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ABSTRACT

Inferring an adversary’s goals from exhibited behavior is crucial for counterplan-
ning and non-cooperative multi-agent systems in domains like cybersecurity, mil-
itary, and strategy games. Deep Inverse Reinforcement Learning (IRL) methods
based on maximum entropy principles show promise in recovering adversaries’
goals but are typically offline, require large batch sizes with gradient descent,
and rely on first-order updates, limiting their applicability in real-time scenarios.
We propose an online Recursive Deep Inverse Reinforcement Learning (RDIRL)
approach to recover the cost function governing the adversary actions and goals.
Specifically, we minimize an upper bound on the standard Guided Cost Learning
(GCL) objective using sequential second-order Newton updates, akin to the Ex-
tended Kalman Filter (EKF), leading to a fast (in terms of convergence) learning
algorithm. We demonstrate that RDIRL is able to recover cost and reward functions
of expert agents in standard and adversarial benchmark tasks. Experiments on
benchmark tasks show that our proposed approach outperforms several leading
IRL algorithms.

1 INTRODUCTION

Inverse Optimal Control (IOC) and Inverse Reinforcement Learning (IRL) aim to infer parameterized
cost and reward functions in optimal control and reinforcement learning problems, respectively, from
observed state-control data. This data is assumed to be generated by an expert following an optimal
policy that either minimizes a cost function or maximizes a reward function.

Previous IRL approaches have included maximum-margin approaches (Abbeel & Ng, 2004), and
probabilistic approaches such as (Ziebart et al., 2008). In this work, we build on the maximum entropy
IRL framework presented previously (Ziebart et al., 2008). In this framework, training consists of
two nested loops. The inner loop approximates the optimal control policy for a hypothesized cost
function, while the outer loop minimizes a negative log-likelihood cost function (Ziebart et al., 2008),
constructed by sampling a full trajectory from the inner loop’s optimal control policy and by using
the expert trajectory that is observed from the expert.

Due to this nested structure, training under the maximum entropy deep IRL in an online fashion
becomes very challenging since inner and outer loops need long trajectories and large batch sizes
to converge. Available IRL approaches exploit the fact that it is often feasible to store and process
entire state and control sequences in batches(Molloy et al., 2018). In real-time settings with memory,
latency and compute constraints, this is generally not feasible.

Recursive optimization strategies such as Extended Kalman Filter (EKF) sequentially minimize
a loss function that is a summation of mean square error of observed and estimated states, and
mean squared error of the estimated states and their predicted values produced by assumed model
dynamics (Humpherys et al., 2012). Hence, EKF cannot be naively leveraged to optimize the negative
log-likelihood function (Ziebart et al., 2008) since the log of summation term could not be optimized
sequentially. Recent works have proposed moment-matching approaches (Swamy et al., 2021; Zeng
et al., 2022; 2025), leading to objective functions that have a simple summation form, making them
more suitable for online adaptive learning. However, they are not explicitly derived from maximum
entropy IRL, and prior formulations have not been optimized in an online setting.
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To overcome this limitation, we require a reformulation of the maximum entropy objective into
a structure amenable to recursive optimization. To address this gap, we show that the moment
matching loss function introduced in (Swamy et al., 2021) provides an upper bound for the negative
log-likelihood objective of maximum entropy IRL (Finn et al., 2016b; Ziebart et al., 2008). We
then propose a recursive optimization algorithm that minimizes the moment matching loss using
expert demonstrations and sampled trajectories from the inner optimal control policy. This approach
alleviates the need to optimize the negative log-likelihood cost function only after collecting all
trajectories from the inner-loop policy and the expert. Instead, it enables incremental optimization,
processing each expert observation as it arrives.

The main contribution of this work is a deep maximum entropy online IRL algorithm, Recursive
Deep Inverse Reinforcement Learning (RDIRL), that learns nonlinear cost and reward functions
parameterized by neural networks directly from expert demonstrations as they arrive. Unlike previous
deep learning approaches, our method updates the inner control policy after each new expert sample,
enabling online adaptation of policies. By processing state–action pairs sequentially, without storing
or batching entire trajectories, RDIRL is well-suited for real-time applications with memory and
latency constraints. Moreover, because the policy and cost updates occur incrementally, our approach
converges significantly faster than competing IRL methods. We validate our approach in simulated
benchmark tasks, demonstrating that it outperforms leading IRL methods.

2 RELATED WORK

IRL, also known as IOC(Finn et al., 2016b), aims to learn reward or cost functions from expert
agents operating under optimal control or reinforcement learning policies. Several IOC methods
have been developed to recover finite-horizon optimal control cost functions, including approaches
based on Karush-Kuhn-Tucker (KKT) conditions(Zhang et al., 2019b;a; Puydupin-Jamin et al., 2012),
Pontryagin’s minimum principle (Molloy et al., 2022; 2020; Jin et al., 2020), and the Hamilton-
Jacobi-Bellman equation (Pauwels et al., 2014; Hatz et al., 2012).

These methods typically follow a two-stage process: first, a feedback gain matrix is computed
from state and control sequences using system identification techniques, and second, linear matrix
inequalities are solved to recover the objective-function parameters from the feedback gain matrix.
Online variations of IOC methods based on the Hamilton-Jacobi-Bellman equation (Zhao & Molloy,
2024; Molloy et al., 2018; 2020; Self et al., 2020c;a;b) have also been developed. However, both
offline and online versions of these methods are generally limited to simple parameter estimation,
assume partial knowledge of the expert’s cost function, and do not incorporate deep neural network
(Deep Neural Network (DNN)) representations of cost functions.

IRL approaches have also been proposed based on maximum margin (Abbeel & Ng, 2004; Ratliff
et al., 2006) and maximum entropy (Ziebart et al., 2008; Boularias et al., 2011). Among these,
maximum entropy IRL, as introduced by (Ziebart et al., 2008), has become one of the leading
approaches. In this framework, optimization seeks to find reward or cost function parameters that
maximize the likelihood of the observed expert trajectory under a maximum entropy distribution.
This involves estimating a partition function from samples drawn from a background distribution that
represents a control policy (Finn et al., 2016a; Fu et al., 2017), which is dependent on a parameterized
cost function. The control policy may range from reinforcement learning (Ho & Ermon, 2016; Fu
et al., 2017) to receding horizon optimal control (Xu et al., 2022).

Building on maximum entropy IRL, feature-based methods (Hadfield-Menell et al., 2016; Wu et al.,
2020) model the reward function as an inner product between a feature vector f and a parameter vector
θ. These methods have been successfully implemented, with the feature characteristics and parameter
vector size typically chosen to match the true cost function structure. However, they assume some
structural knowledge of the expert’s cost function or domain knowledge (Finn et al., 2016b). Online
versions of feature-based maximum entropy IRL have also been developed (Rhinehart & Kitani,
2018; Arora et al., 2021), but they have not yet been extended to include a DNN parameterization of
the reward and cost functions.

Similarly, maximum entropy IRL with deep learning representations of the reward function has
been successfully implemented (Wulfmeier et al., 2015). These methods, which leverage DNNs
for complex reward functions, have gained popularity and become widely used (Finn et al., 2016b;
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Wulfmeier et al., 2015; Ho & Ermon, 2016; Xu et al., 2019; 2022; Fu et al., 2017; 2019; Yu et al.,
2019). As a result, they have emerged as leading IRL approaches, outperforming feature-based
methods (Finn et al., 2016b; Xu et al., 2022; Ho & Ermon, 2016).

In this work, we propose a new online IRL method based on the maximum entropy framework (Ziebart
et al., 2008; Ziebart, 2010). Unlike other online approaches (Molloy et al., 2018; Self et al., 2020c;b;
Molloy et al., 2020; Rhinehart & Kitani, 2018; Arora et al., 2021), the proposed methodology allows
the cost and reward functions to be parameterized using deep neural networks. Our approach is mostly
related to the algorithm introduced by (Finn et al., 2016a), which minimizes a negative log-likelihood
function and uses Model Predictive Path Integral Control (MPPI) (Xu et al., 2022) as the inner control
policy. However, unlike prior work, we recursively adapt the sampling distribution representing the
inner control policy each time an expert demonstration is observed.

To summarize, our proposed method is the first to combine several key features into a single effective
algorithm. It can learn adversarial cost functions online, which is critical for applications such as
evasion and pursuit. Additionally, it can learn complex, expressive cost functions, parameterized by
deep neural networks, eliminating the need for manual design of cost-functions typically required in
recursive methods (Molloy et al., 2018; Zhao & Molloy, 2024; Self et al., 2020c). While some prior
methods have demonstrated good performance with online IOC(Zhao & Molloy, 2024; Molloy et al.,
2020; Self et al., 2020c) and deep neural network-based cost functions(Finn et al., 2016a; Fu et al.,
2017; Ho & Ermon, 2016; Zeng et al., 2022; Swamy et al., 2021), to the best of our knowledge, no
previous approach has successfully combined these two properties.

3 BACKGROUND

3.1 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

Our Inverse reinforcement learning method builds on Guided Cost learning framework Finn et al.
(2016b) which is derived from maximum entropy Inverse Reinforcement Learning (IRL) (Ziebart
et al., 2008). Our method seeks to learn an expert cost function or rewards function by observing the
expert’s behavior. The framework assumes the demonstrated expert behavior to be the result of the
expert acting stochastically and near-optimally with respect to an unknown cost function. Specifically,
the model assumes that the expert samples the demonstrated trajectories τi from the distribution (Finn
et al., 2016b):

p(τ) =
1

Z
exp(−cθ(τ)) (1)

where τ = {x1, u1, . . . , xN , uN} is a trajectory sample, xN and uN are the agent’s observed state and
control input at time N and cθ(τ) =

∑N
k=1 cθ(xk, uk) is an unknown cost function, parameterized

by θ, and associated with that trajectory.

The partition function Z is difficult to compute for large or continuous domains, and presents the
main computational challenge in maximum entropy IRL. In the sample-based approach to maximum
entropy IRL (Finn et al., 2016b; Fu et al., 2017; Ho & Ermon, 2016; Finn et al., 2016a) the partition
function Z =

∫
exp(−cθ(τ))dτ is estimated from a background distribution q(τ) representing the

inner control policy, where τ are sampled from the policy q(τ). The central idea behind the maximum
entropy approach is to estimate θ that maximizes the likelihood of the entropy cost distribution p(τ):

θ̂ = argmax
θ

p(τ).

This approach is equivalent to minimizing the negative log-likelihood of Equation (1) given below
(Finn et al., 2016b):

LIRL(θ) =
1

N

∑
τi∈Ddemo

cθ(τi) + log
1

M

∑
τj∈Dsamp

exp(−cθ(τj))
q(τj)

(2)

where Dsamp is the set of M background samples sampled from the inner control policy q(τ), Ddemo

is the set of N expert demonstrations.

To represent the cost function cθ(τ), IOC or IRL feature-based methods typically use a linear
combination of hand-crafted features f : (u, x) 7→ f(u, x), leading to cθ(τ) = θT f(ut, xt) (Abbeel
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& Ng, 2004). This representation is difficult to apply to more complex domains (Finn et al., 2016b).
Recent works have focused on the use of high-dimensional expressive function approximators,
representing cθ(τ) using neural networks, and outperforming feature-based methods (Finn et al.,
2016b; Fu et al., 2017; Ho & Ermon, 2016). In this work, we only leverage neural networks to
represent the cost function although, other parameterizations could also be used with our method.
In practice, the negative log-likelihood in equation 2 is minimized using gradient descent and batch
training. Previous algorithms using deep networks as the cost function parameterization required long
and multiple expert demonstrations and sampled trajectories from background policies in order to
converge through multiple training iterations. Moreover, training could not proceed before generating
all expert and sampled trajectories which restricted it to offline training paradigms. In this work, we
introduce a recursive optimization algorithm that adapts network parameters θ on the fly whenever an
expert demonstration is observed.

3.2 KALMAN FILTERING

The Kalman Filter (KF) is among the most widely used state estimators in engineering applications.
This algorithm recursively estimates the state variables, for example, the position and velocity of a
projectile in a noisy linear dynamical system (Lipton et al., 1998), by minimizing the mean-squared
estimation error of the current state, as noisy measurements are received and as the system evolves
in time (Humpherys et al., 2012). Each update provides the latest unbiased estimate of the system
variables. Since the updating process is fairly general and relatively easy to compute, the KF can often
be implemented in real-time. When dealing with nonlinear systems extensions of the KF exist such
as the EKF which resorts to linearizations using first-order Taylor’s expansions Särkkä & Svensson
(2023).

One interesting aspect is that the EKF can be seen as sequential second-order optimizer of cost
functions of the form (Humpherys et al., 2012):

Jn(Xn, Yn) =

n∑
k=1

jk(xk, yk) (3)

where Xn = {x1, . . . , xn} and xn represents the state of interest at time n. Moreover, Yn =
{y1, . . . , yn} where yn represents the measurement data at time n. jk represents the cost at time k
associated with xk and yk, while Jn is the cumulative value of jk and represents the cumulative cost
associated with trajectories Xn and Yn. The EKF estimates the state xn that minimizes equation 3 at
time n using second-order Newton method as new measurement yn arrives. Thus, equation 3 can be
re-written as:

Jn(Xn, Yn) = Jn−1(Xn−1, Yn−1) + jn(xn, yn) (4)

The EKF finds xn that minimizes equation 4 given previous loss function Jn−1, previous state
estimates of Xn−1, previous measurements Yn−1 and current measurement yn. In classical Kalman
filtering applications such as navigation and target tracking (Ward et al., 2006; Roumeliotis & Bekey,
2000), the goal is to estimate states xn given sequences of noisy (often Gaussian) data yn. In this work,
however, we aim at estimating the parameters θ of the cost function cθ(τ) from expert demonstration
τ ∈ Ddemo recursively. Inspired by the Kalman filter’s sequential optimization approach described in
(Humpherys et al., 2012), we develop a sequential optimization approach to find θ that maximizes
the entropy p(τ).

4 MOMENT MATCHING AS UPPER BOUND OF THE NEGATIVE
LOG-LIKELIHOOD

In this section, we derive an upper-bound of the negative log-likelihood, leading to an optimization
problem that is suitable for KF-like online estimation of the parameter vector θ. That is, the resulting
upper bound can be written following the same summation structure of equations 3 and 4. The
log-sum term in equation 2 prevents direct recursive minimization, but the derived upper bound
resolves this issue and enables sequential optimization.

In (Matkovic & Pecaric, 2007), the authors present a general variant of Jensen’s inequality for convex
functions as follows. Let [a, b] be an interval in R, y1, . . . , yN ∈ [a, b], and p1, . . . , pN be positive

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

real numbers such that
∑N

n=1 pn = 1. If f : [a, b]→ R is convex on [a, b], then:
N∑

n=1

pnf(yn)−f

(
N∑

n=1

pnyn

)
≤ f(a) + f(b)− 2f

(
a+ b

2

)
(5)

Replacing the function f by the negative log function, f = − log which is a convex function,
equation 5 can be re-written as Matkovic & Pecaric (2007) :

log

(
N∑

n=1

pnyn

)
≤

N∑
n=1

pn log(yn)− log(a)− log(b) + 2 log

(
a+ b

2

)
(6)

In what follows, we will consider N = M in equation 2 for the sake of compactness. Let’s define pn
and yn as follows :

pn =
1

N
and yn =

exp(−cθ(τ samp
i ))

q(τ samp
i )

(7)

where τsamp is a trajectory sampled from Dsamp and let yn be defined over an interval [a, b] ∈ R. By
replacing equation 7 in equation 6 we get the following inequality:

log
1

N

N∑
i=1

exp(−cθ(τ samp
i ))

q(τ samp
i )

≤ 1

N

N∑
i=1

(−cθ(τ samp
i )− log q(τ samp

i ))−K (8)

where K = log(a) + log(b) − 2log
(
a+b
2

)
. Replacing equation 8 in equation 2 we can derive an

upper bound of equation 2 as follows:

LIRL(θ) =
1

N

N∑
i=1

cθ(τ
demo
i ) + log

1

N

N∑
i=1

exp(−cθ(τ samp
i ))

q(τ samp
i )

≤ 1

N

N∑
i=1

cθ(τ
demo
i ) +

1

N

N∑
i=1

(−cθ(τ samp
i )− log q(τ samp

i ))−K

≤ 1

N

N∑
i=1

[
cθ(τ

demo
i )− cθ(τ

samp
i )− C

]
(9)

where C = log q(τ samp
i ) +K and τdemo is a trajectory sampled from Ddemo representing expert’s

trajectory. Since C and N are independent from model parameters θ, minimizing the upper bound of
equation 2 is now equivalent to minimizing the following loss:

LUB−MM =

N∑
i=1

[
cθ(τ

demo
i )− cθ(τ

samp
i )

]
. (10)

This upper bound has a particularly important consequence: it transforms the maximum entropy
IRL objective into a moment-matching loss. This structure is equivalent to recent moment matching
formulations in IRL (Swamy et al., 2021; Zeng et al., 2022; 2025), which replace the log-partition
function of MaxEnt IRL with expectation-matching objectives between expert and policy distributions.
Our derivation shows that moment matching losses, particularly the formulation in (Swamy et al.,
2021), can be interpreted as an upper bound of the maximum entropy negative log-likelihood.

5 RECURSIVE DEEP INVERSE REINFORCEMENT LEARNING

In the previous section, we derived the upper bound of the negative log-likelihood cost described in
equation 2 and showed it’s equivalent to moment matching (Swamy et al., 2021). In this section, we
seek to minimize the moment matching loss of equation 10 recursively. To do so, we re-write the EKF
optimization problem using the loss function derived in equation 10 and a regularization term. Given
an expert trajectory Ddemo ≜ {τ (0), . . . , τ (N−1)} we seek to determine an optimal solution θ∗(ti)
starting from initial condition θ(t0) by solving the following mathematical optimization function:

LN (ΘN ) = LUB−MM +
1

2

N∑
i=1

∥θ(ti)− θ(ti−1)∥2Q−1
θ

=

N∑
i=1

[
cθ(τ

demo
i )− cθ(τ

samp
i )

]
+

1

2

N∑
i=1

∥θ(ti)− θ(ti−1)∥2Q−1
θ

.

(11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the second term in the right-hand side of equation 11 is a regularization term typical to Bayesian
filtering algorithms Imbiriba et al. (2022); Ghanem et al. (2025). In a similar fashion to Kalman
filtering optimization process described in (Humpherys et al., 2012; Ghanem et al., 2023), we seek
to determine optimal solution Θ∗

N = {θ∗(t0), . . . , θ∗(tN )} using the second-order Newton method
sequentially, which recursively finds Θ∗

N given Θ∗
N−1. Noticing that problem equation 11 can be

broken into predictive and update problems, we can derive its recursive solution, which is detailed in
Section B.4 of the Appendix, and leads to the result in Theorem 5.1.

Theorem 5.1. Given θ̂(ti−1) ∈ Θ̂i−1 and known Pθi−1
∈ Rdθ×dθ , the recursive equations for

computing θ̂(ti) that minimizes (15) are given by the following:

θ̂(ti) = θ̂(ti|ti−1)− Pθi

(
Cτdemo(ti)− Cτsamp(ti)

)
(12)

Pθi
being the lower right block of

(
∇2Li(Θ̂i|i−1)

)−1

recursively calculated as :

Pθi =
[
(Pθi−1 +Qθ)

−1 +
(
C2

τdemo
(ti)− C2

τsamp
(ti)
)]−1

(13)

Proof. using Lemma B.3 in (Humpherys et al., 2012), the lower block Pθi of
(
∇2Li(Θ̂i|i−1)

)−1

is
calculated as in equation 13

As a consequence of Theorem (5.1), θ̂(ti) is computed according to equation 12 using θ̂(ti−1). The
entire training procedure is detailed in Algorithm 1, and a detailed description of Algorithm 1 is
described in Section B.3 of the Appendix.

Algorithm 1 Recursive Deep Inverse Reinforcement Learning

1: Initialize Cost function cθ with parameters θt0
while episodes < K do

2: Initialize inner policy q(τ)
3: Initialize Pθ0 and Qθ

4: for i = 1, 2, . . . , N do
5: Observe one expert sample τdemo

i
6: Sample one observation τsamp

i from q(τ)
7: Evaluate the gradients Cτdemo

(ti) and Cτsamp
(ti)

8: Evaluate the hessians C2
τdemo

(ti) and C2
τsamp

(ti)

9: θ̂(ti)← θ̂(ti−1)− Pθi

(
Cτdemo

(ti)− Cτsamp
(ti)
)

10: Pθi ←
[
(Pθi−1+Qθ)

−1+C2
τdemo

(ti)−C2
τsamp

(ti)
]−1

11: update q(τ) with respect to cθ using any policy optimization method
12: end for

episodes← episodes + 1

6 EXPERIMENTS

We evaluate the proposed RDIRL algorithm in continuous control benchmarks from OpenAI Gym
(Brockman, 2016) and MuJoCo (Todorov et al., 2012), as well as in an adversarial cognitive radar
scenario (Potter et al., 2024; Haykin, 2006). We compare its performance against state-of-the-art
inverse reinforcement learning and imitation learning methods, including Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016), Guided Cost Learning (GCL) (Finn et al., 2016b),
Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2017), SQIL (Reddy et al., 2020),
and Maximum Likelihood Inverse Reinforcement Learning (ML-IRL) (Zeng et al., 2022), a moment-
matching variant of IRL. Experiments are conducted in two regimes: batch mode (section 6), where

6
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competing methods are trained in their standard setting with full trajectory batches, and streaming
mode, where updates occur sample by sample (Appendix B.5).

Unlike reinforcement learning methods such as SAC(Haarnoja et al., 2018) or PPO(Schulman et al.,
2017), which require large trajectory batches to converge and thus fail in streaming or real-time
settings, our approach leverages MPPI (Williams et al., 2016) as the inner control policy. Since MPPI
updates its actions at every time step, it is naturally suited for online IRL. In preliminary experiments,
MPPI also provided stable performance and fast convergence unlike traditional RL policies when
integrated into the RDIRL framework. Furthermore, preliminary experiments showed that competing
IRL methods paired with their original RL inner policies failed to converge in streaming mode too.
For consistency and fairness, we therefore adapt all competing methods to use MPPI as the inner
policy in both batch and streaming comparisons.

Our results show that RDIRL consistently outperforms all benchmarked methods in recovering reward
functions. Policies trained with rewards learned by RDIRL achieve optimal or near-optimal behavior
significantly faster than competing approaches. Crucially, unlike existing methods which require
large batches of expert trajectories and environment rollouts to converge, RDIRL leverages online
adaptation. This enables efficient learning from streaming demonstrations, making it particularly
well-suited for adversarial and time-limited scenarios.

Table 1: Comparison of normalized averaged reward values across all episodes for different Gym
environments and methods.

Methods CartPole MountainCar HalfCheetah-
v4

Hopper

SQIL (Reddy et al.,
2020)

0.947± 0.088 −0.001±4.79 −1.56± 0.89 0.799± 0.15

GAIL (Ho & Ermon,
2016)

0.934± 0.058 0.236± 0.203 −0.521± 1.15 0.714± 0.08

GCL (Finn et al., 2016b) 0.92± 0.09 0.247± 0.19 −0.226± 1.27 0.69± 0.075

AIRL (Fu et al., 2017) 0.953± 0.069 0.233± 0.204 −0.54± 1.11 0.709± 0.084

ML-IRL(Zeng et al.,
2022)

0.938± 0.093 0.253± 0.19 −0.32± 1.12 0.648± 0.06

RDIRL (ours) 0.993±0.013 0.68± 0.32 0.496± 0.59 0.803± 0.11
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Figure 1: Learning curves for RDIRL and other methods.

6.1 CONTINUOUS CONTROL

To assess the performance of our proposed approach RDIRL, we conduct inverse reinforcement learn-
ing (IRL) experiments on the CartPole and Mountain Car environments from OpenAI Gym (Brock-
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man, 2016) and HalfCheetah-v4, Hopper, and Walker2d from MuJoCo(Todorov et al., 2012), all
solved using model-free reinforcement learning. Each task has a predefined true reward function
provided by OpenAI Gym.

We first generate expert demonstrations for these tasks by training a PPO reinforcement learning
agent (Schulman et al., 2017) to maximize the true reward function. Each expert demonstration
consists of a state trajectory of size N steps specified in Table 3 in B.1 for each task, which is then
used as the sole expert trajectory for each IRL algorithm. Note that we do not use expert control
sequences trajectory since we do not have access to the expert’s control policy.

Next, we execute RDIRL to learn the reward function and train competing IRL algorithms using the
expert trajectory over multiple episodes in batch mode, where each episode consists of an expert
trajectory. This process is repeated for 12 Monte Carlo runs with different seeds. In all experiments,
we use MPPI as the internal control policy q(τ) to maximize the learned reward function, −cθ. A
detailed experiment description and parameter values of MPPI and IRL algorithms is described in
Appendix B.1

We plot the mean of the normalized cumulative reward values across all episodes of trajectories τ samp

sampled from the inner control policy q(τ) in Figure 1.the averaged reward values are normalized
with respect to the expert reward. In the case of RDIRL, τ samp used to calculate the reward function
in Figure 1 are generated online during training according to Algorithm 1. For the rest of the methods,
τ samp are generated offline after each offline training episode is completed.

All methods use the same neural network architecture to parameterize the reward function. Networks
are randomly initialized at the start of each experiment, and all experiments are run on Nvidia-H200
GPU Cluster with 1 GPU per job(seed).

Our proposed method, RDIRL, successfully learns reward functions across all benchmark environ-
ments and consistently outperforms competing methods. In CartPole and MountainCar, it quickly
recovers the expert reward even converging in one episode in CartPole, while in HalfCheetah
and Hopper it achieves faster convergence and higher reward quality than baselines, many of
which require far more episodes to converge or fail to converge. Learning curves in Figures 1
and 2 illustrate these improvements, with Walker2d results consistent with Figure 3 in (Reddy
et al., 2020), where rewards closer to the expert indicate better performance. Furthermore, ex-
perimental results in streaming settings with detailed descriptions are provided in Appendix B.5.
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Figure 2: Learning curves for for Walker2d.

Table 1 further shows that RDIRL achieves the
highest normalized rewards in most tasks. This
consistent outperformance stems from its recur-
sive structure and adaptive uncertainty-aware up-
dates, which improve sample efficiency and stabil-
ity. Unlike traditional IRL, our method requires
no fixed learning rate, as Pθ is updated at each
step and acts as an adaptive rate.

6.2 COGNITIVE RADAR

To evaluate whether our method can learn cost
functions of adversarial agents, we perform in-
verse reinforcement learning experiments on a
cognitive radar task. The task involves a radar
chasing a moving target in 3D space. The target
kinematic model follows constant velocity motion (Baisa, 2020) and the radar follows a second
order unicycle model (Potter et al., 2024), where the target is moving linearly in space while the
radar maximizes its Fisher Information Matrix (FIM) (Potter et al., 2024) to keep track of the target.
Both the radar and the target live in the same 3D x, y, z Cartesian plane. The goal of the target is
to learn the radar’s FIM from what it can observe from radar’s states, which is in our case radar’s
position in 3D x, y, z Cartesian coordinates. To achieve this goal using RDIRL,we execute Algorithm
1 where the radar’s cost function is learned online. The radar’s (expert) policy inside Algorithm 1
is an MPPI that maximizes radar’s FIM. The inner control policy q(τ) is an MPPI that maximizes
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the learned reward function, −cθ. The environmnent and IRL method’s parameters are described in
Table equation 3 inside the Appendix.

Table 2: Comparison of mean FIM reward values for the
Cognitive Radar example obtained by the different IRL
methods.

Methods Mean Cumulative Reward

GAIL (Ho & Ermon,
2016)

153.05

GCL (Finn et al., 2016b) 423.49

AIRL (Fu et al., 2017) 196.53

RDIRL(ours) 924.78

Furthermore, we compare RDIRL
against GAIL, AIRL and GCL. To imple-
ment these methods, we generate expert
trajectories for multiple episodes, where
the expert policy is an MPPI that maxi-
mizes the radar’s FIM. The inner control
policy q(τ) in all of these baselines is
an MPPI, with parameters specified in
table 3. We repeat this process for 5
Monte Carlo runs using different seeds.

To test if the target successfully learned
the radar’s reward function, we plot the
cumulative true FIM values resulting
from the trajectories τsamp sampled from the inner control policy q(τ) in Figure 3. We com-
pare RDIRL’s performance in learning the radar’s reward function against GAIL, GCL, and AIRL.
In the case of RDIRL, τ samp used to calculate the reward function in Figure 1 are generated online
during training according to algorithm 1. For the rest of the methods, τ samp are generated offline
after each offline training episode is completed.
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Episodes
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Figure 3: Learning curves for RDIRL and other
methods.

In all algorithms, we used the same neural net-
work architecture to parameterize the radar’s FIM
reward function: one hidden layer of 128 units,
with a RELU activation function All networks
were always initialized randomly at the start of
each experiment and all experiments are run on on
an intel core i7 CPU.

Results in Figure 3 show that RDIRL successfully
learns the radar’s FIM with a much faster con-
vergence rate than the benchmark methods. The
mean cumulative reward values across all episodes
for each method are summarized in Table 2. As
shown, RDIRL outperforms all other methods
in terms of the mean cumulative reward, signifi-
cantly outperforming the benchmark methods (i.e.,
AIRL, GCL, and GAIL).

7 CONCLUSIONS

We presented RDIRL within the IRL framework that generalizes recent advances in maximum entropy
deep IRL to online settings. We first established the equivalence between upper bound loss function
in equation 10 of the negative log likelihood in equation 2 to moment matching loss of (Swamy et al.,
2021). Second, we leveraged sequential second-order Newton optimization to derive an online IRL
algorithm by minimizing the moment matching loss function of equation 10 recursively and therefore
established key theoretical properties of maximum entropy online deep IRL

RDIRL can learn rewards and cost functions online and greatly outperforms both prior imitation
learning and IRL algorithms in terms of steps and samples required to converge. It generally
reproduces the batch method’s accuracy but in significantly less steps.
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A APPENDIX

B EXPERIMENT DETAILS

In this section, we list down the implementation details of RDIRL and the baselines. The code is
included in the supplementary material. We also report the hyperparameters used in the experiments,
the detailed network architectures, training procedures and evaluation procedures used for our
experiments.
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B.1 TRAINING

In all our experiments, we use MPPI(Williams et al., 2016) as inner policy q(τ) in our baseline
methods. MPPIis a probabilistic model predictive control policy that estimates an optimal action
distribution that minimizes an agent’s objective cost function. To do so, MPPI samples a number of
trajectories and weighs these trajectories depending on how well they minimize the cost function,
then updates the mean of its action distribution q(τ) accordingly. Since MPPI in an online policy , i.e
it updates itself every time step, it makes it a natural choice of inner policy for online IRL problems,
as we noticed in our preliminary experiments that it is much more stable and has faster convergence
that traditional RL methods when implemented inside RDIRL.

The implementation of the baselines (GCL, AIRL,SQIL,ML-IRL and GAIL) are adapted from
available public repository(HumanCompatibleAI, 2021).Furthermore, we adapt all the baselines
to use MPPI as inner policy alongside our proposed approach. Since the inner policy is not SAC
anymore like it was in the original baselines repositories, we tune the parameters of all the adapted
baselines using grid search to produce best possible performance. The resulting parameters were used
directly in RDIRL. We list the hyper-parameters of all the baselines used in different environments in
Table 3. These hyper-parameters were selected via grid search.

Table 3: list of parameters used in each environment

Environment Learning
rate

batch
size

reward
function
updates

Nsteps temperature horizon number of
trajecto-
ries

Cartpole-v1 1e− 4 150 15 150 1e-3 50 2000
MountainCar-
v0

1e− 4 200 15 200 1e-2 85 3500

HalfCheetah-
v4

1e− 4 200 15 200 1e-2 50 500

Walker2d 1e− 4 200 15 200 1e-2 50 500
Hopper 1e− 4 200 15 200 1e-2 50 500
Cognitive
Radar

1e− 4 200 10 200 1e-2 10 25

In all our experiments, we do multiple passes of parameter updates at the end of each episode using
the Adam optimizer for all the baselines for best performance, except in our proposed approach
RDIRL, since it is online. The number of passes is listed in the reward function update column of 3.
The number of steps executed in each episode in listed in Nsteps column. Temperature,horizon and
number of sampled trajectories are MPPI parameters.

PPO (Schulman et al., 2017) is used as the base MaxEnt RL algorithm for the expert policy. Adam is
used as the optimizer.

In our proposed RDIRL, we use the same parameters of 3. Additionally, we use Pθ0 = 1e− 2I and
Qθ = 1e− 4I where I is the identity matrix.

B.2 REWARD FUNCTION AND DISCRIMINATOR NETWORK ARCHITECTURES

We use the same neural network architecture to parameterize the cost-function/reward- func-
tion/discriminator for all methods. For continuous control task with raw state input, i.e. Cart-
pole,MountainCar, and the MuJoCo tasks, we use two-layer of MLP with ReLU activation function to
pa- rameterized the cost function/discriminator with a hidden size of (16,16). Networks are randomly
initialized at the start of each experiment, and all experiments are run on Nvidia-H200 GPU Cluster
with 1 GPU per job(seed), with runtimes ranging from 30s/episode for CartPole and 2mins/episode
for Walker2d on all benchmarked and competing IRL methods.
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B.3 RDIRL

RDIRL is recursive approach to deep inverse reinforcement learning (IRL), which incrementally
estimates the parameters of a cost function from expert demonstrations. The method incorporates
recursive updates inspired by Kalman filtering and quasi-Newton optimization, enabling efficient
online learning from streaming data without requiring full-batch access to the dataset. The core
algorithm is summarized in Algorithm 1.

The algorithm maintains a cost function cθ(τ) parameterized by θ, which maps trajectories τ to scalar
costs. The goal is to iteratively update θ such that trajectories generated from the current policy q(τ)
match the expert demonstrations.

At each outer iteration (episode), we initialize the sampling policy q(τ) which can be a stochastic
policy optimized with methods like PPO or MPPI, think of it as the IRL agent’s best guess at
mimicking the expert. Next, we initialize the parameter covariance Pθ0 along with a process noise
term Qθ. Pθ0 represents the uncertainty over the parameters θ and Qθ models uncertainty added to θ
at each step (analogous to Kalman filtering).

The recursive nature of the algorithm is especially suited for online settings: instead of processing the
entire expert dataset at once, RDIRL updates its internal model incrementally—one expert trajectory
at a time. For each inner iteration, as soon as the algorithm observes one real expert demonstration
τ demo
i , it samples a trajectory τ samp

i drawn from q(τ).

We compute the gradients ∇θcθ(τ
demo
i ) and ∇θcθ(τ

samp
i ), which quantify how each trajectory influ-

ences the current cost estimate. Additionally, the algorithm computes (approximate) Hessians for
both trajectories, which capture curvature information.

The parameter vector θ is then updated using a recursive rule:

θ̂(ti)← θ̂(ti−1)− Pθi

(
∇θcθ(τ

demo
i )−∇θcθ(τ

samp
i )

)
,

where denotes the posterior covariance of the parameter estimate. This resembles a Kalman filter
update, where the difference between expert and sampled gradients drives the parameter correction.
Pθi is also recursively updated:

Pθi ←
[
(Pθi−1 +Qθ)

−1 +∇2
θcθ(τ

demo
i )−∇2

θcθ(τ
samp
i )

]−1
.

This equation accounts for new second-order information while controlling for process uncertainty.

After updating θ, the sampling policy q(τ) is improved using any standard policy optimization method
(e.g., PPO, MPPI), guided by the updated cost function cθ. This process continues over K episodes,
gradually aligning the agent’s behavior with that of the expert.

B.4 DERIVATION OF THE RECURSIVE SECOND-ORDER NEWTON SOLUTION

In a similar fashion to Kalman filtering optimization process described in (Humpherys et al., 2012),
we seek to determine optimal solution Θ∗

N = {θ∗(t0), . . . , θ∗(tN )} using the second-order Newton
method sequentially, which recursively finds Θ∗

N given Θ∗
N−1. To do so, we start by breaking the

optimization function (11) as follows:

Li(Θi) = Li−1(Θi−1) + cθ(τ
demo
i )− cθ(τ

samp
i ) +

1

2
∥θ(ti)− θ(ti−1)∥2Q−1

θ
.

(14)

Next, we further divide equation 14 into the following form

Li(Θi) = Li|i−1(Θi) + cθ(τ
demo
i )− cθ(τ

samp
i ) (15)

where
Li|i−1(Θi) = Li−1(Θi−1) +

1

2
∥θ(ti)− θ(ti−1)∥2Q−1

θ
. (16)

Our optimization approach consists of minimizing equation 16 then minimizing equation 15 given
equation 16 and the minimizer Θ̂i|i−1 of equation 16. We proceed by minimizing equation 16 with
respect to Θi by finding Θi that drives the gradient of equation 16 to zero. By taking the gradient of
equation 16 with respect to Θi we obtain:

∇Li|i−1(Θi) =

[
∇Li−1(Θi)− LT

θ Q
−1
θ [θ(ti)− θ(ti−1)]

Q−1
θ [θ(ti)− θ(ti−1)]

]
(17)
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with Lθ = [0dθ×dθ
, . . . , 0dθ×dθ

, Idθ×dθ
] where Lθ ∈ Rdθ×((i−1)×dθ)

Now, let the estimate Θ̂i|i−1 of Θi be the minimizer of (16) obtained by setting∇Li|i−1(Θi) to zero,
and note that Θ̂i|i−1 can be broken as:

Θ̂i|i−1 =

[
Θ̂i−1

θ̂(ti−1)

]
(18)

Given equation 18 and equation 16, we proceed to minimize equation 15 using the second-order
Newton update. We start by deriving the gradient of equation 15 as follows:

∇Li(Θi) = ∇Li|i−1(Θ̂i|i−1) +
∂cθ(τ

demo
i )

∂θ
− ∂cθ(τ

samp
i )

∂θ

=

[
∇Li|i−1(Θ̂i|i−1)

∂cθ(τ
demo
i )

∂θ − ∂cθ(τ
samp
i )

∂θ

] (19)

For the sake of simplicity, let’s define the following variables:

C2
τdemo

(ti) =
∂2cθ(τ

demo
i )

∂2θ̂(ti−1)
, C2

τsamp
(ti) =

∂2cθ(τ
samp
i )

∂2θ̂(ti−1)

Cτdemo
(ti) =

∂cθ(τ
demo
i )

∂θ̂(ti−1)
, Cτsamp

(ti) =
∂cθ(τ

samp
i )

∂θ̂(ti−1)

Therefore, at Θi = Θ̂i|i−1, equation 19 becomes:

∇Li(Θi) =

[
0

Cτdemo
(ti)− Cτsamp

(ti)

]
(20)

Similarly, the Hessian of (15) is given by:

∇2Li(Θi) =

[
∇2Li−1(Θi−1) +Q−1

θ −LT
θ Q

−1
θ

−Q−1
θ Lθ Q−1

θ + C2
τdemo

(ti)− C2
τsamp

(ti)

]
(21)

Using the Newton second-order method, we can update our estimate of Θi given Θ̂i|i−1 as follows:

Θ̂i = Θ̂i|i−1 −
(
∇2Li(Θ̂i|i−1)

)−1

∇Li(Θ̂i|i−1) (22)

The resulting optimal variable θ̂(ti) ∈ Θ̂i is given by equation 12. The procedure is repeated until
ti = tN .

B.5 ADDITIONAL EXPERIMENTS RESULTS

B.5.1 ONLINE ADAPTATION OF COMPETING METHODS

In this section, we compare our proposed approach, RDIRL, with online-adapted versions of GAIL,
AIRL,ML-IRL, and GCL. The online adaptation involves training each competing method using one
expert demonstration at a time. Specifically, the loss function of each method is computed using a
single observed expert sample at each time step, followed by an immediate update of the reward
function neural network parameters. This process is repeated across the full episode of Nsteps.

As illustrated in Figure 4, our proposed method consistently outperforms the online-adapted baselines.
Furthermore, the online adaptation does not significantly improve the performance of the original
methods. In the case of Cartpole, it even leads to notable performance degradation and increased
instability compared to both the original baselines (GAIL, AIRL,ML-IRL, GCL) and our approach,
as shown in Table 4. These results highlight the advantage of our recursive optimization framework
in producing more stable and accurate reward functions over naive online adaptation.
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Figure 4: Learning curves for RDIRL and online adaptation methods.

Table 4: Comparison of mean reward values for different Gym environments and online adapted
methods.

Methods CartPole HalfCheetah-
v4

GAIL 0.934± 0.058 −0.521±1.15
GCL 0.92± 0.09 −0.226±1.27
AIRL 0.953± 0.069 −0.54± 1.11

GAIL-Online 0.74± 0.29 0.02± 0.51

GCL-Online 0.84± 0.25 0.1± 0.53

AIRL-Online 0.81± 0.26 0.01± 0.49

ML-IRL-Online 0.49± 0.29 0.14± 0.75

RDIRL (ours) 0.99± 0.13 0.49± 0.59
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