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ABSTRACT

Video generation has been used to generate visual plans for controlling robotic
systems. Given an image observation and a language instruction, previous work
has generated video plans which are then converted to robot controls to be ex-
ecuted. However, a major bottleneck in leveraging video generation for control
lies in the quality of the generated videos, which often suffer from hallucinatory
content and unrealistic physics, resulting in low task success when control actions
are extracted from the generated videos. While scaling up dataset and model size
provides a partial solution, integrating external feedback is both natural and es-
sential for grounding video generation in the real world. With this observation,
we propose VideoAgent for self-improving generated video plans based on exter-
nal feedback. Instead of directly executing the generated video plan, VideoAgent
first refines the generated video plans using a novel procedure which we call self-
conditioning consistency, utilizing feedback from a pretrained vision-language
model (VLM). As the refined video plan is being executed, VideoAgent collects
additional data from the environment to further improve video plan generation.
Experiments in simulated robotic manipulation from MetaWorld and iTHOR show
that VideoAgent drastically reduces hallucination, thereby boosting success rate
of downstream manipulation tasks. We further illustrate that VideoAgent can ef-
fectively refine real-robot videos, providing an early indicator that robotics can be
an effective tool in grounding video generation in the physical world.

1 INTRODUCTION

Large text-to-video models pretrained on internet-scale data have broad applications such as gen-
erating creative video content (Ho et al., 2022; Hong et al., 2022; Singer et al., 2022) and creating
novel games (Bruce et al., 2024), animations (Wang et al., 2019), and movies (Zhu et al., 2023). Fur-
thermore, recent work show that video generation can serve as simulators of the real-world (Yang
et al., 2023b; Brooks et al., 2024), as well as policies with unified observation and action space (Du
et al., 2024; Ko et al., 2023; Du et al., 2023). These recent applications of text-to-video generation
models hold the great promise of internet-scale knowledge transfer (e.g., from generating human
videos to generating robot videos), as well as paving the way to generalist agent (e.g., a single pol-
icy that can control multiple robots with different morphologies in different environments to perform
diverse tasks).
Nevertheless, text-to-video models have only had limited success in downstream applications in
reality. For instance, in video generation as policy (Du et al., 2024; Ko et al., 2023), when an ob-
servation image and a language instruction are given to a video generation model, generated videos
often hallucinate (e.g., objects randomly appear or disappear) or violate physical laws (e.g., a robot
hand going through an object) (Yang et al., 2023b; Brooks et al., 2024). Such hallucinations and
unrealistic physics have led to low task success rate when generated videos are converted to con-
trol actions through inverse dynamics models, goal conditioned policies, or other action extraction
mechanisms (Wen et al., 2023; Yang et al., 2024; Ajay et al., 2024).
While scaling up dataset and model size can be effective in reducing hallucination in large language
models (LLMs) (Hoffmann et al., 2022), scaling is more difficult in video generation models. This is
partially because language labels for videos are labor intensive to curate. Moreover, video generation
has not converged to an architecture that is more favourable to scaling (Yang et al., 2024). Scaling
aside, being able to incorporate external feedback to improve generation is one of the other most
important breakthrough in LLMs (Ouyang et al., 2022b). It is therefore natural to wonder what kind
of feedback is available for text-to-video models, and how we can incorporate these feedback to
further improve the quality of the generated videos.
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Figure 1: The VideoAgent Framework. VideoAgent first generates a video plan conditioned on an image
observation and task description similar to (Du et al., 2023), and undergoes (1) iterative video refinement using
feedback from a vision language model (VLM), (2) using the VLM to select the best refined video plan to
convert to control actions through optical flow, and (3) executing the control actions in an environment and
improving video generation using real-world feedback and additional data collected online.

To answer this question, we explore two types of feedback that are natural to acquire for video gen-
eration models, namely AI feedback from a vision-language model (VLM) and real-world execution
feedback when generated videos are converted to motor controls. To utilize these feedback for self-
improvement, we propose VideoAgent. Different from video generation as policy, which directly
turns a generated video into control actions (Du et al., 2023; Ko et al., 2023), VideoAgent is trained
to refine a generated video plan iteratively using feedback from a pretrained VLM. During inference,
VideoAgent queries the VLM to select the best refined video plan, followed by execution of the plan
in the environment. During online execution, VideoAgent observes whether the task was success-
fully completed and further improves the video generation model based on the execution feedback
from the environment and additional data collected from the environment. The improvement to the
generated video plan comes in two folds: First, we propose self-conditioning consistency for video
diffusion model inspired by consistency models (Song et al., 2023; Heek et al., 2024), which enables
low-quality samples from a video diffusion model to be further refined into high-quality samples.
Second, when online access to the environment is available, VideoAgent executes the current video
policy and collect additional successful trajectories to further finetune the video generation model
on the successful trajectories. A visual illustration of VideoAgent is shown in Figure 1.
We first evaluate the performance of VideoAgent in two simulated robotics manipulation environ-
ments, Meta-World (Yu et al., 2020) and iTHOR (Kolve et al., 2017), and show that VideoAgent
improves task success across all environments and tasks evaluated. VideoAgent can even improve
the success rate of difficult tasks by as much as 4X. Next, we provide a thorough study on the effect
of different components in VideoAgent, including different ways to prompt the VLM and different
types of feedback from the VLM, providing a recipe for utilizing VLM feedback for video genera-
tion. Lastly, we illustrate that VideoAgent can iteratively improve real-robot videos, providing early
signal that robotics can be an important mean to ground video generation models in the real world.

2 BACKGROUND

In this section, we provide the background on video generation as policy in a decision making
process (Du et al., 2023). We also introduce consistent diffusion models (Song et al., 2023; Heek
et al., 2024; Daras et al., 2024), which VideoAgent builds upon for self-refinement.

2.1 VIDEO AS POLICY IN SEQUENTIAL DECISION MAKING

We consider a predictive decision process similar to (Du et al., 2024): P := ⟨X ,G,A, H, E ,R⟩,
where X denotes an image-based observation space, G denotes textual task description space, A
denotes a low-level motor control action space, and H ∈ R denotes the horizon length. We de-
note π(·|x0, g) : X × G 7→ ∆(XH)1 as the language conditioned video generation policy, which
models the probability distribution over H-step image sequences x = [x0, ..., xH ] determined by
the first frame x0 and the task description g. Intuitively, x ∼ π(·|x0, g) correspond to possible vi-
sual paths for completing a task g. Given a sampled video plan x, one can use a learned mapping
ρ(·|x) : XH 7→ ∆(AH) to extract motor controls from generated videos through a goal-conditioned
policy (Du et al., 2023), diffusion policy (Black et al., 2023), or dense correspondence (Ko et al.,
2023). Once a sequence of motor controls a ∈ AH are extracted from the video, they are se-

1We use ∆(·) to denote a probability simplex function
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quentially executed in the environment E , after which a final reward R : AH 7→ {0, 1} is emitted
representing whether the task was successfully completed. For simplicity, we only consider finite
horizon, episodic tasks. Given a previously collected dataset of videos labeled with task descrip-
tions D = {(x, g)}, one can leverage behavioral cloning (BC) (Pomerleau, 1988) to learn π by
minimizing

LBC(π) = E(x,g)∼D[− log π(x|x0, g)]. (1)
Equation 1 can be viewed as maximizing the likelihood of the videos in D conditioned on the initial
frame and task description.
2.2 CONSISTENCY MODELS

Diffusion models (Ho et al., 2020; Song et al., 2020b) have emerged as an important technique for
data distribution modeling. During training, the model learns to map noisy data (at various noise
levels) back to clean data in a single step. Concretely, let x(0) denote a clean image and x(t) denote
the noisy image at noise level t, where t ∈ [0, T ], the training objective for a diffusion model
fθ(x

(t), t) can be written as

Ldiffusion(θ) = Ex(0),ϵ,t

[
∥fθ(x(t), t)− x(0)∥2

]
, (2)

where ϵ ∈ N (0, I) is the added noise, and x(t) =
√
αtx

(0)+
√
1− αtϵ where αt are time-dependent

noise levels. Although diffusion models have achieved high-quality image/video generation, they re-
quire hundreds or thousands of denoising steps during inference, which induces tremendous compu-
tational cost. To overcome the slow sampling speed of diffusion models, consistency models (Song
et al., 2023; Song & Dhariwal, 2023) were initially proposed by enforcing a consistency loss across
different noise levels, i.e.,

Lconsistency(θ) = Ex(0),ϵ,t1,t2

[
∥fθ(x(t1), t1)− stopgrad

(
fθ(x

(t2), t2)
)
∥2
]
, (3)

which encourages the output of the single-step map between different noise levels to be similar. In
fact, both the diffusion loss in Equation 2 and the consistency loss in Equation 3 can be understood
as exploiting the structure of the denoising procedure which corresponds to an ordinary differential
equation (ODE). Specifically, as introduced in (Song et al., 2023; 2020a), the backward denoising
procedure of a diffusion model can be characterized by an ODE, i.e.,

dx(t)

dt
= −t · s(x(t), t), (4)

with s(x(t), t) is some score function. During the entire path along t ∈ (ϵ,∞], following this ODE
should always maps x(t) to x(0). If we parametrize the model f(x(t), t) as the simulation following
the ODE governed by s(x(t), t), we obtain the diffusion loss (2). Meanwhile, for all t, t′ ∈ (ϵ,∞],
we have f(x(t), t) = f(x(t′), t′) along the simulation path, which induces the consistency loss (3).
Therefore, we can combine the diffusion loss and the consistency loss together for model training,
i.e.,

L(θ) = Ldiffusion(θ) + λ · Lconsistency(θ), (5)
where λ denotes consistency regularization hyperparameter across different noise levels.

3 VIDEO GENERATION AS AGENT

In this section, we introduce VideoAgent to improve video plan generation. Section 3.1 establishes
a new concept for video diffusion models, termed self-conditioning consistency, which enables iter-
ative refinement of video plans. In Section 3.2, we discuss how the video diffusion model trained
with self-conditioning consistency can be utilized to refine generated video plans during inference.
Finally, Section 3.3 explores how VideoAgent completes the self-improvement loop by collecting
additional online data to further train the video generation and refinement model.
3.1 VIDEO REFINEMENT THROUGH SELF-CONDITIONING CONSISTENCY

We consider first-frame-and-language conditioned video generation following (Du et al., 2023; Ko
et al., 2023), which generates a sequence of image frames to complete the task described by the
language starting from the initial image. Generated videos often exhibit realistic segments (e.g.,
the beginning) alongside hallucinated segments (e.g., the end) (Yang et al., 2023b). Hence, while
a video plan may not fully complete the specified task, the realistic segments provide a foundation
for refinement, focusing on correcting hallucinations to produce a coherent, task-completing video.
To leverage this partial progress, we propose a novel self-conditioning consistency mechanism. The
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mechanism iteratively refines the generated video by retaining realistic portions while correcting
inconsistencies in less accurate regions, transforming hallucinated segments into coherent task com-
pletions. This intuition underpins the design of the self-conditioning mechanism.
Let x(0) be a ground truth video, and x̂ a generated sample from the diffusion model. We define
a self-conditioning consistency model f̂θ(x̂,x(t), t), which takes a generated video x̂ and a noisy
version of the ground truth x(t) as input to predict the clean video. This enables iterative refinement
by conditioning on the previously generated sample, as shown in Figure 2.

Figure 2: An illustration of Self-Conditioning Con-
sistency model. Horizontal rows: denoising steps. Ver-
tical rows: refinement iterations. x̂i+1 denotes the gen-
erated video plan at refinement iteration (i + 1). We
condition the refinement on the generated video from
the previous iteration x̂i.

We observe that self-conditioning is inspired by
a reparameterization of the implicit ODE solver
for Equation 4 (Song et al., 2020a; Lu et al.,
2022; Zhang & Chen, 2022; Chen et al., 2022).
For instance, Song et al. (2020a) considered the
first-order ODE solver for Equation 4 follow-
ing:

x(t−1) =
√
αt−1x

(0)+
√
1− αt−1 − σ2

t ·s(x(t), t).

(6)
In VideoAgent, we adapt Equation 6 by replac-
ing the “predicted x(0)” term with x̂, the previ-
ously generated video sample, as illustrated in
Figure 2. We remark that although f(·) shares
similar parametrization to DDIM (Song et al.,
2020a) as an ODE solver, our method uses x̂
from previous iterations, which is significantly
different from traditional DDIM-based approaches that rely on “predicted x(0)” derived from x(t) in
the same iteration. This modification not only reduces the additional computational cost of DDIM
for predicting x(0), but more importantly, ensures alignment across iterations, progressively refining
video quality through the self-conditioning mechanism. Introducing additional iteration-level con-
sistency in the refinement procedure through the self-conditioning mechanism allows the denoising
model to shortcut potential failures and reduce inference trials in the planning stage.
We learn the ODE solver through self-conditioning consistency by directly predicting the clean
video x(0) using:

Lself-conditioning-consistency(θ) = Ex̂,x(0),t

[
∥f̂θ(x̂,x(t), t)− x(0)∥2

]
+ λEx̂1,x̂2,t

[
∥f̂θ(x̂1,x

(t), t)− f̂θ(x̂2,x
(t), t)∥2

]
. (7)

Equation 7 formalizes the self-conditioning consistency mechanism. The first term represents the
standard diffusion loss, while the second term regularizes the similarity between independently gen-
erated samples (x̂1 and x̂2) to promote coherence across iterations. During training, we set λ = 0
to focus exclusively on individual sample consistency, while at inference, iterative refinement en-
sures alignment between subsequent predictions. This iterative refinement process distinguishes our
approach from traditional consistency models, as we map any hallucinated or incoherent video to
a progressively more realistic and coherent output. To enable the “first guess” for x̂, we consider
fθ(x

(t), t), which is still learned by the vanilla objective for video diffusion:

Lvideo-diffusion(θ) = Ex(0),ϵ,t

[
∥fθ(x(t), t)− x(0))∥2

]
. (8)

The overall objective for training a self-conditioning-consistent video diffusion model thus becomes:
L(θ) = Lvideo-diffusion(θ) + λLself-conditioning-consistency(θ). (9)

Note that while the video generation model fθ and the video refinement model f̂θ have different
input arguments, we can share their parameters to train a single unified model for both video gener-
ation and refinement tasks. This parameter-sharing approach allows us to leverage the same model
architecture for generating initial video plans and iteratively refining them using self-conditioning
consistency. The training process for fθ and f̂θ is detailed in Algorithm 1.

Feedback Guided Self-Conditioning Consistency. While we can refine videos only from previ-
ously generated samples, it may be desirable to condition the refinement process on any additional
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feedback for the previously generated video that is available (e.g., feedback from humans or vision
language models critiquing which part of the generated video is unrealistic). When such feedback
is available, we can have the refinement model f̂ further take the additional feedback as input, com-
bined with the task description, to guide the refinement process, i.e.,

f̂θ(x,x
(t), t|feedback), (10)

which can be plugged into our framework for learning using Equation 9.

3.2 INFERENCE THROUGH VLM GUIDED VIDEO GENERATION.

After training the video generation model fθ and the video refinement model f̂θ described in Equa-
tion 8 and Equation 7, we can sample from fθ and iteratively apply f̂θ for video refinement. Specif-
ically, let η be the step size for the noise schedule, σt be a time dependent noise term, VideoAgent
first “guesses” the video plan using the first-frame-and-language conditioned video generation gen-
eration, i.e.,

x(t−1) = x(t) − η · ∇θfθ(x
(t), t) + σt · ϵ (11)

The sample x̂ after T denoising steps corresponds to the generated video. Next, we can iteratively
apply f̂θ to refine the generated video sample

x̂(i+1) = f̂θ(x̂(i),x
(t), t), (12)

where i denotes the video refinement iteration, with x̂(0) = x̂ = x(T ). We denote the final video
after refinement as x̂refined. A natural question is when to stop the iterative video refinement process.
One option is to always refine for a fixed number of iterations. However, over-refinement may lead
to less diverse output. To overcome this, we leverage a VLM as a proxy for the environment’s
reward to assess whether a refined video is likely to lead to successful execution in the environment.
Specifically, we denote a VLM as R̂, which takes a refined video x̂(i) and returns a binary value
{0, 1} to determine whether a video is acceptable based on overall coherence, adherence to physical
laws, and task completion (See prompt for VLM in Appendix A). With R̂, the refinement stops
when the VLM decides that the refined video is acceptable. Namely, we have

x̂refined = x̂(i∗), where i∗ = min
{
i : R̂(x̂(i)) = 1

}
(13)

Algorithm 2 shows how video plans are generated, refined, and selected at inference time.

Algorithm 1: Training of Video Generation and Refinement Models with VLM Feedback
Input: Dataset D, learning rate γ, total training iterations N , initial model parameters θ, video

generation model fθ, video refinement model f̂θ, VLM R̂
for iteration = 1 to N do

Sample {(x(0), g)} ∼ D and t ∼ Uniform({0, 1, . . . , T});
Compute vanilla diffusion loss:
Lvideo-diffusion =

∥∥fθ(x(t), t)− x(0)
∥∥2;

Generate x̂ following Equation 11 and sample feedback ∼ R̂(·|x̂);
Compute consistency loss:

Lself-conditioning-consistency =
∥∥∥f̂θ(x̂,x(t), t |feedback)− x(0)

∥∥∥2;
Update parameters:

θ ← θ − γ∇θ (Lvideo-diffusion + Lself-conditioning-consistency);

3.3 SELF-IMPROVEMENT THROUGH ONLINE FINETUNING

In addition to video refinement through self-conditioning consistency as described in Section 3.1,
we can further characterize the combination of video generation and video refinement as a policy,
which can be improved by training on additional real data collected from the environment during
online interaction. Specifically, the goal is to maximize the expected returns of a policy through
trial-and-error interaction with the environment:

Jonline(θ) = E [R(a) |πθ, ρ, E ] , (14)
where R is the true reward function, E is the interactive environment, and πθ corresponds to Algo-
rithm 2, which contains both the video generation model fθ and the video refinement model f̂θ as
learnable components to be improved.
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A broad array of reinforcement learning methods (Sutton & Barto, 2018) such as policy gradi-
ent (Schulman et al., 2017) can be employed to maximize the objective in Equation 14. For sim-
plicity, we consider the setup of first executing the policy in the environment, then filtering for
successful trajectories, continuing finetuning the video policy using additional online data, and exe-
cuting the finetuned policy again to collect more data. Specifically, each online iteration constructs
an additional dataset by rolling out the policy πθ at the current online iteration

Dnew = {x̂refined ∼ πθ(x0, g) | R(ρ(x̂refined)) = 1} , (15)
where ρ is the optical flow model that maps the refined video to low-level control actions. See
Algorithm 3 for details of online policy finetuning.

Algorithm 2: VLM Guided Replan
Input: Initial frame x0, task description g,

RewardR, Environment E , VLM R̂,
max refine iterations, max replans

for replan count = 1 to max replans do
x̂← πθ(x0, g);
for i = 0 to max refine iterations do

response← R̂(x̂(i), g);
if response == ACCEPT then break;
x̂(i+1) ← πθ(x̂(i), x0, g);

success← R(ρ(x̂refined));
if success then break;
x0 ← E .get state();

Algorithm 3: Online Finetuning of Video
Generation and Refinement Models
Input: Dataset D, policy πθ, RewardR,

Environment E
for iteration i = 1 to N do
Dnew ← ∅;
for each (·, g) in D do

x0 ← E .reset(g);
x̂refined ∼ πθ(x0, g);
ifR(ρ(x̂refined)) then
Dnew ← Dnew ∪ (x̂refined, g);

D ← D ∪Dnew;
Finetune θ using Algorithm 1 on D;

4 EXPERIMENTS

We now evaluate the performance of VideoAgent, introducing the experimental settings and vari-
ants of VideoAgent in Section 4.1, end-to-end success rate of VideoAgent against the baselines in
Section 4.2 and the effect of different components of VideoAgent in Section 4.3. Finally, we show
that VideoAgent is effective in improving the quality of real robotic videos in Section 4.4.

4.1 DATASETS AND EXPERIMENTAL SETUPS

Datasets and Environments. We follow the same evaluation setting as (Ko et al., 2023), which
considers three datasets: Meta-World (Yu et al., 2020), iTHOR (Kolve et al., 2017), and BridgeData
V2 (Walke et al., 2023). Meta-World consists of 11 robotic manipulation tasks performed by a sim-
ulated Sawyer arm, with video demonstrations captured from three distinct camera angles. iTHOR
is a simulated 2D object navigation benchmark, where an agent searches for specified objects across
four room types. BridgeData V2 is a real-world dataset of robotic manipulation. See more details
of datasets and environments in Appendix C.
Baselines and VideoAgent Variants. We consider the following methods for comparison:
• AVDC (baseline). This is the Actions from Video Dense Correspondences (AVDC) (Ko et al.,

2023) baseline, which synthesizes a video and predicts optical flow to infer actions.
• AVDC-Replan (baseline). When the movement stalls, AVDC-replan re-runs video generation and

action extraction from the flow model to execute a new plan.
• VideoAgent. Our proposed video refinement model through self-conditioning consistency as in-

troduced in Section 3.1. VideoAgent generates video and iteratively refines a video plan. We use
GPT-4 Turbo for selecting the best video plan during inference (Section 3.2).

• VideoAgent-Online. As actions are executed in the online environment, successful trajectories
are collected and used to continue training the video generation and refinement model, as de-
scribed in Section 3.3.

• VideoAgent-Online-Replan. This variant incorporates online filtering of successful trajectories
with the replanning mechanism, where replanning is conducted first, and more successful trajec-
tories after replanning are added back to the training data.

4.2 END-TO-END TASK SUCCESS

Meta-World. We report the task success of baselines and VideoAgent in Table 1. Following Ko
et al. (2023), we measure the average success across 3 camera poses with 25 seeds per pose. Without

6
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Table 1: Meta-World Results. The mean success rates of baselines and VideoAgent on 11 simulated robot
manipulation environments from Meta-World. VideoAgent consistently outperforms baselines across all tasks.

door-open door-close basketball shelf-place btn-press btn-press-top

AVDC 30.7% 28.0% 21.3% 8.0% 34.7% 17.3%
AVDC-Replan 72.0% 89.3% 37.3% 18.7% 60.0% 24.0%

VideoAgent 40.0% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent-Online (Iter1) 41.3% 32.0% 17.3% 12.0% 45.3% 14.7%
VideoAgent-Online (Iter2) 44.0% 29.3% 18.7% 18.7% 46.7% 16.0%
VideoAgent-Online-Replan 80.0% 97.3% 40.0% 22.7% 72.0% 40.0%

faucet-close faucet-open handle-press hammer assembly Overall

AVDC 12.0% 17.3% 41.3% 0.0% 5.3% 19.6%
AVDC-Replan 53.3% 24.0% 81.3% 8.0% 6.7% 43.1%

VideoAgent 46.7% 12.0% 36.0% 0.0% 1.3% 22.3%
VideoAgent-Online (Iter1) 38.7% 13.3% 36.0% 0.0% 4.0% 23.2%
VideoAgent-Online (Iter2) 49.3% 21.3% 44.0% 1.3% 1.3% 26.4%
VideoAgent-Online-Replan 58.7% 36.0% 85.3% 8.0% 10.7% 50.0%

online environment access, VideoAgent improves the overall success rate from self-conditioned
consistency alone over the baseline (19.6% to 22.3%). Some tasks, such as faucet-close, show drastic
improvement from 12% to 46.7%. With online data collection, VideoAgent-Online further improves
success rates, with each online iteration (rolling out the policy, collecting successful trajectories, and
continuing finetuning) boosting performance. When replanning is introduced, VideoAgent achieves
50% success, setting a new state-of-the-art. Detailed baseline results are in Appendix D.2, and
qualitative improvements in refined videos are shown in Figure 9 in Appendix H.

Table 2: iThor Success Rates comparing
VideoAgent with the AVDC baseline.

Room AVDC VideoAgent

Kitchen 26.7% 28.3%
Living Room 23.3% 26.7%
Bedroom 38.3% 41.7%
Bathroom 36.7% 40.0%

Overall 31.3% 34.2%

iTHOR. Next, we evaluate VideoAgent on iThor. Due to
the high computational cost of running the iThor simula-
tor, we focus only on evaluating self-conditioning consis-
tency (without online access). We follow the same setup
as (Ko et al., 2023), where we measure the average suc-
cess rate across four rooms each with three objects using
20 seeds. As shown in Table 2, VideoAgent consistently
outperforms the baseline, demonstrating the effectiveness of
self-conditioning consistency in producing more plausible
video plans.

4.3 UNDERSTANDING THE EFFECT OF DIFFERENT COMPONENTS IN VIDEOAGENT

In this section, we aim to understand the effect of different components of VideoAgent. Specifically,
we focus on the effect of (1) different types of feedback given to the refinement model, (2) the
number of refinement and online iterations, and (3) the quality of the VLM feedback.

4.3.1 EFFECT OF DIFFERENT VLM FEEDBACK. Table 3: Effect of Different Feedback
used to train the refinement model. De-
scriptive feedback from the VLM leads
to higher improvement in task success.

Overall

AVDC 19.6%

VideoAgent 22.9%
VideoAgent-Binary 23.8%
VideoAgent-Suggestive 26.6%

In the previous section, we only used VLM during infer-
ence to determine when to stop refining a generated video.
However, it is natural to wonder if information-rich feedback
from the VLM, such as language descriptions of which part
of a generated video to improve, might lead to better refined
videos. To answer this question, we propose a few variants of
VideoAgent according to the feedback available when train-
ing the video refinement model as in Equation 10. Specifi-
cally, we use VideoAgent to denote training the video refine-
ment model only conditioned on the original task description. VideoAgent-Binary denotes addi-
tionally conditioning on whether a generated video is determined to be successful by the VLM.
VideoAgent-Suggestive denotes conditioning additionally on language feedback from the VLM on
which part of the video needs improvement and how the video can be improved. We train these
three versions of the video refinement model, and report the overall task success from Meta-World
in Table 3. We see that VideoAgent-Binary improves upon the base VideoAgent, while training
with descriptive feedback in VideoAgent-Suggestive leads to even better performance. This sug-
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Figure 3: Effect of Refinement Iterations. The ac-
curacy of downstream tasks generally increases as the
number of refinement iteration increases.

Figure 4: Effect of Online Iterations. The overall
task success of VideoAgent increases as the number
of online iterations increases.

gests that richer feedback from the VLM can facilitate better training of the video refinement model.
Improvement for each individual task can be found in the Appendix F.

4.3.2 EFFECT OF REFINEMENT AND ONLINE ITERATIONS.

Next, we want to understand whether more refinement iterations and online finetuning iterations
generally lead to higher task success. We found that while different tasks require a different num-
ber of iterations to achieve the best performance, VideoAgent does perform better as the number of
refinement and online iterations increases, as shown in Figure 3 and Figure 4. During video refine-
ment, specific tasks such as handle-press and faucet-close continue to see improvement even at the
fifth refinement iteration. Faucet-close especially benefits from more refinement iterations, bringing
success rate from 17.3% to 49.3% after five refinement iterations. The improved task success rates
across refinement and online iterations suggests that self-conditioning consistency discussed in Sec-
tion 3.1 and online interaction discussed in Section 3.3 can indeed effectively reduce hallucination
and improve physical plausibility in the generated videos.

4.3.3 ACCURACY OF VLM FEEDBACK ON GENERATED VIDEOS.

Table 4: VLM Performance measured according to
whether a VLM considers a generated video as acceptable
using human label as the ground truth.

Precision Recall F1-Score Accuracy

Unweighted 0.65 0.89 0.76 0.69
Weighted 0.92 0.58 0.71 0.75

Without Cam 3 0.91 0.71 0.80 0.79

Since this work is among the first to lever-
age a VLM to give feedback for video gen-
eration, it is crucial to understand whether
a VLM can in fact achieve a reasonable ac-
curacy in providing feedback for video gen-
eration. To quantify the performance of a
VLM, we use human labels on whether a
generated video is acceptable as the ground
truth, and measure precision, recall, F1-score, and accuracy based on whether GPT-4 Turbo thinks
the generated video is acceptable according to trajectory smoothness (consistent across sequential
frames), physical stablility, and achieving the goal (See full prompt in Appendix A). We report the
average result across 36 generated videos from the Meta-World dataset in Table 4. We see that the
original prompt we used (Unweighted) achieves 69% accuracy, suggesting that the VLM is capa-
ble of judging generated videos. Since VideoAgent uses multiple refinement iterations, we want to
avoid false positives where a bad video is accidentally accepted. We can achieve this by penalizing
false positives through reweighting its cost in the prompt, which leads to the VLM rejecting videos
when the VLM is uncertain about the video’s acceptability. This adjustment results in a signifi-
cant increase in precision as shown in Table 4. This weighted version of the prompt is used in the
experiments in Section 4.2.
Partial Observability. In the AVDC experimental setup, center cropping the third camera (what is
used in the pipeline) often results in most of the robot arm being outside of the frame. We found that
the accuracy of the VLM is affected by such partial observatbility. As shown in Table 4, removing
the third camera from the prompt leads to much higher accuracy.
Descriptive Feedback. While the VLM can provide binary feedback on whether a generated video
is acceptable, we also measure the accuracy of the VLM in giving more descriptive feedback such as
identifying the issue and providing suggestions on how to improve the video. We use three examples
with human written language feedback as prompt for in-context learning. GPT-4 Turbo achieves
73.5% accuracy on identification and 86.1% accuracy on suggestion, as evaluated by humans. This
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Table 5: BridgeData-V2 Results. Quantitative metrics comparing AVDC and VideoAgent on generated Bridge
data. VideoAgent outperforms the baseline according to all except for one metric.

Metrics AVDC Video Agent

Clip Score 22.39 22.90
Flow Consistency 2.48 ± 0.00 2.59 ± 0.01

Video Score

Visual Quality 1.97 ± 0.003 2.01 ± 0.003
Temporal Consistency 1.48 ± 0.01 1.55 ± 0.01

Dynamic Degree 3.08 ± 0.01 3.07 ± 0.02
Text to Video Alignment 2.26 ± 0.003 2.30 ± 0.03

Factual Consistency 2.02 ± 0.004 2.07 ± 0.01

Average Video Score 2.16 ± 0.01 2.20 ± 0.01

Human Eval on Task Success 42.0% 64.0%

result is highly encouraging and opens up future directions of leveraging descriptive feedback from
VLMs to improve video generation.

4.4 EVALUATING SELF-REFINEMENT ON REAL-WORLD VIDEOS

In this section, we evaluate VideoAgent’s ability to refining real-world videos, which often contain
higher variability, intricate details, nuanced behaviors, and complex interactions. We study the effect
of video refinement using both quantitative metrics and qualitatively for holistic evaluation.
Quantitative Evaluation. Following previous literature on video generation, we consider two
reference-free metrics, CLIP Score (Hessel et al., 2021) and Flow Consistency (Teed & Deng, 2020),
as well as a set of Video-Scores (He et al., 2024). CLIP Score measures the cosine similarity between
frame feature and text prompt, whereas Flow Consistency measure the smoothness and coherence
of motion in the videos calculated from the RAFT model. Video-Scores use five sub-metrics with a
focus on correlation with human evaluation and real-world videos.
We report the average across 2250 videos generated from the AVDC baseline and from VideoAgent
in Table 5. VideoAgent performs better according to all metrics except for Dynamic Degree from
Video-Score (which shows similar performance between the two methods). Notably, the gain is
significant in metrics critical for real-world videos, such as CLIP Score, Factual Consistency, and
Text-to-Video Alignment. Improvement in Flow Consistency and Temporal Consistency suggests
that VideoAgent produces smoother and more physically plausible videos that adhere better to the
physical constraints of the real-world. This directly translates to better performance in real-world
robotic tasks in Table 1.
Qualitative Evaluation. Next, we qualitatively evaluate generated videos from the AVDC base-
line and from VideoAgent. We collect 50 generated videos from each model and conduct human
evaluation on whether a generated video looks realistic. Videos with refinement from VideoAgent
improves the acceptance rate by 22% as shown in Table 5. We further show an example video
with and without refinement in Figure 5, where the baseline (middle row) hallucinates (the bowl
disappears) whereas VideoAgent produces the video that completes the task (bottom row). We also
present a more fine-grained analysis of Visual Quality, Temporal Consistency, Dynamic Degree,
Text to Video Alignment, and Factual Consistency evaluated by humans in the Appendix G with the
metrics in Table 9, which further echos the results of human evaluations presented in Table 5.

Figure 5: Correcting Hallucinations in Video Generation: The AVDC model hallucinates after the second
frame, removing the colander and placing the banana on the table. In contrast, VideoAgent accurately retains
the colander’s position and correctly places the banana inside.
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5 RELATED WORK

Feedback and Self-improvement in LLMs. Incorporating feedback and preference signals from
feedback into the finetuning process of LLMs, has led to the enormous popularity and practical us-
ability of the current versions of LLMs as chatbots (Casper et al., 2023). Preference feedback from
humans or other AI systems (Ouyang et al., 2022a; Lee et al., 2023; Kaufmann et al., 2023) are first
collected to train a reward model to guide the LLM’s generation or do implicit policy optimization
(Schulman et al., 2017; Rafailov et al., 2024). Furthermore LLMs have shown the ability to further
improve by iterative refinement during finetuning and inference (Zelikman et al., 2022; Yuan et al.,
2024; Tian et al., 2024). We incorporate this reward driven improvement mechanism in our work,
but unlike the LLM setting where the feedback came from a reward model or some proxy of this
prefernce model, in our VideoAgent we use natural feedback from real world when simulated videos
are turned into actions that are executed in the real world.
Image and Video Generation and Editing. With the advent of large scale foundation models
pretrained on internet scale data (Bommasani et al., 2021), generation of super realistic multimodal
content has become easier. Text generation, image or video generation, and cross-modal generation
(OpenAI et al., 2024; Reid et al., 2024; Wu et al., 2021; Ho et al., 2022; Singer et al., 2022; Yang
et al., 2023a; Blattmann et al., 2023) has seen major advancements leveraging the autoregressive
and diffusion based models architectures. And moving beyond simple generation, these models
have been leveraged for guided text, image or video editing and enhancement (Huang et al., 2024)
to improve textual and visual aesthetics applied mostly to generative media (Zhang et al., 2023).
But none of these existing methods focus on grounding a generative simulator in the real world to
perform more complex interactive multi-turn agentic and physical tasks needing both perception
and control. To solve this bottleneck, we propose VideoAgent to self-improve or edit generated plan
based on grounded feedback from real-world to execute robot manipulation tasks.
Video Generation for Robot Learning. Video-based learning for robotics has been extensively
studied (Nair et al., 2022; Bahl et al., 2022; Shao et al., 2021; Chen et al., 2021; Pari et al., 2022;
Sharma et al., 2019; Sun et al., 2018; Lee & Ryoo, 2017). Methods use video datasets for visual
representation learning, goal extraction, and dynamic models for planning (Finn & Levine, 2017;
Kurutach et al., 2018), or imitation learning from expert actions (Fang et al., 2019; Wang et al.,
2023; Mani et al., 2024), state sequences (Torabi et al., 2019; Lee et al., 2021; Karnan et al., 2022),
and pretraining on videos followed by RL (Baker et al., 2022; Escontrela et al., 2023). Recently,
generative models have advanced video-based learning and planning, framing decision-making as
text-conditioned video generation to predict trajectories (Du et al., 2024; Ko et al., 2023; Wen
et al., 2023). Vision-language and text-to-video models generate long-horizon plans for robotic
tasks through abstract, visually grounded planning (Du et al., 2023; Ajay et al., 2024). Generative
models also simulate agent-environment interactions, enabling zero-shot deployment (Yang et al.,
2023b), and test-time feedback for replanning (Bu et al., 2024). Unlike these, our VideoAgent
improves video generation during training with real-world feedback and refines actions through
test-time self-iteration and replanning.

6 CONCLUSION AND FUTURE WORK

We have presented VideoAgent, where a video generation model acts as an agent by generating and
refining video plans, converting video plans into actions, executing the actions in an environment,
and collecting additional data for further self improvement. Through interaction with an external
environment, VideoAgent provides a promising direction for grounding video generation in the real
world, thereby reducing hallucination and unrealistic physics in the generated videos according to
real-world feedback. In order to fully achieve this overarching goal, VideoAgent needs to overcome
a few limitations, which calls for future work:
• In the online setting, VideoAgent only considers filtering for successful trajectories for further

finetuning. Exploring other algorithms such as online RL is interesting future work.
• VideoAgent utilizes optical flow for action extraction. It would be interesting to see how VideoA-

gent works with inverse dynamics model or image-goal conditioned diffusion policy.
• We only measured end-to-end task success in simulated robotic evaluation settings. It would be

interesting to see how VideoAgent works with real robotic systems.
• As additional data is being collected in the online setting, in addition to finetuning the video

prediction model, one can also finetune the action extraction module (flow model), and the VLM
feedback model using the additionally collected data, which we defer to future work.
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A PROMPT STRUCTURE FOR VLM FEEDBACK

A.1 BINARY CLASSIFICATION

We employ a structured prompting strategy to provide feedback on video sequences for the zero-shot
classification. The process consists of one Query-Evaluation Phase, each with distinct sub-goals.

BINARY CLASSIFICATION

Task: You are a video reviewer evaluating a sequence of actions presented as seven consecutive
image uploads, which together represent a single video. You are going to accept the video if it
completes the task and the video is consistent without glitches.
Query-Evaluation Phase:
• Inputs Provided:

– Textual Prompt: Describes the task the video should accomplish.
– Conditioning Image: Sets the fixed aspects of the scene.
– Sequence of Images (7 Frames): Represents consecutive moments in the video to be

evaluated.
• Evaluation Process:

– View and Analyze Each Frame: Examine each image in sequence to understand the
progression and continuity of actions.

– Assess Overall Coherence: Determine if actions transition smoothly and logically from
one image to the next.

– Check for Physical Accuracy: Ensure adherence to the laws of physics, identifying any
discrepancies.

– Verify Task Completion: Confirm the sequence accomplishes the task described in the
textual prompt.

– Identify Inconsistencies: Detect inconsistencies in object movement or overlaps that do
not match the conditioning image.

• Evaluation Criteria:
– Accept the sequence if it is a coherent video that completes the task.
– Reject the sequence if any frame fails to meet the criteria, showing inconsistencies or not

achieving the task. Be very strict, rejecting even minor errors.
• Response Requirement:

– Provide a single-word answer: Accept or Reject. Do not give reasoning.
• Additional Notes:

– No further clarification can be requested.
– Elements from the conditioning image must match those in each frame of the sequence.
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A.2 IDENTIFICATION AND SUGGESTION:
We employ a structured prompting strategy to provide descriptive feedback on video sequences via
an in-context few-shot classification setup. The process consists of one Query-Evaluation Phase,
each with distinct sub-goals.

IDENTIFICATION AND SUGGESTION

Task: You are a video reviewer tasked with evaluating a series of actions depicted through
eight consecutive image uploads. These images together simulate a video. This task is struc-
tured as a few-shot learning exercise, where you will first review three examples and then apply
learned principles to new queries. Query-Evaluation Phase:

• Inputs Provided:
– Textual Prompt: Describes the intended outcome or task the video aims to

accomplish.
– Conditioning Image: Establishes the fixed elements of the scene.
– Sequence of Images (7 Frames): Illustrates consecutive moments in the video,

representing the action sequence.
• Evaluation Process:

– Frame-by-Frame Analysis: Carefully examine each of the seven images to
understand the progression and continuity of actions.

– Assess Overall Coherence: Evaluate the sequence as a whole to determine if
the actions transition smoothly from one frame to the next while maintaining
logical progression.

– Check for Physical Accuracy: Ensure each frame complies with the laws of
physics, identifying any discrepancies in movement or positioning.

– Verify Task Completion: Confirm if the sequence as a whole accomplishes the
task described in the textual prompt.

– Identify Inconsistencies: Detect inconsistencies in object movement or over-
laps that contradict the fixed scene elements depicted in the conditioning image.

• Evaluation Criteria:
– Descriptive Feedback: Based on your evaluation, provide a concise, construc-

tive sentence suggesting specific improvements. Focus on enhancing physical
accuracy and task fulfillment based on identified inconsistencies or discrepan-
cies.

• Response Requirement:
– Feedback must be derived from your observations during the evaluation and not

exceed 20 words.
• Additional Notes:

– No further clarification can be requested.
– Elements from the conditioning image must match those in each frame of the

sequence.
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B TASK DESCRIPTIONS AND IN-CONTEXT EXAMPLES FOR VLM FEEDBACK

TASK DESCRIPTION AND SUCCESS CRITERIA

• door-open: The robot arm has to open the door by using the door handle.
• door-close: The robot arm has to close the door by pushing the door or the handle.
• basketball: The robot arm has to pick up the basketball and take it above the hoop.
• shelf-place: The robot arm has to pick up the blue cube and place it on the shelf.
• button-press: The robot arm has to press the red button from the side by pushing it

inside.
• button-press-topdown: The robot arm has to press the red button from the top by

pushing it downward.
• faucet-close: The robot arm has to use the red faucet handle and turn it anti-

clockwise.
• faucet-open: The robot arm has to use the red faucet handle and turn it clockwise.
• handle-press: The robot arm has to press the red handle downward.
• hammer: The robot arm has to grip and pick up the hammer with a red handle and

hit the peg on the box inside.
• assembly: The robot arm has to pick up the ring and place it into the red peg.

Figure 6: Few-Shot Examples given to VLM: We provide some examples to the VLM and corresponding
feedback to teach the VLM in-context how to critic the generated videos for task completion and success or
failure.

C DATASET DESCRIPTIONS IN DETAIL

Meta-World (Yu et al., 2020) is a simulation benchmark that uses a Swayer robotic arm to perform a
number of manipulation tasks. In our experiments, we make use of 11 tasks as shown in Table 1. We
capture videos from three distinct camera angles for each task and use the same camera angles for
both the training and testing phases. We gather five demonstration videos per task for each camera
angle. During the evaluation, we tested on each of the three camera angles with 25 seeds per camera
angle. The position of the robot arm and the object is randomized at the beginning of each seed to
ensure variability. A trajectory is considered successful if the Video Agent reaches within a really
close threshold of the goal state.
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Figure 7: Environments and Datasets that we work with: Meta-World, iThor, and BridgeData-V2

iTHOR (Kolve et al., 2017) is another popular 2D simulated benchmark that focuses on embodied
common sense reasoning. We evaluate the Video as Agent framework on the object navigation tasks,
where an agent is randomly initialized in a scene and tasked with finding an object of a specified
type (e.g., toaster, television). At each time step, the agent can take one of the four possible actions
(MoveForward, RotateLeft, RotateRight, or Done), and observes a 2D scene to operate in. We
selected 12 objects ((e.g. toaster, television) to be placed in 4 different room types (e.g. kitchen,
living room, bedroom, and bathroom). Again, the starting position of the agent is randomized at the
start of each episode. During evaluation, we test the agent across 12 object navigation tasks spread
across all 4 room types, 3 tasks per room. A trajectory is successful if the agent views and reaches
within 1.5 meters of the target object before reaching the maximum environment step or predicting
Done.
To test the usefulness of our framework across different videos types, we also use the BridgeData
V2 dataset (Walke et al., 2023), a large and diverse dataset of real world robotic manipulation
behaviors designed to facilitate research in scalable robot learning. It contains 60,096 trajectories
collected across 24 environments using a publicly available low-cost WidowX 250 6DOF robot arm.
The dataset provides extensive task and environment variability, enabling skills learned from the data
to generalize across environments and domains.

C.1 ADDITIONAL TRAJECTORIES PER ITERATION DURING ONLINE TRAINING

We collect 15 successful trajectories for each task during every iteration. This standardization helps
address task imbalance, as task success rates are higher for certain tasks compared to others. By
ensuring a fixed number of successful trajectories per task, we prevent overfitting to easier tasks and
maintain balanced model performance across the entire task set.

D EXTENDED EXPERIMENTS

D.1 VIDEOS TO ACTION CONVERSION

We employ the GMFlow optical flow model to predict dense pixel movements across frames. These
predicted flows serve as the foundation for reconstructing both object movements and robot mo-
tions depicted in the video. The flow predictions allow us to interpret the temporal evolution of the
video in terms of actionable physical dynamics. The optical flow essentially provides a dense corre-
spondence of pixel movements between consecutive frames, which is then used to infer the relative
motion of objects and the robot. This mapping bridges the gap between the high-dimensional video
representation and the low-level control commands required to execute the tasks in a simulated or
real environment.
This method ensures that the generated video plans are actionable and aligned with the task-specific
dynamics, making the video generation process directly relevant to downstream policy learning and
execution.

D.2 BASELINE EXPERIMENTS ON METAWORLD

We conduct experiments on additional baselines including, Behavioral Cloning (BC), UniPi (with
replan), VLP and Diffusion policy. Table 6 consists of these results.

D.3 FURTHER ANALYSIS OF VIDEOAGENT-ONLINE

We train VideoAgent-Online for multiple iterations and observe that after 2 iterations, the results
start to stabilize. The results for iteration 3 are shown in table 7.
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Table 6: Meta-World Results. The mean success rates of baselines and VideoAgent on 11 simulated robot
manipulation environments from Meta-World. VideoAgent consistently outperforms baselines across all tasks.

door-open door-close basketball shelf-place btn-press btn-press-top

BC-Scratch 21.3% 36.0% 0.0% 0.0% 34.7% 12.0%
BC-R3M 1.3% 58.7% 0.0% 0.0% 36.0% 4.0%
UniPi (with Replan) 0.0% 36.0% 0.0% 0.0% 6.7% 0.0%
AVDC 30.7% 28.0% 21.3% 8.0% 34.7% 17.3%
VLP 33.3% 28.0% 17.3% 8.0% 36.0% 18.7%
Diffusion Policy 45.3% 45.3% 8.0% 0.0% 40.0% 18.7%
AVDC-Replan 72.0% 89.3% 37.3% 18.7% 60.0% 24.0%

VideoAgent 40.0% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent-Online (Iter1) 41.3% 32.0% 17.3% 12.0% 45.3% 14.7%
VideoAgent-Online (Iter2) 44.0% 29.3% 18.7% 18.7% 46.7% 16.0%
VideoAgent-Online-Replan 80.0% 97.3% 40.0% 22.7% 72.0% 40.0%

faucet-close faucet-open handle-press hammer assembly Overall

BC-Scratch 18.7% 22.7% 28.0% 0.0% 0.0% 15.4%
BC-R3M 18.7% 17.3% 37.3% 0.0% 1.3% 16.2%
UniPi (with Replan) 4.0% 9.3% 13.3% 4.0% 0.0% 6.1%
AVDC 12.0% 17.3% 41.3% 0.0% 5.3% 19.6%
VLP 30.7% 10.7% 33.3% 0.0% 1.3% 19.8%
Diffusion Policy 22.7% 58.7% 21.3% 4.0% 1.3% 24.1%
AVDC-Replan 53.3% 24.0% 81.3% 8.0% 6.7% 43.1%

VideoAgent 46.7% 12.0% 36.0% 0.0% 1.3% 22.3%
VideoAgent-Online (Iter1) 38.7% 13.3% 36.0% 0.0% 4.0% 23.2%
VideoAgent-Online (Iter2) 49.3% 21.3% 44.0% 1.3% 1.3% 26.4%
VideoAgent-Online-Replan 58.7% 36.0% 85.3% 8.0% 10.7% 50.0%

door-open door-close basketball shelf-place btn-press btn-press-top

VideoAgent 40.0% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent-Online(Iter1) 41.3% 32.0% 17.3% 12.0% 45.3% 14.7%
VideoAgent-Online(Iter2) 44.0% 29.3% 18.7% 18.7% 46.7% 16.0%
VideoAgent-Online(Iter3) 46.7% 28.0% 18.7% 18.7% 45.3% 20.0%

faucet-close faucet-open handle-press hammer assembly Overall

VideoAgent 46.7% 12.0% 36.0% 0.00% 1.3% 22.3%
VideoAgent-Online(Iter1) 38.7% 13.3% 36.0% 0.00% 4.0% 23.15%
VideoAgent-Online(Iter2) 49.3% 21.3% 44.0% 1.33% 1.33% 26.4%
VideoAgent-Online(Iter3) 48.0% 21.3% 42.0% 1.33% 1.33% 26.5%

Table 7: Meta-World Result. The mean success rates of VideoAgent combined with Online and Replan
modules as compared to the AVDC baseline

E ARCHITECTURAL DETAILS OF VIDEOAGENT

E.1 VIDEO DIFFUSION TRAINING DETAILS

We use the same video diffusion architecture as the AVDC baseline. For all models, we use
dropout=0, num head channels=32, train/inference timesteps=100, training objective=predict v, beta
schedule=cosine, loss function=l2, min snr gamma=5, learning rate=1e-4, ema update steps=10, ema
decay=0.999.

E.2 INFERENCE TIME SPEED

In our current setup, during inference, our video generation model produces a new video within 10
seconds on a single A6000 GPU at a resolution of 128×128 for metaworld. The process of mapping
this generated video to an action takes, on average, an additional 25 seconds. This action-mapping
stage involves calculating optical flow, receiving feedback from the vision-language model (VLM),
and to convert the video into an action sequence based on the computed flow.
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door-open door-close basketball shelf-place btn-press btn-press-top

AVDC 30.7% 28.0% 21.3% 8.00% 34.7% 17.3%

VideoAgent 46.7% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent-Binary 46.7% 32.0% 14.7% 6.7% 38.7% 21.3%
VideoAgent-Suggestive 46.7% 33.3% 18.7% 12.0% 41.3% 22.7%
VideoAgent-Online-Suggestive 52.0% 28.0% 21.3% 16.0% 46.7% 22.7%

faucet-close faucet-open handle-press hammer assembly Overall

AVDC 12.0% 17.3% 41.3% 0.00% 5.30% 19.6%

VideoAgent 46.7% 12.0% 36.0% 0.00% 1.3% 22.9%
VideoAgent-Binary 46.7% 17.3% 32% 0.00% 5.3% 23.8%
VideoAgent-Suggestive 48.7% 17.3% 46.7% 0.00% 5.3% 26.6%
VideoAgent-Online-Suggestive 45.3% 20.0% 48.0% 2.7% 5.3% 27.4%

Table 8: Meta-World: VideoAgent-Feedback Guided Results The mean success rates for various tasks,
comparing different VideoAgent-Feedback Guided variants and the AVDC baseline.

F VLM FEEDBACK FOR CORRECTION

G DETAILS OF HUMAN EVALUATION ON BRIDGEDATA V2
Qualitative Evaluation. Next, we qualitatively evaluate video generation quality using the five
Video-Score dimensions: Visual Quality (VQ) for clarity and resolution, Temporal Consistency
(TC) for smooth frame transitions, Dynamic Degree (DD) for capturing accurate object/environment
changes, Text-to-Video Alignment (TVA) for matching the video to the prompt, and Factual Con-
sistency (FC) for adherence to physical laws and real-world facts. Videos are rated on a 4-point
scale based on the metric in He et al. (2024): 1 (Bad), 2 (Average), 3 (Good), and 4 (Perfect). Our
evaluation is based on 50 generated videos from a held-out set.

Table 9: Task Success and Other Fine-grained Human Evaluation Metrics on BridgeData-V2

Metrics AVDC Video Agent
Task Success via Human Eval 42.0% 64.0%

Holistic Assessment via Human Eval

Visual Quality 1.74 1.84
Temporal Consistency 1.58 1.76

Dynamic Degree 3.14 2.98
Text to Video Alignment 2.66 3.04

Factual Consistency 3.22 3.30

Human Eval Average 2.47 2.98

In terms of VQ and TC, both the baseline AVDC and our VideoAgent generate average quality
videos (graded 2), with AVDC hallucinating more and generating some choppy jumps in videos
temporally (we grade such videos as 1) and Video Agent fixing some of these upon video condi-
tioned iterative refinement. The reason for AVDC baseline having higher DD is attributed to unruly
movements that cause higher DD scores compared to VideoAgent, where movements are smoother.
This also explains the result in fifth row of Table 5, and upon closer examination of the generated
videos and their corresponding individual scores, we observed similar traits in videos having higher
DD due to unnatural robot arm movements and object impermanence. TVA shows trends similar to
ClipScore in Table 5 due to the better instruction following ability of VideoAgent leading to more
controlled generation. FC is a very crucial metric for deployment of video generation agents as pol-
icy for task completion in robotics, scene navigation, and so on. Improved visual quality does not
imply adherence to correct physical laws and real-world constraints, FC particularly checks for this
aspect and due to video conditioned self-refinement, VideoAgent has better FC compared to AVDC.
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H EXAMPLES

H.1 ZERO-SHOT GENERALIZATION ON REAL-WORLD SCENES

VideoAgent trained on Bridge dataset demonstrates strong performance on zero shot video genera-
tion for natural distribution shifts and longer language instructions. Some examples of the synthe-
sized videos can be found in Fig. 8.

Figure 8: Zero-shot generalization of VideoAgent: VideoAgent generalizes fairly well to natural distribution
shifts and is able to generate successful trajectories on data it has not been trained on.

H.2 IMPROVEMENTS IN META-WORLD

Figure 9: Correcting Hallucinations in Video Generation: The goal prompt is “Assembly” as shown in the
Target Video. The AVDC model has problem of object permanence and action incomplete in last frame. In
contrast, our VideoAgent model accurately object permanence and correctly places the inside the peg properly.

H.3 IMPROVEMENTS IN ITHOR
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Figure 10: Correcting Hallucinations in Video Generation: The goal prompt is “Television” as shown in the
Target Video, the goal is for the navigator to locate the object and reach near it. The AVDC model has difficulty
reconstructing and navigating in the livingroom to find the television. In contrast, our VideoAgent model solves
the initial frame hallucinations and accurately reaches near the television correctly.
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H.4 IDENTIFICATION AND SUGGESTIVE FEEDBACK EXAMPLES

Figure 11: Detailed VLM Feedback: We show the efficacy of VLMs to provide useful feedback even in the
absence of access to a simulator or real-world execution environment. The VLM acts as a proxy reward model
to condition VideoAgent on useful corrective signals, leading to improved performance as described in Table
3.
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