
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECURSIVE DEEP INVERSE REINFORCEMENT LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inferring an adversary’s goals from exhibited behavior is crucial for counterplan-
ning and non-cooperative multi-agent systems in domains like cybersecurity, mil-
itary, and strategy games. Deep Inverse Reinforcement Learning (IRL) methods
based on maximum entropy principles show promise in recovering adversaries’
goals but are typically offline, require large batch sizes with gradient descent,
and rely on first-order updates, limiting their applicability in real-time scenarios.
We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL)
approach to recover the cost function governing the adversary actions and goals.
Specifically, we minimize an upper bound on the standard Guided Cost Learning
(GCL) objective using sequential second-order Newton updates, akin to the Ex-
tended Kalman Filter (EKF), leading to a fast (in terms of convergence) learning
algorithm. We demonstrate that RDIRL is able to recover cost and reward functions
of expert agents in standard and adversarial benchmark tasks. Experiments on
benchmark tasks show that our proposed approach outperforms several leading
IRL algorithms.

1 INTRODUCTION

Inverse Optimal Control (IOC) and Inverse Reinforcement Learning (IRL) aim to infer parameterized
cost and reward functions in optimal control and reinforcement learning problems, respectively, from
observed state-control data. This data is assumed to be generated by an expert following an optimal
policy that either minimizes a cost function or maximizes a reward function.

Previous IRL approaches have included maximum-margin approaches (Abbeel & Ng, 2004), and
probabilistic approaches such as (Ziebart et al., 2008). In this work, we build on the maximum entropy
IRL framework presented previously (Ziebart et al., 2008). In this framework, training consists of
two nested loops. The inner loop approximates the optimal control policy for a hypothesized cost
function, while the outer loop minimizes a negative log-likelihood cost function (Ziebart et al., 2008),
constructed by sampling a full trajectory from the inner loop’s optimal control policy and by using
the expert trajectory that is observed from the expert.

Due to this nested structure, training under the maximum entropy deep IRL in an online fashion
becomes very challenging since inner and outer loops need long trajectories and large batch sizes
to converge. Available IRL approaches exploit the fact that it is often feasible to store and process
entire state and control sequences in batches(Molloy et al., 2018). In real-time settings with memory,
latency and compute constraints, this is generally not feasible.

Recursive optimization strategies such as Extended Kalman Filter (EKF) sequentially minimize
a loss function that is a summation of mean square error of observed and estimated states, and
mean squared error of the estimated states and their predicted values produced by assumed model
dynamics (Humpherys et al., 2012). Hence, EKF cannot be naively leveraged to optimize the negative
log-likelihood function (Ziebart et al., 2008) since the log of summation term could not be optimized
sequentially. Recent works have proposed moment-matching approaches (Swamy et al., 2021; Zeng
et al., 2022; 2025), leading to objective functions that have a simple summation form, making them
more suitable for online adaptive learning. However, they are not explicitly derived from maximum
entropy IRL, and prior formulations have not been optimized in an online setting.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To overcome this limitation, we require a reformulation of the maximum entropy objective into
a structure amenable to recursive optimization. To address this gap, we show that the moment
matching loss function introduced in (Swamy et al., 2021) provides an upper bound for the negative
log-likelihood objective of maximum entropy IRL (Finn et al., 2016b; Ziebart et al., 2008). We
then propose a recursive optimization algorithm that minimizes the moment matching loss using
expert demonstrations and sampled trajectories from the inner optimal control policy. This approach
alleviates the need to optimize the negative log-likelihood cost function only after collecting all
trajectories from the inner-loop policy and the expert. Instead, it enables incremental optimization,
processing each expert observation as it arrives.

The main contribution of this work is a deep maximum entropy online IRL algorithm, Recursive
Deep Inverse Reinforcement Learning (RDIRL), that learns nonlinear cost and reward functions
parameterized by neural networks directly from expert demonstrations as they arrive. Unlike previous
deep learning approaches, our method updates the inner control policy after each new expert sample,
enabling online adaptation of policies. By processing state–action pairs sequentially, without storing
or batching entire trajectories, RDIRL is well-suited for real-time applications with memory and
latency constraints. Moreover, because the policy and cost updates occur incrementally, our approach
converges significantly faster than competing IRL methods. We validate our approach in simulated
benchmark tasks, demonstrating that it outperforms leading IRL methods.

2 RELATED WORK

IRL, also known as IOC(Finn et al., 2016b), aims to learn reward or cost functions from expert
agents operating under optimal control or reinforcement learning policies. Several IOC methods
have been developed to recover finite-horizon optimal control cost functions, including approaches
based on Karush-Kuhn-Tucker (KKT) conditions(Zhang et al., 2019b;a; Puydupin-Jamin et al., 2012),
Pontryagin’s minimum principle (Molloy et al., 2022; 2020; Jin et al., 2020), and the Hamilton-
Jacobi-Bellman equation (Pauwels et al., 2014; Hatz et al., 2012).

These methods typically follow a two-stage process: first, a feedback gain matrix is computed
from state and control sequences using system identification techniques, and second, linear matrix
inequalities are solved to recover the objective-function parameters from the feedback gain matrix.
Online variations of IOC methods based on the Hamilton-Jacobi-Bellman equation (Zhao & Molloy,
2024; Molloy et al., 2018; 2020; Self et al., 2020c;a;b) have also been developed. However, both
offline and online versions of these methods are generally limited to simple parameter estimation,
assume partial knowledge of the expert’s cost function, and do not incorporate deep neural network
(Deep Neural Network (DNN)) representations of cost functions.

IRL approaches have also been proposed based on maximum margin (Abbeel & Ng, 2004; Ratliff
et al., 2006) and maximum entropy (Ziebart et al., 2008; Boularias et al., 2011). Among these,
maximum entropy IRL, as introduced by (Ziebart et al., 2008), has become one of the leading
approaches. In this framework, optimization seeks to find reward or cost function parameters that
maximize the likelihood of the observed expert trajectory under a maximum entropy distribution.
This involves estimating a partition function from samples drawn from a background distribution that
represents a control policy (Finn et al., 2016a; Fu et al., 2017), which is dependent on a parameterized
cost function. The control policy may range from reinforcement learning (Ho & Ermon, 2016; Fu
et al., 2017) to receding horizon optimal control (Xu et al., 2022).

Building on maximum entropy IRL, feature-based methods (Hadfield-Menell et al., 2016; Wu et al.,
2020) model the reward function as an inner product between a feature vector f and a parameter vector
θ. These methods have been successfully implemented, with the feature characteristics and parameter
vector size typically chosen to match the true cost function structure. However, they assume some
structural knowledge of the expert’s cost function or domain knowledge (Finn et al., 2016b). Online
versions of feature-based maximum entropy IRL have also been developed (Rhinehart & Kitani,
2018; Arora et al., 2021), but they have not yet been extended to include a DNN parameterization of
the reward and cost functions.

Similarly, maximum entropy IRL with deep learning representations of the reward function has
been successfully implemented (Wulfmeier et al., 2015). These methods, which leverage DNNs
for complex reward functions, have gained popularity and become widely used (Finn et al., 2016b;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Wulfmeier et al., 2015; Ho & Ermon, 2016; Xu et al., 2019; 2022; Fu et al., 2017; 2019; Yu et al.,
2019). As a result, they have emerged as leading IRL approaches, outperforming feature-based
methods (Finn et al., 2016b; Xu et al., 2022; Ho & Ermon, 2016).

In this work, we propose a new online IRL method based on the maximum entropy framework (Ziebart
et al., 2008; Ziebart, 2010). Unlike other online approaches (Molloy et al., 2018; Self et al., 2020c;b;
Molloy et al., 2020; Rhinehart & Kitani, 2018; Arora et al., 2021), the proposed methodology allows
the cost and reward functions to be parameterized using deep neural networks. Our approach is mostly
related to the algorithm introduced by (Finn et al., 2016a), which minimizes a negative log-likelihood
function and uses Model Predictive Path Integral Control (MPPI) (Xu et al., 2022) as the inner control
policy. However, unlike prior work, we recursively adapt the sampling distribution representing the
inner control policy each time an expert demonstration is observed.

To summarize, our proposed method is the first to combine several key features into a single effective
algorithm. It can learn adversarial cost functions online, which is critical for applications such as
evasion and pursuit. Additionally, it can learn complex, expressive cost functions, parameterized by
deep neural networks, eliminating the need for manual design of cost-functions typically required in
recursive methods (Molloy et al., 2018; Zhao & Molloy, 2024; Self et al., 2020c). While some prior
methods have demonstrated good performance with online IOC(Zhao & Molloy, 2024; Molloy et al.,
2020; Self et al., 2020c) and deep neural network-based cost functions(Finn et al., 2016a; Fu et al.,
2017; Ho & Ermon, 2016; Zeng et al., 2022; Swamy et al., 2021), to the best of our knowledge, no
previous approach has successfully combined these two properties.

3 BACKGROUND

3.1 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

Our Inverse reinforcement learning method builds on Guided Cost learning framework Finn et al.
(2016b) which is derived from maximum entropy Inverse Reinforcement Learning (IRL) (Ziebart
et al., 2008). Our method seeks to learn an expert cost function or rewards function by observing the
expert’s behavior. The framework assumes the demonstrated expert behavior to be the result of the
expert acting stochastically and near-optimally with respect to an unknown cost function. Specifically,
the model assumes that the expert samples the demonstrated trajectories τi from the distribution (Finn
et al., 2016b):

p(τ) =
1

Z
exp(−cθ(τ)) (1)

where τ = {x1, u1, . . . , xN , uN} is a trajectory sample, xN and uN are the agent’s observed state and
control input at time N and cθ(τ) =

∑N
k=1 cθ(xk, uk) is an unknown cost function, parameterized

by θ, and associated with that trajectory.

The partition function Z is difficult to compute for large or continuous domains, and presents the
main computational challenge in maximum entropy IRL. In the sample-based approach to maximum
entropy IRL (Finn et al., 2016b; Fu et al., 2017; Ho & Ermon, 2016; Finn et al., 2016a) the partition
function Z =

∫
exp(−cθ(τ))dτ is estimated from a background distribution q(τ) representing the

inner control policy, where τ are sampled from the policy q(τ). The central idea behind the maximum
entropy approach is to estimate θ that maximizes the likelihood of the entropy cost distribution p(τ):

θ̂ = argmax
θ

p(τ).

This approach is equivalent to minimizing the negative log-likelihood of Equation (1) given below
(Finn et al., 2016b):

LIRL(θ) =
1

N

∑
τi∈Ddemo

cθ(τi) + log
1

M

∑
τj∈Dsamp

exp(−cθ(τj))
q(τj)

(2)

where Dsamp is the set of M background samples sampled from the inner control policy q(τ), Ddemo

is the set of N expert demonstrations.

To represent the cost function cθ(τ), IOC or IRL feature-based methods typically use a linear
combination of hand-crafted features f : (u, x) 7→ f(u, x), leading to cθ(τ) = θT f(ut, xt) (Abbeel

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

& Ng, 2004). This representation is difficult to apply to more complex domains (Finn et al., 2016b).
Recent works have focused on the use of high-dimensional expressive function approximators,
representing cθ(τ) using neural networks, and outperforming feature-based methods (Finn et al.,
2016b; Fu et al., 2017; Ho & Ermon, 2016). In this work, we only leverage neural networks to
represent the cost function although, other parameterizations could also be used with our method.
In practice, the negative log-likelihood in equation 2 is minimized using gradient descent and batch
training. Previous algorithms using deep networks as the cost function parameterization required long
and multiple expert demonstrations and sampled trajectories from background policies in order to
converge through multiple training iterations. Moreover, training could not proceed before generating
all expert and sampled trajectories which restricted it to offline training paradigms. In this work, we
introduce a recursive optimization algorithm that adapts network parameters θ on the fly whenever an
expert demonstration is observed.

3.2 KALMAN FILTERING

The Kalman Filter (KF) is among the most widely used state estimators in engineering applications.
This algorithm recursively estimates the state variables, for example, the position and velocity of a
projectile in a noisy linear dynamical system (Lipton et al., 1998), by minimizing the mean-squared
estimation error of the current state, as noisy measurements are received and as the system evolves
in time (Humpherys et al., 2012). Each update provides the latest unbiased estimate of the system
variables. Since the updating process is fairly general and relatively easy to compute, the KF can often
be implemented in real-time. When dealing with nonlinear systems extensions of the KF exist such
as the EKF which resorts to linearizations using first-order Taylor’s expansions Särkkä & Svensson
(2023).

One interesting aspect is that the EKF can be seen as sequential second-order optimizer of cost
functions of the form (Humpherys et al., 2012):

Jn(Xn, Yn) =

n∑
k=1

jk(xk, yk) (3)

where Xn = {x1, . . . , xn} and xn represents the state of interest at time n. Moreover, Yn =
{y1, . . . , yn} where yn represents the measurement data at time n. jk represents the cost at time k
associated with xk and yk, while Jn is the cumulative value of jk and represents the cumulative cost
associated with trajectories Xn and Yn. The EKF estimates the state xn that minimizes equation 3 at
time n using second-order Newton method as new measurement yn arrives. Thus, equation 3 can be
re-written as:

Jn(Xn, Yn) = Jn−1(Xn−1, Yn−1) + jn(xn, yn) (4)

The EKF finds xn that minimizes equation 4 given previous loss function Jn−1, previous state
estimates of Xn−1, previous measurements Yn−1 and current measurement yn. In classical Kalman
filtering applications such as navigation and target tracking (Ward et al., 2006; Roumeliotis & Bekey,
2000), the goal is to estimate states xn given sequences of noisy (often Gaussian) data yn. In this work,
however, we aim at estimating the parameters θ of the cost function cθ(τ) from expert demonstration
τ ∈ Ddemo recursively. Inspired by the Kalman filter’s sequential optimization approach described in
(Humpherys et al., 2012), we develop a sequential optimization approach to find θ that maximizes
the entropy p(τ).

4 MOMENT MATCHING AS UPPER BOUND OF THE NEGATIVE
LOG-LIKELIHOOD

In this section, we derive an upper-bound of the negative log-likelihood, leading to an optimization
problem that is suitable for KF-like online estimation of the parameter vector θ. That is, the resulting
upper bound can be written following the same summation structure of equations 3 and 4. The
log-sum term in equation 2 prevents direct recursive minimization, but the derived upper bound
resolves this issue and enables sequential optimization.

In (Matkovic & Pecaric, 2007), the authors present a general variant of Jensen’s inequality for convex
functions as follows. Let [a, b] be an interval in R, y1, . . . , yN ∈ [a, b], and p1, . . . , pN be positive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

real numbers such that
∑N

n=1 pn = 1. If f : [a, b]→ R is convex on [a, b], then:
N∑

n=1

pnf(yn)−f

(
N∑

n=1

pnyn

)
≤ f(a) + f(b)− 2f

(
a+ b

2

)
(5)

Replacing the function f by the negative log function, f = − log which is a convex function,
equation 5 can be re-written as Matkovic & Pecaric (2007) :

log

(
N∑

n=1

pnyn

)
≤

N∑
n=1

pn log(yn)− log(a)− log(b) + 2 log

(
a+ b

2

)
(6)

In what follows, we will consider N = M in equation 2 for the sake of compactness. Let’s define pn
and yn as follows :

pn =
1

N
and yn =

exp(−cθ(τ samp
i))

q(τ samp
i)

(7)

where τsamp is a trajectory sampled from Dsamp and let yn be defined over an interval [a, b] ∈ R. By
replacing equation 7 in equation 6 we get the following inequality:

log
1

N

N∑
i=1

exp(−cθ(τ samp
i))

q(τ samp
i)

≤ 1

N

N∑
i=1

(−cθ(τ samp
i)− log q(τ samp

i))−K (8)

where K = log(a) + log(b) − 2log
(
a+b
2

)
. Replacing equation 8 in equation 2 we can derive an

upper bound of equation 2 as follows:

LIRL(θ) =
1

N

N∑
i=1

cθ(τ
demo
i) + log

1

N

N∑
i=1

exp(−cθ(τ samp
i))

q(τ samp
i)

≤ 1

N

N∑
i=1

cθ(τ
demo
i) +

1

N

N∑
i=1

(−cθ(τ samp
i)− log q(τ samp

i))−K

≤ 1

N

N∑
i=1

[
cθ(τ

demo
i)− cθ(τ

samp
i)− C

]
(9)

where C = log q(τ samp
i) +K and τdemo is a trajectory sampled from Ddemo representing expert’s

trajectory. Since C and N are independent from model parameters θ, minimizing the upper bound of
equation 2 is now equivalent to minimizing the following loss:

LUB−MM =

N∑
i=1

[
cθ(τ

demo
i)− cθ(τ

samp
i)

]
. (10)

This upper bound has a particularly important consequence: it transforms the maximum entropy
IRL objective into a moment-matching loss. This structure is equivalent to recent moment matching
formulations in IRL (Swamy et al., 2021; Zeng et al., 2022; 2025), which replace the log-partition
function of MaxEnt IRL with expectation-matching objectives between expert and policy distributions.
Our derivation shows that moment matching losses, particularly the formulation in (Swamy et al.,
2021), can be interpreted as an upper bound of the maximum entropy negative log-likelihood.

5 RECURSIVE DEEP INVERSE REINFORCEMENT LEARNING

In the previous section, we derived the upper bound of the negative log-likelihood cost described in
equation 2 and showed it’s equivalent to moment matching (Swamy et al., 2021). In this section, we
seek to minimize the moment matching loss of equation 10 recursively. To do so, we re-write the EKF
optimization problem using the loss function derived in equation 10 and a regularization term. Given
an expert trajectory Ddemo ≜ {τ (0), . . . , τ (N−1)} we seek to determine an optimal solution θ∗(ti)
starting from initial condition θ(t0) by solving the following mathematical optimization function:

LN (ΘN) = LUB−MM +
1

2

N∑
i=1

∥θ(ti)− θ(ti−1)∥2Q−1
θ

=

N∑
i=1

[
cθ(τ

demo
i)− cθ(τ

samp
i)

]
+

1

2

N∑
i=1

∥θ(ti)− θ(ti−1)∥2Q−1
θ

.

(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the second term in the right-hand side of equation 11 is a regularization term typical to Bayesian
filtering algorithms Imbiriba et al. (2022); Ghanem et al. (2025). In a similar fashion to Kalman
filtering optimization process described in (Humpherys et al., 2012; Ghanem et al., 2023), we seek
to determine optimal solution Θ∗

N = {θ∗(t0), . . . , θ∗(tN)} using the second-order Newton method
sequentially, which recursively finds Θ∗

N given Θ∗
N−1. Noticing that problem equation 11 can be

broken into predictive and update problems, we can derive its recursive solution, which is detailed in
Section B.4 of the Appendix, and leads to the result in Theorem 5.1.

Theorem 5.1. Given θ̂(ti−1) ∈ Θ̂i−1 and known Pθi−1
∈ Rdθ×dθ , the recursive equations for

computing θ̂(ti) that minimizes (15) are given by the following:

θ̂(ti) = θ̂(ti|ti−1)− Pθi

(
Cτdemo(ti)− Cτsamp(ti)

)
(12)

Pθi
being the lower right block of

(
∇2Li(Θ̂i|i−1)

)−1

recursively calculated as :

Pθi =
[
(Pθi−1 +Qθ)

−1 +
(
C2

τdemo
(ti)− C2

τsamp
(ti)
)]−1

(13)

Proof. using Lemma B.3 in (Humpherys et al., 2012), the lower block Pθi of
(
∇2Li(Θ̂i|i−1)

)−1

is
calculated as in equation 13

As a consequence of Theorem (5.1), θ̂(ti) is computed according to equation 12 using θ̂(ti−1). The
entire training procedure is detailed in Algorithm 1, and a detailed description of Algorithm 1 is
described in Section B.3 of the Appendix.

Algorithm 1 Recursive Deep Inverse Reinforcement Learning

1: Initialize Cost function cθ with parameters θt0
while episodes < K do

2: Initialize inner policy q(τ)
3: Initialize Pθ0 and Qθ

4: for i = 1, 2, . . . , N do
5: Observe one expert sample τdemo

i
6: Sample one observation τsamp

i from q(τ)
7: Evaluate the gradients Cτdemo

(ti) and Cτsamp
(ti)

8: Evaluate the hessians C2
τdemo

(ti) and C2
τsamp

(ti)

9: θ̂(ti)← θ̂(ti−1)− Pθi

(
Cτdemo

(ti)− Cτsamp
(ti)
)

10: Pθi ←
[
(Pθi−1+Qθ)

−1+C2
τdemo

(ti)−C2
τsamp

(ti)
]−1

11: update q(τ) with respect to cθ using any policy optimization method
12: end for

episodes← episodes + 1

6 EXPERIMENTS

We evaluate the proposed RDIRL algorithm in continuous control benchmarks from OpenAI Gym
(Brockman, 2016) and MuJoCo (Todorov et al., 2012), as well as in an adversarial cognitive radar
scenario (Potter et al., 2024; Haykin, 2006). We compare its performance against state-of-the-art
inverse reinforcement learning and imitation learning methods, including Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016), Guided Cost Learning (GCL) (Finn et al., 2016b),
Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2017), SQIL (Reddy et al., 2020),
and Maximum Likelihood Inverse Reinforcement Learning (ML-IRL) (Zeng et al., 2022), a moment-
matching variant of IRL. Experiments are conducted in two regimes: batch mode (section 6), where

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

competing methods are trained in their standard setting with full trajectory batches, and streaming
mode, where updates occur sample by sample (Appendix B.5).

Unlike reinforcement learning methods such as SAC(Haarnoja et al., 2018) or PPO(Schulman et al.,
2017), which require large trajectory batches to converge and thus fail in streaming or real-time
settings, our approach leverages MPPI (Williams et al., 2016) as the inner control policy. Since MPPI
updates its actions at every time step, it is naturally suited for online IRL. In preliminary experiments,
MPPI also provided stable performance and fast convergence unlike traditional RL policies when
integrated into the RDIRL framework. Furthermore, preliminary experiments showed that competing
IRL methods paired with their original RL inner policies failed to converge in streaming mode too.
For consistency and fairness, we therefore adapt all competing methods to use MPPI as the inner
policy in both batch and streaming comparisons.

Our results show that RDIRL consistently outperforms all benchmarked methods in recovering reward
functions. Policies trained with rewards learned by RDIRL achieve optimal or near-optimal behavior
significantly faster than competing approaches. Crucially, unlike existing methods which require
large batches of expert trajectories and environment rollouts to converge, RDIRL leverages online
adaptation. This enables efficient learning from streaming demonstrations, making it particularly
well-suited for adversarial and time-limited scenarios.

Table 1: Comparison of normalized averaged reward values across all episodes for different Gym
environments and methods.

Methods CartPole MountainCar HalfCheetah-
v4

Hopper

SQIL (Reddy et al.,
2020)

0.947± 0.088 −0.001±4.79 −1.56± 0.89 0.799± 0.15

GAIL (Ho & Ermon,
2016)

0.934± 0.058 0.236± 0.203 −0.521± 1.15 0.714± 0.08

GCL (Finn et al., 2016b) 0.92± 0.09 0.247± 0.19 −0.226± 1.27 0.69± 0.075

AIRL (Fu et al., 2017) 0.953± 0.069 0.233± 0.204 −0.54± 1.11 0.709± 0.084

ML-IRL(Zeng et al.,
2022)

0.938± 0.093 0.253± 0.19 −0.32± 1.12 0.648± 0.06

RDIRL (ours) 0.993±0.013 0.68± 0.32 0.496± 0.59 0.803± 0.11

0 5 10 15 20
Episodes

0.4

0.6

0.8

1.0

CartPole-v1

0 5 10 15 20
Episodes

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MountainCarContinuous-v0

0 20 40 60 80
Episodes

4

3

2

1

0

1

2

3
HalfCHeetah-v4

0 20 40 60 80
Episodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Hopper

Re
wa

rd

GCL RDIRL AIRL GAIL Expert SQIL ML-IRL

Figure 1: Learning curves for RDIRL and other methods.

6.1 CONTINUOUS CONTROL

To assess the performance of our proposed approach RDIRL, we conduct inverse reinforcement learn-
ing (IRL) experiments on the CartPole and Mountain Car environments from OpenAI Gym (Brock-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

man, 2016) and HalfCheetah-v4, Hopper, and Walker2d from MuJoCo(Todorov et al., 2012), all
solved using model-free reinforcement learning. Each task has a predefined true reward function
provided by OpenAI Gym.

We first generate expert demonstrations for these tasks by training a PPO reinforcement learning
agent (Schulman et al., 2017) to maximize the true reward function. Each expert demonstration
consists of a state trajectory of size N steps specified in Table 3 in B.1 for each task, which is then
used as the sole expert trajectory for each IRL algorithm. Note that we do not use expert control
sequences trajectory since we do not have access to the expert’s control policy.

Next, we execute RDIRL to learn the reward function and train competing IRL algorithms using the
expert trajectory over multiple episodes in batch mode, where each episode consists of an expert
trajectory. This process is repeated for 12 Monte Carlo runs with different seeds. In all experiments,
we use MPPI as the internal control policy q(τ) to maximize the learned reward function, −cθ. A
detailed experiment description and parameter values of MPPI and IRL algorithms is described in
Appendix B.1

We plot the mean of the normalized cumulative reward values across all episodes of trajectories τ samp

sampled from the inner control policy q(τ) in Figure 1.the averaged reward values are normalized
with respect to the expert reward. In the case of RDIRL, τ samp used to calculate the reward function
in Figure 1 are generated online during training according to Algorithm 1. For the rest of the methods,
τ samp are generated offline after each offline training episode is completed.

All methods use the same neural network architecture to parameterize the reward function. Networks
are randomly initialized at the start of each experiment, and all experiments are run on Nvidia-H200
GPU Cluster with 1 GPU per job(seed).

Our proposed method, RDIRL, successfully learns reward functions across all benchmark environ-
ments and consistently outperforms competing methods. In CartPole and MountainCar, it quickly
recovers the expert reward even converging in one episode in CartPole, while in HalfCheetah
and Hopper it achieves faster convergence and higher reward quality than baselines, many of
which require far more episodes to converge or fail to converge. Learning curves in Figures 1
and 2 illustrate these improvements, with Walker2d results consistent with Figure 3 in (Reddy
et al., 2020), where rewards closer to the expert indicate better performance. Furthermore, ex-
perimental results in streaming settings with detailed descriptions are provided in Appendix B.5.

0 20 40 60 80
Episodes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Walker2d

Re
wa

rd

GCL RDIRL AIRL GAIL Expert

Figure 2: Learning curves for for Walker2d.

Table 1 further shows that RDIRL achieves the
highest normalized rewards in most tasks. This
consistent outperformance stems from its recur-
sive structure and adaptive uncertainty-aware up-
dates, which improve sample efficiency and stabil-
ity. Unlike traditional IRL, our method requires
no fixed learning rate, as Pθ is updated at each
step and acts as an adaptive rate.

6.2 COGNITIVE RADAR

To evaluate whether our method can learn cost
functions of adversarial agents, we perform in-
verse reinforcement learning experiments on a
cognitive radar task. The task involves a radar
chasing a moving target in 3D space. The target
kinematic model follows constant velocity motion (Baisa, 2020) and the radar follows a second
order unicycle model (Potter et al., 2024), where the target is moving linearly in space while the
radar maximizes its Fisher Information Matrix (FIM) (Potter et al., 2024) to keep track of the target.
Both the radar and the target live in the same 3D x, y, z Cartesian plane. The goal of the target is
to learn the radar’s FIM from what it can observe from radar’s states, which is in our case radar’s
position in 3D x, y, z Cartesian coordinates. To achieve this goal using RDIRL,we execute Algorithm
1 where the radar’s cost function is learned online. The radar’s (expert) policy inside Algorithm 1
is an MPPI that maximizes radar’s FIM. The inner control policy q(τ) is an MPPI that maximizes

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the learned reward function, −cθ. The environmnent and IRL method’s parameters are described in
Table equation 3 inside the Appendix.

Table 2: Comparison of mean FIM reward values for the
Cognitive Radar example obtained by the different IRL
methods.

Methods Mean Cumulative Reward

GAIL (Ho & Ermon,
2016)

153.05

GCL (Finn et al., 2016b) 423.49

AIRL (Fu et al., 2017) 196.53

RDIRL(ours) 924.78

Furthermore, we compare RDIRL
against GAIL, AIRL and GCL. To imple-
ment these methods, we generate expert
trajectories for multiple episodes, where
the expert policy is an MPPI that maxi-
mizes the radar’s FIM. The inner control
policy q(τ) in all of these baselines is
an MPPI, with parameters specified in
table 3. We repeat this process for 5
Monte Carlo runs using different seeds.

To test if the target successfully learned
the radar’s reward function, we plot the
cumulative true FIM values resulting
from the trajectories τsamp sampled from the inner control policy q(τ) in Figure 3. We com-
pare RDIRL’s performance in learning the radar’s reward function against GAIL, GCL, and AIRL.
In the case of RDIRL, τ samp used to calculate the reward function in Figure 1 are generated online
during training according to algorithm 1. For the rest of the methods, τ samp are generated offline
after each offline training episode is completed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Episodes

0

200

400

600

800

1000

1200

FI
M

 re
wa

rd

Cognitive radar

GCL RDIRL AIRL GAIL Expert

Figure 3: Learning curves for RDIRL and other
methods.

In all algorithms, we used the same neural net-
work architecture to parameterize the radar’s FIM
reward function: one hidden layer of 128 units,
with a RELU activation function All networks
were always initialized randomly at the start of
each experiment and all experiments are run on on
an intel core i7 CPU.

Results in Figure 3 show that RDIRL successfully
learns the radar’s FIM with a much faster con-
vergence rate than the benchmark methods. The
mean cumulative reward values across all episodes
for each method are summarized in Table 2. As
shown, RDIRL outperforms all other methods
in terms of the mean cumulative reward, signifi-
cantly outperforming the benchmark methods (i.e.,
AIRL, GCL, and GAIL).

7 CONCLUSIONS

We presented RDIRL within the IRL framework that generalizes recent advances in maximum entropy
deep IRL to online settings. We first established the equivalence between upper bound loss function
in equation 10 of the negative log likelihood in equation 2 to moment matching loss of (Swamy et al.,
2021). Second, we leveraged sequential second-order Newton optimization to derive an online IRL
algorithm by minimizing the moment matching loss function of equation 10 recursively and therefore
established key theoretical properties of maximum entropy online deep IRL

RDIRL can learn rewards and cost functions online and greatly outperforms both prior imitation
learning and IRL algorithms in terms of steps and samples required to converge. It generally
reproduces the batch method’s accuracy but in significantly less steps.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Saurabh Arora, Prashant Doshi, and Bikramjit Banerjee. I2rl: online inverse reinforcement learning
under occlusion. Autonomous agents and multi-agent systems, 35(1):4, 2021.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Nathanael L Baisa. Derivation of a constant velocity motion model for visual tracking. arXiv preprint
arXiv:2005.00844, 2020.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
182–189. JMLR Workshop and Conference Proceedings, 2011.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016a.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR,
2016b.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to
goals: Inverse reinforcement learning for vision-based instruction following. arXiv preprint
arXiv:1902.07742, 2019.

Paul Ghanem, Yunus Bicer, Deniz Erdogmus, and Alireza Ramezani. Fast estimation of morphing
wing flight dynamics using neural networks and cubature rules. In 2023 62nd IEEE Conference on
Decision and Control (CDC), pp. 8830–8835. IEEE, 2023.

Paul Ghanem, Ahmet Demirkaya, Tales Imbiriba, Alireza Ramezani, Zachary Danziger, and Deniz
Erdogmus. Learning physics informed neural odes with partial measurements. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pp. 16799–16807, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Kathrin Hatz, Johannes P Schloder, and Hans Georg Bock. Estimating parameters in optimal control
problems. SIAM Journal on Scientific Computing, 34(3):A1707–A1728, 2012.

Simon Haykin. Cognitive radar: a way of the future. IEEE signal processing magazine, 23(1):30–40,
2006.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

HumanCompatibleAI. imitation: Implementation of imitation and inverse rl algorithms. https:
//github.com/HumanCompatibleAI/imitation, 2021. Accessed: 2025-05-14.

Jeffrey Humpherys, Preston Redd, and Jeremy West. A fresh look at the kalman filter. SIAM review,
54(4):801–823, 2012.

Tales Imbiriba, Ahmet Demirkaya, Jindřich Duník, Ondřej Straka, Deniz Erdoğmuş, and Pau Closas.
Hybrid neural network augmented physics-based models for nonlinear filtering. In 2022 25th
International Conference on Information Fusion (FUSION), pp. 1–6. IEEE, 2022.

Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Pontryagin differentiable program-
ming: An end-to-end learning and control framework. Advances in Neural Information Processing
Systems, 33:7979–7992, 2020.

Alan J Lipton, Hironobu Fujiyoshi, and Raju S Patil. Moving target classification and tracking
from real-time video. In Proceedings fourth IEEE workshop on applications of computer vision.
WACV’98 (Cat. No. 98EX201), pp. 8–14. IEEE, 1998.

10

https://github.com/HumanCompatibleAI/imitation
https://github.com/HumanCompatibleAI/imitation

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anita Matkovic and J Pecaric. A variant of jensen’s inequality for convex functions of several
variables. J. Math. Inequal, 1(1):45–51, 2007.

Timothy L Molloy, Jason J Ford, and Tristan Perez. Online inverse optimal control on infinite
horizons. In 2018 IEEE conference on decision and control (CDC), pp. 1663–1668. IEEE, 2018.

Timothy L Molloy, Jason J Ford, and Tristan Perez. Online inverse optimal control for control-
constrained discrete-time systems on finite and infinite horizons. Automatica, 120:109109, 2020.

Timothy L Molloy, Jairo Inga Charaja, Sören Hohmann, and Tristan Perez. Inverse optimal control
and inverse noncooperative dynamic game theory. Springer, 2022.

Edouard Pauwels, Didier Henrion, and Jean-Bernard Lasserre. Inverse optimal control with poly-
nomial optimization. In 53rd IEEE Conference on Decision and Control, pp. 5581–5586. IEEE,
2014.

Michael Potter, Shuo Tang, Paul Ghanem, Milica Stojanovic, Pau Closas, Murat Akcakaya, Ben
Wright, Marius Necsoiu, Deniz Erdogmus, Michael Everett, et al. Continuously optimizing radar
placement with model predictive path integrals. arXiv preprint arXiv:2405.18999, 2024.

Anne-Sophie Puydupin-Jamin, Miles Johnson, and Timothy Bretl. A convex approach to inverse
optimal control and its application to modeling human locomotion. In 2012 IEEE International
Conference on Robotics and Automation, pp. 531–536. IEEE, 2012.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pp. 729–736, 2006.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2020.

Nicholas Rhinehart and Kris M Kitani. First-person activity forecasting from video with online
inverse reinforcement learning. IEEE transactions on pattern analysis and machine intelligence,
42(2):304–317, 2018.

Stergios I Roumeliotis and George A Bekey. Bayesian estimation and kalman filtering: A unified
framework for mobile robot localization. In Proceedings 2000 ICRA. Millennium conference.
IEEE international conference on robotics and automation. Symposia proceedings (Cat. No.
00CH37065), volume 3, pp. 2985–2992. IEEE, 2000.

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing, volume 17. Cambridge
university press, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ryan Self, Moad Abudia, and Rushikesh Kamalapurkar. Online inverse reinforcement learning for
systems with disturbances. In 2020 American control conference (ACC), pp. 1118–1123. IEEE,
2020a.

Ryan Self, Kevin Coleman, He Bai, and Rushikesh Kamalapurkar. Online observer-based inverse
reinforcement learning. IEEE Control Systems Letters, 5(6):1922–1927, 2020b.

Ryan Self, SM Nahid Mahmud, Katrine Hareland, and Rushikesh Kamalapurkar. Online inverse
reinforcement learning with limited data. In 2020 59th IEEE conference on decision and control
(CDC), pp. 603–608. IEEE, 2020c.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and matching:
A game-theoretic framework for closing the imitation gap. In International Conference on Machine
Learning, pp. 10022–10032. PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Phillip W Ward, John W Betz, Christopher J Hegarty, et al. Satellite signal acquisition, tracking, and
data demodulation. Understanding GPS: principles and applications, pp. 153–241, 2006.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1433–1440. IEEE, 2016.

Zheng Wu, Liting Sun, Wei Zhan, Chenyu Yang, and Masayoshi Tomizuka. Efficient sampling-based
maximum entropy inverse reinforcement learning with application to autonomous driving. IEEE
Robotics and Automation Letters, 5(4):5355–5362, 2020.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv preprint arXiv:1507.04888, 2015.

Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a prior over intent
via meta-inverse reinforcement learning. In International conference on machine learning, pp.
6952–6962. PMLR, 2019.

Yiqing Xu, Wei Gao, and David Hsu. Receding horizon inverse reinforcement learning. Advances in
Neural Information Processing Systems, 35:27880–27892, 2022.

Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. Meta-inverse reinforcement learning with
probabilistic context variables. Advances in neural information processing systems, 32, 2019.

Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Maximum-likelihood inverse
reinforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 35:10122–10135, 2022.

Siliang Zeng, Mingyi Hong, and Alfredo Garcia. Structural estimation of markov decision processes
in high-dimensional state space with finite-time guarantees. Operations research, 73(2):720–737,
2025.

Han Zhang, Yibei Li, and Xiaoming Hu. Inverse optimal control for finite-horizon discrete-time
linear quadratic regulator under noisy output. In 2019 IEEE 58th conference on decision and
control (CDC), pp. 6663–6668. IEEE, 2019a.

Han Zhang, Jack Umenberger, and Xiaoming Hu. Inverse optimal control for discrete-time finite-
horizon linear quadratic regulators. Automatica, 110:108593, 2019b.

Tian Zhao and Timothy L Molloy. Extended kalman filtering for recursive online discrete-time
inverse optimal control. arXiv preprint arXiv:2403.10841, 2024.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

A APPENDIX

B EXPERIMENT DETAILS

In this section, we list down the implementation details of RDIRL and the baselines. The code is
included in the supplementary material. We also report the hyperparameters used in the experiments,
the detailed network architectures, training procedures and evaluation procedures used for our
experiments.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.1 TRAINING

In all our experiments, we use MPPI(Williams et al., 2016) as inner policy q(τ) in our baseline
methods. MPPIis a probabilistic model predictive control policy that estimates an optimal action
distribution that minimizes an agent’s objective cost function. To do so, MPPI samples a number of
trajectories and weighs these trajectories depending on how well they minimize the cost function,
then updates the mean of its action distribution q(τ) accordingly. Since MPPI in an online policy , i.e
it updates itself every time step, it makes it a natural choice of inner policy for online IRL problems,
as we noticed in our preliminary experiments that it is much more stable and has faster convergence
that traditional RL methods when implemented inside RDIRL.

The implementation of the baselines (GCL, AIRL,SQIL,ML-IRL and GAIL) are adapted from
available public repository(HumanCompatibleAI, 2021).Furthermore, we adapt all the baselines
to use MPPI as inner policy alongside our proposed approach. Since the inner policy is not SAC
anymore like it was in the original baselines repositories, we tune the parameters of all the adapted
baselines using grid search to produce best possible performance. The resulting parameters were used
directly in RDIRL. We list the hyper-parameters of all the baselines used in different environments in
Table 3. These hyper-parameters were selected via grid search.

Table 3: list of parameters used in each environment

Environment Learning
rate

batch
size

reward
function
updates

Nsteps temperature horizon number of
trajecto-
ries

Cartpole-v1 1e− 4 150 15 150 1e-3 50 2000
MountainCar-
v0

1e− 4 200 15 200 1e-2 85 3500

HalfCheetah-
v4

1e− 4 200 15 200 1e-2 50 500

Walker2d 1e− 4 200 15 200 1e-2 50 500
Hopper 1e− 4 200 15 200 1e-2 50 500
Cognitive
Radar

1e− 4 200 10 200 1e-2 10 25

In all our experiments, we do multiple passes of parameter updates at the end of each episode using
the Adam optimizer for all the baselines for best performance, except in our proposed approach
RDIRL, since it is online. The number of passes is listed in the reward function update column of 3.
The number of steps executed in each episode in listed in Nsteps column. Temperature,horizon and
number of sampled trajectories are MPPI parameters.

PPO (Schulman et al., 2017) is used as the base MaxEnt RL algorithm for the expert policy. Adam is
used as the optimizer.

In our proposed RDIRL, we use the same parameters of 3. Additionally, we use Pθ0 = 1e− 2I and
Qθ = 1e− 4I where I is the identity matrix.

B.2 REWARD FUNCTION AND DISCRIMINATOR NETWORK ARCHITECTURES

We use the same neural network architecture to parameterize the cost-function/reward- func-
tion/discriminator for all methods. For continuous control task with raw state input, i.e. Cart-
pole,MountainCar, and the MuJoCo tasks, we use two-layer of MLP with ReLU activation function to
pa- rameterized the cost function/discriminator with a hidden size of (16,16). Networks are randomly
initialized at the start of each experiment, and all experiments are run on Nvidia-H200 GPU Cluster
with 1 GPU per job(seed), with runtimes ranging from 30s/episode for CartPole and 2mins/episode
for Walker2d on all benchmarked and competing IRL methods.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.3 RDIRL

RDIRL is recursive approach to deep inverse reinforcement learning (IRL), which incrementally
estimates the parameters of a cost function from expert demonstrations. The method incorporates
recursive updates inspired by Kalman filtering and quasi-Newton optimization, enabling efficient
online learning from streaming data without requiring full-batch access to the dataset. The core
algorithm is summarized in Algorithm 1.

The algorithm maintains a cost function cθ(τ) parameterized by θ, which maps trajectories τ to scalar
costs. The goal is to iteratively update θ such that trajectories generated from the current policy q(τ)
match the expert demonstrations.

At each outer iteration (episode), we initialize the sampling policy q(τ) which can be a stochastic
policy optimized with methods like PPO or MPPI, think of it as the IRL agent’s best guess at
mimicking the expert. Next, we initialize the parameter covariance Pθ0 along with a process noise
term Qθ. Pθ0 represents the uncertainty over the parameters θ and Qθ models uncertainty added to θ
at each step (analogous to Kalman filtering).

The recursive nature of the algorithm is especially suited for online settings: instead of processing the
entire expert dataset at once, RDIRL updates its internal model incrementally—one expert trajectory
at a time. For each inner iteration, as soon as the algorithm observes one real expert demonstration
τ demo
i , it samples a trajectory τ samp

i drawn from q(τ).

We compute the gradients ∇θcθ(τ
demo
i) and ∇θcθ(τ

samp
i), which quantify how each trajectory influ-

ences the current cost estimate. Additionally, the algorithm computes (approximate) Hessians for
both trajectories, which capture curvature information.

The parameter vector θ is then updated using a recursive rule:

θ̂(ti)← θ̂(ti−1)− Pθi

(
∇θcθ(τ

demo
i)−∇θcθ(τ

samp
i)

)
,

where denotes the posterior covariance of the parameter estimate. This resembles a Kalman filter
update, where the difference between expert and sampled gradients drives the parameter correction.
Pθi is also recursively updated:

Pθi ←
[
(Pθi−1 +Qθ)

−1 +∇2
θcθ(τ

demo
i)−∇2

θcθ(τ
samp
i)

]−1
.

This equation accounts for new second-order information while controlling for process uncertainty.

After updating θ, the sampling policy q(τ) is improved using any standard policy optimization method
(e.g., PPO, MPPI), guided by the updated cost function cθ. This process continues over K episodes,
gradually aligning the agent’s behavior with that of the expert.

B.4 DERIVATION OF THE RECURSIVE SECOND-ORDER NEWTON SOLUTION

In a similar fashion to Kalman filtering optimization process described in (Humpherys et al., 2012),
we seek to determine optimal solution Θ∗

N = {θ∗(t0), . . . , θ∗(tN)} using the second-order Newton
method sequentially, which recursively finds Θ∗

N given Θ∗
N−1. To do so, we start by breaking the

optimization function (11) as follows:

Li(Θi) = Li−1(Θi−1) + cθ(τ
demo
i)− cθ(τ

samp
i) +

1

2
∥θ(ti)− θ(ti−1)∥2Q−1

θ
.

(14)

Next, we further divide equation 14 into the following form

Li(Θi) = Li|i−1(Θi) + cθ(τ
demo
i)− cθ(τ

samp
i) (15)

where
Li|i−1(Θi) = Li−1(Θi−1) +

1

2
∥θ(ti)− θ(ti−1)∥2Q−1

θ
. (16)

Our optimization approach consists of minimizing equation 16 then minimizing equation 15 given
equation 16 and the minimizer Θ̂i|i−1 of equation 16. We proceed by minimizing equation 16 with
respect to Θi by finding Θi that drives the gradient of equation 16 to zero. By taking the gradient of
equation 16 with respect to Θi we obtain:

∇Li|i−1(Θi) =

[
∇Li−1(Θi)− LT

θ Q
−1
θ [θ(ti)− θ(ti−1)]

Q−1
θ [θ(ti)− θ(ti−1)]

]
(17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

with Lθ = [0dθ×dθ
, . . . , 0dθ×dθ

, Idθ×dθ
] where Lθ ∈ Rdθ×((i−1)×dθ)

Now, let the estimate Θ̂i|i−1 of Θi be the minimizer of (16) obtained by setting∇Li|i−1(Θi) to zero,
and note that Θ̂i|i−1 can be broken as:

Θ̂i|i−1 =

[
Θ̂i−1

θ̂(ti−1)

]
(18)

Given equation 18 and equation 16, we proceed to minimize equation 15 using the second-order
Newton update. We start by deriving the gradient of equation 15 as follows:

∇Li(Θi) = ∇Li|i−1(Θ̂i|i−1) +
∂cθ(τ

demo
i)

∂θ
− ∂cθ(τ

samp
i)

∂θ

=

[
∇Li|i−1(Θ̂i|i−1)

∂cθ(τ
demo
i)

∂θ − ∂cθ(τ
samp
i)

∂θ

] (19)

For the sake of simplicity, let’s define the following variables:

C2
τdemo

(ti) =
∂2cθ(τ

demo
i)

∂2θ̂(ti−1)
, C2

τsamp
(ti) =

∂2cθ(τ
samp
i)

∂2θ̂(ti−1)

Cτdemo
(ti) =

∂cθ(τ
demo
i)

∂θ̂(ti−1)
, Cτsamp

(ti) =
∂cθ(τ

samp
i)

∂θ̂(ti−1)

Therefore, at Θi = Θ̂i|i−1, equation 19 becomes:

∇Li(Θi) =

[
0

Cτdemo
(ti)− Cτsamp

(ti)

]
(20)

Similarly, the Hessian of (15) is given by:

∇2Li(Θi) =

[
∇2Li−1(Θi−1) +Q−1

θ −LT
θ Q

−1
θ

−Q−1
θ Lθ Q−1

θ + C2
τdemo

(ti)− C2
τsamp

(ti)

]
(21)

Using the Newton second-order method, we can update our estimate of Θi given Θ̂i|i−1 as follows:

Θ̂i = Θ̂i|i−1 −
(
∇2Li(Θ̂i|i−1)

)−1

∇Li(Θ̂i|i−1) (22)

The resulting optimal variable θ̂(ti) ∈ Θ̂i is given by equation 12. The procedure is repeated until
ti = tN .

B.5 ADDITIONAL EXPERIMENTS RESULTS

B.5.1 ONLINE ADAPTATION OF COMPETING METHODS

In this section, we compare our proposed approach, RDIRL, with online-adapted versions of GAIL,
AIRL,ML-IRL, and GCL. The online adaptation involves training each competing method using one
expert demonstration at a time. Specifically, the loss function of each method is computed using a
single observed expert sample at each time step, followed by an immediate update of the reward
function neural network parameters. This process is repeated across the full episode of Nsteps.

As illustrated in Figure 4, our proposed method consistently outperforms the online-adapted baselines.
Furthermore, the online adaptation does not significantly improve the performance of the original
methods. In the case of Cartpole, it even leads to notable performance degradation and increased
instability compared to both the original baselines (GAIL, AIRL,ML-IRL, GCL) and our approach,
as shown in Table 4. These results highlight the advantage of our recursive optimization framework
in producing more stable and accurate reward functions over naive online adaptation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Episodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2
CartPole-v1

0 20 40 60 80
Episodes

2

1

0

1

2

HalfCHeetah-v4

Re
wa

rd

GCL-online RDIRL AIRL-online GAIL-online Expert ML-IRL-online

Figure 4: Learning curves for RDIRL and online adaptation methods.

Table 4: Comparison of mean reward values for different Gym environments and online adapted
methods.

Methods CartPole HalfCheetah-
v4

GAIL 0.934± 0.058 −0.521±1.15
GCL 0.92± 0.09 −0.226±1.27
AIRL 0.953± 0.069 −0.54± 1.11

GAIL-Online 0.74± 0.29 0.02± 0.51

GCL-Online 0.84± 0.25 0.1± 0.53

AIRL-Online 0.81± 0.26 0.01± 0.49

ML-IRL-Online 0.49± 0.29 0.14± 0.75

RDIRL (ours) 0.99± 0.13 0.49± 0.59

16

	Introduction
	related work
	Background
	Maximum Entropy Inverse Reinforcement Learning
	Kalman Filtering

	Moment Matching as Upper Bound of the Negative Log-likelihood
	Recursive Deep Inverse Reinforcement Learning
	Experiments
	Continuous control
	Cognitive radar

	Conclusions
	Appendix
	Experiment details
	Training
	Reward Function and Discriminator Network Architectures
	rdirl
	Derivation of the recursive second-order Newton solution
	Additional Experiments Results
	Online Adaptation of competing methods

