesize that this stems from the lack of explicit egocentric
modeling and viewpoint transformation capabilities in current architectures. Future work may
incorporate learned egocentric priors, dynamic pose embeddings, or multi-view reasoning modules to
improve spatial grounding from first-person descriptions.

Empirical evaluations with the state-of-the-art expert 3D visual grounding (VG) model and 3D-LLMs
further confirm that performance degrades dramatically when explicit semantic cues are removed,
underscoring the need for spatially grounded reasoning. Our main contributions are as follows.

* We introduce SURPRISE3D, a novel dataset of more than 200K language-guided 3D segmenta-
tion queries that cover spatial, common sense, and human intention reasoning.

* We define the 3D-SRS benchmark, a standardized protocol for evaluating spatial reasoning
segmentation in 3D point clouds.

* We empirically demonstrate shortcut bias in existing benchmarks and show that current 3D
vision-language models significantly underperform on SURPRISE3D, highlighting the need for
models capable of implicit and relational reasoning.



We hope SURPRISE3D will serve as a foundation for future research in spatially grounded 3D
understanding and drive progress in embodied Al robotics, and spatial intelligence.

2 Related Works

2.1 Spatial Reasoning in 3D Vision-Language Model

Understanding natural language in 3D scenes has focused on referring to objects using explicit names
or attributes. Recent million-level extensions such as 3D-GRAND [48] and SceneVerse [24] introduce
richer annotations, including multi-object grounding. However, these data sets still mainly rely on
straightforward object references rather than complex spatial relationships. Consequently, they allow
models to exploit shortcut biases, limiting their ability to evaluate true spatial understanding. Recently,
ExCap3D [50] explores expressive captioning in 3D scenes at multiple levels of detail covering
more than 3k objects. This work is inspiring because of the rich language descriptions for abundant
object classes, but not directly focus on spatial segmentation or reasoning. Recent advancement
like Intent3D [26] introduce grounding based on human intention, but still rely on semantic cues for
detecting object categories, ignoring the spatial relationship inherent in 3D. ScanReason expands this
by proposing multiple reasoning types, including spatial and safety reasoning. However, its spatial
component remains relatively coarse and lacks detailed supervision, such as segmentation masks.

2.2 3D Large Language Model

The advent of large language models (LLMs) has led to more sophisticated 3D-VL models emphasiz-
ing spatial and reasoning capabilities [19, 24, 28, 29, 35, 36, 37, 14? ]. For example, 3D-LLM injects
3D spatial knowledge into pre-trained LLMs, facilitating nuanced scene understanding. Models like
LEO [19] integrate language models with 3D understanding, enabling open-ended scene reasoning
and interaction capabilities. Chat-3D [44], Chat-Scene [ 18], and Grounded 3D-LLM [11], incorporate
explicit identifiers or referent tokens to bridge linguistic queries and specific scene elements. Recent
efforts explicitly focus on reasoning-guided segmentation tasks. For example, Reason3D [21] and
SegPoint [15] employ LLM-driven frameworks to guide point cloud segmentation based on natural
language instructions. MORE3D [25] and MLLM-For3D [20] adopt multimodal LLMs (MLLMs) to
simultaneously reason about complex spatial relations and output detailed segmentation masks.

3 3D Spatial Reasoning Segmentation (3D-SRS): Task and Benchmark

3.1 Task Definition

We define 3D Spatial Reasoning Segmentation (3D-SRS) as follows. Given a 3D scene S (e.g., a
reconstructed indoor room) and a language query ¢ describing a spatial relation, the goal is to produce
a segmentation mask M/ that highlights all object(s) in S satisfying g. Formally, we learn a function
f(S,q) = M, where M C S consists of the 3D points (or object regions) referred to by the query.
For example, if ¢ ="The chair closest to the door", then M contains the points of the chair nearest
the door. If multiple objects satisfy g, the mask covers all of them.

Narrative perspective: interpreting egocentric references from a described point of view. For
example, a query might implicitly place an agent in the scene (e.g., sitting on the black sofa facing
the blackboard, the object to your left used for teaching). The model should simulate the narrator’s
point of view and understand terms like "to your left’ or ’in front of you’ in this context.

Parametric perspective: understanding the current orientation and position parameters given in
the description. For instance, facing away from the door towards the cabinet specifies a camera
orientation. The model must parse such instructions about where the observer is looking or located
and use them to ground other spatial terms.

Relative position: reasoning about spatial relations between objects. Queries frequently use relational
phrases such as "on the table", "behind the sofa", "to the left of the cabinet", etc. The model must
identify reference objects (table, sofa, cabinet) and understand directional or topological relations
(on, behind, left of) to find the target. This includes handling occlusion (e.g., an object "behind the
sofa") that may be partially or fully hidden from certain viewpoints, requiring true 3D understanding
beyond a single-camera view.
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Figure 1: Examples of query categories in our 3D-SRS task.

Absolute Distance-based reasoning: interpreting absolute or comparative distance cues. Many
queries involve terms such as "closest’, *furthest’, or 'near’. The model should be able to compare
distances between multiple objects with the same semantic category. For example, ’the table closest
to the bed’ requires finding all tables in the scene and selecting the one with minimal distance to the
bed. Importantly, such distance terms are defined in an absolute spatial sense (the physical distances
between objects), rather than relative to the viewer’s perspective. The model must therefore compute
and compare 3D distances or understand spatial superlatives in context.

3.2 Benchmark Protocol and Evaluation

We divide the data into disjoint training and validation splits at the scene level to prevent overlap.
For evaluation, we adopt standard segmentation metrics: the primary score is mean Intersection-
over-Union (mloU) between the predicted and ground-truth masks across all queries. We also report
precision and recall at fixed IoU thresholds (e.g., 0.5 and 0.75) to analyze performance sensitivity.
These metrics follow common practice in referring segmentation benchmarks [22, 45, 40].

To support a leaderboard, we release train/val annotations. Participants train models on the public
data and submit predicted masks on the test scenes. The benchmark server computes all metrics on
the withheld ground truth to rank submissions. This protocol ensures fair comparison with identical
data splits.

4 SURPRISE3D: Dataset Construction and Annotation

We constructed SURPRISE3D with two parallel annotation pipelines to capture spatial reasoning,
common sense, and human intention reasoning. One pipeline focuses on spatial reasoning, where
annotators formulate four type of questions mentioned the section 3 and mask the corresponding
target objects in 3D scenes. The other pipeline focuses on common sense and human intention queries,
where the questions probe typical human knowledge or intent in the scene and require identifying
the object that satisfies the query. By design, these pipelines operate independently but on the same
set of scenes, ensuring a rich and complementary set of annotations. In total, SURPRISE3D provides
a balanced mix of query types (spatial vs. knowledge-based) and a ground-truth target object for
each query. In the following, we describe each annotation process and then analyze the coverage and
balance of the dataset.

4.1 Annotation Pipeline

We use separate annotation pipelines for spatial vs. knowledge queries (see Figure 2 and Figure 3).

Spatial reasoning. Annotators view each 3D scene from a fixed camera viewpoint (e.g., top-down or
entry view) and manually identify the object(s) satisfying the spatial query. The interface allows for
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Figure 3: Overview of the common sense and human intention reasoning queries generation pipeline.

clicking or highlighting points in the rendered scene. For example, to answer ’closest to the door’,
the annotator selects the object closest to the entrance point of the door. This produces a ground-truth
mask for the target object. Using a fixed viewpoint ensures that spatial relations can be assessed
consistently from one perspective.

First, annotators could freely navigate or choose a fixed camera viewpoint in the 3D scene. Note that
the target objects can be visible or invisible from this camera view. Locking this point of view is
critical, as it establishes a clear "frame’ of reference for egocentric directions such as left or right. The
interface then allowed the annotator to enter a description of a target object based on that perspective,
and finally to mark the object’s mask directly in the point cloud of 3D scenes. We recorded the
camera parameters (extrinsics and intrinsics) alongside each query, so that any model processing the
data can interpret the spatial language from the correct viewpoint context. The annotation UI thus
lets the annotator ’be the agent’ in the scene, selecting an orientation and then writing a query as if
they were there (for example, an annotator might place the camera facing a wall and then describe
’the chair to my right’ relative to that orientation). Once the description was written, the annotator
highlighted the referenced object by drawing its segmentation mask over the 3D point cloud (the tool
projected the mask onto the 3D object surface). This yields a ground-truth mask for the query.

Common sense and human intention reasoning. For common-sense and intention queries, we use
an LLM-augmented pipeline inspired by recent work. We first generate candidate question-answer
pairs using a large language model, given scene metadata and object labels as context. The LLM
proposes questions (e.g., "What objects can be used for bathroom organization? A: (shower shelf)’).



Figure 4: SURPRISE3D Dataset Statistics and Enhancements.

These are automatically filtered by basic rules (removing duplicates or nonsensical queries). The
remaining questions are then passed on to human annotators for validation. Figure 3 illustrates
this two-stage process: LLM outputs are checked by humans, who either accept them or refine the
question/answer. Invalid or ambiguous queries (marked with X) are corrected or discarded, while
valid ones (v') become part of the dataset. This workflow scales up annotation efficiently while
retaining human oversight.

4.2 Annotation Strategy and Quality Control

To ensure clarity and coverage, we apply: (1) Disambiguation Guidelines: We require that the
questions be unambiguous. Annotators are given rules (e.g., explicitly naming reference objects) to
avoid confusion. Queries with multiple plausible answers are rephrased or omitted. (2) Rare-Object
Sampling: To improve the representation of uncommon classes, we identify objects with low overall
frequency and sample scenes containing them. We then generate additional queries targeting these
rare objects. This rare object boost increases their mentions (on average by ~ 90-100%), improving
the learning of these categories, as shown in Figure 9. (3) Human Verification: All annotations
are double-checked. Spatial queries receive multiple annotator checks for the target mask, and
discrepancies are resolved by consensus. LLM-generated queries are reviewed by editors to ensure
that the question matches the intended object. This multi-stage review yields high-quality, consistent
annotations.

5 Experiments

In this section, we first provide a brief overview of the advanced methods evaluated on our proposed
dataset, models setting including zero-shot and fine tuning are also introduced. We then describe
the evaluation metrics and criteria used to assess the performance of these methods on knowledge
and spatial reasoning tasks. Finally, we present the quantitative and qualitative results obtained by
the aforementioned methods to comparatively analyze their performance on the newly introduced
reasoning challenges.

5.1 Baselines

Spatial reasoning tasks require a deeper understanding of semantic relationships and spatial con-
figurations within 3D scenes. To evaluate the effectiveness of existing approaches on these tasks,
we conduct comprehensive experiments on several advanced methods, including MLLMfor3D [20],
3D-Vista [58], Reason3D [10], ChatScene [18] and Intent3D [26]. All these methods take natural
language questions or descriptions as input, and output masks or bounding boxes of objects that
are the answer of given prompts in 3D scenes. MLLMfor3D [20] is a label-free paradigm of 3D
understanding, it projects 2D pseudo-masks of objects to 3D scene. 3D-Vista [58] directly encourages
the alignment of masked text with masked 3D scenes. Reason3D [10] utilizes a pre-trained LLM to
process input point and text features, and predict segmentation masks of targeted objects. Intent3D
[26] aligns the point features of scenes and candidate box features integrated with the encoded
prompts. For Reason3D [21] and UniDet3D [27], superpoint extraction was necessary. We employed
the Segmentor tool from previous works [13] to extract superpoints for each scene. However, due
to the higher granularity of ScanNet++ [49] scenes, the default parameters for superpoint extrac-
tion generated an excessively large number of superpoints, leading to significant GPU memory
consumption.



Table 2: The results of various methods on different reasoning tasks under zero-shot setting.

Method
MLLMfor3D  3D-Vista Reason3D Intent3D  ChatScene  Avarage

Knowledge Reasoning

Task Type Metric

A25 20.42 6.14 6.97 10.01 7.86 10.28
Common-sense A50 13.42 6.14 3.11 3.24 4.01 5.98
mloU 12.75 - 4.79 - - 8.77
A25 22.38 8.26 11.33 15.84 1.64 11.89
Human Intention A50 13.62 8.26 6.03 5.82 1.00 6.95
mloU 11.91 - 7.51 - - 9.71
Spatial Reasoning
A25 15.07 6.50 8.39 2.65 0.00 6.52
Narrative Perspective A50 13.62 6.50 4.88 0.77 0.00 5.15
mloU 11.56 - 5.63 - - 8.60
A25 4.25 3.65 7.91 2.62 0.00 3.69
Parametric Perspective A50 3.20 3.65 4.82 0.79 0.00 3.12
mloU 2.93 - 5.68 - - 4.31
A25 7.78 6.52 9.57 4.30 1.38 5.91
Relative Position A50 5.81 6.52 6.38 0.97 0.00 3.94
mloU 4.92 - 6.78 - - 5.85
A25 11.90 7.61 9.10 241 1.39 6.48
Absolute Distance A50 10.62 7.61 2.60 0.74 0.00 4.32
mloU 9.24 - 5.25 - - 7.25
Overall Reasoning
A25 13.63 6.40 9.09 8.63 3.59 8.27
Overall A50 10.05 6.40 4.57 2.94 1.77 5.15
mloU 8.89 - 6.08 - - 7.49

5.2 Model settings

Zero-shot. To assess the capabilities of existing methods in performing knowledge-based and spatial
reasoning tasks, we directly evaluate pre-trained models, including MLLMfor3D [20], 3D-Vista
[58], Reason3D [21], ChatScene [18] and Intent3D [26] on our proposed dataset, without training or
finetuning on our datasets. The inputs consist of 3D scenes represented as point clouds, paired with
images and textual questions that focus on knowledge and spatial reasoning. As reported in previous
work [20, 21, 26, 58, 18], Intent3D, 3D-Vista, ChatScene and Reason3D demonstrate partial abilities
to understand human intentions and common sense knowledge. Moreover, MLLMfor3D and 3D-Vista
show promising results in reasoning about relative object positions. However, none of them has been
evaluated or shown to have the ability to comprehend narrative perspectives, parametric perspectives,
or absolute spatial distances. Our dataset serves as the first benchmark to systematically evaluate
these unexplored dimensions of spatial and knowledge understanding in existing 3D vision language
models. Since their official implementations did not provide specific instructions for handling the
ScanNet++ [49] dataset, we adapted the data preprocessing for each baseline based on their unique
characteristics.

Fine tuning.To explore the ability of current advanced methods to learn knowledge and spatial
reasoning, we finetune MLLMfor3D, 3D-Vista, Reason3D, and Intent3D on our dataset. The
implementation details, as well as the data preprocessing steps, are provided in the appendix E.

5.3 Evaluation metrics

For the segmentation tasks (MLLMfor3D and Reason3D), we adopt both Mean Intersection over
Union (MIoU) [42] and Accuracy (Acc) as evaluation metrics. MIoU measures the average overlap
between the predicted and true 3D volumes, while Accuracy evaluates precision across varying
confidence thresholds, which we obtain from different intersection proportions (e.g., 0.25 and
0.50) of the predicted and ground-truth volumes. For the detection tasks (3D-Vista, Intent3D, and
ChatScene), we use Accuracy as the sole evaluation metric.



Table 3: The results of various methods on different reasoning tasks under fine-tuned setting.

Method
Task Type Metric -
MLLMfor3D  3D-Vista Reason3D Intent3D  ChatScene  Avarage
Knowledge Reasoning
A25 25.41 19.36 18.08 30.09 13.56 21.30
Common-sense A50 23.92 19.36 8.97 15.22 4.37 14.37
mloU 19.40 - 11.92 - - 15.66
A25 28.42 22.36 17.98 31.16 13.80 22.74
Human Intention A50 24.51 22.36 10.81 18.08 4.70 16.09
mloU 19.47 - 11.98 - - 15.73
Spatial Reasoning
A25 22.38 25.77 11.30 2491 13.98 19.67
Narrative Perspective A50 20.40 25.77 7.71 15.58 4.28 14.75
mloU 18.44 - 9.03 - - 13.74
A25 10.04 3.87 11.52 12.57 4.58 8.52
Parametric Perspective A50 9.33 3.87 7.59 6.13 2.36 5.86
mloU 7.50 - 8.85 - - 8.18
A25 22.61 23.86 11.51 12.90 12.48 16.67
Relative Position A50 18.76 23.86 8.18 7.49 1.39 11.94
mloU 14.70 - 8.88 - - 11.79
A25 25.30 18.92 12.80 5.75 7.42 14.04
Absolute Distance A50 20.37 18.92 4.45 1.86 3.71 9.86
mloU 19.23 - 8.16 - - 13.70
Overall Reasoning
A25 22.36 18.34 16.14 23.98 11.58 18.48
Overall A50 19.55 18.34 9.06 13.10 3.99 12.81
mloU 16.46 - 11.00 - - 13.73

5.4 Results analysis

As shown in Table 2, the zero-shot results indicate that all models demonstrate relatively weak overall
spatial reasoning capabilities compared with knowledge reasoning capabilities. Although these
methods have been trained on spatial description datasets, such as ScanRefer [6] for most models and
SQA3D [39] for ChatScene. After fine-tuning on our dataset, as presented in Tables 3 and Figure 5, all
models demonstrate substantial improvements in reasoning abilities. This improvement is particularly
significant in spatial reasoning, with an average performance increase of approximately three times.
We hypothesize that this improvement is due to a key difference between the existing datasets and our
proposed dataset. Although prior datasets contain questions involving spatial information, they often
retain excessive semantic cues that can serve as shortcuts for models to arrive at answers without fully
exercising spatial reasoning. In contrast, our dataset deliberately removes such shortcuts, ensuring
that the training process emphasizes and encourages the spatial reasoning capability of the models.
These findings highlight that current methods still have substantial room for improvement in terms of
spatial reasoning, revealing an important avenue for future research.

6 Conclusion and Limitations

We introduced SURPRISE3D, a large-scale dataset and benchmark for evaluating spatial and knowl-
edge reasoning in 3D scenes. Our benchmark defines the 3D Spatial Reasoning Segmentation
(3D-SRS) task, which includes various types of spatial queries, including relative position, absolute
distance, narrative perspective, and parametric viewpoint, as well as commonsense and human in-
tention grounding. Through a dual annotation pipeline and rare-object enhancement, SURPRISE3D
provides high-quality, diverse, and spatially language-query and segmentation pairs. Extensive
analysis confirms its balanced coverage and strong potential for advancing spatial intelligence in 3D
vision-language models.

Limitations. While our human annotation ensures quality, it limits scalability. Some query types
(e.g., parametric view) may be less natural for real-world deployment. In addition, annotations
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Figure 5: The comparison between zero-shot and fine-tuned models on all reasoning tasks.

are restricted to indoor scenes from ScanNet++, which may not generalize to outdoor or dynamic
environments. We leave domain transfer, temporal reasoning, and multi-turn interaction as future
directions.
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A Data Anaylsis

We conduct a detailed analysis of object distributions across six distinct reasoning question types in
the SURPRISE-3D dataset. The results are visualized in Figures 6, 7, and 8, each highlighting the
Top-10 most queried objects for two representative reasoning tasks.

Figure 6 focuses on absolute distance and relative position queries. In both subtasks, the object
chair dominates, appearing in 1,440 (13. 8%) and 915 (6. 5%) queries, respectively. This
prominence probably reflects its frequent presence and stable placement within indoor scenes. In the
absolute distance setting, other frequently queried objects include office chair (5.7%), monitor
(4.2%), and table (3.4%), all of which are static and spatially anchored elements. The relative
position task features more generic terms such as object (3.6%) and trash can (2.9%), indicating
that spatial relations are sometimes queried in less specific terms. These findings suggest that spatial
reasoning is closely tied to furniture and desktop objects that are familiar and contextually grounded.

Figure 7 extends the spatial reasoning perspective to viewpoint-based descriptions. In the narrative
perspective sub-task (i.e., first-person view), chair again leads with 1,535 queries (6.6%), followed
by table, office chair, and monitor. These results underscore the natural alignment between
egocentric vision and human interaction with seating and work surfaces. Similarly, the parametric
perspective task (i.e., camera-relative view) highlights chair (6.5%) and table (4.4%) as dominant
targets. Other notable objects such as monitor, object, and cabinet reflect a mixture of coarse and
fine-grained references. Collectively, these patterns indicate that perspective-based spatial reasoning
queries tend to center on objects within immediate visual or functional reach, validating our emphasis
on camera-pose alignment in dataset construction.

Figure 8 presents two complementary reasoning categories: common sense and human intention. In
both cases, chair remains the most frequently queried object, with 9,474 (4.2%) common sense
and 9,882 (6.5%) human intention queries. Notably, in the human intention setting, objects such
as cabinet (5.7%), table (5.7%), and box (3.9%) also emerge as key targets. This distribution
suggests a strong correlation between human actions and functional furniture or storage items. For
instance, queries might include “Where can I find something inside the cabinet?” or “What is the user
sitting on?”. In the common sense sub-task, a more diverse set of objects appears, including monitor,
power socket, heater, and bottle, indicating broader expectations around affordances, typical
object usage, and environment context.

Summary Insights. Across all six reasoning categories, chair consistently ranks as the most
queried object, underscoring its central role in indoor human-scene interactions. Other recurring
objects include table, monitor, cabinet, and office chair, suggesting a core subset of spa-
tially grounded and semantically meaningful targets. These observations guide the selection of
high-coverage object classes for training, support curriculum learning strategies focused on fre-
quently referenced targets, and motivate the integration of egocentric and functional priors in model
development.

Top 10 Objects for Question Type: Relative Position Top 10 Objects for Question Type: Absolute Distance

(a) Top 10 objects for relative position. (b) Top 10 objects for Absolute Distance.

Figure 6: Top objects associated with spatial reasoning queries, highlighting absolute distance and
relative positional understanding.
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Top 10 Objects for Question Type: Narrative Perspective Top 10 Objects for Question Type: Parametric Perspective
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(a) Top 10 objects for narrative perspective (first-  (b) Top 10 objects for parametric perspective (camera
person view). pose).

Figure 7: Top objects in viewpoint-based spatial reasoning queries, emphasizing egocentric and
camera-relative descriptions.

Top 10 Objects for Question Type: Common Sense Top 10 Objects for Question Type: Human Intention
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(a) Top 10 objects for common sense reasoning. (b) Top 10 objects for human intention reasoning.

Figure 8: Top objects in knowledge-based reasoning queries. Common sense tasks emphasize general
knowledge, while human intention tasks focus on purposeful interaction.
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Figure 9: SURPRISE-3D Dataset Statistics and Enhancements.
B Annotation pipeline

B.1 Philosophy of Human Annotaion

(1) Object Name Bias: In most 3D referring expression and QA datasets, the language query
explicitly names the target object category. Models can exploit this by simply detecting the named
class (e.g. ’chair’) without truly understanding the spatial context or attributes. This overreliance on
object name cues means that the task sometimes reduces to object classification rather than relational
reasoning.

(2) Coarse Localization Annotations: Many benchmarks use coarse labels like 3D bounding boxes
or object IDs as the target output (e.g. ScanRefer, ReferIt3D, Intent3D). Such annotations do not
evaluate the ability of a model to precisely delineate the shape of the object or handle overlapping
objects. Fine-grained segmentation masks are largely missing, which lowers the bar for spatial
understanding (since predicting a loose box is easier than predicting an exact mask).

(3) Limited Spatial Language: While some datasets include relative spatial phrases (e.g., “next
to the bed”), they often lack a rich variety of spatial reasoning challenges. The absolute distance
(reference cues such as ’on the north wall’) is usually absent. Thus, models are not fully tested on
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understanding diverse spatial relations or room-centric directions, and they struggle when queries
require reasoning about geometric layout beyond simple pairwise relations.

(4) Insufficient Ambiguity and Intent Understanding: Disambiguation between multiple similar
objects is a core challenge often underrepresented. Referlt3D explicitly ensured contrasting instances
in each scene, but many other datasets have numerous utterances referring to objects that are unique in
their scene (trivializing the task). Moreover, genuine human intentions or functional descriptions (e.g.
’something to cook with’ for a stove) are not prevalent in most benchmarks, aside from specialized
cases like Intent3D which still treat it as a detection task. As a result, current models are not fully
tested in understanding the purpose or intent behind a reference, especially in conjunction with spatial
cues.

B.2 Language Annotation

To ensure consistency, we followed a standardized three-step protocol for the spatial query annotations
(illustrated in Figure 2). (1) Select a Scene and Viewpoint: The annotator begins by selecting one
scene and positioning themselves (virtually) at a vantage point that provides a clear context. They
also consider their orientation in the scene — for example, an annotator might imagine “standing
in front of the sofa and facing the blackboard” as their narrative context. This step establishes the
reference frame (what is “left” vs “right”, etc.) and highlights salient scene anchors (notable objects
or landmarks) visible from that view. (2) Compose the Description: Next, the annotator writes a
spatial query referring to a target object without naming it outright. The description leverages the
established context and anchors. For instance, given the orientation above, they might describe
“an object on the left used for teaching,” which implicitly refers to the blackboard without saying
“blackboard.” Alternatively, they might use purely relative terms like “the table closest to the bed”, if
multiple tables are present. The key is to include enough information (spatial relations, attributes, or
object use) so that the query uniquely identifies one object in the scene. We emphasize relational and
perspective words here: terms like “closest/farthest,” “left/right of X,” “behind Y,” etc., as well as
descriptive qualifiers (e.g., color, affordance) to avoid ambiguity. (3) Segment the Object: Finally, the
annotator highlights the referred object by creating a 3D segmentation mask. They ensure the correct
object (and only that object) is masked, and then save the mask along with the query and the camera
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Perspective description: Just walk inside the door, with back | | Question: the seating furniture closest to me in front.
to the door facing the window opposite.

Figure 11: An example of the annotation result for the Narrative Perspective (NP) question type.
The left side illustrates the global position and orientation of the camera within the 3D scene, where
the red sphere represents the camera’s position, and the cone-shaped arrow indicates its orientation.
The right side shows the scene as observed from the camera’s perspective. In both images, the
green object represents the annotated object, which corresponds to the answer for the perspective
description and question.

parameters for that description. Throughout this process, we enforced strict annotation criteria to
maintain the clarity and uniqueness of the referring expressions. In particular: Avoid ambiguous
viewer-relative terms: Queries were not allowed to depend on uncertain notions of distance from
the observer. Annotators should not say “the far object” or “the big chair near me” without a clear
reference, since “far” or “near” might change with viewpoint. Any egocentric directional term had to
be grounded in the fixed orientation (e.g., “to your left” is fine if the orientation is stated). Ensure
uniqueness within context: Each query had to single out one object. If a description was initially
ambiguous (e.g., “the plant in the corner” when two plants are in the corner), annotators would refine
it by adding a distinguishing relation: “the closest plant on the left”, for example, if there are multiple
plants. We instructed that referring terms (like “the one on the left,” “the taller lamp”) must be unique
given the scene, leveraging superlatives or additional attributes as needed to achieve this. Keep
descriptions concise yet specific: The goal was a minimal description that still disambiguates the
target. Annotators were told not to add extraneous detail beyond what’s necessary. For instance, “the
small red stool behind the sofa” is acceptable (provides size, color, and relation to sofa to pick out
the stool), but adding unrelated details or full narratives is discouraged. Define distance relations by
objects, not the camera: For phrases like “closest” or “furthest,” we clarified that distance is measured
between objects in the scene, not relative to the annotator’s viewpoint. Figure 2 (orange inset) shows
how annotators determined the “closest X — by comparing actual distances among candidates. For
example, “the table closest to the bed” means the table with the smallest 3D distance to the bed
(out of all tables in the scene), irrespective of which table appears closest in the camera view. This
rule prevents confusion where an object might look near in the 2D view but isn’t the nearest in 3D
terms. Following this protocol, we collected a large set of (query, mask) pairs covering diverse spatial
reasoning cases. The resulting dataset includes queries that span a range of difficulty — from simple
ones like “the blue object on the table” (which require identifying an attribute and a support relation)
to complex ones like the earlier example of an egocentric perspective (“Facing away from the door
toward the cabinet, the item on your left used for teaching”). We include several illustrative examples
of queries and their corresponding 3D segmentations in the Appendix for clarity.
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Perspective description: At view (-3.58, -1.37, -3.14, -0.24, 0.97, 0.01). Question: the rectangular object behind used
for placing items.

Figure 12: An example of the annotation process for the Parametric Perspective question type. The
left side illustrates the camera’s position and orientation within the 3D scene, where the red sphere
represents the camera’s position, and the cone-shaped arrow indicates its orientation. This position is
challenging for annotators to describe accurately using natural language. The right side displays the
view observed from the current camera perspective. The green object in the image is the annotated
object, corresponding to the perspective description and question provided by the annotator.

Question: Ared object on the bed. Question: A pair of shoes in the bathroom. OR
An object that can be put on the feet in the bathroom.

Figure 13: An example of the annotation result for the Relative Position question type. The left side
of the figure demonstrates a case where the answer is described solely based on its physical attributes
in addition to relative position relationships. In this situation, it is unnecessary for the answer to
have multiple instances of its kind in the scene, as there are other objects with the same physical
attributes present (e.g., the red object in the bottom-left corner and the red object in the top-right
corner). The right side of the figure shows a case where multiple similar objects (e.g., several pairs
of shoes, marked within the red boxes) exist in the scene. In this case, a semantic description is used
to differentiate the target object. By incorporating spatial position relationships, the annotation avoids
shortcuts and ensures the specified pair of shoes can be uniquely identified.
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Question: A chair X meters away from a Question: A wash basin X meters away
red trash can. from a mop.

Figure 14: An example of the annotation process for Absolute Distance questions. The first row
shows the original scene, the second row illustrates the first set of absolute distance annotations,
and the third row depicts the second set of annotations. In each case, the red point represents the
reference object chosen for calculating the absolute distance, while the blue point represents the
target object. The left column shows a scenario where multiple trash bins exist in the scene; the
annotator distinguishes a specific trash bin as the reference through a detailed description. The target
object in this case is a chair, which is one of several instances in the scene. On the right, the scene
contains only one mop, allowing it to be directly selected as the reference object without requiring a
description. The target object in this case is a sink, which, like the chair, has multiple instances in the
scene.

C Detail of Spatial Reasoning Annotations

C.1 Narrative Perspective.

For the NP question type, annotators were instructed to identify an unambiguous viewpoint within
the scene that could be naturally described using human language. The annotation process involved
the following steps: 19



* Annotators navigated through the 3D scene to locate a viewpoint that they deemed as the
best representation for generating a clear and unambiguous natural language description.

* They adjusted the camera view by dragging and moving within the scene until they reached
the desired perspective.

* Once the perspective was finalized, annotators provided a detailed description of the scene
from that viewpoint, ensuring that the description was precise, complete, and free of
ambiguities.

An example of this process is illustrated in Figure 11. The left side of the figure shows the global
position and orientation of the camera within the 3D scene. The right side of the figure visualizes the
scene as observed from the selected camera perspective.

The goal of this annotation process was to ensure the creation of high-quality data that links natural
language descriptions to specific, unambiguous perspectives within 3D environments.

C.2 Parametric Perspective.

Every NP question can naturally be converted into a PP question. When annotators navigate the
scene and adjust the camera to the desired viewpoint for a narrative perspective, the camera extrinsic
parameters (i.e., position, rotation, and up vector) for that viewpoint are saved. By replacing
the corresponding narrative perspective description with the format ¢‘At perspective(position,
rotation, upvector)’’, we can generate the PP description. Combining this description with the
same question from NP yields the corresponding PP question.

In addition to this conversion process, annotators were tasked with identifying other viewpoints
within the scene that might not be easily describable using natural language. For such perspectives,
annotators navigated to the desired viewpoint by dragging and moving the camera, and directly
formulated a question based on the visual information.

An example of this process is illustrated in Figure 12. The left side of the figure shows the camera’s
position and orientation within the 3D scene. Notably, this position is challenging for annotators
to describe accurately using natural language. The right side of the figure visualizes the scene as
observed from the current camera perspective.

This dual approach ensures that the dataset captures a wide range of perspectives, including both
linguistically describable viewpoints and purely parametric ones, enhancing the diversity and com-
pleteness of the dataset.

C.3 Relative Position.

Following the methodology proposed in VLA-3D [54], relative position relationships include near,
closest, furthest, above, on, in, and below. And three key requirements for relative position questions
are:

* View-independent: The relation predicate for the target object must not depend on the
perspective from which the scene is viewed.

* Unambiguous: There must be only one possible target object in the specified region,
ensuring the reference is clear and precise.

e Minimal: In accordance with Grice’s maxim of manner [52], the statements should use the
minimal number of descriptors necessary to disambiguate the target object.
On top of these requirements, we impose an additional constraint: annotators are prohibited from
explicitly stating the answer within the question itself. Instead, they must either:

1. Provide a physical attributes description (e.g., color, size, shape, or texture) of the target object.
An example of this approach is shown in Figure 13 (left), where the object is described based on its
physical characteristics.

2. For scenes that contain multiple objects of the same type, annotators can directly mark the target
object within the scene and append a # symbol at the end of the question. In such cases, we employ a
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large language model (LLM) during post-processing to either generate a semantic description of the
object or directly label it with its name. An example of this process is illustrated in Figure 13 (right).

This approach ensures that the relative position questions are both precise and contextually rich,
while avoiding redundancy or ambiguity. By combining physical descriptors with LLM-based post-
processing for complex cases, we achieve a robust and scalable annotation pipeline for relative
position tasks.

C.4 Absolute Distance.

For absolute distance questions, we require annotators to select a single, unique object within the
scene as the reference object. If the object is not inherently unique, annotators must provide a
description that disambiguates it into a unique target. This reference object serves as the anchor for the
distance calculation. Annotators then select another set of objects of the same type within the scene
as the target objects. To aid understanding, the visualization of this process is shown in Figure 14.
The left side of Figure 14 illustrates a scenario where the reference object is inherently unique within
the scene. The right side of Figure 4 demonstrates a case where the reference object is made unique
through a detailed description provided by the annotator. These visualizations highlight the steps
annotators take to ensure unambiguous reference selection and accurate distance measurement.

To calculate the distance, annotators identify specific points on both the reference object and one of
the target objects that they believe best represent the distance between the two. These points are then
marked, and the distance between them is recorded as the absolute distance between the objects.

The question format is subsequently processed into the form: ‘“Target object that is D units
away from the reference object?’. This design ensures that the model cannot rely on short-
cuts to directly identify the target object; instead, it must leverage spatial reasoning and calculate
distances to determine which object satisfies the question.

We hypothesize that models trained on such questions will develop a stronger spatial understanding
of the scene, as they are required to integrate information about object positions, relative distances,
and scene geometry to arrive at the correct answer.

C.5 Post Processing.

For preprocessing, we address the overlap between the narrative perspective and the parametric
perspective by dividing the issues into two separate formats:

1. Parametric Perspective Format: Parametric perspective problems are standardized into
the format:

"at perspective (X, X, X, X, X, X, X, X, X), + original question"

This ensures consistency in representing parametric data across the dataset.

2. Object Name Replacement: For descriptions without the # symbol, the original object
name is inserted directly into the sentence. For example:

"Facing away from the door upon entry, the nearest [32]"

is transformed into:

"Facing away from the door upon entry, the nearest [chair]"

Following C.3, the object names are processed in the prompt with a 50% probability to:

* Retain the original object name (e.g., "chair").
* Replace it with a functional description (e.g., "object for sitting").

3. Absolute Distance Adjustment: Descriptions involving absolute distances are reformatted
for clarity. For example:

"The [table] 1.92 meters away from the door"
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This ensures consistent representation of spatial relationships.

After initial preprocessing, we employ a Large Language Model (LLM) for further refinement. The
specific prompt used for this step is detailed in Section G. The LLM is tasked with ensuring natural
language fluency, applying the appropriate object descriptions, and verifying consistency across the
dataset.

D Detail of Knowledge Reasoning Annotations

Knowledge Reasoning. For Knowledge Reasoning questions, we automatically generate the ques-
tions using a Large Language Model (LLM). The process begins by simplifying the data for each
scene based on the categories and IDs of all instances in that scene. Each scene is summarized as
follows:

* The scene contains N objects, distributed across C' categories:
- I bed
— xo blanket
— x3 set of books
* Instance details:
— BED (x1):
# ID:idy
— BLANKET (z2):
# ID: ido
— BOOKS (z3):
+ ID: idg
Next, we calculate the global frequency of each instance across all scenes. Objects with a total
occurrence count of less than 20 are defined as low-frequency objects. Using this preprocessed

data, we employ DeepSeek V3 [34] to generate questions for each scene. The question generation is
divided into two categories: Common Sense Questions G and Human Intention Questions G.

The DeepSeek V3 APl iterates through all scene data to produce the initial set of questions. However,
this initial dataset often contains issues that need to be addressed:
1. The category of the answer object is explicitly mentioned in the question.
2. Logical errors, where the answer does not align with human intuition or reasoning standards.
To address these problems, we utilize GPT-40 [2] to clean the initial dataset. The cleaning process
uses a specific prompt G. If the modified questions are still judged to contain issues, we perform a
second round of corrections using targeted prompts based on the identified errors:
* For Direct Mention Errors G.
* For Logical Errors G.
Finally, for the rare cases where questions still contain answers, we apply an enhanced prompt G.

This step ensures that all remaining problematic questions are rigorously refined to meet the desired
quality and reasoning standards.

Through this multi-step process, we ensure that the Knowledge Reasoning dataset is free from logical
inconsistencies and direct answer mentions, enabling the generation of high-quality questions that
require sophisticated reasoning to solve.

E Implementation of Baselines

E.1 Data Preprocess

We evaluated five baseline models: MLLMfor3D [20], 3D-VISTA [58], Reason3D [21], Intent3D [26],
and ChatScene [18]. Since their official implementations did not provide specific instructions for
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handling the ScanNet++ [49] dataset, we adapted the data preprocessing for each baseline based on
their unique characteristics. The details of our data preprocessing pipeline are described below.

E.1.1 Bounding Box Prediction

For 3D-VISTA [58] and Intent3D [26], pretrained models were required to predict bounding boxes
(predicted bbox). To achieve this, we utilized UniDet3D [27] to predict the bounding boxes for each
scene in the ScanNet++ [49] dataset.

E.1.2 Instance Segmentation and Feature Extraction

For ChatScene [18], pretrained models were required to predict both per-scene instance segmentation
and 3D features. Following the methodology outlined in the original paper, we used Mask3D [41] to
predict instance segmentation and Uni3D [56] to extract 3D features.

E.1.3 Superpoint Extraction

For Reason3D [21] and UniDet3D [27], superpoint extraction was necessary. We employed the
Segmentor tool from previous works [13] to extract superpoints for each scene. However, due to the
higher granularity of ScanNet++ [49] scenes, the default parameters for superpoint extraction gener-
ated an excessively large number of superpoints, leading to significant GPU memory consumption.
To mitigate this issue, we adjusted the parameters from kThresh=0.01 and segMinVerts=20 to
kThresh=10 and segMinVerts=200. This adjustment reduced memory consumption while main-
taining sufficient granularity. Additionally, we modified the dataloaders in the source code of different
methods to ensure compatibility with the ScanNet++ [49] dataset.

E.1.4 Annotation Processing for Intent3D

For Intent3D [26], we made several modifications to the annotation processing script to handle the
specific characteristics of our dataset. These include:

* Handling Missing ''I"" in Sentences: The original implementation assumed that every
sentence would contain the subject "I" and relied on it for verb-object parsing. To handle
cases where "[" was absent, we introduced a fallback mechanism that assigns a default value
of all_verb_obj = [(1, (0, 0, 0, 0))] when no valid verb-object pairs are found.

* Handling camera_view Question Type: For annotations with the camera_view question
type, we skipped the verb-object parsing altogether and directly assigned the default value
of all_verb_obj = [(1, (0, 0, 0, 0))].

» Improving Robustness: We updated the code to initialize the subject variable (i _subject)
as None to avoid undefined variable errors. This ensures robust handling of sentences where
"I" is not present.

These modifications allowed us to adapt Intent3D [26] to the more complex and diverse annotations
in the ScanNet++ [49] dataset while ensuring compatibility and robustness.

E.2 Implementation Details

For all methods, we followed the official hyperparameter settings unless otherwise specified. The only
exception was that we reduced the batch size for 3D-VISTA and Reason3D, as our hardware (A100
GPU with 40GB memory) could not accommodate the default settings due to memory constraints.
Additionally, for Reason3D, we reduced the number of epochs from 100 to 15 due to its excessively
long training time.

E.2.1 Handling Task-Specific Constraints

* 3D-VISTA: Since 3D-VISTA can only infer a single object at a time, tasks involving
multiple objects required a specific adjustment. For such cases, we selected the label that
appeared most frequently in the ground truth answer as the input to the model.

23



| Question: The bucket-shaped object on the floor closest to the door that can contain things I

WY

(a). Ground Truth (b). Reason3D + SURPRISE (c). Reason3D w/o SURPRISE

Figure 15: Visualization of a reasoning result. The figure illustrates three outputs: Left: Ground truth
(GT) result, Middle: Reason3D’s output after being trained on our dataset, and Right: Reason3D’s
output using the official checkpoint. The result demonstrates that after training on our dataset,
Reason3D is better able to understand both knowledge reasoning (e.g., identifying functional
attributes like “can contain things”) and spatial reasoning (e.g., determining the object closest to the
door). In contrast, the official checkpoint struggles with these aspects, highlighting the effectiveness
of our dataset in enhancing Reason3D’s reasoning capabilities.

* ChatScene: For ChatScene, only predicted instance masks with a mean Intersection over
Union (mloU) above a certain threshold compared to the ground truth were retained for
training. This filtering process reduced the size of the final training set to approximately 10k
samples.

E.2.2 Zero-Shot Experiments

For zero-shot experiments, we directly used the pretrained checkpoints provided on the official
repositories of each method for evaluation without further fine-tuning or modification.

E.3 Visualization of Results.

The visualized results are shown in Figure 15, which demonstrate the effectiveness of training
Reason3D using our dataset. After being trained on our dataset, Reason3D exhibits significantly
improved capabilities in both knowledge reasoning and spatial reasoning tasks.

F Future Work

Our dataset provides a valuable resource for exploring spatial reasoning and knowledge understanding
in 3D environments. However, there are still several challenges and potential directions for future
work:

F.1 Addressing Parametric Perspective Challenges

One of the key issues lies in solving questions related to the parametric perspective, which currently
proves to be highly challenging. This difficulty likely arises from the inherent complexity of using
numerical representations to describe positions and orientations, which are hard for models to interpret
effectively. Future work could consider embedding these parametric representations directly into the
input features, allowing the model to better process and understand them. Alternatively, aligning
these parametric representations with their corresponding narrative perspective descriptions may help
bridge the gap and improve comprehension.

F.2 Advancing Spatial Understanding in 3D Scenes

Another critical direction is encouraging more models to explore how to better understand spatial
information in 3D scenes. This includes developing methods that can handle complex relationships
between objects, such as relative positions, orientations, and distances, as well as integrating multi-
modal data (e.g., visual, textual, and parametric information) to achieve a more holistic understanding
of the 3D environment.
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F.3 Towards Unified Representations

Future research could also focus on creating unified representations that seamlessly combine paramet-
ric and narrative perspectives. Such representations would allow models to leverage both numerical
and descriptive spatial information, potentially improving their reasoning capabilities in tasks involv-
ing complex 3D spatial relationships.

F.4 Expanding Benchmarks and Tasks

Finally, we encourage the development of additional benchmarks and tasks based on our dataset to
further evaluate and enhance models’ abilities to reason about 3D spaces. These could include tasks
specifically designed to test models’ understanding of fine-grained spatial relationships or their ability
to generalize across diverse 3D environments.

By addressing these challenges and exploring these directions, we believe future research can unlock
new possibilities for leveraging our dataset to advance spatial reasoning and knowledge understanding
in 3D contexts.
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G Prompt

Please process the following JSON data by:
1. For descriptions that contain the # symbol:

* Maintain the complete semantic meaning while translating.
* Do not alter the key object references.
* Remove the # symbol in the final translation.

2. For descriptions that do not contain the # symbol and have terms in square
brackets []:

* When multiple instances of the same object type appear in brackets (like
[monitor], [monitor]):

— Treat them as a group rather than individually.

— Use collective descriptions like "two monitors" or "multiple monitors"
when appropriate.

— Apply consistent styling to all instances of the same object type in a single
description.

* For each unique object type in brackets:

— With 50% probability: Keep the original term or use a perfect synonym
(e.g., "trash bin" might become "trash can" or "garbage bin").

— With 50% probability: Replace the bracketed term with a functional de-
scription of the object (e.g., [trash bin] might become "an object used for
disposing waste", [monitor] might become "a device used for displaying
images").

* Maintain the overall sentence structure and meaning.

o IMPORTANT: Remove all square brackets [] in the final output while preserv-
ing the words inside them.

* MUST ensure that half of bracketed terms are functional descriptions and the
other half are left unchanged or replaced with synonyms.

Goal: Create natural-sounding English descriptions that preserve the original intent while
introducing controlled variation to terms in brackets.
Examples:

* "on the desks, [monitor], [monitor]" might become "Two monitors
on the desk" or "Two display devices on the desk".

* "on the table, there is [cup] [laptopl" might become "There is a
cup and a portable computer on the table".

Here is the JSON data to process:

{json_data}

Instructions: Return the processed JSON with the same structure but with translated and
modified descriptions according to the rules. Return ONLY the JSON data without any
additional explanations.
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Spatial Reasoning Prompt (ABS Data)

Please process the following JSON data by:
1. For the word in square brackets [] in descriptions:

* With 50% probability: Keep the original term or use a perfect synonym (e.g.,
"trash bin" might become "trash can" or "garbage bin").

» With 50% probability: Replace the bracketed term with a functional description
of the object (e.g., [trash bin] might become "an object used for disposing
waste").

* Maintain the overall sentence structure and meaning.
2. IMPORTANT: Remove all square brackets [] in the final output.

Goal: Create natural-sounding English descriptions that preserve the original intent while
introducing controlled variation to terms in brackets.

Here is the JSON data to process: {json_data}

Example:

{
"object_id": [
14,
1
1,
"object_name": [
"bOX",
"monitor"
] s
"description": "A monitor that is 4.34 meter away from the box"

}

Instructions: Return the processed JSON with the same structure but with translated and
modified descriptions according to these rules.
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Common Sense Prompt

Generate diverse knowledge reasoning questions and answers based on a scene. You will
receive a list of objects with their instance IDs and labels. Create questions covering multiple
aspects of commonsense knowledge:

1. Functionality (e.g., "What can be used to sit?" or "What can hold a drink?")
Typical locations (e.g., "Which objects are typically found in a kitchen?")

Safety concerns (e.g., "Which objects should children avoid for safety reasons?")
Object relationships (e.g., "Which objects typically work together?")

A = 2N

Temporal aspects (e.g., "Which objects are used daily?" or "Which objects are used
seasonally?")

Ensure the questions are clear, diverse, and relevant to the scene. Avoid creating questions

"o

about "wall"”, "ceiling", "floor", "object”, or "remove".

Scene Data: {Scene Data}

Here are example question-answer pairs for reference. Please follow this style and
difficulty level:

Example 1:

* Question: Objects that mostly used in the kitchen?
* Answer: (61,mug), (1,coffee machine)
Example 2:
* Question: Which objects are dangerous and should be kept away from children?
e Answer: (62,heater), (85,heater)

Instructions: Please generate 60 new questions and their answers. Use the following JSON
format for your response:

L

"question": "Question 1",
"answer": "(instance_id1l,label_namel),..."
Fe
]

Important: Prioritize questions about these rare objects: {low frequency objects in
this scene}. Create at least 3 questions about them. Questions should have specific,
informative answers.
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Human Intention Prompt

Generate diverse knowledge reasoning questions and answers based on a scene. You will
receive a list of objects with their instance IDs and labels. Create questions that cover multiple
aspects of human intention. For example:

* "I’'m thirsty, what should I use?"
* "I'm sleepy, where should I go?"

Ensure the questions are clear, diverse, and relevant to the scene. Avoid creating questions
about "wall"”, "ceiling", "floor", "object”, or "remove".

Scene Data: Scene Data

Here are example question-answer pairs for reference. Please follow this style and
difficulty level:

Example 1:

* Question: I need to put my books somewhere, where can I place them?

* Answer: (18,storage cabinet), (26,storage cabinet)
Example 2:

* Question: I want to cool myself while working, what can I use?

* Answer: (84,pedestal fan)

Instructions: Please generate 60 new questions and their answers. Use the following JSON
format for your response:

L

"question": "Question 1",
"answer": "(instance_idl,label_namel),..."

Jrg
]

Important: Prioritize questions about these rare objects: {low frequency objects in
this scene}. Create at least 3 questions about them. Questions should have specific,
informative answers.
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I need you to identify and fix problems with questions about a 3D scene.
SCENE ID: {scene_id}
QUESTION TYPE: {question_type}

Here are all the questions with their answers:
QUESTION 1: {question}

ANSWER 1: {answer}

OBJECTS IN ANSWER 1: {objects}

For each question, identify if it has one of these problems:

1. DIRECT MENTION: The question explicitly mentions any specific object that appears in
the answer. - Example: Where is the window located? when the answer includes "window" -
Fix by completely rewording without using any terms from the answer (e.g., Where can I see
outside from inside the house? instead of Where are the windows?)

2. LOGICAL ERROR: The question and answer have a fundamental mismatch in their
logical relationship. - For location questions: If the question asks "where can I put/place/hang
X?" but the answer only lists objects that are not locations, this is a logical error. - For object
questions: If the question asks about using a specific function but the answer only includes
objects that cannot fulfill that function, this is a logical error. - Fix by completely reframing
the question to align with what the answer actually provides.

CRITICAL FORMATTING INSTRUCTIONS: - Provide ONLY the plain question text
without any formatting markers. - NO quotation marks around the question. - NO prefixes
like "Improved question:" or similar phrases. - NO explanations or meta-text in the question
itself. - NO newlines or multiple sentences.

For ""human_intention' questions especially: - If asking about "where to place X" and the
answer only lists objects of type X (not locations), change to ask what can be used for the
intended purpose. - If asking about finding a feature (like a window) and the answer lists
those features, reword to ask about the function without naming the object.

Respond in this exact JSON format:

{
"improvements": [
{
"question_number": 1,
"original": "Original question text",
"issue_type": "DIRECT MENTION or LOGICAL ERROR",
"improved": "Clean improved question",
"reason": "Brief explanation of the specific issue and fix"
}
]
}

Only include questions with genuine issues that need improvement.
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Second Correction Prompt (Direct Mention)

Your improved question still contains words from the answer objects.
Original question: {original}

Current improved version: {improved}

Objects to completely avoid mentioning: {objects_in_answer}

Please provide a completely different question that:
1. Achieves the same goal as the original question
2. Does NOT use ANY of the words from the answer objects list

3. Uses alternative descriptions or functions (e.g., "Where can I see outside?" instead
of "Where are the windows?")

4. Is concise and natural-sounding
5. Has NO quotation marks, NO prefixes, NO explanations - just the pure question
Just provide the clean question text with no additional formatting.

Second Correction Prompt (Logical Error)

Your improved question still doesn’t fully address the logical mismatch with the answer.
Original question: {original}

Current improved version: {improved}

Answer objects: {objects_in_answer}

Especially for the human intention question, you need to completely reframe it to align with
what the answer actually provides.
Please provide a completely different question that:

Makes logical sense given the objects in the answer
Doesn’t ask about locations if the answer only provides objects
Asks about using, finding, or interacting with the type of objects in the answer

s> D =

Is concise and natural-sounding
5. Has NO quotation marks, NO prefixes, NO explanations - just the pure question
Just provide the clean question text with no additional formatting.
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Enhanced Prompt

URGENT: Your question still contains words from the answer objects.
Objects in answer: {objects_in_answer}
Current question: {second_attempt}

Provide a single question that DOES NOT contain ANY of these words or close synonyms.

"o

For example, if the object is "window", don’t use "window", "windowsill", etc.
Write a question about the FUNCTION without naming the object:

* For windows: ask about "seeing outside" or "natural light"
* For furniture: ask about the function (sitting, sleeping, storing)
* For appliances: ask about the function (cooking, cleaning, cooling)
CRITICAL REQUIREMENTS:
1. ONE SENTENCE ONLY
2. NO QUOTATION MARKS
3. NO PREFIXES
4. NO EXPLANATIONS
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